基于5-(pyridin-4-yl)isophthalic acid、发光颜色可调谐的稀土配合物的合成与发光性能
5-位取代吡唑啉化合物的发光行为及其在电致发光领域中的应用
2002年第60卷第5期.847—853化学学报ACI'ACHIMl阻SINICA、ol60.20。
2No5,847~8535.位取代吡唑啉化合物的发光行为及其在电致发光领域中的应用马昌期。
张联齐。
李晓卉。
王雪松。
张宝文+汪东明6曹怡。
蒋雪茵6张志林6张德强。
邱勇。
(。
中国科学院理化技术研究所北京100101)06A(5上海大学材料科学与工程学院上海201800)(。
清华大学化学系北京l㈣)摘要合成了一系列5位不同取代的2一吡唑啉化合物.研究了取代基对吡唑啉化合物物理性质的影响结果表明,在毗唑啉化合物的5位引入稠环取代基提高了吡唑啉化合物的熔点;同时,5位取代基的电位性质还影响着化合物的发光行为.Dsc差热分析结果给出1,3-二苯基一5一(9一菲基)一2-毗唑啉(唧)的玻璃化温度(■)为96℃;并研究了其在电致发光器件上的应用性能结果表明TAP'/是一种具有高热稳定性的空穴传输及蓝光发光材料.美t词吡唑啉.电致发光.热稳定性,空穴传输材料,蓝光发光材料TheLuminescentPropertiesof5-Substituted2-PyrazolineandApplicationinElectroluminescentDeviceMA,Chang-Qi8ZHANG,Lian—Qi。
LI,Xiao-Hui4WANG,Xue—Song“ZHANG。
Bao-Wen。
一CAO,YioWANG,Dong-Min96J1ANG,Xue—Yin6ZItANG,Zhi—L抽6ZHANG,De—Qiang。
Qiu,Yong‘(oTedmicxdInstituteofPhysicsandCt,amistry,凸觚Acoztemiz'of&,ieno∞,&讲昭100101)【6&hoolofMaterialSctence&Er皓ineering,sbl咖iUrdtms蚵,鼬凹w^面201800)(。
凸尹咖珊ofChe.ustry,乃l增^n0“翩睁,成ihw/00084,AbsWactAseriesof5一substituted2-pyrazolinederivativesweresynthesizedandtheirphysicalpropertiesweremeasured.Theresultsindicatethattheintroductionofbulkygroupsintothepyrazolineringincreasestheglasstransitiontemperature(Ts)ofthecompoundsandchangestheluminescentrnecⅧsmofthecompoundsDifferentialscanmngcalorimetry(DSC)showsthatthenewpyrazolinedefivalive,1,3-th#enyl-5一(9一phenanthrenyl)一2一pyrazoline(TAP7)hashi曲Tcof96℃.Theeleetreluminescentpropertiesofthiscompoundweremeasured.ItisdemonstratedthatnⅡ7isasoedholetransportmaterialandblueeleclrelmninescentmaterial诵thhighthermalstability.Keywordspyrazolme,eleetroluminescence,thermalstability,holetransportmaterial,blueelectroluminescentmaterial由于1.3.5-三芳基一2一吡唑啉类化合物具有良好的光导性能,高的荧光量子产率,以及良好的成膜+E-mail:枷3@ipc*CltReceivedOctober30,2001;revisedJa叫8珂4.2002;解。
新型荧光试剂5_4_氯苯偶氮_8_水杨醛缩氨基喹啉的合成及荧光性质
文章编号:1001-2443(2001)04-0353-03新型荧光试剂5-(4-氯苯偶氮)-8-水杨醛缩氨基喹啉的合成及荧光性质张明翠, 商永嘉, 朱英贵, 王 伦(安徽师范大学化学与材料科学学院,安徽芜湖 241000)摘要:首次合成了新型荧光试剂5-(4-氯苯偶氮)-8-水杨醛缩氨基喹啉(p-ClPSAQ).通过IR 、1H NMR 确证了产物结构.初步测试了其荧光性能.关键词:荧光试剂;5-(4-氯苯偶氮)-8-水杨醛缩氨基喹啉;Schiff 碱;合成中图分类号:0626 文献标识码:A 近十几年来,有机试剂在荧光分析中的应用日益广泛,有机荧光试剂的合成及应用已成为发展荧光分析的重要手段[1].8-氨基喹啉类衍生物由于是含有 氮氮 型同种配位原子的螯合剂,主要与亲氮金属生成稳定的配合物,故8-氨基喹啉(8-AQ)作为配体应比8-羟基喹啉及8-巯基喹啉具有更高的选择性.目前8-氨基喹啉衍生物主要是单偶氮、双偶氮及8-位磺酰化衍生物,此类试剂均是较好的荧光试剂和光度试剂[2-5].但其含偶氮基的Schiff 碱类衍生物尚未见诸报道.由于Schiff 碱结构中含有 -CH =N- 易流动的电子桥结构,易发射荧光,而偶氮基又能进一步增大分子的共轭体系,两者结合可望成为性能优良的荧光试剂[6].为了开发新的荧光试剂,我们首次合成了含偶氮基的Schiff 碱类化合物5-(4-氯苯偶氮)-8-水杨醛缩氨基喹啉,确证了其结构,并初步测试了其荧光性能.1 实验部分1.1 仪器及试剂XRC -1显微熔点测定仪(温度未经校正),N icolet FT -IR 170s 5DX 型红外光谱仪(KBr 压片),AVANCE DMX 500型核磁共振谱仪(T MS 为内标),RF-540型荧光分光光度计.邻硝基苯胺(C.P.,上海化学试剂总厂),对氯苯胺(C.P.,上海群力化工厂),水杨醛(C.P.,使用前重蒸),其它试剂均经标准方法纯化.1.2 合成路线用邻硝基苯胺经Skraup 反应制备8-硝基喹啉,再还原得8-氨基喹啉(8-AQ )。
