培优相似三角形
最新初三上数学培优专题讲义九AB------相似三角形
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
相似三角形培优专题讲义
相似三角形培优专题讲义知识点一:比例线段有关概念及性质 (1)有关概念1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比是AB:CD =m :n例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。
2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dcb a =(或a :b=c :d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。
)例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。
(2)比例性质1.基本性质:bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质: cda b d c b a =⇒= (把比的前项、后项交换)3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.例:已知的值求fd be c af d b f e d c b a ++++≠++===),0(545.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .知识点二:平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。
相似三角形培优
D H
E
C G
A
FB
第2页共8页
练习 1、如图,梯形 ABCD 中 AD ∥ BC ,对角线 AC, BD 交于点 P ,过点 P 作 BC
的平行线分别交 AB, DC 于点 E, F ,求证 PE PF .
A
D
E
F
P
B
C
2、如图, ABC 中, AB AC, AD BC 于 D , E,G 分别是 AD, AC 的中点,
BC 4 AC
B
C
2、如图,在平行四边形 ABCD 中,过点 B 的直线顺次与 AC, AD 及 CD 的延长线相
交于点 E, F ,G ,若 BE 5, EF 2, 求 FG 的长.
G
F
A
D
E 第4页共8页
C B
5 证明线段(线段比)和差
例 6 如图,已知 AB ∥ CD, AD ∥ CE, F,G 分别是 AC 和 FD 的中点,过 G 的直线
例 7 如图, H ,Q 分别是正方形 ABCD 的边 AB, AC 上的点,且 BH BQ ,过 B 作
HC 的垂线,垂足分别为 P ,求证: DP PQ .
A
D
HP
BQ
C
练习题
1、如图, ABC 中, BAC 90 , AD 是 BC 边上的高, E 是 BC 边上一点,过 点 E 作 AB, AC 的垂线,垂足分别为 F,G ,求证:FDG 90
垂足为 H ,联接 BH ,求证:BAD HBC .
A
H
BD
C
第8页共8页
样所得的 3 个三角形 t1, t2 , t3 的面积分别为 4,9,49,求 ABC 的面积.
相似三角形培优
相似三角形综合培优题型基础知识点梳理:知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =.②()a c a b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c bd b d a c=⇔=. 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(的延长线)所得的对应线段成比例. 由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD ===或或 2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. B已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 知识点5 相似三角形的概念①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.知识点6 三角形相似的等价关系与三角形相似的判定定理的预备定理(1)相似三角形的等价关系:①反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.②对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.③传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆(2) 三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形: 用数学语言表述是:BC DE // , ∴ ADE ∆∽ABC ∆.知识点7 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.: 射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
培优专题25相似三角形的一线三等角模型-解析版
A.-9
B.-12
C.-15
D.-18
【答案】A
【分析】根据∠AOB=90°,∠ABO=30°,可求出 OA 与 OB 的比,设出点 B 的坐标,再根据相似三角形的
性质,求出点 A 的坐标,可得 ab 的值,进而求出 m 的值.
【详解】解:过 A、B 分别作 AM⊥x 轴,BN⊥x 轴,垂足为 M、N,
3a 3b ∴B(-a,b),A( 3 , 3 ),
3 ∵点 A 在反比例函数 y= x 上,
33 ab
则 3 × 3 =3, ∴ab=9,
m ∵点 B 在反比例函数 y= x 上, ∴-a×b=m=-9, 故选 A.
【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出 反比例函数图象上点的坐标是解答前提的关键. 3.(2021·浙江·九年级专题练习)如图,正方形 ABCD 边长为 4,边 B过点 A,则矩形 EDFG 的面积是( )
2. 当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题
3. 由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算
4. “K 型图”常和“A 字图”或“8 字图”类的平行相似结合在一起求长度
“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂 线。 如图:
∵四边形 EDFG 为矩形,
∴∠EDF=∠F=90°,
∵∠ADF+∠ADE=90°,∠ADE+∠EDC=90°,
∴∠ADF=∠EDC,
∴△ADF∽△CDE,
AD DF
4 DF
∴ DE DC ,即 DE 4 ,
16
∴DF= DE ,
竞赛辅导:相似三角形培优
相似形三角形及应用例1、已知正方形ABCD的边长是5厘米,EF=FG,FD=DG。
求△ECG的面积。
【说明】在相似形中,计算线段长的主要方法是由线段成比例定理(如平行线分线段成比例定理、相似三角形的性质等)列出含待求线段的比例式,再设法求出待求线段的长。
例2、已知在平行四边形ABCD中,M、N为AB的三等分点,DM、DN交于AC于P、Q两点。
求AP:PQ:QC的值。
【说明】解线段a:b:c的问题,可根据相关的性质将a、b、c用同一条线段表示出来,再求几条线段的比。
若a、b、c正好可组成一条线段,常用这条线段表示这三条线段。
例3、正方形ABCD中,E是对角线AC上一点,F是边AB上一点,且AE=2EC,FB=2AF。
求∠EDF的度数。
例5 如图所示.△ABC 中,AD 是∠BAC 的平分线.求证:AB ∶AC=BD ∶DC.【说明】这个例题在解决相似三角形有关问题中,常起重要作用,可当作一个定理使用.类似的还有一个关于三角形外角分三角形的边成比例的命题,这个命题将在练习中出现,请同学们自己试证.例6、正方形ABCD 中,M 、N 分别在AB 、BC 边上,且BM =BN ,又BP ⊥MC于P。
