xu_sim_noiseradar_1194_JTECH_Sept-2009

合集下载

非制冷红外焦平面探测器固定图形噪声研究

非制冷红外焦平面探测器固定图形噪声研究

非制冷红外焦平面探测器固定图形噪声研究雷述宇;陶禹;杨妮;方辉;谭果【摘要】As the definition of fixed pattern noise (FPN)in the national standard GB/T1 7444 -201 3 can′t evaluate imaging quality of infrared image,it is proposed that the residue after non -uniformity correction (NUC)is the main factor for the imaging quality.A novel NUC method which adapts with the ambient temperature was introduced and compared with the typical two -point correction.The FPN were separated through the temporal filtering and wavelet transform of the signal voltage after the correction.The measurement and calculating method of FPN were given.An experiment was carried out to determine how to select the calibration temperature to minimize the FPN in a specified temperature range.Then four images obtained from 4 different gain correction coefficients matrixof the same target were compared.The comparison results prove the consistency between the image quality and the FPN curves,which verifies that the new definition of FPN can accurately evaluate the imaging quality.%针对国标 GB /T17444-2013中对红外焦平面阵列(Infrared Focal Arrays,IRFPA)固定图形噪声定义不能直接反映成像画面质量的问题,指出 IRFPA 在实际成像时要先经过非均匀性校正,校正残留才是影响成像质量的主要因素。

基于自适应维纳滤波和2D-VMD的声呐图像去噪算法

基于自适应维纳滤波和2D-VMD的声呐图像去噪算法

基于自适应维纳滤波和2D-VMD的声呐图像去噪算法作者:冯伟刘光宇刘彪周豹赵恩铭来源:《南京信息工程大学学报》2024年第01期摘要:聲呐图像易产生对比度低、分辨率低、边缘失真等问题,所以在去除声呐图像噪声时难以将有效信号与噪声准确分离,从而导致去噪后图像对比度降低、边缘轮廓不清晰、细节丢失严重等问题.本文提出一种基于自适应维纳滤波和2D-VMD(二维变分模态分解)的声呐图像去噪算法.首先通过二维变分模态分解对含噪图像进行分解,得到一系列不同中心频率的模态分量,利用相关系数和结构相似度筛选出有效的模态分量,并使用自适应维纳滤波处理有效的模态分量,最后将滤波后的模态分量进行重构,从而去除图像中的噪声.实验结果表明:所提图像去噪算法在相关系数(CC)、结构相似度(SSIM)这两项客观数据上表现最优,峰值信噪比(PSNR)略低于NSST域去噪,综合客观数据与视觉效果,本文所提算法去除噪声后的图像细节和边缘保持能力效果最佳.关键词:图像去噪;二维变分模态分解;自适应维纳滤波;模态分量;声呐图像中图分类号TP391文献标志码A0 引言海洋资源作为水资源的一种,在人类社会发展和地球能量循环过程中起着非常重要的作用[1].不同于陆地环境,海洋环境的复杂性、多变性、动态性为水下探测带来了严重挑战[2].声呐探测技术作为水下远距离传播的唯一载体,是海洋探索的基本手段,在海底地形测绘、水下目标物体识别和探测、生物种群监测方面都发挥着重要作用[3].由于声呐图像反映的声波信号混杂着外界的散射体等各种声波信号和电信号,使得声呐图像的有效信号与干扰信号混合在一起,导致图像目标边缘模糊、边界残缺且分辨率低的问题[4].同时,由于海洋中存在着散射体及起伏不平的海底和海面造成的混响效应,使得声呐图像存在严重的斑点噪声,尤其在浅海区域,该现象更为严重[5].斑点噪声与干扰信号导致图像质量下降,对后续的图像处理产生不利影响[6].因此,研究声呐图像去噪的方法一直是人们研究的热点.2014年,Dragomiretskiy等[7]提出一种完全非递归的变分模态分解( Variational Mode Decomposition,VMD)模型,该模型可以自适应地将信号分解为频带受限的固有模态函数(Intrinsic Mode Functions,IMF)的集合,并得到固有模态函数的最优值,从而解决经验模态分解对噪声和采样的敏感性等问题.2015年,为了便于处理二维信号,Dragomiretskiy等[8]在VMD算法的基础上提出了二维变分模态分解(Two-Dimensional Variational Mode Decomposition,2D-VMD)模型,该模型是图像分割和方向背景下的自然二维扩展,是一种非递归、完全自适应的变分方法,可以将图像分解为一系列不同中心频率的子模态分量.许多学者将2D-VMD模型应用到图像处理的不同领域.闫洪波等[9]提出一种二维变分模态分解联合快速非局部均值的医学超声图像去噪方法,在去噪的同时能较好地保留边缘信息,且在高噪声方差中有较好的去噪效果.Messagier等[10]使用二维变分模态分解降低条纹图案的随机噪声,并改善轮廓和残差图像.虽然一些基于二维变分模态分解的去噪算法陆续被提出,但并没有针对声呐图像特点提出更为有效的去噪方法.另外,自适应维纳滤波较其他滤波方法在去噪过程中,在保留图像边缘信息和细节方面有较好的效果[11].因此,本文提出一种将自适应维纳滤波和二维变分模态分解(2D-VMD)相结合的声呐图像去噪方法.首先通过二维变分模态分解将含噪图像分解成一系列不同中心频率的模态分量,然后利用相关系数(CC)和结构相似度(SSIM)筛选出有效的模态分量,并使用自适应维纳滤波处理有效的模态分量,最后将滤波后的模态分量进行重构,从而去除图像中的噪声.1 基础理论1.1 二维变分模态分解变分模态分解算法可以将信号分解为具有特定方向和振荡特征的组成模态的集合,这些固有模态函数可以将给定的输入信号精确重构,同时使得每个模态都限制在一个在线估计的中心频率附近.VMD算法在一维信号分解成功应用的基础上,Dragomiretskiy等[8]将VMD算法在二维信号上进行自然扩展,并提出了二维变分模态分解,该方法更加适用于二维图像分解.相对于变分模态分解,二维变分模态分解在保持数据保真度的同时,使构成的子信号的带宽最小化[12].在一维解析信号中,信号的分析通过一个单边频谱实现,所以需要将负率设置为零.将一维解析信号推广到二维解析信号中,需要有效地将频域的一半平面设置为零,该半平面相当于一个矢量,记为ωk,因此,二维解析信号在频域中的定义如下:1)相关系数(Correlation Coefficient,CC):用来衡量两张图像的相关程度,其值越接近1,说明两张图像的相关程度越高[18].灰度图像为两个大小相等的二维矩阵,其相关系数的计算公式为由表1可以看出,IMF1与原始图像的相关系数最大,达到了0.940 6,其他的模态分量IMF2、IMF3、IMF4和IMF5 的相关系数较低,并且它们之间的数值差异较小.IMF1结构相似度的值也为最高,IMF2、IMF3、IMF4和IMF5 的结构相似度比较相近,且与IMF1计算结果差距较大.由此可知,图像经分解后的IMF1能较好地保留原始图像的主要信息,因此将IMF1判定为有效分量,其他的模态分量 IMF2~IMF5 的不相关信息成分较高从而导致原始图像的信息特征损失,因此将IMF2~IMF5判定为无效分量.IMF1虽然去除了较多高频噪声信息,但还含有少量的噪声成分,所以需对IMF1进行自适应维纳滤波处理,最终对滤波后的模态分量进行重构即可得到去噪后的图像.分别利用自适应维纳滤波、文献[20]所提TV平滑滤波联合2D-VMD的去噪方法、文献[21]提出的基于密度聚类与灰度变化的NSST域去噪方法对图3进行去噪处理,将其结果与本文所提去噪方法进行对比.不同方法去噪结果如图5所示.图5中自适应维纳滤波的去噪图像受噪声影响最严重,含有大量的噪声,去噪效果最差.NSST域去噪效果较好,尤其是背景的还原度较高,但图中目标物体同背景一样,由于频域处理的变化过于剧烈而出现振铃现象,使得目标物体的边缘连接出现断层,不完整,无法保留图像中较完整的细节信息.TV滤波联合2D-VMD结果与本文相似,但其背景含有的噪声较多,且目标物体的亮度较低,噪声点较为突出.本文算法对背景处理结果比较平滑,符合视觉感受,且其目标物体亮度较高,边缘信息充分保留,整体去噪效果更好.为了进一步客观具体地评估所提出的方法,分别计算几种去噪结果的相关系数、结构相似度、边缘保持指数和峰值信噪比,通过数据对图像质量进行判断.边缘保持指数和峰值信噪比的计算方式如下:1)边缘保持指数(Edge Preserved Index,EPI):突显图像边缘保持能力强弱的指标,其值越接近1,说明图像的边缘保持能力越强[22].其计算公式如下:其中,M,N分别为图像的宽和高,p,q分别为处理后图像和原始图像,p(i,j)和q (i,j)分别为两张图像在点(i,j)处的像素值.2)峰值信噪比(Peak Signal-to-Noise Ratio,PSNR):PSNR是图像处理领域中一种直观有效的评价准则,评判过程不受观察者的主观性影响.PSNR反映了一幅图像的整体失真程度,PSNR值越大,表示图像的质量越好[23].峰值信噪比的定义如下:对4种去噪方法所得结果分别计算相关系数、结构相似度、边缘保持指数和峰值信噪比,计算结果如表2所示.由表2可以看出,本文去噪结果除了峰值信噪比结果不理想外,其他的客观数据均为最好.本文去噪方法的峰值信噪比与NSST域的结果相差较大,主要原因是目标物体以外的背景信息之间的差别造成的.如图5去噪结果所示,本文在图像轮廓保持,以及船体桥梁和阴影处等细节方面的表现是优于NSST域去噪的,在对图像进行去噪时为了保护边缘轮廓与细节信息牺牲了部分背景信息的真实还原度.通过对比客观指标和视觉效果可以证明本文所提去噪方法的可行性和有效性.研究低信噪比(Signal-to-Noise Radio,SNR)条件下的声呐图像去噪效果,可以进一步验证本文所提算法的有效性和稳定性,对图2分别添加方差为0.1、0.2、0.3、0.4、0.6、0.7、0.8的斑点噪声,得到不同低信噪比的噪声图像,计算噪声图像的信噪比和峰值信噪比便于比较图像去噪效果,所得计算结果如表3所示.信噪比与峰值信噪比越大说明图像质量越好,如表3计算结果随着图像添加的噪声程度不断加大,SNR的计算结果随图像质量下降也呈现下降的趋势,且由于图像质量下降严重,SNR 计算结果出现了负值,不利于后续去噪效果的分析.PSNR的计算结果则完全随图像质量下降而下降.PSNR也是体现图像质量的重要指标之一,所以用PSNR衡量图像的质量.PSNR值高于40 dB,说明图像质量极好,非常接近原始图像;PSNR值在30~40 dB之间,说明图像质量好;PSNR值在20~30 dB之间,说明图像质量差;PSNR值低于20 dB,图像质量不可接受.如表3计算结果,除了方差为0.1的噪声图像,其余图像的PSNR都在20 dB以下,可以满足低峰值信噪比条件下的低质量图像去噪效果研究.对噪声图像使用不同算法进行去噪,实验所得结果与添加方差为0.5的斑点噪声去噪结果如表4—7所示.由表4相关系数计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像与原始图像的相关程度最高,最接近于原始图像,图像还原度最高.由表5结构相似度计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像的亮度、对比度、结构与原始图像最接近.由表6边缘保持指数计算结果可知,本文所提算法在不同噪声图像中的客观数据与NSST 域相近,且各有优势,去噪图像的边缘轮廓和细节信息与原始图像较为接近.由表7峰值信噪比计算结果可知,本文所提算法结果除噪声方差为0.8的图像结果低于20 dB,其他结果都高于20 dB,相较于噪声图像,去噪图像质量提高一个档次,可以以噪声方差大小0.7为界,确定处理噪声图像的最低峰值信噪比为13.383 6 dB.本文算法的峰值信噪比优于自适应维纳滤波结果,与TV滤波结合2D-VMD去噪结果相近,略低于NSST域去噪结果.因为NSST域去噪时将图像分解为1层低频和4层高频,并把4层高频分解为48个不同方向,对图像的处理主要集中于图像的高频部分,可以把低频信息的成分尽量降低,使低频只包含图像的趋势信息,含有非常少的细节信息,所以低频含有少量甚至没有噪声;本文去噪方法处理的是分解后的低频分量,为了保护图像边缘轮廓和细节信息,在图像低频和高频之间的分频上比较保守,导致计算出的峰值信噪比略低于NSST域去噪.结合其他客观数据计算结果和视觉效果,本文算法针对斑点噪声图像的去噪效果有一定的提升.4 结论本文对声呐图像去噪方法进行研究,提出一种基于自适应维纳滤波和2D-VMD的图像去噪方法.针对声呐图像去噪边缘轮廓不清晰、细节丢失严重的问题,利用2D-VMD算法实现了图像的有效分解,并引入相關系数和结构相似度进一步筛选有效的模态分量并用自适应维纳滤波处理,得到了结构相似度、亮度、对比度、边缘还原度以及细节保留更好的去噪图像,有效地提升了图像质量.通过实验确定了算法所能处理噪声图像的最低峰值信噪比的值,即峰值信噪比在13.383 6 dB以上有较好的去噪效果,对低质量图像的去噪处理能够满足大部分复杂情况,为后续的图像处理任务提供帮助.参考文献References图5中自适应维纳滤波的去噪图像受噪声影响最严重,含有大量的噪声,去噪效果最差.NSST域去噪效果较好,尤其是背景的还原度较高,但图中目标物体同背景一样,由于频域处理的变化过于剧烈而出现振铃现象,使得目标物体的边缘连接出现断层,不完整,无法保留图像中较完整的细节信息.TV滤波联合2D-VMD结果与本文相似,但其背景含有的噪声较多,且目标物体的亮度较低,噪声点较为突出.本文算法对背景处理结果比较平滑,符合视觉感受,且其目标物体亮度较高,边缘信息充分保留,整体去噪效果更好.为了进一步客观具体地评估所提出的方法,分别计算几种去噪结果的相关系数、结构相似度、边缘保持指数和峰值信噪比,通过数据对图像质量进行判断.边缘保持指数和峰值信噪比的计算方式如下:1)边缘保持指数(Edge Preserved Index,EPI):突显图像边缘保持能力强弱的指标,其值越接近1,说明图像的边缘保持能力越强[22].其计算公式如下:其中,M,N分别为图像的宽和高,p,q分别为处理后图像和原始图像,p(i,j)和q (i,j)分别为两张图像在点(i,j)处的像素值.2)峰值信噪比(Peak Signal-to-Noise Ratio,PSNR):PSNR是图像处理领域中一种直观有效的评价准则,评判过程不受观察者的主观性影响.PSNR反映了一幅图像的整体失真程度,PSNR值越大,表示图像的质量越好[23].峰值信噪比的定义如下:对4种去噪方法所得结果分别计算相关系数、结构相似度、边缘保持指数和峰值信噪比,计算结果如表2所示.由表2可以看出,本文去噪结果除了峰值信噪比结果不理想外,其他的客观数据均为最好.本文去噪方法的峰值信噪比与NSST域的结果相差较大,主要原因是目标物体以外的背景信息之间的差别造成的.如图5去噪结果所示,本文在图像轮廓保持,以及船体桥梁和阴影处等细节方面的表现是优于NSST域去噪的,在对图像进行去噪时为了保护边缘轮廓与细节信息牺牲了部分背景信息的真实还原度.通过对比客观指标和视觉效果可以证明本文所提去噪方法的可行性和有效性.研究低信噪比(Signal-to-Noise Radio,SNR)条件下的声呐图像去噪效果,可以进一步验证本文所提算法的有效性和稳定性,对图2分别添加方差为0.1、0.2、0.3、0.4、0.6、0.7、0.8的斑点噪声,得到不同低信噪比的噪声图像,计算噪声图像的信噪比和峰值信噪比便于比较图像去噪效果,所得计算结果如表3所示.信噪比与峰值信噪比越大说明图像质量越好,如表3计算结果随着图像添加的噪声程度不断加大,SNR的计算结果随图像质量下降也呈现下降的趋势,且由于图像质量下降严重,SNR 计算结果出现了负值,不利于后续去噪效果的分析.PSNR的计算结果则完全随图像质量下降而下降.PSNR也是体现图像质量的重要指标之一,所以用PSNR衡量图像的质量.PSNR值高于40 dB,说明图像质量极好,非常接近原始图像;PSNR值在30~40 dB之间,说明图像质量好;PSNR值在20~30 dB之间,说明图像质量差;PSNR值低于20 dB,图像质量不可接受.如表3计算结果,除了方差为0.1的噪声图像,其余图像的PSNR都在20 dB以下,可以满足低峰值信噪比条件下的低质量图像去噪效果研究.对噪声图像使用不同算法进行去噪,实验所得结果与添加方差为0.5的斑点噪声去噪结果如表4—7所示.由表4相关系数计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像与原始图像的相关程度最高,最接近于原始图像,图像还原度最高.由表5结构相似度计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像的亮度、对比度、结构与原始圖像最接近.由表6边缘保持指数计算结果可知,本文所提算法在不同噪声图像中的客观数据与NSST 域相近,且各有优势,去噪图像的边缘轮廓和细节信息与原始图像较为接近.由表7峰值信噪比计算结果可知,本文所提算法结果除噪声方差为0.8的图像结果低于20 dB,其他结果都高于20 dB,相较于噪声图像,去噪图像质量提高一个档次,可以以噪声方差大小0.7为界,确定处理噪声图像的最低峰值信噪比为13.383 6 dB.本文算法的峰值信噪比优于自适应维纳滤波结果,与TV滤波结合2D-VMD去噪结果相近,略低于NSST域去噪结果.因为NSST域去噪时将图像分解为1层低频和4层高频,并把4层高频分解为48个不同方向,对图像的处理主要集中于图像的高频部分,可以把低频信息的成分尽量降低,使低频只包含图像的趋势信息,含有非常少的细节信息,所以低频含有少量甚至没有噪声;本文去噪方法处理的是分解后的低频分量,为了保护图像边缘轮廓和细节信息,在图像低频和高频之间的分频上比较保守,导致计算出的峰值信噪比略低于NSST域去噪.结合其他客观数据计算结果和视觉效果,本文算法针对斑点噪声图像的去噪效果有一定的提升.4 结论本文对声呐图像去噪方法进行研究,提出一种基于自适应维纳滤波和2D-VMD的图像去噪方法.针对声呐图像去噪边缘轮廓不清晰、细节丢失严重的问题,利用2D-VMD算法实现了图像的有效分解,并引入相关系数和结构相似度进一步筛选有效的模态分量并用自适应维纳滤波处理,得到了结构相似度、亮度、对比度、边缘还原度以及细节保留更好的去噪图像,有效地提升了图像质量.通过实验确定了算法所能处理噪声图像的最低峰值信噪比的值,即峰值信噪比在13.383 6 dB以上有较好的去噪效果,对低质量图像的去噪处理能够满足大部分复杂情况,为后续的图像处理任务提供帮助.参考文献References图5中自适应维纳滤波的去噪图像受噪声影响最严重,含有大量的噪声,去噪效果最差.NSST域去噪效果较好,尤其是背景的还原度较高,但图中目标物体同背景一样,由于频域处理的变化过于剧烈而出现振铃现象,使得目标物体的边缘连接出现断层,不完整,无法保留图像中较完整的细节信息.TV滤波联合2D-VMD结果与本文相似,但其背景含有的噪声较多,且目标物体的亮度较低,噪声点较为突出.本文算法对背景处理结果比较平滑,符合视觉感受,且其目标物体亮度较高,边缘信息充分保留,整体去噪效果更好.为了进一步客观具体地评估所提出的方法,分别计算几种去噪结果的相关系数、结构相似度、边缘保持指数和峰值信噪比,通过数据对图像质量进行判断.边缘保持指数和峰值信噪比的计算方式如下:1)边缘保持指数(Edge Preserved Index,EPI):突显图像边缘保持能力强弱的指标,其值越接近1,说明图像的边缘保持能力越强[22].其计算公式如下:其中,M,N分别为图像的宽和高,p,q分别为处理后图像和原始图像,p(i,j)和q (i,j)分别为两张图像在点(i,j)处的像素值.2)峰值信噪比(Peak Signal-to-Noise Ratio,PSNR):PSNR是图像处理领域中一种直观有效的评价准则,评判过程不受观察者的主观性影响.PSNR反映了一幅图像的整体失真程度,PSNR值越大,表示图像的质量越好[23].峰值信噪比的定义如下:对4种去噪方法所得结果分别计算相关系数、结构相似度、边缘保持指数和峰值信噪比,计算结果如表2所示.由表2可以看出,本文去噪结果除了峰值信噪比结果不理想外,其他的客观数据均为最好.本文去噪方法的峰值信噪比与NSST域的结果相差较大,主要原因是目标物体以外的背景信息之间的差别造成的.如图5去噪结果所示,本文在图像轮廓保持,以及船体桥梁和阴影处等细节方面的表现是优于NSST域去噪的,在对图像进行去噪时为了保护边缘轮廓与细节信息牺牲了部分背景信息的真实还原度.通过对比客观指标和视觉效果可以证明本文所提去噪方法的可行性和有效性.研究低信噪比(Signal-to-Noise Radio,SNR)条件下的声呐图像去噪效果,可以进一步验证本文所提算法的有效性和稳定性,对图2分别添加方差为0.1、0.2、0.3、0.4、0.6、0.7、0.8的斑點噪声,得到不同低信噪比的噪声图像,计算噪声图像的信噪比和峰值信噪比便于比较图像去噪效果,所得计算结果如表3所示.信噪比与峰值信噪比越大说明图像质量越好,如表3计算结果随着图像添加的噪声程度不断加大,SNR的计算结果随图像质量下降也呈现下降的趋势,且由于图像质量下降严重,SNR 计算结果出现了负值,不利于后续去噪效果的分析.PSNR的计算结果则完全随图像质量下降而下降.PSNR也是体现图像质量的重要指标之一,所以用PSNR衡量图像的质量.PSNR值高于40 dB,说明图像质量极好,非常接近原始图像;PSNR值在30~40 dB之间,说明图像质量好;PSNR值在20~30 dB之间,说明图像质量差;PSNR值低于20 dB,图像质量不可接受.如表3计算结果,除了方差为0.1的噪声图像,其余图像的PSNR都在20 dB以下,可以满足低峰值信噪比条件下的低质量图像去噪效果研究.对噪声图像使用不同算法进行去噪,实验所得结果与添加方差为0.5的斑点噪声去噪结果如表4—7所示.由表4相关系数计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像与原始图像的相关程度最高,最接近于原始图像,图像还原度最高.由表5结构相似度计算结果可知,本文所提算法在不同噪声图像中的客观数据均为最佳,去噪图像的亮度、对比度、结构与原始图像最接近.由表6边缘保持指数计算结果可知,本文所提算法在不同噪声图像中的客观数据与NSST 域相近,且各有优势,去噪图像的边缘轮廓和细节信息与原始图像较为接近.由表7峰值信噪比计算结果可知,本文所提算法结果除噪声方差为0.8的图像结果低于20 dB,其他结果都高于20 dB,相较于噪声图像,去噪图像质量提高一个档次,可以以噪声方差大小0.7为界,确定处理噪声图像的最低峰值信噪比为13.383 6 dB.本文算法的峰值信噪比优于自适应维纳滤波结果,与TV滤波结合2D-VMD去噪结果相近,略低于NSST域去噪结果.因为NSST域去噪时将图像分解为1层低频和4层高频,并把4层高频分解为48个不同方向,对图像的处理主要集中于图像的高频部分,可以把低频信息的成分尽量降低,使低频只包含图像的趋势信息,含有非常少的细节信息,所以低频含有少量甚至没有噪声;本文去噪方法处理的是分解后的低频分量,为了保护图像边缘轮廓和细节信息,在图像低频和高频之间的分频上比较保守,导致计算出的峰值信噪比略低于NSST域去噪.结合其他客观数据计算结果和视觉效果,本文算法针对斑点噪声图像的去噪效果有一定的提升.4 结论本文对声呐图像去噪方法进行研究,提出一种基于自适应维纳滤波和2D-VMD的图像去噪方法.针对声呐图像去噪边缘轮廓不清晰、细节丢失严重的问题,利用2D-VMD算法实现了图像的有效分解,并引入相关系数和结构相似度进一步筛选有效的模态分量并用自适应维纳滤波处理,得到了结构相似度、亮度、对比度、边缘还原度以及细节保留更好的去噪图像,有效地提升了图像质量.通过实验确定了算法所能处理噪声图像的最低峰值信噪比的值,即峰值信噪比在13.383 6 dB以上有较好的去噪效果,对低质量图像的去噪处理能够满足大部分复杂情况,为后续的图像处理任务提供帮助.参考文献References图5中自适应维纳滤波的去噪图像受噪声影响最严重,含有大量的噪声,去噪效果最差.NSST域去噪效果较好,尤其是背景的还原度较高,但图中目标物体同背景一样,由于频域处理的变化过于剧烈而出现振铃现象,使得目标物体的边缘连接出现断层,不完整,无法保留图像中较完整的细节信息.TV滤波联合2D-VMD结果与本文相似,但其背景含有的噪声较多,且目标物体的亮度较低,噪声点较为突出.本文算法对背景处理结果比较平滑,符合视觉感受,且其目标物体亮度较高,边缘信息充分保留,整体去噪效果更好.为了进一步客观具体地评估所提出的方法,分别计算几种去噪结果的相关系数、结构相似度、边缘保持指数和峰值信噪比,通过数据对图像质量进行判断.边缘保持指数和峰值信噪比的计算方式如下:。