新型联吡啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究
新型联吡啶钌环糊精超分子化合物:合成、性质及其在电致化学发光DNA生物传感器中的应用研究【摘要】:自然界亿万年的进化创造了生命体,而执行生命功能是生命体中无数个超分子体系。
超分子化学是研究分子间相互作用缔结而形成复杂有序且具有特定功能的分子聚集体的科学。
超分子化学逐渐发展成为一门新兴的分子信息化学,它包括在分子水平和结构特征上的信息存储,以及通过特异性相互作用的分子识别过程,实现在超分子尺寸上的修正、传输和处理。
它是化学和多门学科的交叉领域,它不仅与物理学、材料科学、信息科学、环境科学等相互渗透形成了超分子科学。
而更具有重要理论意义和潜在前景的是在生命科学中的研究和应用。
例如生物体内小分子和大分子之间高度特异的识别在生命过程中的调控,生物体内的信息输送(电子转移、能量传递、物质传输和化学转换)和生物体中受体.底物相互作用等,其基本现象都离不开超分子化学范畴。
环糊精是超分子化学中最重要的主体物质之一,它能与许多有机、无机和生物分子形成主客体包结物,也正是由于这些独特的性质,现在对环糊精的研究已经发展成环糊精超分子化学而被广泛关注。
对它的研究从主客体识别形成包合物的机理已经转移到对其在分析化学、医药制备、环境检测和生物传感器等领域的应用研究。
将功能金属中心与环糊精联接构成的金属环糊精超分子化合物,由于同时具有环糊精的主客体识别特性和功能金属中心(例如,联吡啶钌)的特性,使其更加适合于超分子器件及传感器的设计。
因此,金属环糊精超分子化合物已成为目前超分子化学中的研究热点。
但是目前为止,金属环糊精大多以单核金属中心的形式存在。
多核金属中心的环糊精超分子化合物因为具有多核的电子氧化还原中心,势必在光电子器件、荧光开关及生物分子多标记领域显示更为优越的性质,和更具独特的应用前景。
电致化学发光(ECL),特别是基于Ru(bpy)32+电致化学发光技术己被广泛应用临床的医学检验中,例如,目前临床中免疫、肿瘤标记物等检测均采用联吡啶钌电致化学发光检测技术。
一种荧光检测次氯酸的试剂和方法[发明专利]
专利名称:一种荧光检测次氯酸的试剂和方法专利类型:发明专利
发明人:阴彩霞,岳永康,霍方俊
申请号:CN201510611238.2
申请日:20150923
公开号:CN105203514A
公开日:
20151230
专利内容由知识产权出版社提供
摘要:本发明提供了一种荧光检测次氯酸的试剂和方法。
本发明提供的检测次氯酸的试剂,是一种吡啶盐类衍生物FHMMI((E)-4-(5-formyl-2-hydroxy-3-methoxystyryl)-1-methylpyridin-1-ium?iodide)。
本发明提供的检测HClO的方法,是基于吡啶盐类衍生物FHMMI,在
DMSO/HEPES(v/v,3:1,pH7.4)溶液中定量地检测次氯酸的含量。
该检测方法,对次氯酸显示了高的灵敏性和选择性,检测过程简便、灵敏、快速,检测结果准确。
申请人:山西大学
地址:030006 山西省太原市小店区坞城路92号
国籍:CN
代理机构:山西五维专利事务所(有限公司)
代理人:张福增
更多信息请下载全文后查看。
L-赖氨酸修饰的荧光碳量子点的制备及在钴测定中的应用
L-赖氨酸修饰的荧光碳量子点的制备及在钴测定中的应用孙雪花;尹惠;柴红梅;张甜;陈谦【摘要】以葡萄糖为原料,通过微波法制备了L-赖氨酸修饰的碳量子点(CQDs),研究了该CQDs与钴的荧光猝灭效应并将其应用于钴的测定.通过高分辨电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)、紫外-可见吸收光谱和荧光光谱等对L-赖氨酸修饰的CQDs进行结构表征分析.结果发现,该CQDs具有较强的荧光特性.条件优化试验表明,在pH 9.70的B-R缓冲体系中,在340 nm的光激发下,此CQDs最大荧光发射波长位于420 nm处,Co2+的质量浓度在0.03~0.60μg/mL及0.60~4.0μg/mL范围内与体系的荧光猝灭强度呈良好的线性关系,相关系数分别为0.9964和0.9918,检出限为3.84 ng/mL.将实验方法应用于水样中痕量钴的测定,测定结果与原子吸收光谱法(AAS)基本一致,相对标准偏差(RSD,n=5)为1.7%~2.0%.【期刊名称】《冶金分析》【年(卷),期】2018(038)011【总页数】6页(P75-80)【关键词】L-赖氨酸;碳量子点(CQDs);荧光探针;钴【作者】孙雪花;尹惠;柴红梅;张甜;陈谦【作者单位】延安大学化学与化工学院 ,延安市分析技术与检测重点实验室 ,陕西延安 716000;延安大学化学与化工学院 ,延安市分析技术与检测重点实验室 ,陕西延安 716000;延安大学化学与化工学院 ,延安市分析技术与检测重点实验室 ,陕西延安 716000;延安大学化学与化工学院 ,延安市分析技术与检测重点实验室 ,陕西延安 716000;延安大学化学与化工学院 ,延安市分析技术与检测重点实验室 ,陕西延安 716000【正文语种】中文【中图分类】O657.31;TF801+.3钴是人体必需的微量元素,钴含量过多和过少都会引起人体的各种疾病[1],所以对生命体、药物及环境水等体系中痕量钴的检测显得至关重要。
磷钨酸盐催化果糖水解制备5-羟甲基糠醛