求证:PD ⊥PN 。
【说明】要证相等的两角是两个三角形的角,若能证这两个三角形相似,且两角是对应角,则达到两角相等。
此种方法是证角相等的常用方法。
例7如图,ABC中,AD BC 于D ,BE AC 于E , DF AB 于F ,交BE 于G ,FD 、AC 的延长线交于点H ,求证:2DF FG FH .GHB AFE DC练习:1、(2013年河北)如图4,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB. 若NF = NM = 2,ME = 3,则AN =A.3 B.4C.5 D.62、(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=( )A. 1:4 B. 1:3 C. 2:3 D. 1:23、(2013聊城)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为( )A.a B.C.D.4、(2013•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..5、(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为( )A. 11 B. 10 C. 9D. 86、(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )A . 2:5B . 2:3C . 3:5D . 3:27.(2012四川内江,21,9分)如图,四边形ABCD 是矩形,E 是BD 上的一点,∠BAE =∠BCE ,∠AED =∠CED ,点G 是BC 、AE 延长线的交点,AG 与CD 相交于点F.(1)求证:四边形ABCD 是正方形;(2)当AE =2EF 时,判断FG 与EF 有何数量关系?并证明你的结论.8. (2012福建莆田,24,12分)(1)(3分)如图①,在Rt△ABC 中,∠ABC=90°,BD ⊥AC 于点D.求证:AC AD AB 2;D A BG C F E(2) (4分)如图②,在Rt △ABC 中,∠ABC =90°,点D 为BC 边上的点,BE ⊥AD 于点E,延长BE 交AC于点F.1AB BD BC DC,求AF FC 的值; (3)(5分)在Rt△ABC 中,∠ABC =90°,点D 为直线BC 上的动点..(点D 不与B、C 重合),直线BE ⊥AD 于点E,交直线AC 于点F.若AB BD n BC DC,请探究并直接写出AF FC 的所有可能的值(用含n 的式子表示),不必证明.D BA C E F CBA D9.(2012湖北黄石,24, 9分)如图(10)所示:等边△ABC中,线段AD 为其内角角平分线,过D 点的直线B 1C 1⊥AC 于C 1交AB 的延长线于B 1.⑴请你探究:AC CD AB DB ,1111AC C D AB DB 错误!未找到引用源。
初中数学培优提高相似三角形
相似三角形两个形状相同的图形称为相似图形,最基本的相似图形是相似三角形.对应角相等、对应边成比例的三角形,叫作相似三角形.相似比为1的两个相似三角形是全等三角形.因此,三角形全等是相似的特殊情况,而三角形相似是三角形全等的发展,两者在判定方法及性质方面有许多类似之处.因此,在研究三角形相似问题时,我们应该注意借鉴全等三角形的有关定理及方法.当然,我们又必须同时注意它们之间的区别,这里,要特别注意的是比例线段在研究相似图形中的作用.关于相似三角形问题的研究,我们拟分两讲来讲述.本讲着重探讨相似三角形与比例线段的有关计算与证明问题;下一讲深入研究相似三角形的进一步应用.例1 如图2-64所示,已知AB ∥EF ∥CD ,若AB=6厘米,CD=9厘米.求EF .分析 由于BC 是△ABC 与△DBC 的公共边,且AB ∥EF ∥CD ,利用平行线分三角形成相似三角形的定理,可求EF .解 在△ABC 中,因为EF ∥AB ,所以同样,在△DBC 中有①+②得设EF=x 厘米,又已知AB=6厘米,CD=9厘米,代入③得说明 由证明过程我们发现,本题可以有以下一般结论:“如本题请同学自己证明.例2 如图2-65所示. ABCD 的对角线交于O ,OE 交BC 于E ,交AB 的延长线于F .若AB=a ,BC=b ,BF=c ,求BE .分析 本题所给出的已知长的线段AB ,BC ,BF 位置分散,应设法利用平行四边形中的等量关系,通过辅助线将长度已知的线段“集中”到一个可解的图形中来,为此,过O 作OG ∥BC ,交AB 于G ,构造出△FEB ∽△FOG ,进而求解.解 过O 作OG ∥BC ,交AB 于G .显然,OG 是△ABC 的中位线,所以在△FOG 中,由于GO ∥EB ,所以例3 如图2-66所示.在△ABC 中,∠BAC=120°,AD 平分分析 因为AD 平分∠BAC(=120°),所以∠BAD= ∠EAD=60°.若引DE ∥AB ,交AC 于E ,则△ADE 为正三角形,从而AE=DE=AD ,利用△CED ∽△CAB ,可实现求证的目标.证 过D 引DE ∥AB ,交AC 于E .因为AD 是∠BAC 的平分线,∠BAC=120°,所以∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以△ADE 是正三角形,所以EA=ED=AD . ①由于DE ∥AB ,所以△CED ∽△CAB ,所以由①,②得从而例4 如图2-67所示.ABCD 中,AC 与BD 交于O 点,E 为AD 延长线上一点,OE 交CD于F ,EO 延长线交AB 于G .求证:分析 与例2类似,求证中诸线段的位置过于“分散”,因此,应利用平行四边形的性质,通过添加辅助线使各线段“集中”到一个三角形中来求证.证 延长CB 与EG ,其延长线交于H ,如虚线所示,构造平行四边形AIHB .在△EIH 中,由于DF ∥IH ,所以在△OED 与△OBH 中,∠DOE=∠BOH ,∠OED=∠OHB ,OD=OB ,所以 △OED ≌△OBH(AAS).从而DE=BH=AI ,例5(梅内劳斯定理) 一条直线与三角形ABC 的三边BC ,CA ,AB(或其延长线)分别交于D ,E ,F(如图2-68所示).求分析 设法引辅助线(平行线)将求证中所述诸线段“集中”到同一直线上进行求证.证 过B 引BG ∥EF ,交AC 于G .由平行线截线段成比例性质知说明 本题也可过C 引CG ∥EF 交AB 延长线于G ,将求证中所述诸线段“集中”到边AB 所在直线上进行求证.例6 如图2-69所示.P 为△ABC 内一点,过P 点作线段DE ,FG ,HI 分别平行于AB ,BC 和CA ,且DE=FG=HI=d ,AB=510,BC=450,CA=425.求d .分析 由于图中平行线段甚多,因而产生诸多相似三角形及平行四边形.利用相似三角形对应边成比例的性质及平行四边形对边相等的性质,首先得到一个一般关系:进而求d .因为FG ∥BC ,HI ∥CA ,ED ∥AB ,易知,四边形AIPE ,BDPF ,CGPH 均是平行四边形.△BHI ∽△AFG ∽△ABC ,从而将②代入①左端得因为DE=PE +PD=AI +FB , ④AF=AI +FI , ⑤BI=IF +FB . ⑥由④,⑤,⑥知,③的分子为DE +AF +BI=2×(AI +IF +FB)=2AB .从而即下面计算d .因为DE=FG=HI=d ,AB=510,BC=450,CA=425,代入①得解得d =306.例6 如图2-76所示.△ABC 中,AD 是∠BAC 的平分线.求证:AB ∶AC=BD ∶DC .分析 设法通过添辅助线构造相似三角形,这里应注意利用角平分线产生等角的条件.证 过B 引BE ∥AC ,且与AD 的延长线交于E .因为AD 平分∠BAC ,所以∠1=∠2.又因为BE ∥AC ,所以∠2=∠3.从而∠1=∠3,AB=BE.显然△BDE∽△CDA,所以 BE∶AC=BD∶DC,所以 AB∶AC=BD∶DC.说明这个例题在解决相似三角形有关问题中,常起重要作用,可当作一个定理使用.