基于扩谱与压缩感知的雷达目标散射中心提取

基于扩谱与压缩感知的雷达目标散射中心提取
首先,介绍了雷达目标散射中心提取的研究现状,包括雷达目标散射中心的类型、数学模 型、参量提取算法,低截获概率信号和散射回波数据的获取方法。
其次,详细地介绍了后文中需要用到的理论和算法。包括二维信号特征参量估计算法,如 二维旋转不变算法(2D-ESPRIT) 、二维增广矩阵矩阵束算法(2D-MEMP)和二维修正增广矩阵矩 阵束算法(2D-MMEMP);伪随机序列的性质和构造方法;CS 原理,以及用于模式识别的支持向 量机(SVM)。
32
图 3.4 基于 2D-MEMP 的参量估计均方根误差
32
图 3.5 散射中心参量估计的均方根误差随 m 序列长度的变化
33
图 3.6 2D-FFT 的等高图
33
图 4.1 两个不同角度获取的目标 HRRP
34
图 4.2 基于 CS 理论的较简单 HRRP 重构
36
图 4.3 基于 CS 理论的较复杂 HRRP 重构
Key words: Spread specturm,Scattering center,Compressed sensing,Support vector machine
ii
南京航空航天大学硕士学位论文
图表清单
图 2.1 雷达与目标的二位坐标关系
10
图 2.2 n 级线性反馈移位寄存器
20
图 2.3 m 序列自相关曲线
First, the development of radar target scattering center extraction is introduced, including the type of radar target scattering ceneters extraction algorithm, low-interceptive signal and scattered signal calculation method.

Nonlinear Total Variation based noise removal algorithms

Nonlinear Total Variation based noise removal algorithms

Nonlinear Total Variation based noise removal algorithms最近仔细读了下提出全变差(Total Variation,TV)最小化去噪的那篇文章《Nonlinear Total Variation based noise removal algorithms》[1](ROF92)。

在了解TV去噪的过程中,我发现,不管是期刊论文、博硕士论文还是博客,很少有进一步去将文献[1]讲得更加清楚一些的。

再加上文献[1]本身公式大多都缺少中间过程、推导过程不易理解,给出结论都非常突兀。

还有便是,Guy Gilboa副教授的开源代码中最关键的u和λ的更新公式都是不同于文献[1]的公式(2.8a)和(2.9c)的。

这些都给水平不高的我造成了很多理解上的困惑。

所幸,在大师兄的帮助下,我算是看懂文献[1]。

另外,Guy Gilboa副教授的开源代码关键变量的更新公式虽然不同于文献[1],但也提供了另外一个视角,帮助我对算法的理解更上一层楼。

针对上面提到的问题,我打算把我自己看论文和写程序时想明白的写一下,预计是3篇博文,分别解决以下3个问题:1.如何将TV去噪问题从范数约束形式通过Euler-Lagrange方程变为偏微分形式?2.如何推导出论文中直接给出的那些公式?3.Guy Gilboa副教授的开源代码更新公式表达与论文不同,为何还是正确的?我们先来解决第1个问题。

实际上,第1个还能够进一步细分为3个子问题:1.如何得到公式(2.5a)?2.如何得到公式(2.6)?3.公式(2.8a)是不是有错?1. 如何将TV去噪问题从范数约束形式通过Euler-Lagrange方程变为偏微分形式?文献[1]中,公式(2.5a)的提出很突兀,这一小节主要讲述如何导出公式(2.5a):u t=∂∂x⎛⎝⎜u x u2x+u2y−−−−−−√⎞⎠⎟+∂∂y⎛⎝⎜u y u2x+u2y−−−−−−√⎞⎠⎟−λ(u−u0)(2.5a)众所周知,TV去噪问题可以表示成如下形式:min u∫Ωu2x+u2y−−−−−−√+(u−u0)2dxdy,(my−1)这里,u是去噪后也就是待恢复的图像,u0是噪声图像,一般默认为高斯白噪声。

噪声系数 Noise Figure 对手机射频接收机灵敏度之影响

噪声系数 Noise Figure 对手机射频接收机灵敏度之影响

Noise Figure所谓灵敏度,指的是在SNR能接受的情况下,其接收机能接收到的最小讯号[1-2],其公式如下:第二项是所谓的Noise Figure,理想上SNR当然是越大越好,最好是无限大(表示都没有噪声),但实际上不可能没有噪声,因此,由[3-4]可知,所谓Noise Figure,衡量的是当一个讯号进入一个系统时,其输出讯号的SNR下降多寡,亦即其噪声对系统的危害程度,示意图与定义如下:而接收机整体的Noise Figure,公式如下:由上式可知,越前面的阶级,对于Noise Figure的影响就越大,而一般接收机的方块图如下[5] :因此,从天线到LNA,包含ASM、SAW Filter、以及接收路径走线,这三者的Loss 总和,对于接收机整体的Noise Figure,有最大影响,因为由[5]可知,若这边的Loss多1 dB,则接收机整体的Noise Figure,就是直接增加1 dB,因此挑选ASM 时,要尽量挑选Insertion Loss较小的[7]。

而由[8]可知,SAW Filter可以抑制带外噪声,因此原则上须在LNA输入端,添加SAW Filter,避免带外噪声劣化接收机整体性能。

但有些接收机,其SAW Filter 会摆放在LNA与Mixer之间,如下图[9] :前述说过,LNA输入端的Loss,对于接收机整体的Noise Figure,有最大影响,因此上图的PCS与WCDMA,之所以将SAW Filter摆放在LNA之后,主要也是为了Noise Figure考虑,假设SAW Filter的Insertion Loss为1 dB,LNA的Gain 为10 dB,若将SAW Filter摆放在LNA之前,则接收机整体的Noise Figure,便是直接增加1 dB,但若放在LNA之后,则接收机整体的Noise Figure,只增加了1/10 = 0.1 dB。

而在Layout时,其接收路径走线要尽可能短,线宽尽可能宽,这样才能将其Insertion Loss降低,甚至必要时,可以将走线下层的GND挖空,如此便可以在阻抗不变的情况下,进一步拓展线宽,使其Insertion Loss更为降低[10]。

DIRART (Deformable Image Registration and Adaptive Radiotherapy) Software Suite

DIRART (Deformable Image Registration and Adaptive Radiotherapy) Software Suite

1
Table of Content DIRART (Deformable Image Registration and Adaptive Radiotherapy) Software Suite.............. 1 (Version 1.0a) ................................................................................................................................. 1 User Instruction Manual ................................................................................................................. 1 Version 0.1...................................................................................................................................... 1 Deshan Yang, PhD...................................................................................................................... 1 Issam El Naqa, PhD .................................................................................................