磷钨酸盐催化果糖水解制备5-羟甲基糠醛曲永水;黄崇品;宋彦磊;张傑;陈标华【摘要】The dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) catalyzed by a variety of heteropolyacid salts has been studied. The highest 5-HMF yield was 99. 2% , obtained using a CePW12O40 catalyst in DMSO with 5% (mass fraction) of catalyst at 160℃ with reaction time 8 h. Furthermore, the conversion of fructose to 5-HMF catalyzed by heteropolyacid salts was conducted under microwave conditions. Compared with the conventional heating method, microwave heating showed a remarkable ability to both accelerate the reaction rate and improve the yield of 5-HMF. Moreover, the catalyst could be separated from the reaction mixture by a simple process at the end of the reaction and the catalyst could be reused six times without loss of activity.%以磷钨酸盐为催化剂,研究了其对果糖水解过程的影响,考察了反应时间、温度、催化剂种类及用量等因素对5-羟甲基糠醛(5-HMF)收率的影响.实验结果表明:160℃时在二甲基亚砜(DMSO)中,以CePW12O40为催化剂,反应8h,5-HMF的收率最高为99.2%;该催化剂循环使用6次,仍能保持较高活性,5-HMF的收率仍能保持90.5%.与传统加热方法相比,微波加热可明显加快反应速率,缩短反应时间.【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2012(039)004【总页数】5页(P12-16)【关键词】5-羟甲基糠醛;果糖;水解;杂多酸盐【作者】曲永水;黄崇品;宋彦磊;张傑;陈标华【作者单位】北京化工大学化学工程学院化工资源有效利用国家重点实验室,北京100029;北京化工大学化学工程学院化工资源有效利用国家重点实验室,北京100029;北京化工大学化学工程学院化工资源有效利用国家重点实验室,北京100029;北京化工大学化学工程学院化工资源有效利用国家重点实验室,北京100029;北京化工大学化学工程学院化工资源有效利用国家重点实验室,北京100029【正文语种】中文【中图分类】O629;O6435-羟甲基糠醛(5-HMF)分子中含有一个醛基和一个羟甲基,可以通过酯化、卤化、聚合、氧化脱氢等化合反应合成 2,5-呋喃二甲醛(FDC)、2,5-呋喃二甲酸(FDCA)、乙酰丙酸(LA)等高附加值产品,也是合成胶黏剂、聚酯、聚酰胺等重要高分子材料的原料[1-2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LetterSynthesis and luminescent properties of color-tunable lanthanide complexes with 5-(pyridin-4-yl)isophthalic acidTao Song,Xingtang Rao,Yuanjing Cui,Yu Yang ⇑,Guodong Qian ⇑State Key Laboratory of Silicon Materials,Cyrus Tang Center for Sensor Materials and Applications,Department of Materials Science &Engineering,Zhejiang University,Hangzhou 310027,PR Chinaa r t i c l e i n f o Article history:Received 13November 2012Received in revised form 8December 2012Accepted 10December 2012Available online 20December 2012Keywords:Lanthanide complex Color tuning Energy transfera b s t r a c tIn this work,a T-shape organic molecule 5-(pyridin-4-yl)isophthalic acid was synthesized via a Suzuki coupling reaction and used as the ligand for a serial of mixed-lanthanide complexes.The chemical com-positions of the lanthanide complexes were determined as (Eu x Tb 1Àx )2L 3(H 2O)4by elemental analysis (EA)and thermo gravimetric analysis (TGA).The luminescent properties of the as-synthesized complexes were investigated and the intramolecular energy transfer mechanisms involved,were discussed.Efficient energy transfer from Tb 3+to Eu 3+was observed and controlled by changing the molar ratio of Tb 3+to Eu 3+ions,allowing the color tuning on the luminescent emission of the mixed-lanthanide complexes.