类似的还有一个关于三角形外角分三角形的边成比例的命题,这个命题将在练习中出现,请同学们自己试证.在构造相似三角形的方法中,利用平行线的性质(如内错角相等、同位角相等),将等角“转移”到合适的位置,形成相似三角形是一种常用的方法.例7如图 2-77所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.△MEF∽△MAB,从而EF∥AB.证过B引BG∥AC交AE的延长线于G,交AM的延长线于H.因为AE是∠BAC的平分线,所以∠BAE=∠CAE.因为BG∥AC,所以∠CAE=∠G,∠BAE=∠G,所以 BA=BG.又BD⊥AG,所以△ABG是等腰三角形,所以∠ABF=∠HBF,从而AB∶BH=AF∶FH.又M是BC边的中点,且BH∥AC,易知ABHC是平行四边形,从而BH=AC,所以 AB∶AC=AF∶FH.因为AE是△ABC中∠BAC的平分线,所以AB∶AC=BE∶EC,所以 AF∶FH=BE∶EC,即(AM+MF)∶(AM-MF)=(BM+ME)∶(BM-ME)(这是因为ABHC是平行四边形,所以AM=MH及BM=MC.).由合分比定理,上式变为AM∶MB=FM∶ME.在△MEF与△MAB中,∠EMF=∠AMB,所以△MEF∽△MAB(两个三角形两条边对应成比例,并且夹角相等,那么这两个三角形相似.).所以∠ABM=∠FEM,所以 EF ∥AB .例8 如图2-78所示.在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶4.即可,为此若能设法利用长度分别为AB ,BC ,CA 及l=AB +AC 这4条线段,构造一对相似三角形,问题可能解决.注意到,原△ABC 中,已含上述4条线段中的三条,因此,不妨以原三角形ABC 为基础添加辅助线,构造一个三角形,使它与△ABC 相似,期望能解决问题.证 延长AB 至D ,使BD=AC(此时,AD=AB +AC),又延长BC 至E ,使AE=AC ,连结ED .下面证明,△ADE ∽△ABC .设∠A=α,∠B=2α,∠C=4α,则∠A+∠B+∠C=7α=180°.由作图知,∠ACB 是等腰三角形ACE 的外角,所以∠ACE=180°-4α=3α,所以 ∠CAE=180°-3α-3α=7α-6α=α.从而∠EAB=2α=∠EBA ,AE =BE .又由作图AE=AC,AE=BD,所以 BE=BD,△BDE是等腰三角形,所以∠D=∠BED=α=∠CAB,所以△ABC∽△DAE,所以例9 如图2-79所示.P,Q分别是正方形ABCD的边AB, BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.分析要证QH⊥DH,只要证明∠BHQ=∠CHD.由于△PBC是直角三角形,且BH⊥PC,熟知∠PBH=∠PCB,从而∠HBQ=∠HCD,因而△BHQ与△DHC应该相似.证在Rt△PBC中,因为BH⊥PC,所以∠PBC=∠PHB=90°,从而∠PBH=∠PCB.显然,Rt△PBC∽Rt△BHC,所以由已知,BP=BQ,BC=DC,所以因为∠ABC=∠BCD=90°,所以∠HBQ=∠HCD,所以△HBQ∽△HCD,∠BHQ=∠DHC,∠BHQ+∠QHC=∠DHC+∠QHC.又因为∠BHQ+∠QHC=90°,所以∠QHD=∠QHC+DHC=90°,即 DH⊥HQ.例10如图2-80所示.P,Q分别是Rt△ABC两直角边AB,AC上两点,M为斜边BC的中点,且PM⊥QM.求证:PB2+QC2=PM2+QM2.分析与证明若作MD⊥AB于D,ME⊥AC于E,并连接PQ,则PM2+QM2=PQ2=AP2+AQ2.于是求证式等价于PB2+QC2=PA2+QA2,①等价于PB2-PA2=QA2-QC2.②因为M是BC中点,且MD∥AC,ME∥AB,所以D,E分别是AB,AC的中点,即有AD=BD,AE=CE,②等价于(AD+PD)2-(AD-PD)2=(AE+EQ)2-(AE-EQ)2,③③等价于AD·PD=AE·EQ.④因为ADME是矩形,所以AD=ME,AE=MD,故④等价于ME·PD=MD·EQ.⑤为此,只要证明△MPD∽△MEQ即可.下面我们来证明这一点.事实上,这两个三角形都是直角三角形,因此,只要再证明有一对锐角相等即可.由于ADME 为矩形,所以∠DME=90°=∠PMQ(已知).⑥在⑥的两边都减去一个公共角∠PME,所得差角相等,即∠PMD=∠QME.⑦由⑥,⑦,所以△MPD∽△MEQ.由此⑤成立,自⑤逆上,步步均可逆推,从而①成立,则原命题获证.例11如图2-81所示.△ABC中,E,D是BC边上的两个三等分点,AF=2CF,BF=12厘米.求:FM,MN,BN的长.解取AF的中点G,连接DF,EG.由平行线等分线段定理的逆定理知DF∥EG∥BA,所以△CFD∽△CAB,△MFD∽△MBA.所以MB=3MF,从而BF=4FM=12,所以FM=3(厘米).又在△BDF中,E是BD的中点,且EH∥DF,所以因为EH∥AB,所以△NEH∽△NAB,从而显然,H是BF的中点,所以故所求的三条线段长分别为。
相似三角形专题练习(培优)附答案
相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
人教版 九年级数学 27.2 相似三角形 培优训练(含答案)
人教版 九年级数学 27.2 相似三角形 培优训练一、选择题(本大题共10道小题)1. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 632. (2020·云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E是CD 的中点.则△DEO 与△BCD 的面积的比等于( )A .B .C .D .3. (2020·哈尔滨)如图,在△ABC中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =4. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)6. (2020·广西北部湾经济区)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN 的长为()A.15 B.20 C.25 D.307. (2020·铜仁)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3 B.2 C.4 D.58. (2020·营口)如图,在△ABC中,DE∥AB,且CDBD=32,则CECA的值为()A EA.3 5B.23C.45D.329. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个ABC10. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. (2020·吉林)如图,////AB CD EF.若12=ACCE,5BD=,则DF=______.12. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF的顶点都在网格线的交点上,设△ABC的周长为C1,△DEF的周长为C2,则12CC的值等于▲ .ABCD EF13. (2020·盐城)如图,//,BC DE 且,4,10BC DE AD BC AB DE <==+=,则AEAC的值为.14. (2020·郴州)在平面直角坐标系中,将AOB∆以点O 为位似中心,32为位似比作位似变换,得到11OB A ∆.已知)3,2(A ,则点1A 的坐标是 .15.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.16. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =______,BE =______.FDBE A C17. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.18. (2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.