非高斯噪声下信源数未知相干信号DOA估计

非高斯噪声下信源数未知相干信号DOA估计

非高斯噪声下信源数未知相干信号DOA估计钟安琪;郭莹【摘要】针对现实环境中普遍存在的非高斯噪声和无法预知信源数目的问题,将混有非高斯脉冲噪声的信号样值视为粗差值,应用SW检验作为预处理,自适应去除幅值相对较大的粗差值,再以样本协方差的行向量重新构建一个满秩的、具有联合对角化结构的Toeplitz矩阵,使其秩只与波达方向有关,而不受信号相干性的影响,并由联合对角结构产生的代价函数,得出无需信源数目的空间谱搜索式进行DOA估计.大量仿真结果表明,与现有的一些方法相比,所提出的算法在信源数未知条件下,能对含有非高斯噪声的信号进行有效的DOA估计,具有较高的准确度及稳定性且对快拍数、信噪比要求不高.【期刊名称】《微处理机》【年(卷),期】2018(039)005【总页数】6页(P29-34)【关键词】非高斯噪声;波达方向估计;信源数未知;SW检验【作者】钟安琪;郭莹【作者单位】沈阳工业大学信息科学与工程学院,沈阳110870;沈阳工业大学信息科学与工程学院,沈阳110870【正文语种】中文【中图分类】TN911.231 引言利用处于不同位置的阵列天线接收来自不同方位信号源的信号,并计算信号源的波达方向(direction-of-arrial,DOA),是阵列信号研究中的一个重要课题,目前已取得丰硕成果,在雷达探测、水中声纳、无线通信航空导航和医学等领域均有广泛应用。

波达方向估计中经典算法如Capon算法[1]和前向平滑(FOSS)算法[2]等都是在高斯噪声背景下进行计算的,但在实际中噪声并不都是完全呈高斯分布的,比如大气(雷电)噪声、海洋杂波和地表杂波等,在这些噪声中存在十分明显的脉冲尖峰会严重降低基于高斯分布假设的算法的性能,所以在这种环境背景下传统的高斯分布模型不再适用。