Ó2012Elsevier B.V.All rights reserved.1.IntroductionSolid state light emitting materials have diverse applications in extensive areas such as lighting,imaging,and medicine [1–4].Dur-ing the past several decades,the most commonly used solid state lighting materials were inorganic oxides and organic molecules [5–8].In recent years,lanthanide organic complexes have attracted intensive research interests by scientists in this field.These mate-rials were composed of lanthanide ions and organic ligands by coordination bonds,which brought them the benefits and advanta-ges of both inorganic and organic parts,including the characteris-tics narrow emission bands,high photoluminescence quantum efficiencies and good brightness of lanthanide ions,together with the numerous choices of organic ligands,resulting in almost unlimited diversities on luminescent properties,and the efficient sensitization on lanthanide ions by organic moieties via the well-known ‘‘Antenna effect’’.For all these reasons,lanthanide organic complexes have the potential to be solid state light emitting mate-rials,which can be applied in biomedicine,agriculture and lighting [9–16].As two of the most frequently employed lanthanide ions for light emitting materials,the dominant emission bands of Eu 3+and Tb 3+are in the red and green regions of the visible respectively,with good color purity.In concerns to improve the luminescent properties of the lanthanide complexes,ways for the sensitization of lanthanide ions,e.g.Eu 3+include the adoption of novel ligandswhich may have stronger absorption or better energy level com-patibility for efficient intramolecular energy transfer,and the mix-ing or co-doping of other lanthanide ions which may result in the energy transfer between various kinds of lanthanide ions.In the latter case,the concentration-dependence of energy transfer pro-cesses makes the emission color of mixed-lanthanide ions com-plexes being easily tuned,which may cover the whole visible region theoretically.In our previous reports,energy transfer among various lanthanide ions have been observed in both lantha-nide complexes and metal–organic frameworks,and the energy transfer mechanisms have been studied,which may also be applied as a novel temperature sensor potentially [12,17–19].As another effort