三、解答题(本大题共4道小题)19. (2020·杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设()0CEEBλλ=>. FCGEBDA(1)若2AB =,λ=1,求线段CF 的长. (2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点. ②求λ的值.20. 已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过D 点的直线交AC 于E 点,交AB 于F 点,且△AEF 为等边三角形. (1)求证:△DFB 是等腰三角形; (2)若DA =7AF ,求证CF ⊥AB.21. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1).(1)求直线AD 的解析式; (2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.22.(2020·泰州)如图,在ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为BC 边上的动点(与B 、C 不重合),//PD AB ,交AC 于点D ,连接AP ,设CP x =,ADP ∆的面积为S .(1)用含x 的代数式表示AD 的长;(2)求S 与x 的函数表达式,并求当S 随x 增大而减小时x 的取值范围.人教版 九年级数学 27.2 相似三角形 培优训练-答案一、选择题(本大题共10道小题) 1. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .2. 【答案】B .【解析】利用平行四边形的性质可得出点O 为线段BD 的中点,结合点E 是CD 的中点可得出线段OE 为△DBC 的中位线,利用三角形中位线定理可得出OE ∥BC ,OE =BC ,进而可得出△DOE ∽△DBC ,再利用相似三角形的面积比等于相似比的平分,即可求出△DEO 与△BCD 的面积的比为1:4.3. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC 的高, ∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】相似三角形的周长之比等于相似比,所以△FHB和△EAD 的相似比为30∶15=2∶1,所以FH∶EA=2∶1,即6∶EA=2∶1,解得EA=3.因此本题选A.8. 【答案】 A【解析】利用平行截割定理求CECA的值.∵DE∥AB,∴CEAE=CDBD=32,∵CE+AE=AC,∴CECA=35.9. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:ABC因此本题选A.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH =BDBA,因为D为AB中点,所以BDBA=12,所以DFAH=12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=1 2x.在R t△BDF中,由勾股定理得BD22DF BF+221()2x x+5x,所以AD5x,所以CE=AB=2AD5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE5x.在R t △ADE 中,由勾股定理得DE =22AD AE +=225()(5)2x x +=52x .因△DEF 的面积为1,所以12DE ·DF =1,即12×52x ·x =1,解得x =255,所以DE =52×255=5,因为AD =BD ,AE =CE ,所以BC =2DE =25,因此本题选D .二、填空题(本大题共8道小题) 11. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.12. 【答案】22【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:2,所以周长比为1:2.故答案为:2.13. 【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8 ,x 2=2(舍去), 824AE AC ==,此本题答案为2 .14. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).15. 【答案】1【解析】 ∵D 、E 为边AB 的三等分点, ∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.16. 【答案】2 5-1 【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.18. 【答案】326()55-,或(43)-, 【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上; ①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE △∽CBO △,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(43)P -,. ②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P , 过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴8AC BO ==,8CP =,6AB OC ==, ∴22228610BC BO OC +=+=,∴2BP =,∵PBE △∽CBO △, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,, 综上所述:点P 的坐标为:326()55-,或(43)-,, 故答案为:326()55-,或(43)-,. 三、解答题(本大题共4道小题)19. 【答案】解:(1)∵四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =2,∴∠DAF =∠F .∵AG 平分∠DAE ,∴∠DAF =∠EAF ,∴∠EAF =∠F ,∴EA =EF .∵λ=1,∴BE=EC=1.在Rt△ABE中,由勾股定理得EA=5,∴CF=EF-EC=5-1.(2)①∵EA=EF,EG⊥AF,∴AG=GF.又∵∠AGD=∠FGC,∠DAG=∠F,所以△DAG≌△CFG,∴DG=CG,∴点G为CD边的中点.②不妨设CD=2,则CG=1.由①知CF=AD=2.∵EG⊥AF,∴∠EGF=90°.∵四边形ABCD是正方形,∴∠BCD=90°,∴∠BCD=∠FCG,∠EGC+∠CGF=90°,∠EGC+∠GEC=90°,∴∠CGF=∠GEC,∴△EGC∽△GFC,∴EC CG=CG CF=12,∴EC=12,∴BE=32,∴λ=13.20. 【答案】(1)证明:∵AB为直径,∴∠ACB=90°,∵△AEF是等边三角形,∴∠EAF=∠EFA=60°,∴∠ABC=30°,∴∠FDB=∠EFA-∠B=60°-30°=30°,(2分)∴∠ABC=∠FDB,∴FB=FD,∴△BDF是等腰三角形.(3分)(2)解:设AF=a,则AD=7a,解图如解图,连接OC,则△AOC是等边三角形,由(1)得,BF=2-a=DF,∴DE=DF-EF=2-a-a=2-2a,CE=AC-AE=1-a,在Rt△ADC中,DC=(7a)2-1=7a2-1,在Rt△DCE中,tan30°=CEDC=1-a7a2-1=33,解得a=-2(舍去)或a=12,(5分)∴AF=1 2,在△CAF和△BAC中,CA AF=BAAC=2,且∠CAF=∠BAC=60°,∴△CAF∽△BAC,∴∠CFA =∠ACB =90°,即CF ⊥AB.(6分)21. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12, 解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为y =12x +1,令y =0,得x =-2,∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F , 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)22. 【答案】解: (1)∵DP ∥AB∴△DCP ∽△ACB ∴CD CP AC CB= ∴34CD x = ∴34CD x =∴AD =3-34x (2)∵△DCP ∽△ACB,且相似比为x :4. ∴S △DCP :S △ACB =x 2:16∴S △ABC =13462⨯⨯=∴S △DCP =238x ∴S △APB =13(4)22PB AC x ⨯⨯=- ∴S =S △ABC -S △ABP -S △CDP22336(6)283382x x x x =---=-+ 当2x ≥ 时,S 随x 增大而减少.。