通过选择具有厚重拖尾的分布统计模型如α-稳定分布[3],可以解决在非高斯噪声下的波达估计问题。

针对非高斯噪声下的相干信号的DOA估计问题,文献[4]提出了建立前/后平滑低阶矩阵来进行DOA估计的FLOM-SS算法。

Fisher信息在噪声估计精度分析中的应用

Fisher信息在噪声估计精度分析中的应用

第61卷 第6期吉林大学学报(理学版)V o l .61 N o .62023年11月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )N o v 2023d o i :10.13413/j .c n k i .jd x b l x b .2022472F i s he r 信息在噪声估计精度分析中的应用潘铭樱,冯象初(西安电子科技大学数学与统计学院,西安710126)摘要:采用F i s h e r 信息以及相关的渐近正态性,分析基于极大似然方程估计的广义噪声模型的参数精度.理论分析结果表明,对于标准像素图像,用极大似然方程估计得到的加性噪声的参数误差大于信号相关噪声参数的误差;而对于归一化后的图像,参数的精度结果刚好相反.实验证明了理论分析的正确性.关键词:参数精度;极大似然方程;F i s h e r 信息;渐近正态性中图分类号:T P 391 文献标志码:A 文章编号:1671-5489(2023)06-1367-08A p pl i c a t i o no f F i s h e r I n f o r m a t i o n i n N o i s eE s t i m a t i o nA c c u r a c y A n a l ys i s P A N M i n g y i n g ,F E N G X i a n gc h u (S c h o o l o f M a t h e m a t i c s a n dS t a t i s t i c s ,X id i a nU n i ve r s i t y ,X i a n 710126,C h i n a )A b s t r a c t :W e a n a l y s e d t h e p a r a m e t r i c a c c u r a c y of t h eg e n e r a l i z e dn o i s em o d e l e s t i m a t e db a s e do n th e m a xi m u ml i k e l i h o o de q u a t i o nb y u s i n g F i s h e r i n f o r m a t i o na n dt h ea s s o c i a t e da s y m p t o t i cn o r m a l i t y.T h e t h e o r e t i c a la n a l y s i sr e s u l t ss h o w t h a tf o rs t a n d a r d p i x e l i m a ge s ,t h e p a r a m e t e re r r o ro ft h e a d d i t i v en o i s e e s t i m a t e db y u s i n g t h em a x i m u ml i k e l i h o o de q u a t i o n i s l a r g e r t h a n t h e e r r o rof s ig n a l -d e p e n d e n t n o i s e p a r a m e t e r ,whi l e f o r t h e n o r m a l i z e d i m a g e s ,t h e a c c u r a c y o f t h e p a r a m e t e r s i s e x a c t l yt h e o p p o s i t e .T h e e x p e r i m e n t s p r o v e t h e c o r r e c t n e s s o f t h e t h e o r e t i c a l a n a l ys i s .K e yw o r d s :p a r a m e t r i c a c c u r a c y ;m a x i m u ml i k e l i h o o d e q u a t i o n ;F i s h e r i n f o r m a t i o n ;a s y m p t o t i c n o r m a l i t y 收稿日期:2022-11-29.第一作者简介:潘铭樱(1998 ),女,汉族,硕士研究生,从事图像去噪的研究,E -m a i l :m y pa n @s t u .x i d i a n .e d u .c n .通信作者简介:冯象初(1962 ),男,汉族,博士,教授,从事数值分析㊁小波和多尺度等在图像处理中应用的研究,E -m a i l :x c f e n g @ma i l .x i d i a n .e d u .c n .基金项目:国家自然科学基金(批准号:61772389).图像在人类生活中具有重要作用[1],人们所接收到的信息大部分通过图像传递[2].但在图像被操作过程中会产生许多无用的信息,干扰了人们对图像信息的理解以及后续的处理结果[3],因此在图像进行处理前必须予以纠正,使得图像去噪研究备受关注.除基于滤波[4]㊁基于偏微分方程[5]和基于非局部自相似[6]等的传统图像算法外,新兴的基于深度学习的方法[7-8]也成为目前研究的重点.但这些算法大多数要求图像的噪声参数已知,而这在实际生活中不现实,因此噪声估计成为图像去噪过程中的重要一环.噪声估计的方法有很多[9-21],其中基于极大似然方程估计图像噪声参数是一个重要的研究方向[17-21].文献[19]研究表明,平坦图像块的信息主要来自于噪声,所以其通过极大似然估计从纹理较少的图像块中估计噪声参数,该算法取得了较好的效果.分析估计参数的精度可以更清楚地了解参数与真实数据的匹配程度,减小因参数误差对实验结果造成的不良影响.虽然相关噪声估计的研究目前较多,但针对得到参数精度的研究却相对较少.F i s h e r 信息[22]是数理统计中的重要概念,可用于观测可观察随机变量携带的关于其概率与所依赖的未知参数的信息量.本文以文献[19]中的方法为例,利用F i s h e r 信息分析估计参数的精度.1 预备知识1.1 F i s h e r 信息相关定理及推论定义1(F i s h e r 信息)[23] 设X =(X 1,X 2, ,X n )T~f (x ,θ),θɪΘ⊂ℝp 为C -R (C r a m e r -R a o )分布族.设X 1,X 2, ,X n 为独立同分布样本,X 1~f (x 1,θ),l (θ,x 1)=l o g f (x 1,θ),则有S (x 1,θ)=̇l (θ,x 1)=∂l o g f (x 1,θ)∂θ, E θ[̇l (θ,x 1)]=0,V a r θ[̇l (θ,x 1)]=E θ[-㊆l (θ,x 1)]=i (θ),其中i (θ)为X 1的F i s h e r 信息.由于X ~f (x ,θ)=ᵑn i =1f (x i ,θ),因此有和式L (θ)=L (θ,x )=l o g f (x ,θ)=ðni =1l (θ,x i ).引用大数定律和中心极限定理,则有E θ[̇L (θ)]=E θ[S (X ,θ)]=0, V a r θ[̇L (θ)]=E θ[-㊆L (θ)]=I (θ)=n i (θ),其中I (θ)即为X 的F i s h e r 信息.定理1(强相合性)[23] 设X =(X 1,X 2, ,X n )T~f (x ,θ),θɪΘ⊂ℝp 为C -R 分布族,并设X 1,X 2, ,X n 独立同分布,Θ为ℝp 上的开集.则似然方程̇L (θ)=0在n ң+ɕ时必有解^θn (X )=^θ(X 1,X 2, ,X n ),并且是强相合的.即对真参数θ0ɪΘ,有P θ0{X :l i m n ң+ɕ^θn (X )=θ0}=1, θ0ɪΘ. 定理2(渐近正态性)[23] 设X =(X 1,X 2, ,X n )T~f (x ,θ),θɪΘ⊂ℝp 为C -R 分布族,并设X 1,X 2, ,X n 独立同分布,Θ为ℝp 上的开集.假设似然方程̇L (θ)=0在n ң+ɕ时有相合解^θn (X )=^θ(X 1,X 2, ,X n ),且假设L (3)(θ)在Θ中存在并连续,则^θn (X )为θ的最优渐近正态估计,且有n (^θn -θ0)ңLN (0,i -1(θ0)). 推论1 上述渐近正态性对任意的θ0都成立,因而对任意θɪΘ都成立,即有n (^θn -θ)ңLN (0,i -1(θ)),且有n (^θn -θ)=O p (1);同时∀θɪΘ有V a r θ[n ^θn (X )]ңi -1(θ).因为对于∀θɪΘ,V a r θ[n ^θn (X )]ңi -1(θ),且有I (θ)=n i (θ),所以V a r θ[^θn (X )]ңI -1(θ).F i s h e r 信息是一个独立求和的形式,随着收集数据的增多,F i s h e r 信息越来越大,得到的信息也越来越多.其直观地反映了对参数估计的准确度,其越大包含的信息越多,对参数估计的准确度越高.极大似然方程得到的参数方差为F i s h e r 信息的逆,所以方差越小,估计精度越高.1.2 噪声估计文献[19]提出了一种针对通用信号相关噪声模型的参数估计方法,该模型通过改变参数值可以表示不同类型的噪声.该观测到的噪声模型可表示为x =s +k 0δ0+k 1s γ㊃δ1,(1)其中:x 是噪声图像像素值;s 是无噪声图像的像素值;γ是指数参数;δ0和δ1都服从标准正态分布,两者相互独立,k 0和k 1是噪声参数.首先将图像分块,根据块的梯度信息判定弱纹理块,并利用块的统计信息以及弱纹理块的性质确定第i 个弱纹理图像块像素实际上的均值^s i 和方差^σ2i .在确定噪声模型理论上的方差函数为σ2=k 20+k 21s 2γ后,根据似然函数的统计意义,得到相应的极大似然函数为L =ᵑMi =112π(k 20+k 21^s 2γi)e x p -^σ2i2(k 20+k 21^s 2γi {}),其中M 是选取的弱纹理块数量.对应的能量泛函为8631 吉林大学学报(理学版) 第61卷E (γ,k 2,k 21)=ðMi =1l o g (k 20+k 21^s 2γi )+^σ2i k 20+k 21^s 2γéëêêùûúúi .(2)最后由梯度下降法进行求解,得到估计的噪声参数γ,k 20,k 21.2 噪声估计的精度分析在噪声模型(1)中,k 20和k 21分别为加性噪声和乘性噪声的方差,可以将其归为一类参数,并研究二者之间的联系与差别.γ作为指数参数,本文将其视为常数,暂不考虑,因此研究的能量泛函E (γ,k 20,k 21)变为E (k 20,k 21).利用F i s h e r 信息,可得如下极大似然方程(2)中参数k 20和k 21的方差.定理3 令a i =(k 20+k 21^s 2γi )-2-^σ2i (k 20+k 21^s 2γi )-3,则当样本数量n ңɕ时,利用式(2)估计得到的参数k 20和k 21满足:V a r (k 20)ңðMi =1ai ^s 4γiðM i =1a ()iðMi =1ai ^s 4γ()i-ðMi =1a i ^s 2γ()i2,(3)V a r (k 21)ңðMi =1aiðM i =1a ()iðMi =1ai ^s 4γ()i-ðMi =1a i ^s 2γ()i2.(4) 证明:样本的F i s h e r 信息为I (k )=E k [-㊆E (k 2,k 21)],因此要求先求函数E (k 20,k 21)关于变量k 20和k 21的二阶导数以及导数所组成的He s s i a n 矩阵:㊆E k 20k 20=ðMi =1-1(k 20+k 21^s 2γi )2+^σ2i (k 20+k 21^s 2γi )æèçöø÷3,㊆E k 20k 21=㊆E k 21k 20=ðMi =1-^s 2γi (k 20+k 21^s 2γi )2+^σ2i ^s 2γi (k 20+k 21^s 2γi )æèçöø÷3,㊆E k 21k 21=ðMi =1-^s 4γi (k 20+k 21^s 2γi )2+^σ2i ^s 4γi (k 20+k 21^s 2γi )æèçöø÷3.所以其H e s s i a n 矩阵为㊆E (k 20,k 21)=㊆E k 20k 20㊆E k 20k 21㊆E k 21k 20㊆E k 21k æèççöø÷÷21=ðM i =1-1(k 20+k 21^s 2γi )2+^σ2i (k 20+k 21^s 2γi )æèçöø÷3ðMi =1-^s 2γi (k 20+k 21^s 2γi )2+^σ2i ^s 2γi(k 20+k 21^s 2γi )æèçöø÷3ðMi =1-^s 2γi (k 20+k 21^s 2γi )2+^σ2i ^s 2γi (k 20+k 21^s 2γi )æèçöø÷3ðM i =1-^s 4γi (k 20+k 21^s 2γi )2+^σ2i ^s 4γi(k 20+k 21^s 2γi )æèçöø÷æèççççöø÷÷÷÷3.从而可计算样本的F i s h e r 信息为I (k )=ðM i =11(k 20+k 21^s 2γi )2-^σ2i (k 20+k 21^s 2γi )æèçöø÷3ðM i =1^s 2γi (k 20+k 21^s 2γi )2-^σ2i ^s 2γi(k 20+k 21^s 2γi )æèçöø÷3ðMi =1^s 2γi (k 20+k 21^s 2γi )2-^σ2i ^s 2γi (k 20+k 21^s 2γi )æèçöø÷3ðM i =1^s 4γi (k 20+k 21^s 2γi )2-^σ2i ^s 4γi(k 20+k 21^s 2γi )æèçöø÷æèççççöø÷÷÷÷3.因为矩阵的每一项中都含有公因式(k 20+k 21^s 2γi )-2-^σ2i (k 20+k 21^s 2γi )-3,且a i =(k 20+k 21^s 2γi )-2-^σ2i (k 20+k 21^s 2γi )-3,则有I (k )=ðMi =1a i ðMi =1a i ^s 2γi ðMi =1a i ^s 2γi ðM i =1a i ^s 4γæèççççöø÷÷÷÷i .然后对矩阵I (k )求逆,得9631 第6期 潘铭樱,等:F i s h e r 信息在噪声估计精度分析中的应用I-1(k)=1ðM i=1a()iðM i=1a i^s4γ()i-ðM i=1a i^s2γ()i2ðM i=1a i^s4γi-ðM i=1a i^s2γi -ðM i=1a i^s2γiðM i=1a æèççççöø÷÷÷÷i.当nңɕ时,有式(3)和式(4).证毕.目前流行的图像处理软件,通常用8位表示一个像素,这样灰度级分为256等,像素位于0~255内,每个等级代表不同的亮度,称为图像的标准表示.为便于表示,还可对图像像素进行归一化处理,此时图像的像素则位于0~1内.本文以这两种图像为例,分别分析用不同像素表示对噪声估计结果的影响.对于标准像素的图像,大部分像素大于1,即图像中任一图像块的均值^s i大于1.对任意不为0的γ,必有^s4γi>1,所以k20的方差大于k21的方差,即此时乘性噪声大于加性噪声的参数精度.对于归一化后的图像,图像像素小于等于1,图像中大部分图像块的均值^s i<1.对任意不为0的γ,必有^s4γi>1,所以k20的方差小于k21的方差,对应的参数精度则与之相反.3数值实验与分析为验证理论推导结果即定理3的准确性,本文进行两组实验:第一组实验是直接对不同模式下图像噪声参数进行估计,分析两个参数出现的误差范围;第二组实验是通过噪声估计算法以及改进的图像去噪算法进行盲去噪,以分析在不同图像模式和不同噪声占比下图像的去噪结果.实验中采用的图像都是标准测试集中的图像,如图1所示.图1标准测试集图像F i g.1I m a g e s o f s t a n d a r d t e s t s e t3.1参数精度验证根据定理3可推出在不同的图像表示模式下图像两种噪声的参数精度相反.本文用不同的图像模式分别表示标准测试集中的图像,并添加不同参数的噪声,用基于极大似然的噪声估计算法对噪声进行估计.在该过程中令指数参数γ恒等于常数.对标准像素下的图像,首先在k1值恒定的情况下计算k0在不同值下的估计值,并将多张图像的估计数据进行整合,得到参数k0的误差区间;然后固定k0,用相同方法分析k1的误差区间.本文将误差结果用棒形图表示,如图2所示.由图2可见,用标准像素表示图像时,极大似然估计得到的加性噪声参数k0的误差大于乘性噪声参数k1的误差.为保证归一化后的图像在加入噪声后的噪声程度不发生改变,本文将上述实验中设置的加性噪声的参数与255的比值作为加性噪声参数加入图像进行实验.乘性噪声与图像的像素值相关,在图像归一化后相当于加入的乘性噪声已经进行了归一化处理,所以k1值不发生变化.同理,在一个参数固定的情况下利用多张图像的估计结果分析另一个参数的误差区间,当图像像素值位于0~1内时参数k0和k1的误差棒形图如图3所示.由图3可见,此时k0的噪声估计误差非常小,而k1的误差相对大很多.上述实验结果与经过理论分析得到的定理3相符,表明本文的理论分析正确.3.2算法盲去噪验证文献[6]提出了一个可行的去除信号相关噪声的全局最小二乘(t o t a l l e a s t s q u a r e,T L S)算法,本文对其进行适当改进,得到针对广义混合噪声模型的去噪算法,并用其测试当模型中的加性噪声和乘性噪声分别处于主要地位时,不同表示类型图像的去噪结果,以验证定理3的正确性.为便于研究, 0731吉林大学学报(理学版)第61卷本文设指数参数γ=1.图2 标准图像噪声参数估计结果F i g.2 E s t i m a t i o n r e s u l t s o f s t a n d a r d i m a ge n o i s e p a r a m e t e r s 图3 归一化图像噪声参数估计结果F i g.3 E s t i m a t i o n r e s u l t s o f n o r m a l i z e d i m a ge n o i s e p a r a m e t e r s 首先是乘性噪声占比较大的实验设定,在这组实验中设(k 0,k 1)=(5,0.3),(k 0,k 1)=(5,0.5),此时加性噪声程度相对较小而乘性噪声相对较大.得到图像的峰值信噪比(p e a ks i g n a l -t o -n o i s e r a t i o ,P S N R )值以及结构相似度(s t r u c t u r a l s i m i l a r i t yi n d e xm e a s u r e ,S S I M )值分别列于表1和表2.表1 乘性噪声占主要程度时不同图像下的P S N R 对比T a b l e 1 C o m p a r i s o no fP S N Rf o r d i f f e r e n t i m a g e sw h e nm u l t i pl i c a t i v e n o i s e d o m i n a t e s 参数(k 0,k 1)图像噪声图像标准图像去噪结果归一化图像去噪结果(5,0.3)C a m e r a m a n 16.356530.525530.3727H o u s e 16.222032.666832.4734J e t p l a n e 14.646127.855327.6860L a k e 16.545827.026426.8489L i v i n g r o o m 16.623426.699126.6165P e p p e r s 16.766729.634129.4826P i r a t e 17.119827.343027.2757W a l k b r i d ge 17.190324.214924.1858(5,0.5)C a m e r a m a n 12.792628.294328.0831H o u s e12.545129.698829.6549J e t p l a n e 11.165625.589325.4784L a k e 13.005725.010024.8378L i v i n g r o o m 12.854024.872224.7709P e p p e r s 13.123227.839827.6400P i r a t e 13.390625.627525.5411W a l k b r i d ge 13.418422.619922.5861表2 乘性噪声占主要程度时不同图像下的S S I M 对比T a b l e 2 C o m p a r i s o no f S S I Mf o r d i f f e r e n t i m a g e sw h e nm u l t i pl i c a t i v e n o i s e d o m i n a t e s 参数(k 0,k 1)图像噪声图像标准图像去噪结果归一化图像去噪结果(5,0.3)C a m e r a m a n 0.27500.86640.8602H o u s e 0.14870.89510.8810J e t p l a n e 0.15920.82330.8168L a k e 0.33890.76710.7602L i v i n g r o o m 0.28130.70300.7001P e p p e r s 0.23760.76800.7629P i r a t e 0.27550.72610.7235W a l k b r i d ge 0.41030.61230.6121(5,0.5)C a m e r a m a n 0.20030.82260.8174H o u s e0.07650.84090.8524J e t p l a n e 0.09060.75150.76561731 第6期 潘铭樱,等:F i s h e r 信息在噪声估计精度分析中的应用2731吉林大学学报(理学版)第61卷续表2C o n t i n u e d t o t a b l e2参数(k0,k1)图像噪声图像标准图像去噪结果归一化图像去噪结果(5,0.5)L a k e0.20840.69370.6957L i v i n g r o o m0.16800.62600.6215P e p p e r s0.14490.73310.7272P i r a t e0.15320.66000.6561W a l k b r i d g e0.24520.50070.5004其次,设置适当的参数使噪声占比刚好相反,加性噪声程度相对较大而乘性噪声占比较小,此时设置的两组参数分别为(k0,k1)=(25,0.01)和(k0,k1)=(25,0.05).得到的图像P S N R值和S S I M值分别列于表3和表4.表3加性噪声占主要程度时不同图像下的P S N R对比T a b l e3C o m p a r i s o no fP S N Rf o r d i f f e r e n t i m a g e sw h e na d d i t i v e n o i s e d o m i n a t e s参数(k0,k1)图像噪声图像标准图像去噪结果归一化图像去噪结果(25,0.01)C a m e r a m a n20.549732.257732.3459H o u s e20.277630.045235.0923J e t p l a n e20.314830.990131.1077L a k e20.322328.690428.7972L i v i n g r o o m20.259528.749328.7947P e p p e r s20.314430.807830.8633P i r a t e20.234029.018229.0709W a l k b r i d g e20.314726.212226.2341 (25,0.05)C a m e r a m a n20.237731.777331.7897H o u s e19.954334.836034.8799J e t p l a n e19.835230.353430.4257L a k e20.027328.223928.2901L i v i n g r o o m19.992228.080528.1082P e p p e r s20.044530.555830.5906P i r a t e19.994428.382728.3983W a l k b r i d g e20.071225.523325.5272表4加性噪声占主要程度时不同图像下的S S I M对比T a b l e4C o m p a r i s o no f S S I Mf o r d i f f e r e n t i m a g e sw h e na d d i t i v e n o i s e d o m i n a t e s参数(k0,k1)图像噪声图像标准图像去噪结果归一化图像去噪结果(25,0.01)C a m e r a m a n0.26090.88240.8906H o u s e0.20730.91100.9130J e t p l a n e0.28200.86990.8756L a k e0.37030.79390.8009L i v i n g r o o m0.37070.77900.7809P e p p e r s0.27670.77970.7840P i r a t e0.33060.78010.7841W a l k b r i d g e0.49510.73310.7342 (25,0.05)C a m e r a m a n0.25310.87240.8786H o u s e0.19860.90980.9114J e t p l a n e0.26770.86500.8689L a k e0.36080.78650.7908L i v i n g r o o m0.36010.75150.7524P e p p e r s0.26730.77610.7795P i r a t e0.32150.75640.7581W a l k b r i d g e0.48370.68580.6853为更直观地观察图像去噪的细节部分,本文给出C a m e r a m a n 图像在(k 0,k 1)=(5,0.3)和(k 0,k 1)=(25,0.05)两组参数下的噪声图像和不同表示模式下去噪后的图像结果,分别如图4和图5所示.图4 (k 0,k 1)=(5,0.3)时C a m e r a m a n 图像不同模式去噪结果对比F i g .4 C o m p a r i s o no f d e n o i s i n g r e s u l t s f o r d i f f e r e n tm o d e s o fC a m e r a m a n i m a ge sw h e n (k 0,k 1)=(5,0.3)图5 (k 0,k 1)=(25,0.05)时C a m e r a m a n 图像不同模式去噪结果对比F i g .5 C o m p a r i s o no f d e n o i s i n g r e s u l t s f o r d i f f e r e n tm o d e s o fC a m e r a m a n i m a ge sw h e n (k 0,k 1)=(25,0.05)在乘性噪声参数相对较大的情况下,乘性噪声在图像的噪声中占主导地位,如果乘性噪声参数估计相对较准确,则对应的去噪结果就相对较好.反之,在加性噪声程度较大的情况下,加性噪声参数估计的准确性会直接影响去噪结果的优劣.表1的结果表明,在乘性噪声参数相对较大的情况下,标准像素表示的图像去噪结果比归一化后图像结果的P S N R 值更高,即前者的结果更接近于原始图像.表2中标准像素表示图像的S S I M 值一般较高则表示其图像的结构信息优于归一化后的图像,说明标准像素图像乘性噪声参数的估计更准确.表3和表4的结果则表明在加性噪声程度较大时,实验得到的结果与之前的结果刚好相反,归一化后图像的去噪结果更好,说明其加性噪声参数的估计更准确.本文实验结果与定理3吻合,表明本文理论分析的结果正确.综上所述,针对广义噪声模型的噪声参数估计问题,本文利用F i s h e r 信息以及相关的渐近正态性给出了极大似然估计参数精度的理论分析.结果表明,在不同的图像表现模式下,估计得到的两类噪声的方差有较大差别:对于像素位于0~255内的标准图像,其信号依赖噪声的精度较高,加性噪声的误差较大;对于像素位于0~1内的归一化后的图像,参数的精度结果则刚好相反.实验表明,本文的理论分析结果符合图像噪声参数的预测规律.参考文献[1] S A N F O R D EC .T h e F u n c t i o n o f t h e S e v e r a l S e n s e s i n t h eM e n t a l L i f e [J ].T h eA m e r i c a n J o u r n a l o f P s y c h o l o g y ,1921,23(1):59-74.[2] V A R S HN E Y P K.M u l t i s e n s o rD a t aF u s i o n [J ].E l e c t r o n i c s &C o mm u n i c a t i o n E n g i n e e r i n g J o u r n a l ,1997,9(6):245-253.[3] Z HA N GDD.S i g n a l a n d I m a g eP r o c e s s i n g [M ].B o s t o n ,MA :S p r i n ge r ,2000:43-62.3731 第6期 潘铭樱,等:F i s h e r 信息在噪声估计精度分析中的应用4731吉林大学学报(理学版)第61卷[4] HU A N GSC,L U TJ,L U ZL,e t a l.C MO SI m a g eS e n s o rF i x e dP a t t e r nN o i s eC a l i b r a t i o nS c h e m eB a s e do nD i g i t a l F i l t e r i n g M e t h o d[J].M i c r o e l e c t r o n i c s J o u r n a l,2022,124:105431-105437.[5] LÜY.T o t a lG e n e r a l i z e dV a r i a t i o nD e n o i s i n g o f S p e c k l e d I m a g e sU s i n g aP r i m a l-D u a lA l g o r i t h m[J].J o u r n a l o fA p p l i e d M a t h e m a t i c s a n dC o m p u t i n g,2020,62(1/2):489-509.[6] H I R A K AWA K,P A R K ST W.I m a g eD e n o i s i n g U s i n g T o t a lL e a s tS q u a r e s[J].I E E E T r a n s a c t i o n so nI m a g eP r o c e s s i n g,2006,15(9):2730-2742.[7] H EK M,Z HA N G X Y,R E N S Q,e ta l.D e e p R e s i d u a lL e a r n i n g f o rI m a g e R e c o g n i t i o n[C]//2016I E E EC o n f e r e n c e o nC o m p u t e rV i s i o na n dP a t t e r nR e c o g n i t i o n(C V P R).P i s c a t a w a y,N J:I E E E,2016:770-778.[8] Z HA N G K,Z U O W M,C H E N YJ,e t a l.B e y o n daG a u s s i a nD e n o i s e r:R e s i d u a lL e a r n i n g o fD e e p C N Nf o rI m a g eD e n o i s i n g[J].I E E ET r a n s a c t i o n s o n I m a g eP r o c e s s i n g,2017,26(7):3142-3155.[9] Z HU S J,Y U Z K.S e l f-g u i d e d F i l t e rf o rI m a g e D e n o i s i n g[J].I E T I m a g e P r o c e s s i n g,2020,14(11):2561-2566.[10] L U L,J I N W Q,WA N G X.N o n-l o c a l M e a n sI m a g e D e n o i s i n g w i t h a S o f t T h r e s h o l d[J].I E E E S i g n a lP r o c e s s i n g L e t t e r s,2014,22(7):833-837.[11]I MM E R K A E RJ.F a s tN o i s eV a r i a n c eE s t i m a t i o n[J].C o m p u t e rV i s i o n a n d I m a g eU n d e r s t a n d i n g,1996,64(2):300-302.[12] K I M D G,A L IY,F A R O O Q M A,e t a l.H y b r i dD e e p L e a r n i n g F r a m e w o r k f o rR e d u c t i o no fM i x e dN o i s ev i aL o w R a n kN o i s eE s t i m a t i o n[J].I E E E A c c e s s,2022,10(1):46738-46752.[13] S U T O U RC,D E L E D A L L ECA,A U J O LJF.E s t i m a t i o n o f t h eN o i s eL e v e l F u n c t i o nB a s e d o n aN o n p a r a m e t r i cD e t e c t i o no fH o m o g e n e o u s I m a g eR e g i o n s[J].S I AMJ o u r n a l o n I m a g i n g S c i e n c e s,2015,8(4):2622-2661.[14] WA N GZC,HU A N GZH,X U Y H,e t a l.I m a g eN o i s eL e v e l E s t i m a t i o nb y E m p l o y i n g C h i-S q u a r eD i s t r i b u t i o n[C]//2021I E E E21s t I n t e r n a t i o n a l C o n f e r e n c e o nC o mm u n i c a t i o nT e c h n o l o g y(I C C T).P i s c a t a w a y,N J:I E E E,2021:1158-1161.[15] L I U X,T A N A K A M,O K U T OM IM.N o i s eL e v e lE s t i m a t i o nU s i n g W e a kT e x t u r e dP a t c h e so f aS i n g l eN o i s yI m a g e[C]//201219t hI E E E I n t e r n a t i o n a lC o n f e r e n c eo nI m a g e P r o c e s s i n g.P i s c a t a w a y,N J:I E E E,2012:665-668.[16] P I M P A L K HU T E V A,P A G ER,K O T HA R IA,e t a l.D i g i t a l I m a g eN o i s eE s t i m a t i o nU s i n g DWTC o e f f i c i e n t s[J].I E E ET r a n s a c t i o n s o n I m a g eP r o c e s s i n g,2021,30(1):1962-1972.[17]左平,韩笑,张禹,等.基于离散多方向小波变换估计噪声能量的正则化虹膜图像恢复方法[J].吉林大学学报(理学版),2009,47(1):82-85.(Z U O P,HA N X,Z HA N G Y,e t a l.R e g u l a r i z e dI r i s I m a g eR e s t o r a t i o no f N o i s e E n e r g y E s t i m a t i o n B a s e d o n D i s c r e t e Q u a d r a t u r e D i r e c t i o n W a v e l e t T r a n s f o r m[J].J o u r n a lo fJ i l i n U n i v e r s i t y(S c i e n c eE d i t i o n),2009,47(1):82-85.)[18] S I J B E R SJ,D E N D E K K E R AJ.M a x i m u m L i k e l i h o o dE s t i m a t i o no f S i g n a lA m p l i t u d e a n dN o i s eV a r i a n c e f r o mM RD a t a[J].M a g n e t i cR e s o n a n c ei n M e d i c i n e:A n O f f i c i a lJ o u r n a lo ft h eI n t e r n a t i o n a lS o c i e t y f o r M a g n e t i c R e s o n a n c e i n M e d i c i n e,2004,51(3):586-594.[19] L I U X,T A N A K A M,O K U T OM I M.E s t i m a t i o no fS i g n a lD e p e n d e n tN o i s eP a r a m e t e r s f r o m aS i n g l eI m a g e[C]//2013I E E EI n t e r n a t i o n a l C o n f e r e n c e o n I m a g eP r o c e s s i n g.P i s c a t a w a y,N J:I E E E,2013:79-82.[20] WU M W,J I N Y,L I Y,e ta l.M a x i m u m-L i k e l i h o o d,M a g n i t u d e-B a s e d,A m p l i t u d ea n d N o i s e V a r i a n c eE s t i m a t i o n[J].I E E ES i g n a l P r o c e s s i n g L e t t e r s,2021,28(1):414-418.[21] V O S T R E T S O V A G,F I L A T O V A S G.T h eE s t i m a t i o no fP a r a m e t e r so fP u l s eS i g n a l s H a v i n g a n U n k n o w nF o r m T h a tA r e O b s e r v e da g a i n s t t h eB a c k g r o u n do f t h e A d d i t i v e M i x t u r eo ft h e W h i t eG a u s s i a n N o i s ea n daL i n e a rC o m p o n e n tw i t hU n k n o w nP a r a m e t e r s[J].J o u r n a l o f C o mm u n i c a t i o n sT e c h n o l o g y a n dE l e c t r o n i c s,2021, 66(8):938-947.[22] F I S H E RR A.O n t h eM a t h e m a t i c a lF o u n d a t i o n so fT h e o r e t i c a l S t a t i s t i c s[J].P h i l o s o p h i c a lT r a n s a c t i o n so f t h eR o y a l S o c i e t y A,1922,222:309-368.[23]韦博成.参数统计教程[M].北京:高等教育出版社,2006:191-198.(W E IB C.A C o u r s e i nP a r a m e t r i cS t a t i s t i c s[M].B e i j i n g:H i g h e rE d u c a t i o nP r e s s,2006:191-198.)(责任编辑:韩啸)。

Laser phase and frequency stabilization using an optical resonator

Laser phase and frequency stabilization using an optical resonator
Appl. Phys. B 31,Physics B C h e ~
9 Springer-Verlag1983
Laser Phase and Frequency Stabilization Using an Optical Resonator
Development of Techniques
Before considering the uItimate performance capability of frequency-stabilized lasers, we first discuss some practical problems and review the technical progress which has been made previously. In view of the very rapid time scale of fluctuations associated with the dye laser's free-flowing jet and with plasma movement in the ion laser, it is understandable that efforts to improve their frequency-stabilization performance have centered on developing faster transducers and
Abstract. We describe a new and highly effective optical frequency discriminator and laser
stabilization system based on signals reflected from a stable Fabry-Perot reference interferometer. High sensitivity for detection of resonance information is achieved by optical heterodyne detection with sidebands produced by rf phase modulation. Physical, optical, and electronic aspects of this discriminator/laser frequency stabilization system are considered in detail. We show that a high-speed domain exists in which the system responds to the phase (rather than frequency) change of the laser; thus with suitable design the servo loop bandwidth is not limited by the cavity response time. We report diagnostic experiments in which a dye laser and gas laser were independently locked to one stable cavity. Because of the precautions employed, the observed sub-100 Hz beat line width shows that the lasers were this stable. Applications of this system of laser stabilization include precision laser spectroscopy and interferometric gravity-wave detectors. PACS: 06, 07.60, 07.65 The adoption of high-finesse Fabry Perot cavities for a prototype gravitational wave detector [1] requires the development of very high precision short term stabilizing techniques for an argon-ion laser. Similarly, there is considerable incentive to improve the frequency stabilization of dye lasers for spectroscopic applications. Optical resonators [2-4] have been used to provide frequency discriminator functions for servo control of both types of laser [-3, 5-81 and form the basis for at least three commercially-available frequency-stabilized dye laser systems. In this paper we describe an improved rf sideband type of optical discriminator capable of high precision, low-noise * Staff Member, Quantum Physics Division, National Bureau of Standards ** Present address: Colorado Schoolof Mines, Golden,Colorado performance and having a response time not limited by the optical resonator. We illustrate the technique with several experiments including demonstration of sub100 Hz laser line widths.