to improve the luminescent properties of lan-thanide ions,in this work,a T-shape ligand 5-(pyridin-4-yl)iso-phthalic acid (L),which can sensitize the Eu 3+and Tb 3+efficiently,is synthesized and a serial mixed-lanthanide ions com-plexes (Eu x Tb 1Àx )2L 3(H 2O)4(x =1,0.5,0.2,0.15,0.1,0.075,0.05,0.04,0)are developed based on it.The spectroscopic properties of the mixed-lanthanide ions complexes are systematically investi-gated and discussed in details.The luminescent color tuning from the red to green is observed by changing the value of x easily,indi-cating their potential as novel color-tunable light emitting materials.2.Experimental section 2.1.Materials and methodsThe commercially available europium (III)nitrate hexahydrate (99.99%),ter-bium(III)nitrate hexahydrate (99.99%)and other chemicals were used as received,without further purification.0925-8388/$-see front matter Ó2012Elsevier B.V.All rights reserved./10.1016/j.jallcom.2012.12.030Corresponding authors.Tel.:+86057187952334.E-mail addresses:yuyang@ (Y.Yang),gdqian@ (G.Qian).The Fourier transform infrared(FTIR)spectra were measured with a Nicolet Thermo Scientific Nicolet iS10spectrometer using KBr pallets.Absorption bands then were labeled as follows:strong(s),medium(m),and weak(w).EA for C,H, and N was recorded on a ThermoFinnigan Instruments Flash EA1112microelemen-tal analyzer.1H NMR spectra were obtained with Bruker Advanced DMX500spec-trometer.TGA was carried out on a Netzsch TG209F3system at a heating rate of 10o C/min under N2atmosphere.Photoluminescence(PL)spectra were recorded by a Hitachi F4500spectrophotometer.The photomultiplier tube voltage was crude product was purified by silica column chromatography to yield7.7was hydrolyzed by adding NaOH,and then excess HCl was added.L was obtained after filtration.High agreement between the experimental and calculated data were found from the EA results(Experiment/Calculated)for ester6:C,66.64/66.42,H,4.79/ 4.80,N,5.06/5.17;and for L:C,63.89/64.20,H,3.68/3.70,N,5.42/5.76.The results of1H NMR experiments were shown in Fig.2.1H NMR of ester6 (500MHz,CDCl3,d ppm):8.74(d,3H),8.51(d,2H),7.59(t,2H), 4.00(s,6H).1HFig.1.The synthesis process of the ligand.T.Song et al./Journal of Alloys and Compounds555(2013)22–2723Fig.3.FTIR spectra of L and the lanthanide complexes.Fig.4.TGA curves of the lanthanide complexes.Fig.5.PL spectra of(Eu x Tb1Àx)2L3(H2O)4excited at350nm.