相似三角形培优训练(含答案)
相似三角形分类提高训练一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。
相似三角形精编培优专题
专题一:相似三角形第一部分:相似探究说明:相似的判定分为①两角等相似;②两边对应成比例且夹角等相似;③三边对应成比例相似.其中对“两角等得相似”的考察最为普遍.相似探究一般地有:①面积探究;②线段关系探究;③角的关系探究等.通法:当你发现问题中出现以下情况时,基本是借助相似解决问题:①比或比例;②线段积;③边或角所在三角形与已知的边或角所在三角形不全等.这种意识太重要了!一、已有相似图形:找相似、证相似、用相似图中有相似图形的,关键是找出相似的条件.(一)“平行出相似”(即“A”字型相似与“8”字型相似,说明略)例10-1-1 如图10-1-1,D、E分别是△ABC的CB边、CA边的中点,请你写出两对相似三角形,并指出其对应的面积比.图10-1-1例10-1-2 问题背景:(1)如图10-1-2 ①,△ABC中,DE//BC分别交AB、AC于D、E两点,过点E作EF//AB交BC于点F.请按图示数据填空:S,△ADE的面四边形DBFE的面积S= ,△EFC的面积=1S.积=2图10-1-2 ①探究发现:(2)在(1)中,若BF =a ,FC =b ,DE 与BC 间的距离为h .请证明:2124S S S =. 拓展迁移:(3)如图10-1-2 ②,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用(2)中的结论求△ABC 的面积.图10-1-2 ②体验与感悟 10-1-11、如图10-1-3,已知:点E 是平行四边形ABCD 的AD 边长一点,BE 的延长线交CD 的延长线于F ,请写出图中的相似三角形.图10-1-32、已知等边△ABC 的边长为33+. (1)如图10-1-4①,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上,在正三角形ABC 及其内部,以点A 为位似中心,作正方形EFPN 的位似正方形''''N P F E ,且使正方形''''N P F E 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''N P F E 的边长;(3)如图10-1-4②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE 、EF 在边AB 上,点P 、N 分别在边CB 、CA 上,求这两个正方形面积和的最大值和最小值,并说明理由.图10-1-4 ①图10-1-4②3、已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.(1)要在这张纸中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图10-1-5①),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图10-1-5①S.按(2)在图10-1-5①中,甲种剪法成为第一次剪取,所得正方形面积记为1照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正S(如图10-1-5②),则方形,称为第2次剪取,并记这两个正方形面积和为22S = ;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为3S (如图10-1-5③),继续操作下去……;则第10次剪取时,10S = ;(3)求第10次剪取后,余下的所有小三角形的面积之和.图10-1-5②) 如图10-1-5③(二)“等角公共角”相似说明:有一个公共角、一对等角的两个三角形相似.例10-1-3 如图10-1-6,已知等腰直角三角形ABC 中,°=90∠BAC ,AB =AC ,D 、E 是斜边AB 上的两点,且°=45∠DAE ,请你直接写出两对相似三角形.例10-1-4 如图10-1-7,已知:A 为POQ ∠的边OQ 上的一点,OA =2,以A 为顶点的MAN ∠的两边分别交射线OP 于M 、N 两点,且°==60∠∠POQ MAN .当M A N ∠以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(MAN ∠保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平行移动,设)(,0≥x y y ON x OM >==,△AOM 的面积为S .(1)当MAN ∠旋转30°时,求点N 移动的距离;(2)求证:MN ON AN •=2;(3)求y 与x 的函数关系式及自变量的取值范围;(4)试写出S 随x 变化的函数关系式.图10-1-7体验与感悟 10-1-21、如图10-1-8,在△ABC 中,AB =5,AC =4,点D 在边AB 上,=ACD ∠B ∠,求AD 的长.图10-1-82、如图10-1-9①,将两个全等的等腰Rt△ABC和Rt△AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)写出图10-1-9①中的两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(图10-1-9②).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2;(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.图10-1-9①图10-1-9②3、在△ABC 中,A ∠、B ∠、C ∠所对的边分别用a 、b 、c 表示.(1)如图①,在△ABC 中,A ∠=2B ∠,且A ∠=60°,求证:)(2c b b a +=; (2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC ,如图②,其中A ∠=2B ∠,关系式)(2c b b a +=是否仍然成立?并证明你的结论.图① 图②(3)是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角两倍的△ABC .证明你的结论.(4)若A ∠=3B ∠,你能求出三边a 、b 、c 之间的关系吗?(三)“垂直出相似” 说明:①三角形的两高相交,必有相似;②过Rt △ABC 所在平面上任意一点向AB 、BC 、AC 所在直线中任意一条作垂线,这条垂线与另两边所在直线所交成的三角形与原三角形相似.例 10-1-5 如图10-1-10,在△ABC 中,°=90∠C ,MD ⊥AB 于D ,交AC 于F ,MG ⊥AC 于G ,交AB 于点E .写出图中的两对相似三角形.图10-1-10例10-1-6 如图10-1-11,直角梯形OABC 中,OA =6,CB =3,OA //BC ,OC ⊥OA .点M 、N 分别是OA 边、AB 边上的动点,速度都是每秒1个单位长度,运动方向如图.两个动点同时出发,当其中一个点达到终点时,另一个点也随之停止,设运动时间为t (秒).(1)求线段AB 的长;(2)当t 为何值时MN ⊥AC ?图10-1-11提示:根据垂直找相似.