AD9273BSVZ-50;AD9273BSVZ-25;AD9273BBCZ-25;AD9273BSVZ-40;AD9273BBCZ-40;中文规格书,Datasheet资料

AD9273BSVZ-50;AD9273BSVZ-25;AD9273BBCZ-25;AD9273BSVZ-40;AD9273BBCZ-40;中文规格书,Datasheet资料

/
CLK+ CLK–
AD9273 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Product Highlights ........................................................................... 3 Specifications..................................................................................... 4 AC Specifications.......................................................................... 4 Digital Specifications ................................................................... 8 Switching Specifications .............................................................. 9 ADC Timing Diagrams ................................................................. 10 Absolute Maximum Ratings.......................................................... 11 Thermal Impedance ................................................................... 11 ESD Caution ................................................................................ 11 Pin Configuration and Function Descriptions ........................... 12 Typical Performance Characteristics ........................................... 15 Equivalent Circuits ......................................................................... 19 Theory of Operation ...................................................................... 21 Ultrasound .................................................................................. 21 Channel Overview ..................................................................... 22 Input Overdrive .......................................................................... 25 CW Doppler Operation............................................................. 25 TGC Operation ........................................................................... 27 ADC ............................................................................................. 31 Clock Input Considerations ...................................................... 31 Serial Port Interface (SPI) .............................................................. 38 Hardware Interface..................................................................... 38 Memory Map .................................................................................. 40 Reading the Memory Map Table .............................................. 40 Reserved Locations .................................................................... 40 Default Values ............................................................................. 40 Logic Levels ................................................................................. 40 Outline Dimensions ....................................................................... 44 Ordering Guide .......................................................................... 45

Keysight NFA系列噪声度分析器说明书

Keysight NFA系列噪声度分析器说明书

Noise Figure AnalyzersN8972A N8973A N8974A N8975ANFA SeriesA Flexible and Intuitive User InterfaceThe user interface on the new NFA series of Noise Figure Analyzers is intuitive and easy to use, with easy to find keys, which are sized and then placed in the relevant key group according to function. The soft-key depths have been kept to a minimum and there are clear visual indicators on the screen showing the current machine state.Easy Measurement SetupThe NFA series of Noise Figure Analyzers now takes the pain out of complex measurement setups, with their simple but instructive menus. The built-in help button gives key function and remote pro-gramming commands, that should eliminate the need to carry man-uals when setting up measurements.Low Instrumentation UncertaintyWhen making noise figure measurements, a key parameter to be aware of is measurement uncertainty. The NFA has a low instru-mentation uncertainty to aid in accurate and repeatable measure-ment of manufacturers’ components. In addition, to aid customers in setting their components/systems specifications, Agilent has pro-duced a web-based uncertainty calculator that will give customers information on how to improve and classify their measurement specifications more accurately.For more information, visit our web site at: /find/nfIncrease Measurement ThroughputIn manufacturing environments, fast measurement speed and repeatability are critical. The NFA series of Noise Figure Analyzers now include many features that can reduce your measurement time and increase throughput. The frequency list function allows you to select specific points within a complete measurement span to make your measurement. The Sweep averaging function allows a real-time update to the screen during a measurement, as you adjust the per-formance of the DUT during a sweep. Both these functions, as well as the limit line functionality for quick and easy pass/fail testing and the additional ability to recall complete calibrated instrument states, increase productivity and measurement throughput.Enhanced ConnectivityThe built-in floppy disk drive, GPIB, RS232 serial and Printer port connectors allow quick and easy data transfer between the analyzer and a PC or workstation. There is also a built-in VGA connector for connecting a large-screen monitor.Color Graphical DisplayTo enhance usability, the new Noise Figure Analyzers now come with an integrated 17 cm full color LCD display, for simultaneous viewing of noise figure and gain against frequency. There are three different formats for viewing measurements, the two separate chan-nel or combined graph format, a table format, and a spot frequency noise figure and gain measurement “meter” format.Ease of AutomationThe NFA series of Noise Figure Analyzers include 2 industry-stan-dard GPIB ports and an RS232 serial port, to aid in the automated control of the instrument. The second GPIB port is dedicated to Local oscillator control. The default control language is SCPI, but users can also define custom LO commands.Ease of IntegrationTo aid with the integration of the new analyzer into manufacturing environments, Agilent has produced a Programmers Reference Manual containing example programs to help migrate to the new system. The NFA is not code compatible with the 8970B, nor can it control the 8971C.Full Measurement CapabilityFeatures present in all NFA series noise figure analyzers•ENR data automatically loaded into NFA series noise figure analyzer when using SNS noise source•Floppy disk loading and saving of ENR data when used with a 346 or 347 noise source•Enhanced analysis through Limit lines and Marker functions •Enhanced PC and printer connectivity and VGA output•Internal data storage capable of storing up to 30 different state,trace, and setup files (dependent upon measurement complexity)•4 MHz measurement bandwidth•Frequency list mode, which enables the user to avoid known, polluted frequencies during a measurement or, used tactically to speed up a measurementFeatures only Available on the N8973A, N8974A, N8975A•Lower noise figure measurement uncertainty ±<0.05 dB•Six user selectable bandwidths (100 KHz, 200 KHz, 400 KHz, 1 MHz, 2 MHz, and 4 MHz)• Enhanced speed•A flexible and intuitive user interface •Easy measurement setup •Low instrument uncertainty•Color graphical display of noise figure and gain versus frequency •Enhanced PC and printer connectivity•SNS, 346 and 347 Series noise source compatible•Ability to automatically upload ENR calibration data from SNS Series noise source•Local oscillator control through second dedicated GP-IB •3-year warranty as standardN8973ANoise Figure AnalyzersN8972A N8973A N8974A N8975A NFA Series Key SpecificationsSpecifications apply over 0°C to +55°C unless otherwise noted. Theanalyzer will meet its specifications after 2 hours of storage withinthe operating temperature range, 60 minutes after the analyzer isturned on, with Alignment running. A user calibration is requiredbefore corrected measurements can be made.Frequency RangeNFA Series:N8972A10 MHz to 1.5 GHzN8973A10 MHz to 3 GHzN8974A10 MHz to 6.7 GHzN8975A10 MHz to 26.5 GHzMeasurement Speed (nominal)8 Averages 64 AveragesN8972A:<100 ms/measurement<80 ms/measurementN8973A:<50 ms/measurement<42 ms/measurementN8974A:<70 ms/measurement<50 ms/measurementN8975A:<70 ms/measurement <50 ms/measurementMeasurement Bandwidth (nominal)N8972A:4 MHzN8973A, N8974A, N8975A:4 MHz, 2 MHz, 1 MHz, 400 kHz, 200 kHz, 100 kHzNoise Figure and Gain(Performance is dependent upon ENR of noise source used)N8972A Noise Source ENR4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.1 dB±<0.1 dB±<0.15 dBGainMeasurement range–20 to +40 dBInstrument uncertainty±<0.17 dBN8973A, N8974A and Noise Source ENRN8975A(10 MHz to 3.0 GHz) 4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.05 dB±<0.05 dB±<0.1 dBGainMeasurement range –20 to +40 dBInstrument uncertainty±<0.17 dBN8974A and N8975A Noise Source ENR(>3.0 GHz) 4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.15 dB±<0.15 dB±<0.2 dBGainMeasurement range–20 to +40 dBInstrument uncertainty±<0.17 dBCharacteristic1Noise figure at 23ºC ±3ºC (10 MHz to 3.0 GHz)Characteristic1Noise figure at 23ºC ±3ºC (3.0 GHz to 26.5 GHz)Characteristic values are met or bettered by 90% of instruments with 90%confidence.Frequency ReferenceStandard Opt.1D5Aging±<2 ppm1/year±<0.1 ppm/yearTemperature stability±<6 ppm±<0.01 ppmSettability ±<0.5 ppm±<0.01 ppmTuning Accuracy (Start, Stop, Center, Marker)4 MHz Measurement Bandwidth (default on all models of Noise FigureAnalyzer)Frequency Error10 MHz – 3.0 GHz±<Reference error + 100 kHz3.0 GHz – 26.5 GHz±<Reference error + 400 kHz<4MHz Measurement Bandwidth (functionality not present in N8972A)Frequency Error10 MHz – 3.0 GHz±<Reference error + 20 kHz3.0 GHz – 26.5 GHz±<Reference error + 20% of measurementbandwidthParts Per Million (10e-6)1086421050010001500200025003000Frequency (MHz)NoiseFigure(dB)8911112Frequency (MHz)NoiseFigure(dB)3388347756517418833818791871721956118112724136814492153761626171451829189131879716812156522419233342421251225986265Noise Figure AnalyzersN8972A N8973A N8974A N8975AGeneral SpecificationsDimensionsWithout handle: 222 mm H x 375 mm W x 410 mm D With handle (max): 222 mm H x 409 mm W x 515 mm D Weight (typical, without options)N8972A:15.3 kg N8973A:15.5 kg N8974A:17.5 kg N8975A:17.5 kgData Storage (nominal)Internal drive: 30 traces, states or ENR tables Floppy disk: 30 traces, states or ENR tablesPower RequirementsOn (line 1): 90 to 132 V rms, 47 to 440 Hz, 195 to 250 V rms, 47 to 66 Hz Power consumption: <300 W Standby (line 0): <5 W Temperature RangeOperating: 0ºC to +55ºC Storage: –40ºC to +70ºCHumidity RangeOperating: Up to 95% relative humidity to 40ºC (non-condensing)Altitude range: Operating to 4,600 meters Calibration Interval1-year minimum recommendedElectromagnetic CompatibilityComplies with the requirements of the EMC directive 89/336/EEC. This includes Generic Immunity Standard EN 50082-1:1992 and Radiated Interference Standard CISPR 11:1990/EN 55011:1991, Group 1 Class A.The conducted and radiated emissions performance typically meets CISPR 11:1990/EN 55011:1991 Group 1 Class B limits.Warranty3-Year warranty as standardKey LiteratureNoise Figure Analyzers, NFA Series, Brochure, p/n 5980-0166ENoise Figure Analyzers, NFA Series, Data Sheet, p/n 5980-0164ENoise Figure Analyzers, NFA Series, Configuration Guide, p/n 5980-0163EFundamentals of RF and Microwave Noise Figure Measurements, App note 57-1, p/n 5952-8255E Noise Figure Measurement Accuracy, App note 57-2, p/n 5952-370610 Hints for Making Successful Noise Figure Measurements, p/n 5980-0228E N8972A and N8973A, NFA Series, Noise Figure Analyzer ProgrammingExamples, p/n 5968-9498EOrdering InformationN8972A 10 MHz to 1.5 GHz NFA Series Noise Figure Analyzer N8973A 10 MHz to 3.0 GHz NFA Series Noise Figure Analyzer N8974A 10 MHz to 6.7 GHz NFA Series Noise Figure Analyzer N8975A 10 MHz to 26.5 GHz NFA Series Noise Figure AnalyzerAll options, other than those marked with *, can be ordered at any time for use with an instrument.Frequency ReferenceN897xA-1D5NFA series high stability frequency reference*Calibration DocumentationN897xA-A6J NFA series ANSI Z540 compliant calibration with test data*AccessoriesN897xA-1CP NFA series rackmount and handle kit N897xA-UK9NFA series front panel coverN897xA-1FP NFA series calibration, performance verification and adjustment softwareDocumentationA hard copy and CD version of the English language Quick Reference Guide, User’s Guide, Programmers Reference, and Calibration andPerformance Verification Manual are included with the NFA as standard.Selections can be made to change the localization of the manual set or to delete the hardcopy.N897xA-AB0NFA series manual set for Taiwan – Chinese localization N897xA-AB1NFA series manual set – Korean localization N897xA-AB2NFA series manual set – Chinese localization N897xA-ABE NFA series manual set – Spanish localization N897xA-ABF NFA series manual set – French localization N897xA-ABZ NFA series manual set – Italian localization N897xA-ABD NFA series manual set – German localization N897xA-ABJ NFA series manual set – Japanese localization N897xA-0B0Delete hardcopy manual set*Note: The localized options will include a localized version of the Quick Reference Guide and User Guide, and an English language version of the Programmers Reference, and Calibration and Performance Verification Manual.Additional DocumentationN897xA-0B1NFA series manual set (English version)N897xA-0B2NFA series user manual (English version)N897xA-0BF NFA series programmers reference (English version)Service Options:Warranty and Service Standard warranty is 3 years. For warranty and service of 5 years, please order R-51B-001-5F: “3 year Return-to Agilent warranty extended to 5 years” (quantity = 1).Calibration 2For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months.R-50C-001Standard calibration plan*R-50C-002Standard compliant calibration plan*Options not available in all countries。