(Inset)Excitation spectra of(Eu x Tb1Àx)2L3(H2O)4(monitoredobserved.While being excited at485nm which is the7F6?5D4 characteristic transition of Tb3+ions,the characteristic emission at616nm of Eu3+can be clearly observed in the PL spectra of the mixed(Eu x Tb1Àx)2L3(H2O)4complexes,which confirms the energy transfer process from Tb3+to Eu3+in the complexes(Supplemen-tary Fig.S1).As shown in Fig.5,with the increase of Tb3+concentrations in the mixed-lanthanide ions complexes(Eu x Tb1Àx)2L3(H2O)4,i.e.the value of x decreases from one,the luminescence intensities of Tb3+increase gradually as the result of increased amount of Tb3+ ions,while those of Eu3+varies in a mixed tendency which in-creasesfirst,and then decreases generally.This is suggested to be due to the energy transfer from Tb3+to Eu3+,which enhances the emissions of Eu3+,although the amount of which decreases.Thus,the tuning on the emission colors by changing the lantha-nide ions concentrations can be explained and predicted based on the energy transfer mechanism.Photographs of(Eu x Tb1Àx)2L3(H2O)4 complexes with various x values under the excitation of a355nm UV lamp are shown in Fig.6.The corresponding CIE coordinates are also shown on CIE chromaticity diagram.As expected,with the decrease on the value x from1to0,the emitting colors of complexes shift from red to yellow,and then to green as the result of various ratios of red emission by Eu3+to green emission by Tb3+.These luminescent properties of the mixed-lanthanide ions complexes indicate the systematic color-tuning on their emission from red to green,which may be potentially applied as light emit-ting materials in this region.For such an aim,the other luminescent properties of the mixed-lanthanide ions complexes such as the tem-perature-dependence of their luminescence should be further investigated.This work is now underway.4.ConclusionsIn this study,we synthesis mixed-lanthanide complexes by Eu3+,Tb3+and5-(pyridin-4-yl)isophthalic acid.The antenna effect and energy transfer from Tb3+to Eu3+in the complexes have been observed and discussed in details.The luminescent color of the mixed-lanthanide ions complexes(Eu x Tb1Àx)2L3(H2O)4can be tuned from red to green by changing the ratio of Tb3+to Eu3+,which indicate them as promising light emitting materials potentially.AcknowledgmentsThe authors gratefully acknowledge thefinancial support for this work from the National Natural Science Foundation of China (Nos.51010002,51272231and51229201),Natural Science Foun-dation of Zhejiang Province(No.LY12E02004),and the Fundamen-tal Research Funds for the Central Universities.Appendix A.Supplementary dataSupplementary data associated with this article can be found, in the online version,at /10.1016/j.jallcom.2012.12.030.References[1]S.V.Eliseeva,J.C.G.Bunzli,Chem.Soc.Rev.39(2010)189.