体验与感悟 10-1-31、如图10-1-12,BD、CE是△ABC的两条高.(1)写出图中的相似三角形;(2)写出连接DE后新增加的相似三角形.图10-1-12∠相等2、如图10-1-13,AB是圆O的直径,AD=DE,AE与BD交于点C,则图中与BCE的角有()A、2个B、3个C、4个D、5个图10-1-133、如图10-1-14,如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥A B,交折线BC-CA于点G.点P,Q同时出发,当点P 绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(2)连结PG,当PG//AB时,请直接写出t的值.图10-1-14(四)“导边比”得相似说明:与“两角相等得相似”相比,另外两种判定相似的方法对学生而言较难了些.本部分只探究“两边对应成比例且夹角相等”得到相似.例10-1-7 如图10-1-15,已知D 是△ABC 的BC 边中点,CD AC 2=,△ACD 与△ABC 相似吗?说明理由.图10-1-15例10-1-8 (1)如图10-1-16①,矩形ABCD 及Rt △AEF 有公共顶点A ,∠EAF =90°,且kAB AD =,kAE AF =,连接BE 、DF ,将Rt △AEF 绕点A 旋转,在旋转过程中BE 、DF 具有怎样的数量关系和位置关系?请给予证明;图10-1-16①(2)如图10-1-16②,将(1)中的矩形ABCD 变为平行四边形ABCD ,将Rt △AEF 变为△AEF ,且α∠∠==EAF BAD ,其它条件不变,(1)中的结论是否发生变化?如果不变,直接写出结论;如果变化,用α表示出直线BE 、DF 形成的锐角β.图10-1-16②体验与感悟 10-1-41、(1)如图10-1-17①,正方形ABCD 与正方形CEFG 具有公共的顶点C ,连结BG 、DE .猜想图中线段BG 、线段DE 的长度关系及所在直线的位置关系,并证明你的判断.图10-1-17①(2)如图10-1-17②,将原题中正方形改为矩形,且a AB =,b BC =,ka CE =,kb CG =)0,(>≠k b a ,(1)中得到的结论哪些成立,哪些不成立?简要说明理由.图10-1-17②(3)在(2)图10-1-17②中,连结DG 、BE ,且3=a ,2=b ,21=k ,求22BG BE +的值.2、填空或解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB =AC ,EC =ED ,CED BAC ∠∠=,直线AE 、BD 交于点F .(1)如图10-1-18①,°=90∠BAC ,则=AFB ∠ ;(2)如图10-1-18②,α=BAC ∠,则=AFB ∠ ;(用含α的式子表示)(3)将图10-1-18②中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图10-1-18③,AFB ∠与α∠的数量关系是 .请证明结论.(五)“一线三角”相似说明:如下图,如果∠1=∠2=∠3,必有△ABE ∽△CDB .这是一个应用广泛的基本模型,这里我们不妨称之为“一线三角”,而三个直角是特殊的“一线三角”.例10-1-9 在△ABC 中,AB=AC ,D 为BC 的中点,以D 为顶点作B MDN ∠∠=.(1)如图10-1-20①当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形;(2)如图10-1-20②,将MDN ∠绕点D 沿逆时针方向旋转,DM 、DN 分别交线段AC 、AB于E 、F 点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图10-1-20②中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的四分之一时,求线段EF 的长.图10-1-20① 图10-1-20②提示:第三问利用已知的相似三角形导边的比,利用两边对应成比例且夹角相等.体验与感悟 10-1-51、将边长为2的正方形纸片ABCD 如图10-1-21折叠,使顶点A 落在边CD 上的点P 处(点P 与C 、D 不重合),折痕为EF ,折叠后AB 边落在PQ 的位置,PQ 与BC 交于点G .(1)写出一个与△DEP 相似三角形;(2)当点P 位于CD 中点时,你找到的三角形与△DEP 周长的比是多少?图10-1-212、如图10-1-22,在Rt △ABC 中,AB=AC=2,°=90∠BAC ,若点D 在线段BC 上运动,DE交AC 于E ,作°=45∠ADE (A 、D 、E 按逆时针方向).(1)求证:△ABD ∽△DCE ;(2)当△ADE 是等腰三角形时,求AE 的长.3、如图10-1-23,在等腰△ABC 中,AB=AC=8,°=120∠BAC ,P 为BC 的中点,小慧把含30°角的透明三角板的30°角的顶点放在点P ,绕P 点旋转,三角板的两边分别交BA 的延长线和边AC 于点E 、F .(1)探究1:△BPE 与△CFP 相似吗?为什么?(2)探究2:连结EF ,△BPE 与△PFE 是否相似?为什么?(3)设EF=m ,△EPF 的面积为S ,试用m 的代数式表示S .图10-1-23“一线三等角”专练:1、如图,已知三角形ABC 中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有.2、如图,已知三角形ABC 中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.3、如图,在边长为2的等边三角形ABC 中,D 是BC 边上任意一点,AB 边上有一点E ,AC边上有一点F ,使∠EDF=∠ABC . 已知BD=1,BE=31,求CF 的长.4、已知,在△ABC 中,AB=AC=6,BC=8,∠BAC=120度,D 是BC 边上任意一点,AB 边上有一点E ,AC 边上有一点F ,使∠EDF=∠C . 已知BD=6、BE=4,求CF 的长.5、如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60°(1)求证:△BDE ∽△CFD(2)当BD =23,FC =1时,求BE6、在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),已知AP=2,求CQ7、在直角三角形ABC 中,D BC AB C ,,90==∠o 是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1)、当点D 是边AB 的中点时,求证:DF DE =(2)、当m DBAD =,求DF DE 的值8、已知在等腰三角形ABC 中,AB=AC,D 是BC 的中点,∠EDF=∠B ,求证:△BDE ∽△DFE .9、在边长为4的等边ABC ∆中,D 是BC 的中点,点E 、F 分别在AB 、AC 上(点D 不与点C 、点B 重合),且保持ABC EDF ∠=∠,连接EF .(1)已知BE=1,DF=2.求DE 的值;(2)求∠BED=∠DEF .10、如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;11、 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.12、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足过点D 作DG ⊥EF 于点G ,∠BPC =∠A . ①求证;△ABP ∽△DPC②求AP 的长.13、如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.14、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.15、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.16、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP D MF S S ∆∆=49时,求BP 的长第二部分:因动点产生的相似三角形问题解题策略 策略分级细述一、求相似三角形存在性问题要分类讨论.