2009-02-25-ON-LINE_PARTIAL_DISCHARGE_MONITORING_AND_DIAGNOSIS_AT_POWER_CABLES

2009-02-25-ON-LINE_PARTIAL_DISCHARGE_MONITORING_AND_DIAGNOSIS_AT_POWER_CABLES

ON-LINE PARTIAL DISCHARGE MONITORING AND DIAGNOSISAT POWER CABLESMatthias Boltze1, Sacha. Michel Markalous1, Alain Bolliger2, Omar Ciprietti3, Javis Chiu4 LDIC GmbH1, LDIC AG2, Brugg Kabel AG3, Chan-Ching-Electric Technique Consulting CO.LTD4KEYWORDSQuality control, Maintenance, Power Cable, High Voltage- and Partial Discharge- Commissioning Test, Sensing, On-line Monitoring, Diagnosis and Trend-AnalysisABSTRACTMost defects observed in today’s EHV cable systems causes partial discharges (PD) under AC stress in the accessories. Combining AC testing and sensitive PD measurements results in best test efficiency. The condition-based maintenance of power cables required reliable significant diagnosis methods for the integrity of operation of power cable systems.This paper describes experiences with Partial Discharge measurements during installation tests of high voltage XLPE insulated single core underground cable systems tested with AC series resonant voltages. Considering the importance of installations in power stations permanent PD monitoring have been performed at GIS- and outdoor cable terminations after commissioning.Non-conventional partial discharge methods have been established for condition assessment of power cable insulations. A new system applying UHF sensors and acquisition was developed, suitable for any kinds of HV XLPE cable terminations like transformer sealing ends, cable terminations for metal-clad substations and outdoor sealing ends based on past experiences during investigations on site.This paper reports on present successful efforts to measurements as well as monitoring PD in the accessories after jointing in the EHV-XLPE cable systems and describes the UHF- PD measurement method.INTRODUCTIONMethods that allow the condition of transmission, distribution and generation power networks to be monitored have been developed and extensively researched. Monitoring, in relation to power cable systems and other system components of the electric power supply, describes measuring methods to allow continuously and periodic observation of operating states and properties with no interruption of the power supply – online-monitoring.Targets of the power cable monitoring are prevention, increasing the operational availability respectively reduction down times of the systems and their loading optimization. Following table is listing the possible monitoring methods for power cable systems and their objects:© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights Reserved© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedTABLE 1Possible monitoring methods for power cable systemMeasured quantityObject, target Axial Distribution of the cable temperature - Hot Spot Recognition- Prediction of the temperature trending by overload- Optimized thermal loadingWater permeability under the cable shield (polymer-insulated power cable) - Localization of leakages- Prevention for Water Treeing and cable shield corrosion- Substitution of the cable sheath testPD-Monitoring on power cable accessories - Early recognition, localization and assessment of failures at powercable accessories- Scheduling of shutdowns and repairs- Damage limitationLeakage-Monitoring on oil-insulated power cables- Prevention of contamination- Scheduling of shutdowns and repairs SF 6-Monitoring In power cable systems (sealing ends) - Early recognition and assessment of leakages at cable terminations in switchgears- Scheduling of shutdowns and repairs- Damage limitationOperating current and operating voltage- Loading optimization for the networkToday’s widely deployed monitoring methods are: monitoring of cable temperature, detection of water in the cable as well as the measurement of partial discharges in polymer-insulated power cables or their accessories.Of more important interest becomes the partial discharge monitoring methods for HV- and EHV-XLPE cable systems over the last few years to check the insulation condition. All power cables with polymer isolation are tested in the factory according to IEC60840 and IEC62067 with the best methods and with calibrated PD-measuring systems in the screened test room with high sensitivity.After transport and laying the sheath- and corrosion protection- test are performed on power cables using high DC voltage between metal sheath or screen and ground. If the sheath is in undamaged condition can be also confirmed that the polymer isolation is intact, no mechanical damages when transport and laying. The isolation of cable is still in the good PD-free condition like the routine test on the manufacture.However, for the assembly of the terminations and joints on the cable ends directly on the isolation one works again. Here error can occur. Therefore a partial discharge test is very important on the termination and joints after jointing. This requirement leaded to a development of new measurement systems for PD-On-Site-Tests on HV- and EHV-XLPE cable systems especially designed for termination and joints.This paper describes the concept for the UHF-PD-monitoring system from the instrumentation side and provides case studies about AC- and PD commissioning tests, quality- and inspection- checks where the effectiveness such kind of tests are presented.© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedInstrumentation for Testing Power Cable Accessories The test procedures recommended in the relevant standards IEC 60270 and IEC 60885-3 are not qualified for all site PD tests to get sensitive measuring results due to the pure signal-to-noise (S/N) ratio. This is mainly caused by the limitation of the upper measuring frequency below 500 kHz and the site noise conditions as well.From a physical point of view, however, the S/N ratio can essentially be improved by increasing the measuring frequency much above 500 kHz and by using either a frequency selective signal processing or ultra wide band signal processing. Therefore the UHF PD measuring technology is increasingly used as an alternative.Due to the strong attenuation of the higher frequency spectrum of PD pulses if traveling trough long power cables it seems obvious that this technology works selective, i.e. the PD coupler has to be installed as close as possible to the supposed PD source.Therefore the UHF method is advantageously applicable for checking the correct assembling work of power cables accessories, such as joints and terminations.The UHF-PDM system is consisting of the PD measuring instrument, the Pre-amplifier and the UHF-PD-Sensor. A schematic diagram of the complete set-up is reported in figure 1. The attachment of the UHF-sensor to the GIS-cable termination is evident from figure 1.HV Termination with Decoupling LoopPD testing circuit acc. non-conventional measuring method. UHF-PD-Sensor connected at theHV- and EHV- Termination (Crossing Area: GIS - Power Cable)FIGURE 1In order to capture the very fast electromagnetic transients of PD events the lower section of the GIS-cable termination has been bridged by a measuring loop which is attached to the UHF sensor. Therefore PD defects close to the PD decoupling loop may well be recognized, whereas noises and even PD events far from the decoupling point are strongly attenuated, which ensures an excellent S/N ratio.This arrangement can be considered as a short circuit between the grounded parts of the GIS enclosure and the cable termination, if only the lower frequency range is considered. In the UHF range, however, the resulting impedance becomes about 50 Ω, which ensures an excellent S/N ratio and thus a high PD detection sensitivity even under noisy on-site condition.The output of the UHF sensor is connected via a coaxial measuring cable to a high-pass filter, which limits the measuring frequency range between about 300 MHz. A pre-amplifier installed at the UHFsensor is increasing the S/N ratio.For PD pulse processing an UHF-Processing Unit with functionality similar to a spectrum analyzer as both ’ultra-wideband mode’ and ’zero-span mode’ is plugged-in in the PDM instrument.The measuring frequency range of the ultra-wideband mode (UWB) is limited by the lower cut-off frequency f C,L = 100 MHz and the higher cut-off frequency f C,H = 1 GHZ. The PD instruments the PD Guard/UHF as permanent monitoring device and the LDS-6/UHF as periodic monitoring device are working in the UWB-mode.The measuring frequency in the zero span mode of the UHF Processing Unit is adjustable with a frequency bandwidth of 8 MHz in the frequency range of 110 MHz to 1700 MHz. The LDS-6/UHF configured in the zero-span-mode is used as periodic monitoring device.The acquisition as well as the storage and the visualization of the PD data are performed by means of a computer-based PD monitoring system.The results of the PD monitoring are further evaluated with different software tools which can easily be upgraded. For continuous monitoring the PD parameter (PD magnitude as peak value or as average value) is displayed and transmitted in real-time-mode.All functions run in real-time and it is easy to analyze and evaluate the acquired RAW PD data with functions like: q(phase), H(q, phase), q(t), n(t), I(t), H(phase), qpeak(phase), qmean(phase) and H(q). The windows-based control and analyzing software and the standard windows based. TCP/IP network allows an easy operation of the PD monitoring system.It is possible to do continuous PD monitoring with an extreme high measuring dynamics well as phase resolved PD measurements. Also a PD signal representation, storage and evaluation of the PD pulses in combination with corresponding test voltage information can be performed.The permanent monitoring system is able to evaluate the signal trend of the partial discharges in a very high range. The measuring sensitivity is automatically controlled using the preamplifiers and the amplifiers. The communication system transmits the monitored data and alarm messages to a main control server via Ethernet TCP/IP network communications.The resolution of the A/D-converter is 12 bit bipolar. The computer is able to store the partial discharge signals and the voltage signals by its internal memory and the control system can access this data frequently.The control and monitoring program shows scope mode, trend mode, monitoring mode and setup mode. It allows easy operation by plant personnel on a daily basis (monitoring mode) and sophisticated evaluation by specialists in case of alarm (trend mode, scope mode and setup mode).© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedCase StudiesThe following case studies, for which representative PD measurements data are available, demonstrate the potential advantage of the UHF-PD-sensing at HV- and EHV-XLPE cable accessories.Case Study 1: AC- and PD- Commissioning Test of 400 KV XLPE cable systemUHF-PD-Monitoring and on-site-commissioning-test of 400 KV XLPE-insulated cable circuits at Jebel Ali / United Arab EmiratesSystem configurationBrugg Kabel AG, Switzerland, has successfully commissioned 400 KV cable project in Dubai. The project consists of (figure 2):- Six 400 KV XLPE cable systems for connections between the HV-side of the Unit Step-up Transformers and the 400 KV Substation bays with different cable lengths (120…320 m), - 36 pcs GIS-sealing ends with pre-fabricated and pre-tested stress-cones manufactured from silicone,- 18 pcs UHF-PD sensors with ground-connexion and TNC connector,- 18 pcs UHF-PD sensors without ground-connexion and TNC connector,- One complete On-line UHF-PD Monitoring System, type PD Guard/UHF, supplied by LDIC GmbHSystem layout for the installed monitoring system as well as the PD sensor application for theAC- and PD- commissioning test.FIGURE 2Test procedure and test application for the AC- and PD- commissioning testThe electrical quality check on the complete installed cable system has been performed with a mobile power-frequency resonance testing station under the following test procedure (figure 3).© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights Reserved© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedTest condition for on-site AC test combined with a selective on-site PD test at Jebel Ali. ACresonance test set connected to the power cable under test.FIGURE 3The PD commissioning has been performed with the instrument LDS-6/UHF as periodic monitoring instrument. Prior to the AC and PD test the instrumentation an instrument-performance-check of the PD measuring system has been perform by injecting of the voltage signal at the UHF-PD-Sensor. Increase the voltage in steps of 50 KV and observe the PD pattern at each voltage level. At Uo= 230 KV take a PD-measurement recording during 1 minute and afterwards increase the voltage in further steps of 50 KV until 320 KV. At each step note the measured PD value. Once reaching 320 KV leave this voltage applied for 1 hour and observe if there is a change in the recorded PD pattern and value, just before the 1 hour test period elapse take another recording of the PD measurement for 1 minute. While ramping the test voltage down, take another PD measurement for 1 minute at U o = 230 KV.Measuring instrumentation to perform the PD commissioning test, PD measuring instrument LDS-6/UHF as periodic monitoring system as well as the voltage generator LDC-7/UHF connected over the UHF-PD-Sensor to inject the voltage step as instrument-performance-checkFIGURE 4Test resultsDuring the applied high voltage to the power cables the PD level has been observed continuously. The following both screen shots are showing exemplary for one power cable the measured PD signals, near and remote sealing end, during the on-site commissioning test (figure 5).© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedNear End Remote EndReal-time measured-data acquisition during the AC and PD commissioning test of the power cable under test displayed with the front-end software LDS-6/UHF. The measured PD signals at 230 KVtest voltage are not above the baseline.FIGURE 5 Recordings at 230KV test voltage - near & remote end:For the data evaluation and reporting the replay function of LDS-6/UHF Analysis Mode has been used. Phase-correlated pulses, which are a typical signature for real PD events, could not be observed, i.e. thehere recorded signal level is only due to baseline / basic background noises in the measuring surroundings (figure 6). Near End Remote EndRecording at 230KV test voltage, no significantly PD appearances above the baselineFIGURE 6Recordings at 320 KV test voltage (one-hour-test):Other further diagnosis methods, such as based on expert systems, were not necessary because replay mode was sufficient in this particular case to recognize jittering of the noise pulses caused by the power electronics of the resonance test set. Please refer to the screenshot of replay mode with pulse plots in figure 7.© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedNoise Identification: Clearly assigned noise signal caused by electronicsof the HV resonance test systemFIGURE 7. All tested 18 power cables has been tested successfully with a recorded average background signal level ranges up to 75 mV. Based on these PD test results the investigated cables have been assessed PD-free under operation voltage considered to the recorded background noise level.Since one year ago the AC- and PD commissioning test has been performed the sealing ends of the power cable systems are monitored with the PDM system PD Guard/UHF. No conspicuousness has been observed during the one-year-period.Case Study 2 - AC and PD Commissioning Test of 345 KV XLPE cable systemUHF-PD-Monitoring and on-site-commissioning-test of 345 KV XLPE-insulated cable circuits at EHV Substation Wufong / TaiwanSystem Configuration and Test ApplicationBrugg Kabel AG, Switzerland, has been awarded and has successfully commissioned 325 KV cable project in Taiwan. The project consists of (figure 8):-Four 325 KV XLPE cable systems for connections between the Overhead-Line and GIS of the 325 KV Substation lines with different short cable length -Additional 3 power cable systems between GIS and Power Transformer -Outdoor-sealing ends as well as GIS-sealing ends pre-fabricated and pre-tested stress-cones manufactured from silicone -Complete 56 pcs installed UHF-PD sensors for permanent and periodic Monitoring, -One complete On-line UHF-PD Monitoring System for the Outdoor-sealing end supplied by LDIC GmbH (24 UHF-PD sensors at two Overhead-Line Towers)© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedSensor- and Instrumentation- Arrangement for PD Monitoring of the 345 KV SubstationFIGURE 8The PD monitoring system has been designed to monitor the PD signals continuously at the outdoor-sealing ends both overhead-line towers as permanent monitoring. The indoor GIS-sealing ends will be monitored periodic annually once. Within the first two years after system energization the GIS-sealing ends will be monitored twice the year.Test procedure and test application for the AC- and PD- commissioning testIn agreement with the end-user the test procedure for power cables has been performed as follow (figure9):Increase the voltage in steps of 50 KV and observe the PD signals as well as the PD pattern at each voltage level. At the voltage level 120KV, 199KV (U 0), 260KV, 345KV (1.7U 0) takes PD-recordings during 10-15 minutes. At each voltage level the PD pattern have been observed to check the power cable accessories under test concerning PD phenomena.Test condition for on-site AC test combined with a selective on-site PD test at Wufong ACresonance test set connected to the power cable under test.FIGURE 9© 2009 Doble Engineering Company -76th Annual International Doble Client ConferenceAll Rights ReservedThe PD commissioning test has been performed with the monitoring instruments PD Guard/UHF as installed permanently at the outdoor sealing-ends (figure 10). The indoor GIS-sealing ends have been checked with temporary measuring instrumentation. All measured PD signals, max. 6 measuring signals during the commissioning test of each cable phase separately, have been monitored and observed at the data acquisition server located in the control room.Application layout for permanent PD Monitoring at EHV substation, Wufong. Temporarymeasuring instrumentation at the GIS-sealing ends.FIGURE 10 Test ResultsDuring the AC- and PD commissioning tests at the 345 KV substation abnormal discharge appearances has been recognized at two GIS-sealing ends (figure 11). Increased phase correlated pulses have been observed on the terminations GIS A+ and GIS B- at one phase. Phase-resolved PD Pattern, which have a typical signature for real PD events, could be observed.Due to the short link connection via busbar, 4 m distance, between GIS A+ and GIS B- sealing ends the PD signals coupled over from one to another one. To confirm the cross-over coupling and to isolate the PD phenomena the link from the GIS B- sealing end has been opened. It could be clearly assigned that the typical PD appearances have the origin at the GIS A+ sealing end. The phase-resolved PD Pattern are showing significantly PD behaviour with triangular and symmetrically PD appearances.Recordings at 199 KV test voltage:GIS A+ GIS B-Phase resolved PD pattern recorded at 199 KV test voltage. Clearly assigned PD phenomena at GIS A+, cross-over coupling at GIS BFIGURE 11 Due to the observed typically PD pattern during the AC- and PD- commissioning test it has been decided to open the sealing end at GIS A+ to inspect the termination assembly. After de-assembly of the sealing end tracking path on the cable insulation has been discovered caused by improper termination assembling work (figure 12). Foreign matter, a small piece of tape layer, initiated discharges with the tracking path in the insulation as result.Tracking path as reason for partial discharges caused by foreign matter in the high voltage insulation system FIGURE 12 After re-assembling of the GIS A+ sealing end the AC- and PD commissioning test has been repeated with no relevant discharges above the baseline. All tested power cable accessories have been assessed PD-free under operation voltage.© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights ReservedCase Study 3 – Periodic PD Monitoring as Inspection Test Periodic UHF-PD-Monitoring- and inspection-test of 161 kV GIS-sealing end in Taiwan System Configuration, Test Sequence and Instrumentation A set of GIS-sealing ends, three sealing ends, of 161 KV XLPE power cable system has been inspected as routine test. The PDM system including three UHF-PD-sensors as described previously has been set up in energized condition of the power cable system. PD recordings have been taken at each phase of the investigated power cable system. At one phase abnormal conspicuousness in the partial discharge measuring readings has been observed during the routine inspection measurement. Based on the initial result it has been decided to perform periodic monitoring once the month to check the PD trending as well as to observe changes in the phase resolved PD pattern. Test Results During the routine inspection strong partial discharge activities have been measured at the cable termination of S-phase, the phase-resolved-pattern is shown in figure 13. The measured partial discharge signals are not similar to the typical PD pattern appearance, 0°~90° and 180°~270° of the applied test voltage, due to the outlet voltage as reference voltage has been not taken from the cable under test.Phase resolved PD Pattern at GIS-sealing end, phase S - Initial measurement as start of the periodic monitoring FIGURE 13 The origin of the partial discharge source has been located by comparing the measuring results, the partial discharge magnitudes as well as the phase resolved PD pattern, all three tested cable terminations. As shown in figure 13 the phase-resolved-pattern is indicating the discharges based on true PD-nature from the insulation of the GIS-sealing end arrangement at phase S. Moreover, the time domain signal and the frequency spectrum have been used to figure out the partial discharge source, as shown in figure 14. The measurement results shows that the partial discharge signal is suspected from the S-phase cable termination than from outside. Therefore, the S-phase cable termination has been considered that there is a defect inside the insulation arrangement, and a suggestion has been proposed to perform periodic PD monitoring once the month.© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights ReservedFig 14 Time domain signal of the decoupled PD signal at GIS-sealing end, phase S, and his correlated frequency spectrum FIGURE 14 The first review of on-line PDM is done one month later. The measured partial discharge signals have been increased as indicated in figure 15 (left). Comparing with initial measurement, the partial discharge magnitudes are slightly increased, the phaseresolved PD pattern is similar and the repetitive rate is almost the same. Figure 15 is showing that partial discharge area is shifted by 180 degree, and this is resulting from taking different outlet as reference voltage, the real synchronized voltage derived from phase S. It has been confirmed that the partial discharge source is inside the cable termination.Phase-resolved-pattern of 1st review, phase-resolved-pattern of 2nd review recorded each at phase S FIGURE 15 The second review of on-line PDM is done on Dec. 12th 2007. The measured partial discharge is stabilized at the PD level measured before, and the partial discharge still remains. Abnormal behavior has been assigned at the investigated cable system, discharges based on random noise or resulting from unexpected switching transients has been excluded. Therefore, the internal partial discharge of cable termination has been validated, the cable termination has been replaced, and the details are as following:© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights ReservedDisassembling of the GIS-sealing end. No abnormal condition observed at the surface of cable termination (left). After further disassembling serious trace path as result of partial discharge activities has been found (right). FIGURE 16Case Study 4 – Periodic Monitoring as Quality CheckPeriodic UHF-PD-Monitoring and inspection-test of 230 KV XLPE-insulated power cable accessories in a substation in Saudi Arabia System Configuration Two sets of GIS-sealing ends of 230 KV XLPE power cable system has been inspected and monitored during a one-year-period: - Six 230 KV GIS-sealing end at two circuits side by side (circuit A and circuit B) Test instrumentation and -sequence The used instruments to perform the quality check consist of the PD measuring Instrument LDS-6/UHF configured in zero-span- and ultra- wideband mode, Pre-Amplifier LDA-5/GIS, Voltage Generator LDC-7/UHF, UHF-PD-sensor (figure 17).Measuring setup for the power cable accessories insulation check by using PD monitoring instrumentation (frequency selective- as well as ultra wideband- measuring method): the PD instrument LDS-6/UHF as portable version and the UHF-PD-senor are displayed. FIGURE 17© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights ReservedThe PD-recordings has been taken during the GIS is in service condition. The UHF-PD-sensor has been installed with no outage as the GIS is in service. The test sequence has been performed at each sealing end as follow. 1. Setup of the PDM system LDS-6/UHF incl. the UHF-PD-sensor Note: Voltage synchronization by using the external Trigger, real synchronized voltage derived from the investigated circuit, of the PD Instrument performed at all circuits 2. Frequency analysis for determination of the measuring frequency (only for zero-span-mode measurement required) 3. Instrument performance check by using the voltage generator LDC-7/UHF 4. Recording of the measuring signals for the measuring cycle of 120 seconds Note: Ultra-wideband-mode measurements and zero-span-mode measurements have been performed at all circuits 5. For localization purposes and confirmation of UHF-PD-measuring series 2: recordings of acoustic signals captured by the acoustic insulation analyzer AIA100 (using the R3α-Sensor) at six measuring points according picture per phase (figure 18) 6. Evaluation of the measuring recordings by using the LDS-6/UHF analysis software: PD pattern recognition and replay-mode for signal evaluationSchematic Overview of the investigated GIS, GIS-sealing ends both circuits A and B. FIGURE 18© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights ReservedThe following table is reporting the measuring sequences both test series within the one-year-monitoringperiod: TABLE 2 Test configurations to perform the periodic PD monitoringSwitchin g No. 1 Measuring series as part of the periodic monitoring Initial measurement (quality check) Status Measuring method Electrical InstrumentationCircuit A energized Circuit B energized Circuit A: deenergized (circuit breaker and disconnector open, disconnector closed) Circuit B: in serviceLDS-6/UHF (zero-span-mode, UWB) LDS-6/UHF (zero-span-mode, UWB) AIA100 LDS-6/UHF (zero-span-mode, UWB) AIA1002Nine-month laterElectrical busbar circuit Acoustic Electrical busbar circuit3Nine-month laterCircuit A in service Circuit B: deenergized (circuit breaker and disconnector open, disconnector closed)AcousticFirst test series, quality check after system assembling of the GIS-sealing ends Based on the below reported test results it can be concluded, that the GIS-sealing ends both investigated circuit at each phase L2 have critical PD levels above the detection sensitivity of about 20 mV. Noises appearing either stochastically or phase-correlated could clearly be identified as external disturbances, due to further investigative site measurements and deeper analysis of the captured data by the ’Replay-Mode’ of the digital PD measuring system LDS-6/UHF. It could be excluded the origin of these PD pattern are not generated by the power transformers connected to the power cable via the GIS and not from the GIS-busbar system connected from the GIS sealing ends to the power transformer.© 2009 Doble Engineering Company -76th Annual International Doble Client Conference All Rights Reserved。