[2]K.Binnemans,Chem.Rev.109(2009)4283.[3]L.D.Carlos,R.A.S.Ferreira,V.D.Bermudez,B.Julian-Lopez,P.Escribano,Chem.Soc.Rev.40(2011)536.[4]X.J.Wang,G.H.Zhou,H.L.Zhang,H.L.Li,Z.J.Zhang,Z.Sun,J.Alloys Comp.519(2012)149.[5]C.Giansante,G.Raffy,C.Schafer,H.Rahma,M.T.Kao,A.G.L.Olive,A.DelGuerzo,J.Am.Chem.Soc.133(2011)316.[6]H.He,X.Song,R.Fu,Z.Pan,X.Zhao,Z.Deng,Y.Cao,J.Alloys Comp.493(2010)401.[7]Z.Cui,R.Ye,D.Deng,Y.Hua,S.Zhao,G.Jia,C.Li,S.Xu,J.Alloys Comp.509(2011)3553.[8]Y.J.Yang,M.Lowry,C.M.Schowalter,S.O.Fakayode,J.O.Escobedo,X.Y.Xu,H.T.Zhang,T.J.Jensen,F.R.Fronczek,I.M.Warner,R.M.Strongin,J.Am.Chem.Soc.128(2006)14081.[9]H.Iwanaga,A.Amano,F.Aiga,K.Harada,M.Oguchi,J.Alloys Comp.408–412(2006)921.[10]Y.H.Liu,W.D.Zhuang,Y.S.Hu,W.G.Gao,J.H.Hao,J.Alloys Comp.504(2010)488.[11]R.K.Mahajan,R.Kaur,S.Shinoda,H.Tsukube,J.Alloys Comp.451(2008)578.[12]Z.Q.Wang,Y.Yang,Y.J.Cui,Z.Y.Wang,G.D.Qian,J.Alloys Comp.510(2012)5.[13]M.L.Cable,J.P.Kirby,K.Sorasaenee,H.B.Gray,A.Ponce,J.Am.Chem.Soc.129(2007)1474.[14]H.Xu,Y.Q.Xiao,X.T.Rao,Z.S.Dou,W.F.Li,Y.J.Cui,Z.Y.Wang,G.D.Qian,J.Alloys Comp.509(2011)2552.Fig.6.CIE chromaticity coordinates and photographs of(Eu x Tb1Àx)2L3(H2O)4with various x.[15]Y.J.Cui,Y.F.Yue,G.D.Qian,B.L.Chen,Chem.Rev.112(2012)1126.[16]Y.Y.Ren,B.L.An,Q.Xu,J.Alloys Comp.501(2010)42.[17]i,H.F.Lu,D.X.Wang,H.Wang,S.Y.Feng,J.Zhang,Macromol.Chem.Phys.212(2011)1435.[18]K.Liu,Y.H.Zheng,G.Jia,M.Yang,Y.H.Song,N.Guo,H.P.You,J.Solid StateChem.183(2010)2309.[19]X.T.Rao,Q.Huang,X.L.Yang,Y.J.Cui,Y.Yang,C.D.Wu,B.L.Chen,G.D.Qian,J.Mater.Chem.22(2012)3210.[20]N.Miyaura,Akira Suzuki,Chem.Rev.95(1995)2457.[21]Z.X.Chen,S.C.Xiang,T.B.Liao,Y.T.Yang,Y.S.Chen,Y.M.Zhou,D.Y.Zhao,B.L.Chen,Cryst.Growth Des.10(2010)2775.[22]J.-G.Kang,J.-P.Hong,S.-K.Yoon,J.-H.Bae,Y.-D.Kim,J.Alloys Comp.339(2002)248.[23]J.-G.Kim,S.-K.Yoon,Y.Sohn,J.-G.Kang,J.Alloys Comp.274(1998)1.[24]Y.Q.Xiao,L.B.Wang,Y.J.Cui,B.L.Chen,F.Zapata,G.D.Qian,J.Alloys Comp.484(2009)601.[25]G.D.Qian,Z.Yang,M.Q.Wang,J.Lumin.96(2002)211.[26]Y.J.Cui,H.Xu,Y.F.Yue,Z.Y.Guo,J.C.Yu,Z.X.Chen,J.K.Gao,Y.Yang,G.D.Qian,B.L.Chen,J.Am.Chem.Soc.134(2012)3979.[27]Y.Liu,G.D.Qian,Z.Y.Wang,M.Q.Wang,Appl.Phys.Lett.86(2005)071907.[28]Y.H.Luo,Q.Yan,S.Wu,W.X.Wu,Q.J.Zhang,J.Photochem.Photobiol.191(2007)91.T.Song et al./Journal of Alloys and Compounds555(2013)22–2727。