举例说明,如图,在△ABC 中,AC 边长有一点F ,要在AB 边上确定一点E ,使△AEF 与△ABC 相似.因为∠A 是公共角,所以分两种情况:①∠AFE=∠C ,△AEF ∽△ABC ;或AC AF AB AE =,△AEF ∽△ABC ;②∠AFE=∠B ,△AFE ∽△ABC ;或AB AF AC AE =,△AFE ∽△ABC .典型例题:例1、如图,在直角梯形ABCD 中,AD//BC ,∠A=90°,BD ⊥DC ,BC=10cm ,CD=6cm .在线段BC 、CD 上有动点F 、E ,点F 以每秒2cm 的速度,在线段BC 上从点B 向点C 匀速运动;同时点E 以每秒1cm 的速度,在线段CD 上从点C 向点D 匀速运动.当点F 到达点C 时,点E 同时停止运动.设点F 运动的时间为t (秒).(1)求AD 的长;(2)点E 、F 在运动过程中,如△CEF 与△BDC 相似,求线段BF 的长.策略:(1)△ABD 和△DCB 都是直角三角形,且保持三条边的比值为3:4:5,利用相似求AC 的长;(2)在两个三角形相似的前提下,先找一对相等的角,再使夹这个角的两边对应成比例,分两种情况讨论即可二、在两个三角形相似的情况下求线段的长度,一般地,先找到一对相等的角,再分两次使夹这个角的两边对应成比例,求得线段的长度.那么,在反比例函数和一次函数中求点的坐标是否也适用呢?请看例2.典型例题:例2、如图,直线b x y +=与双曲线)0(<=x xm y 交于点A (-1,-5),并分别于x 轴、y 轴交于点C 、B .(1)求b 、m 的值;(2)连接OA ,求∠OAB 的正切值;(3)点D 在x 轴的正半轴上,若以点D 、C 、B 组成的三角形与△OAB 相似,试求点D 的坐标.策略:(1)待定系数法;(2)构造直角三角形;(3)确定一组相等的角,分两种情况进行讨论.(4)因为当两边对应成比例,夹角相等时,两个三角形相似.所以只要按夹钝角的两条边对应成比例,分两种情况讨论,便可得到点D 的坐标.三、在两个三角形相似的情况下求线段的长度,和在两个三角形相似的情况下求点的坐标,有相同的地方:方法相同.也有不同的地方:点的坐标一定要考虑它所处的位置,分清楚它的正、负号.例2中求出来的点D 都在x 轴的正半轴上,如果这些点在负半轴上又应该怎样处理呢?经典例题:例3、已知一次函数m x y +=43的图象分别交x 轴、y 轴于A 、B 两点,且与反比例函数xy 24=的图象在第一象限交于点C (4,n ),CD ⊥x 轴于D . (1)求m 、n 的值;(2)如果点P 在x 轴上,并在点A 与点D 之间,点Q 在线段AC 上,且AP=CQ ,那么当△APQ与△ADC 相似时,求点Q 的坐标.策略:(1)分别写出A 、B 、C 、D 坐标,设动点P 坐标,计算AD 、CD 、AC 、AQ 的长度;(2)当△APQ 与△ADC 相似时,分两种情况进行讨论.特别要注意点在负半轴上时坐标的符号.四、相似三角形对应高的比等于相似比,在抛物线中,探究符合条件的相似三角形中的点,可以作这两个相似三角形的高,而已知点的纵坐标的绝对值,就是高的长度,可以在直角三角形中找到一些角的关系,利用角的关系求解.经典例题:例4、如图,设抛物线2-2bx ax y +=与x 轴交于两个不同的点A (-1,0)、B (m,0),与y 轴交于点C .已知∠ACB=90°.(1)求m 的值和抛物线的解析式;(2)已知点D (1,n )在抛物线上,过点A 的直线1+=x y 交抛物线于另一点E .若点P在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.策略:(1)由两个三角形相似,得到OB 的长度,确定m 的值;(2)写出A 、B 点坐标,利用待定系数法确定抛物线解析式;(3)由点D 在抛物线上,确定点D 坐标;联立方程组求交点E ;(4)由点D 和E 点坐标,得到∠EAB=∠DBO=45°,固定了一组角,然后分两种情况讨论即可.五、二次函数顶点式)0()(2≠++=a k m x a y 的平移规律:上加下减,左加右减.经典例题:例5、如图,已知点A (-2,4)和点B (1,0)都在抛物线n mx mx y ++=22上.(1)求m ,n ;(2)向右平移上述抛物线,记平移后点A 的对应点为'A ,点B 的对应点为'B ,若四边形B B AA ''为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线'AB 的交点为点C ,试在x 轴上找点D ,使得以点'B、C 、D 为顶点的三角形与△ABC 相似.策略:(1)对于第(3)问,弦找到一对相等的角,再分两次讨论.六、除以上探求相似三角形中点的存在性规律以外,还有一些多次相似的问题,要根据题目的要求灵活运用.阶梯题组训练:1、已知:如图,在平面直角坐标系中,点A 的坐标为)0,(1x ,点B 的坐标为)0,(2x ,且210x x <<,A 、B 两点的距离等于13,点C 在y 轴的负半轴上,32∠tan =BAC ,图象经过A 、B 、C 三点的二次函数解析式为:n m x x y +=-612. (1)用1x 的代数式表示点C 的坐标;(2)试猜想△ABC 的形状,并证明你的猜想;(3)如果点P 在线段AO 上,点Q 在线段OC 上,AP=OQ ,且△POQ 与△ABC 相似,求点P 的坐标.2、已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,点A 、C 的坐标分别为A (-3,0),C (1,0),∠BAC 的正切值是43. (1)求过点A 、B 的直线的函数解析式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如果P 、Q 分别是AB 和AD 上的动点,连接PQ ,设AP=DQ=m ,问是否存在这样的m ,使得△APQ 与△ADB 相似?如存在,请求出m 的值;如不存在,请说明理由.3、在平面直角坐标系中,将抛物线22x y =沿y 轴向上平移1个单位,再沿x 轴向右平移2个单位,平移后抛物线的顶点坐标记作A ,直线3=x 与平移后的抛物线相交于B ,与直线OA 相交于C .(1)求△ABC 的面积;(2)点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.4、Rt △ABC 在直角坐标系内的位置如图所示,反比例函数)0(≠=k xk y 在第一象限内的图象与BC 边交于点D (4,m),与AB 边交于点E(2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当21∠tan =A 时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP相似,求点P 的坐标.5、如图,在平面直角坐标系中,抛物线c bx x y ++=221-经过点A (1,3)、B (0,1). (1)求抛物线的表达式及其顶点坐标;(2)过点A 作x 轴的平行线交抛物线于另一点C ,①求△ABC 的面积;②在y 轴上取一点P ,使△ABP 与△ABC 相似,求满足条件的所有P 点坐标.6、(2009年临沂第26题)如图,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.(3)在直线AC 的上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标.7、(2011年常德第26题)如图,已知抛物线经过点A (0,6)、B (2,0)、)25,7(C .(1)求抛物线的解析式;(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称,求证:∠CFE=∠AFE .(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.第三部分:比例式和等积式的证明比例式和等积式的证明是初中平面几何题型中一类重要题型.其中等积式可以转化成比例式,因此主要是比例式的证明.