NOISE REDUCTION DEVICE AND NOISE REDUCTION METHOD

NOISE REDUCTION DEVICE AND NOISE REDUCTION METHOD
摘要:A frame delay module to generate a delay frame by delaying an input frame of a video signal in eachபைடு நூலகம்frame; a first difference generate module to generate a first difference value between the delay frame and the input frame; a first line delay module
申请人:Shigeki Kamimura
地址:Tsurugashima-shi JP
国籍:JP
更多信息请下载全文后查看
专利内容由知识产权出版社提供
专利名称:NOISE REDUCTION DEVICE AND NOISE REDUCTION METHOD
发明人:Shigeki Kamimura 申请号:US12273374 申请日:20081118 公开号:US20090167952A1 公开日:20090702 专利附图:
to generate a line delay frame by delaying the input frame in each line; a second line delay module to generate a second line delay frame by delaying the delay frame in each line; a second difference generate module to generate a second difference value between the input frame and the line delay frame; a third difference generate module to generate a third difference value between the delay frame and the second line delay frame; a fourth difference generate module to generate a fourth difference value between the line delay frame and the second line delay frame; a first correction module to correct the input frame by using the first difference value based on a logical sum or a logical product of the third difference value and the fourth difference value; and a second correction module to correct the delay frame by using the first difference value based on a logical sum or a logical product of the second difference value and the fourth difference value, are included.

基于隐马尔可夫模型平滑估计的随机噪声压制方法

基于隐马尔可夫模型平滑估计的随机噪声压制方法

基于隐马尔可夫模型平滑估计的随机噪声压制方法
王金芳;李月;王金宝;苏晓君
【期刊名称】《地球物理学进展》
【年(卷),期】2009(0)5
【摘要】以地震勘探记录去噪为目标,本文提出了一种隐马尔可夫模型平滑估计方法.它是在基本隐马尔可夫模型滤波基础之上,运用信号检测环节将带噪信号段和无信号段加以区分,构建带噪地震记录的状态转移模型,在贝叶斯框架下,利用平滑密度函数进行状态估计,从而达到压制噪声的目的.数值模拟表明,无论对信噪比还是均方误差,隐马尔可夫模型平滑估计处理后的重构信号优于常规的维纳滤波所恢复信号.我们可以期待这种方法会成为实际地震记录噪声压制的有效手段.
【总页数】7页(P1861-1867)
【关键词】隐马尔可夫模型;平滑估计;贝叶斯规则;地震同相轴
【作者】王金芳;李月;王金宝;苏晓君
【作者单位】吉林大学通信工程学院;吉林大学地球探测与技术学院;东北师范大学地理系
【正文语种】中文
【中图分类】P631
【相关文献】
1.基于隐马尔可夫模型的双链马尔可夫模型 [J], 陈琦;吾拉木江·艾则孜;申建新;胡锡健
2.基于隐马尔可夫模型的双链马尔可夫模型 [J], 陈琦;吾拉木江·艾则孜;申建新;胡锡健;
3.基于隐马尔可夫模型的通信态势估计方法 [J], 冯涛;黄开枝;徐天顺
4.基于小波域隐马尔可夫模型的时间序列分析-平滑、插值和预测 [J], 张冬青;韩玉兵;宁宣熙;刘雪妮
5.隐马尔可夫模型估计的新方法及应用案例 [J], 朱斌;郑静
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Simulation of Coherent Radar Imaging Using Continuous Wave Noise RadarJ ING X U AND M.W.H OFFMANDepartment of Electrical Engineering,University of Nebraska at Lincoln,Lincoln,NebraskaB.L.C HEONG AND R.D.P ALMERSchool of Meteorology,and Atmospheric Radar Research Center,University of Oklahoma,Norman,Oklahoma (Manuscript received26June2008,infinal form10January2009)ABSTRACTA computationally simple cross-correlation model for multiple backscattering from a continuous wave(CW)noise radar is developed and verified with theoretical analysis and brute-force time-domain simula-tions.Based on this cross-correlation model,a modification of an existing numerical method originally developed by Holdsworth and Reid for spaced antenna(SA)pulsed radar is used to simulate the estimated cross correlation corresponding to atmospheric backscattering using a coherent CW noise radar.Subse-quently,coherent radar imaging(CRI)processing comparisons between the CW noise radar and a con-ventional pulsed radar are presented that verify the potential of CW noise radar for atmospheric imaging.1.IntroductionBy applying radar to atmospheric remote sensing,at-mospheric parameters can be derived after processing the received signals.Return power variations and Dopp-ler shifts are caused byfluctuations in the atmospheric refractive index that are in turn affected by humidity, pressure,temperature,and mass density(Doviak and Zrni c1993).Atmospheric remote sensing using radar has been extensively studied for many years by using con-ventional pulsed radars and Doppler radar.Recently, increasing interest has been seen for atmospheric appli-cations using passive noise radar(Sahr and Lind1997; Meyer and Sahr2004;Sahr and Meyer2004),for simu-lation of land and rain clutter at the X band using pseu-dorandom code(PRC)continuous wave(CW)radar (Zhang et al.1999),and for the consideration of noise radar in weather applications(Yanovsky2002). Coherent radar imaging(CRI),also referred to as beam forming in manyfields,is based on sensor array signal processing techniques.CRI allows observations of small-scale structure in reflectivity maps and wind fields and its application has become more common in the atmospheric remote sensing area.CRI improve-ments have included increased angular resolution and enhanced robustness.Applications of CRI techniques (Kudeki and Su¨ru¨cu¨1991;Hysell1996)can be found in studies of the mesosphere(Yu et al.2001)and the at-mospheric boundary layer(ABL;Mead et al.1998; Pollard et al.2000;Cheong et al.2004b).A CW noise radar transmits and receives random noise or noiselike waveforms for target illumination. Early development of this basic technique includes the work of Waltman et al.(1966),Reid(1969),and Krehbiel and Brook(1979).In Waltman et al.(1966)a broadband two-element interferometer is described that uses a random noise waveform.In Reid(1969)drop size spectral analysis is performed using a pseudoran-dom phase code-modulated radar.In Krehbiel and Brook(1979)a broadband noise radar that reduces the between scatterer interference within a given volume is described.This approach reduces required averaging and allows for faster scanning.Because of the random nature of the transmitted signal,noise radar has ad-vantages of low probability of intercept(LPI),good accuracy and resolution,unambiguous measurement of distance and velocity,and counter electronic support measure capability(Guosui et al.1999).Given these advantages,random noise radar has been used in a wide range of applications including surveillance,tracking, collision warning,and air defense.As can be seen fromCorresponding author address:Michael W.Hoffman,Depart-ment of Electrical Engineering,University of Nebraska at Lincoln, Lincoln,NE68588-0511.E-mail:mhoffman1@DOI:10.1175/2009JTECHA1194.1Ó2009American Meteorological Societythe cited work,these advantages are also attractive for atmospheric remote sensing.The present work attempts to verify a simple com-putational model for CRI simulations of atmospheric observations using a coherent CW noise radar.A CW correlation model for a single scatterer is developed with notation that is compatible with existing CRI sim-ulation approaches.This model isfirst verified through simulation comparisons of the simple computational model obtained via theoretical analysis and a computa-tionally intense time-domain simulation.Subsequently, an application of this simplified model to atmospheric CRI is done via simulation in parallel with the previously established pulsed radar CRI techniques.A primary motivation of this work is to enable development of passive atmospheric imaging radars that exploit existing broadband communications signals.This passive radar development is similar to the work in Sahr and Lind (1997),but is intended for use in radar imaging of the lower atmosphere.This computationally simple tool provides developers of passive atmospheric imaging ra-dar systems the ability to compare CW approaches with existing pulsed radars such as TEP(see,e.g.,Cheong et al.2004b).In particular,this tool allows the analysis of the basic parameter trades including duty cycle,SNR averaging,and transmit–receive cross-talk reduction.2.Overview of coherent CW noise radara.Basic principles of CW noise radarIn a CW noise radar both range and radial velocity estimation are accomplished by processing the cross correlation of the received signal and a delayed version of the transmitted signal.The cross correlation for a point scatterer is given byR rd (t)5E[xr(t)xd(t)]5ARx(t,t),(1)where E[Á]denotes the expected value operator;x r(t) represents the received signal from a point scatterer, which is a time and/or Doppler shifted version of the transmitted signal;x d(t)represents the delayed replica of the transmitted signal;A is the amplitude scaling factor;R x(t,t)is the autocorrelation of the transmitted signal;and t is the difference of the return delay t r and the delay of the replica t d(i.e.,t5t r2t d).For a band-limited stationary random process with uniform(i.e.,flat)power spectral density(PSD)cen-tered at the frequency f0,its autocorrelation R x(t)is a sinc()function modulated by a sinusoidal function with center frequency f0(Dawood2001).Therefore,for a CW noise radar transmitting bandpass random noise with a uniform PSD,the cross correlation given by Eq.(1) can be described byRrd(t,t)5Asin(pbt)pbtcos(2p ft),(2)where f0is the carrier frequency(in Hz)and b represents the transmit bandwidth(in Hz).A strong correlation peak occurs when the delayed replica matches the return signal in delay time(i.e.,t d5t r),so the range detection is based on estimating t d corresponding the cross-correlation peak.For a moving point scatterer,t is a function of t and its velocity can be estimated byfinding the center frequency of the correlation time series.b.Outputs of coherent CW noise radarIn a practical CW noise radar,assuming the transmit-ted noise wave is a wide sense stationary(WSS)ergodic random process,the cross-correlation of the received signal and a delayed replica can be approximated in the time-averaged sense(Dawood2001):^Rrd(t,t)1Tintðt1Tinttxr(a)xd(a)d a,(3)where T int is the integration time.In a coherent CW noise radar system(Narayanan et al.1998),x d(t)can be a time delayed and frequency shifted(by f IF)replica of the transmitted signal,the product x r(t)x d(t)is passed through a bandpassfilter with center frequency f IF,the filtered product is down converted into in-phase(I)and quadrature(Q)components,and the time average sense cross correlation is obtained by averaging the summa-tion of low-pass-filtered I/Q detector outputs.To ana-lyze the estimated cross correlation,we express the transmitted bandpass noise x(t)using the mathematical narrowband random process model(McDonough and Whalen1995):x(t)5xc(t)cos(2p ft)Àxs(t)sin(2p ft),(4)where f0is the carrier frequency and x c(t)and x s(t)are said to the in-phase and quadrature components of x(t), respectively.Since x c(t)and x s(t)are independent low-pass random noise with Gaussian distribution with equal variances and zero means,E[x c(t)2]5E[x s(t)2], E[x c(t)]5E[x s(t)]50,and E[x c(t)x s(t)]50.The return signal from the k th point scatterer can be modeled asxrk(t)5xrckcos(B1)Àxrsksin(B1),(5)where B152p f0t22p f0t rk,t rk is the return delay time corresponding to the k th scatterer(depending on t for a moving scatterer),and x rck and x rsk are the scaled and delayed versions of x c(t)and x s(t),respectively:x rck 5krkxc(tÀtrk),(6)x rsk 5krkxs(tÀtrk),(7)where k rk represents the amplitude scaling factor con-tributed by the propagation path of the k th scatterer. When there exist multiple scatterers in the propaga-tion path,the overall signal recovered by a receiving sensor is the superposition of the individual return sig-nal from scatterers:Xr (t)5åKk51xrk(t)1nr(t),(8)where K is the number of scatterers,n r(t)is the additive system noise in the return channel,and x rk(t)represents the return signal from the k th scatterer.The time-delayed and frequency-shifted replica of the transmitted signal can be modeled asx d (t)5Vccos(B2)ÀVssin(B2),(9)where B252p(f02f IF)t22p f0t d,f IF is the frequency offset referred to as the intermediate frequency(IF), and V c and V s are given byVc 5kdxc(tÀtd)1ndc(t)5xdc(t)1ndc(t)Vs 5kdxs(tÀtd)1nds(t)5xds(t)1nds(t),(10)where t d is the delay time provided by the delay line, and n dc(t)and n ds(t)are the additive system noises in the delayed channel.Note that since the delayed signal is typically available at the receiver,these noise levels tend to be substantially lower than those for the return signals.Assuming the transmitted noise signal x(t)is a WSS er-godic and even symmetric process,we have E[x rck(t)x ds(t2 t)]’E[x rsk(t)x dc(t2t)]’0.Consequently,the approxi-mate time average sense I and Q components of cross correlation in the discrete domain(with i denoting t i5i T int)can be shown to be^R I 51NåNi51åKk51xrckiVcicos(uk)1nrcVcicos(uk),(11)^R Q 51NåNi51åKk51ÀxrckiVcisin(uk)ÀnrcVcisin(uk),(12)where i is the noise sample index,N52b T int is the number of independent integrated noise samples,T int is the measuring time,u k52p f0t k and t k5t d2t rk corresponds to the k th return delay t rk,and n rc is the additive noise in the return channel.c.Output signal-to-noise ratioThe output signal-to-noise ratio SNR o of a CW noise radar can be estimated by(Dawood2001):SNRo5E2[^Renv]var[^Renv],(13)where E[Á]represents the expectation operator,var[Á]denotes the variance operation,and^Renvis the envelope of the estimated cross correlation.When the number of independent integrated noise samples is large(i.e.,N)1),unbiased cross-correlationestimates are obtained,hence E2[^Renv]can be shown to beE2[^Renv]5E2[^RI]1E2[^RQ].(14)From Eqs.(11)and(12),E2[^Renv]is approximated asE2[^Renv]5åKk51R2cck1åKk51åKk¼m51RccmRcckcos(umÀuk),(15) where k and m are the scatterer indices,u k52p f0t k, u m52p f0t m,t k5t d2t rk,and t m5t d2t rm.Straight-forwardly,E2[^Renv]can be rewritten asE2[^Renv]5åKk51Rcckcos(uk)"#21åKk51Rccksin(uk)"#2,(16)where Rcckis the correlation corresponding to the k th return signal,as defined byRcck,m5E[xrckxdc]5E[xrskxds],(17)where xrck5xc(tÀtrk),x rsk5xs(tÀtrk),xdc5xc(tÀtd) and x ds5x s(t2t d).Both x c(t)and x s(t)are low-passrandom noise with uniform PSD,so we have Rcck5sin c[b(tdÀtrk)].Inserting Eqs.(11)and(12)in the following equation,E[^R2env]5E[^R2I]1E[^R2Q],E[^R2env] can be shown to beE[^R2env]51NåKk51SrkSd1åKk51SrkNd1NrSd1NrNd1(N11)E2[^Renv]!,(18)where N52b T int is the number of independent inte-grated noise samples(i.e.,the time-bandwidth product);T int represents the measuring time,E2[^Renv]is given by Eq.(15);S rk and S d represent the signal power of the k th return signal and the delayed replica,respectively;and N r and N d are the additive noise power in the returnand delayed channels,respectively.Subtracting E2[^Renv]given by Eq.(15)from E [^R 2env]given by Eq.(18),var[^R env]can be expressed by var[^R env ]51N åKk 51S rk S d 1åKk 51S rk N d1N r S d 1N rN d 1E 2[^Renv]!.(19)Consequently,the approximate output signal-to-noiseratio,d SNR o,at the correlator defined as d SNR o[E 2[^R env]var[^Renv],(20)can be written asd.Cross-correlation modelBased on the approximate d SNR ogiven by Eq.(21),we can model the estimated cross correlation as a noisy signal R M :R M (t )5S M (t )1n M (t ),(22)where S M (t )represents the true signal with envelope ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE 2[^R env ]q and energy T int E 2[^R env]in measuring time T int ,and n M (t )is the complex additive Gaussian noise com-ponent at the output of the correlator.The large num-ber of random contributions summed in the coherent integration leads to the assertion of normality in the simplified model.In addition,at this point the compu-tational savings of the model are clear—the generation of one sample per integration time,T int ,versus the generation operations and filtering at the Nyquist rate required by the signal bandwidth gives at least a factor of N reduction per observation.This reduction is even greater when subsequent filtering and other operations are included in the assessment and even more when the simulation signals are sampled at a higher than Nyquist rate as is done in the present work.From Eq.(16),the estimated cross correlation can be generally modeled as a complex signal R M 5R IM 2jR QM with the following modeled I and Q components:R IM 5åKk 51A rk sinc(bt k )cos(u k )1n I (t ),(23)R QM 5åKk 51A rk sinc(bt k )sin(u k )1n Q (t ),(24)where K is the number of scatterers,u k 52p f 0t k ,t k 5t d 2t rk ,t rk represents the return delay corresponding to the k th scatterer,A rk represents the amplitude scal-ing factor determined by the return signal power S rk due to the propagation path and the integration time T int ,and n I (t )and N q (t )are independent Gaussian random noise samples added to provide the modeled outputsignal-to-noise ratio,d SNR o.e.Illustration of cross-correlation modelFigure 1depicts an illustration of the cross-correlation model and actual estimated cross-correlation verifica-tion process for multiple backscattering.Simulations are performed to verify this cross-correlation model in conjunction with a time-domain simulation of the esti-mated cross correlation.Figures 2and 3show the envelopes of the continuous time-domain-estimated cross correlations and the com-putationally simpler modeled cross correlations when 100scatterers are randomly situated within one range bin with the range center of 37.5and 375m,respec-tively.By time-domain simulations we are referring to sampling at 10times the simulation bandwidth and performing all time-domain operations required (i.e.,correlation and filtering).Hence the computational savings over the time-domain approach are on the order of 10000:1using the simplified model.It can be seen from the figures that the computationally simple mod-eled cross-correlation envelopes are consistent with the estimated cross-correlation envelopes using the time-domain simulation.Figures 4and 5show the PSDs of the modeled and time-domain-estimated cross correlations,respectively.In this simulation,100scatterers are initialized withd SNR o5T int E 2[^R env]12båKk 51S rk S d 1åKk 51S rk N d 1N r S d 1N r N d 1E 2[^R env].(21)F IG.1.Illustration of the modeled and estimated cross-correlation verification process.Here t rk is the return delay corresponding to thek th scatterer,t k5t d2t k.SNR M5SNR o.randomly assigned positions within a desired range bin and with randomly assigned velocities ranging from 4.7to 5.3m s 21with mean 5m s 21and standard derivation 0.1m s 21.From these figures it is shown that the ex-tracted velocity information from the cross-correlation model is consistent with that from the estimated cross correlation using the time-domain simulation,and the estimated velocities based on the estimated and mod-eled cross correlation are located in the velocity range from 4.7to 5.3m s 21.Based on above analysis and simulation results,we can confirm that the computationally efficient modeledcross correlation described by Eqs.(23)and (24)can be used to simulate the actual estimated cross correlation derived from a time-domain simulation for range and velocity estimation.3.Atmospheric backscattering CRI simulation results In this section,a modification of an existing atmo-spheric backscattering model is presented fortheF IG .2.Envelopes of the estimated and modeled cross correla-tions.Input signal-to-noise ratios in the return and delayed chan-nels are set as SNR r 5240dB and SNR d 540dB,respectively.The transmit bandwidth b 5100MHz.F IG .3.Envelopes of simulated and modeled cross correlation.Input signal-to-noise ratios in the return and delayed channels are set as SNR r 5240dB and SNR d 540dB,respectively.The transmit bandwidth b 510MHz.F IG .4.The PSD of the estimated cross correlation.The trans-mit bandwidth b 510MHz,and input signal-to-noise ratios in the return and delayed channels are set as SNR r 5220dB and SNR d 540dB,respectively.F IG .5.The PSD of the modeled cross-correlation results.The transmit bandwidth b 510MHz,and input signal-to-noise ratios in the return and delayed channels are set as SNR r 5220dB and SNR d 540dB,respectively.atmospheric backscattering simulation when a coherent CW noise radar is applied.The existing model used in the present work was originally developed by Holdsworth and Reid (1995)for both SA and pulsed radar simu-lations.In its implementation for pulsed radar CRI,some more realistic modifications were proposed by Yu (2000),and a more efficient simulation algorithm of turbulent wind field updates was proposed by Cheong et al.(2004a)to reduce the computational load incurred with very large numbers of scatterers.In the simulation model of Holdsworth and Reid (1995)a large number of scatterers in a 3D enclosing volume is used to simulate bulk atmospheric backscat-tering.The scatterers are initialized with random re-flectivities and with randomly assigned locations.The total received signal is simulated as a superposition of individual complex signals corresponding to reflections from scatterers in that enclosing volume.As was shown in the previous section,for a given set of scatterers,the computationally efficient modeled correlation at the receiver output is approximately equal to correlation estimated by the computationally intensive,time-domain simulation of CW noise radar signals.Hence,for a CRI backscattering simulation (Cheong et al.2004a),this model can be used for the received CW correlations from a set of scatterers at each of the receivers.Since CRI typically requires a large number of receivers,an efficient means of computing the CW noise radar returns from the set of scatterers is key to feasible simulation of these systems.The modeled correlations for each receiver for a given SNR are generated using the amplitude scaling and phases for each of the scatterers used in the model in accord with the terms in Eqs.(23)and (24).CRI for coherent CW noise radar was tested by processing the modeled signals using the atmospheric backscattering model discussed in section 2.The simu-lation results including the echo power estimates,the radial velocity estimates,and 3D wind field estimates are demonstrated.To verify the simulation results using coherent CW noise radar,widely accepted simulation results using pulsed radar under identical simulation conditions are comparatively shown.a.Simulation radar specificationsFor the purpose of comparison,the receiver array of the simulated coherent CW noise radar is assumed to have the same sensor configuration as that of the sim-ulated turbulent eddy profiler (TEP)array by Cheong et al.(2004b),as shown in Fig.6.This configuration has 61sensors arranged in a hexagonal lattice to mimic the TEP radar developed at the University of Massachu-setts,Amherst (Mead et al.1998;Pollard et al.2000;Dekker and Frasier 2004).In the simulations of CRI using the TEP performed by Cheong et al.(2004b)the range resolution is D r 533.3m corresponding to a transmitted pulse width of t p 5222ns in the TEP radar.To get an equivalent range resolution of 33.3m in the simulation of CRI using coherent CW noise radar,the transmit bandwidth is set as b 54.5455MHz.Based on the TEP radar specifications listed by Cheong et al.(2004b),the basic radar specifications used in the following simulations are listed in Table 1.Note that there are implementation differences between pulsed and CW radars.Typically,CW radars have lower peak power and much higher duty cycles than pulsed radars—these parameters can be varied to impact the return SNR from radar systems.For the purpose of side-by-side imaging comparison,we have assumed the returned post-correlation SNRs from the two systems are identical.b.Simulation resultsIn the first simulation,the atmospheric reflectivity is simulated as a single Gaussian blob centered at (08,08)with s x 508,s x 508,r 50.0.Given the mean windfieldF IG .6.Geometry of the TEP array with 61sensors arranged in a hexagonal lattice.The distance between any two neighbor sensors is approximately 0.5412m (Cheong et al.2004b).T ABLE 1.Simulation parameters are based on the turbulent eddyprofiler specifications.[Adapted from Mead et al.(1998).]Center frequency f 05915MHz Receiver array61elements One range gate with center950m Demodulated signal sampling rate 140Hz Transmitter pointing direction Vertical No.of scatterers10000Horizontal wind magnitude 25m s 21Vertical wind 0m s 21Azimuth angle458F IG.7.Radial velocity is estimated using the Capon PPB method and the Doppler spectra offive selected pixels is estimated using the periodogram technique.The true velocities forfive pixels are stated to the right in bold.The reflectivity model is a single Gaussian blob centered at(08,08)with s x508, s x508,and r50.0.listed in Table 1with zero turbulent velocity,the radial velocity estimates are obtained using the Capon pulse-pair beamforming (PPB)method (Cheong et al.2004b)and the periodogram technique,separately.Figure 7shows the radial velocity contour lines obtained using the Capon PPB method and the Doppler spectra of five distinct pointing directions using the periodogram tech-nique.For both the CW noise radar and the pulsed ra-dar,the expected negative and positive radial velocities are found in the upper-right and lower-left regions of the two top panels,respectively,the radial velocities for five selected pointing directions listed in their corre-sponding Doppler spectra are very close to the true radial velocities,and the Doppler spectra are consistent with the respective radial velocity maps.In the second simulation,the echo powers,radial velocities,and 3D wind fields for a random reflectivity model with two Gaussian blobs are estimated.The simulated reflectivity model is a sum of two Gaussian blobs centered at (28,48)with s x 528,s x 528,r 520.6,F IG .8.Estimated echo power,radial velocity,and wind field maps.Echo power and radial velocity are estimated using the Capon PPB method.Radial velocity maps are shown for the region with the SNR .3dB.Turbulent velocity RMS 50m s 21.and at (248,68)with s x 5248,s x 5268,r 520.6,respectively.A constant northeasterly horizontal wind of 25m s 21with no vertical velocity and no turbulent velocity is used in this simulation.Figure 8shows the corresponding simulation results.As shown in Fig.8a,both set of estimated echo powers are consistent with the reflectivity model.From the estimated radial ve-locity contour lines,shown in Fig.8b,two expected radial velocities of 26.45and 16.45m s 21can be observed at the edge of the circle (12.58)at northeast (top right)and southwest (bottom left),respectively,for both panels.Figure 8c has indicated two similar 3D wind field esti-mates and corresponding RMS errors.In Fig.8c,the true horizontal wind vector is indicated by a single ar-row in the upper-right corner of each image for refer-ence and the RMS error of the estimated wind fields is provided in the bottom-left corner.The uncannily close similarity in the RMS errors is explained by the fact that both simulations are using identical scatterer distribu-tions for comparison purposes.The final two simulations are performed to observe the effects of reflectivity variations on wind field esti-mates.The mean wind field is set up to be uniform horizontal wind of 25m s 21from 458azimuth with no vertical velocity.Figures 9and 10show the 2D wind field estimates superimposed on echo power estimates for two reflectivity models when no turbulent field or a turbulent wind field with an RMS of 61m s 21was added on the top of the mean wind field,respectively.From Figs.9and 10,similar echo power estimates and wind field estimates obtained by using both CW noise radar and pulsed radar are observed,and the estimated 2D wind field and corresponding RMS errors shown in the lower-left corner of each panel have indicated that the impact of reflectivity variations on wind field esti-mates obtained using CW noise radar and pulsed radar are same for the mean field with and without turbulent field.4.Conclusions and discussionA simulation capability for CRI using a spaced an-tenna system receiving CW noise radar returns has been described and verified.Potential uses of thissimulationF IG .9.The 2D horizontal wind field estimates superimposed over echo power estimates.Turbulencevelocity RMS 50m s 21.include passive noise radar development for CRI using existing communication signals.A computationally efficient cross-correlation model for coherent CW noise radar from multiple scatterers has been devel-oped and verified via comparison with a computa-tionally intensive time-domain simulation.Based on the cross-correlation model,modifications have been made to an existing atmospheric scattering model previously used for spaced antenna pulsed radar sim-ulations.Given the same simulation conditions,similar CRI simulation results for CW noise and pulsed radar are observed by using the efficient model.From this effort we draw two conclusions.First,accurate and efficient simulation of the coherent CW noise radars for atmospheric CRI is possible using the approach presented in this paper.Second,based on the initial side-by-side comparisons of a CW noise radar array and a pulsed radar array,it appears that CW noise CRI of the atmosphere is a promising technique that warrants further study—particularly interesting is the exploita-tion of extant communication signals for atmospheric imaging.REFERENCESCheong,B.L.,M.W.Hoffman,and R.D.Palmer,2004a:Efficient atmospheric simulation for high resolution radar imaging applications.J.Atmos.Oceanic Technol.,21,374–378.——,——,——,S.J.Frasier,and F.J.Lopez-Dekker,2004b: Pulse pair beamforming and the effects of reflectivity field variations on imaging radars.Radio Sci.,39,RS3014, doi:10.1029/2002RS002843.Dawood,M.,2001:Ultrawideband coherent random noise radar theory and experiments.Ph.D.thesis,University of Nebraska at Lincoln,168pp.Dekker,P.L.,and S.J.Frasier,2004:Radio acoustic sounding with a UHF volume imaging radar.J.Atmos.Oceanic Tech-nol.,21,766–776.Doviak,R.J.,and D.S.Zrni c,1993:Doppler Radar and Weather Observations.2nd ed.Academic Press,562pp.Guosui,L.,G.Hong,and S.Weimin,1999:Development of random signal radars.IEEE Trans.Aerosp.Electron.Syst.,35,770–777. Holdsworth,D.A.,and I.M.Reid,1995:A simple model of at-mospheric radar backscatter:Description and application to the full correlation analysis of spaced antenna data.Radio Sci.,30,1263–1280.Hysell,D.L.,1996:Radar imaging of equatorial F region irregu-larities with maximum entropy interferometry.Radio Sci.,31,1567–1578.F IG.10.The2D horizontal windfield estimates superimposed over estimated reflectivity.A tur-bulent windfield with RMS of61m s21was added on the mean windfield,which is indicated by anarrow in the upper-right corner of each panel.1966J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y V OLUME26。

相关文档
最新文档