一、口诀:“一现二找三代四辅”,既是方法又是步骤.1.“一现”:现成的等积式分两种:①.直接用等积式来证明.如射影定理、相交弦定理、切割线定理及推论、面积法.②把等积式转变成比例式.2.“二找”:①.利用“三点定位法”找三角形相似.②.利用平行线分线段成比例.3.“三代”:(分四种)①等线段代换,②等比代换,③等积代换,④综合性代换.4.“四辅”:利用辅助线,构造出“一现二找三代”,其中辅助线以平行线居多.二、例题:1、如图,在△ABC 中,作直线DN 平行于中线AM ,设这条直线交边AB 于点D ,交边CA的延长线于点E ,交边BC 于点N ,求证:ACAE AB AD =.图1分析:本题是比例式, 其中口诀“一现”不是,用“二找”:需证明△ADE ∽△ABC ,而两个三角形一个是钝角三角形,一个是锐角三角形,很明显不相似.那只有用“三代”,如何代换?我们来反思:(1)、本题有中点,那么可能有等量代换或中位线可以讨论;(2)、本题有平行线,那么可能有平行线的性质、有三角形相似或平行线分线段成比例问题;(3)、本题证明比例式,那么很有可能是考查相似和平行线分线段成比例.打草稿:(基础好的可以打腹稿,一般的同学应写在草稿上) ACAE AB AD −→−? || || 只需证BM=MC ,而这是已知,此题得证.MC MN BM MN −→−? ND//AM练后反思归纳:在等比代换中,如何快速罗列比例式,然后从中代换?本题的线段少,容易想到.如果线段多了呢?证明比例式有口诀,那么找比例式有没有什么特殊的方法?经过反思和探究,找比例式有如下图形作为比例式的基本图形:1.A 型:条件DE//BC .(图2)⑴.DE//BC ⇒△ADE ∽△ABC ⇒BCDE AC AE AB AD ===大三角形小三角形 ⑵.平行线分线段成比例(口诀):EC AE DB AD ===下上下上;AEDE AD DB ===上下上下; AC AE AB AD ===全上全上;AEAC AD AB ===上全上全; AC EC AB DB ===全下全下;ECAC DB AB ===下全下全; ;全全下下;全全上上== 等等. 2.X 型(或者叫叉叉型):条件是DE//BC .(图3) ⑴.同1.⑴ ⑵.同 1.⑵图2 图3上题如果用这两种类型的图形,很容易找到比例式.求证的左边AB AD 属于A 型(图4),右边也属于A 型(图5).图4 图5ACAE AB AD −→−?全下全下= ⇒|| ||⇐上下上下= MCMN BM MN −→−?把归纳总结出的一般性结论加以演绎应用,由一般到个别,从而解决一系列的数学题.这种找比例式所用的A 型和X 型,能否作为一种思路和解法或规律?举一反三,多题一解?下面我们用这种寻找比例式的方法来证明其他题.例2、如图,BD=CE ,求证:DF AB EF AC •=•(提示:过点D 作DG//AC ,交BC 于G )(图6).图6 分析:已经提示了,因此很简单.但是没有提示那么又怎么办?我们用A 型和X 型来找比例式,看能否较快地解决问题?①.用“一现”行不通,再化成比例式EFDFAB AC = ,用“二找”也行不通. ②.用“三代”就要找左右两边的比例式.③.这里没有平行线,因此不可能有A 型和X 型.那么,我们不可以构造吗?但构造又要尽量与已知所求证的线段相联系.④.从左边的ABAC不好构造,因为AC 和AB 不在同一条线上,而DF 和EF 在同一条线上,所以从右边构造.线段EC 是已知“BD=EC ”中的,而EC 又和右边EFDF中的线段DF 和EF 直接相联接,所以我们作线段EC 的平行线DG 交BC 于点G ,构造出A 型(图8): 得到ECDGEF DF ==小三角形大三角形.同时得到另一个A 型(图7):得到BDABDG AC ==小三角形大三角形⇒BD DG AB AC =图8 图7⑤.要证EF DF AB AC =只需证BDDGEC DG =,只需再证明BD=EC 了.而BD=EC 是已知,所以可以得证.此题能否举一反三,一题多解?难道本题只有构造A 型了吗?能构造X 型吗?我们来试一试.先化成比例式EFDFAB AC =,同样从左边不好构造,那么我们从右边试一试.同样DF 和EF 在同一线上,又与已知中的EC 直接相联接,因此,我们作CF 的平行线交AC 于点H ,构造出X 型(图10),下面请同学们自己完成证明.图10因此,在比例式和等积式的证明中,利用口诀“一现二找三代四辅”来分析就有了切入点.其中,要代换的比例式的寻找,用A 型和X 型(现成的和构造的)去寻找,非常简单.用科学的思维方法对课本的习题和练习加以反思和探究、归纳总结、演绎应用,才能提高解题能力.三、针对性练习:1、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N . 求证:(1)AE=CG ; (2)MN CN DN AN •=•.2、如图,已知AB 是圆O 的直径,点C 是圆O 上一点,连接BC 、AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交圆O 于点F ,连接BF ,与直线CD 交于点G ,求证:BF BG BC •=2.3、如图所示,在Rt △ABC 中,点D 是斜边AB 的中点,过点D 作斜边的垂线交AC 于点E ,交BC 的延长线于点F ,连接DC ,求证:DF DE DC •=2.4、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,DC 交BE 于F ,且AB AD 31=,EC AE 21=. 求证:(1)△DEF ∽△CBF ;(2)CF EF BF DF •=•.5、如图,已知:在平行四边形ABCD 中,P 为DC 延长线上一点,AP 分别交BD 、BC 于点M 、N .求证:.2MP MN AM •=第四部分:射影定理的推广及应用射影定理是平面几何中一个很重要的性质定理,在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。
相似三角形性质精编培优专题
相似三角形性质精编培优专题1. 相似三角形的定义相似三角形是指有相同形状但可能不同大小的三角形。
两个三角形相似的条件是它们的对应角度相等,并且对应边的比值相等。
2. 相似三角形的性质2.1. 相似三角形的内角性质相似三角形的内角都相等。
这意味着如果两个三角形是相似的,它们的对应角度一定相等。
2.2. 相似三角形的边比例性质相似三角形的对应边的长度比例相等。
即如果两个三角形相似,则它们对应边的长度比例一定相等。
2.3. 相似三角形的周长比例性质如果两个三角形相似,那么它们的周长之比等于它们对应边的长度比例。
2.4. 相似三角形的面积比例性质如果两个三角形相似,那么它们的面积之比等于它们对应边长度之比的平方。
3. 相似三角形的应用3.1. 测量无法直接获取长度的物体相似三角形的边比例性质可以应用于测量无法直接获取长度的物体。
通过找到相似的三角形,并测量其中一个三角形的边长,可以计算出其他三角形的边长。
3.2. 解决实际问题相似三角形的性质可以帮助我们解决实际生活中的问题。
例如,可以利用相似三角形的面积比例性质来计算建筑物的高度、大树的高度等。
4. 相似三角形的重要定理4.1. AAA相似定理如果两个三角形的三个角分别相等,那么它们是相似的。
4.2. AA相似定理如果两个三角形的两个角分别相等,并且两个角之间的对应边分别成比例,那么它们是相似的。
4.3. SAS相似定理如果两个三角形的两个对应边的比例相等,并且夹角的角度相等,那么它们是相似的。
5. 总结相似三角形是几何学中一个重要的概念。
通过研究相似三角形的性质和定理,我们能够应用它们解决实际问题,并更深刻地理解三角形的特性和关系。
相似三角形的性质包括内角性质、边比例性质、周长比例性质以及面积比例性质。
此外,AAA相似定理、AA相似定理和SAS 相似定理是判断三角形相似的重要依据。
希望通过本文档的介绍,读者能够对相似三角形有更清晰的认识,并能应用它们解决实际问题。
相似三角形培优专题训练
相似三角形培优专题训练1.给定平行四边形ABCD,点G在边DC的延长线上,AG交BC于点E,BG交CD于点F。
证明△AGD∽△EGC∽△EAB。
2.给定△ABC,AB=AC,∠A=36°,BD是角平分线。
证明△ABC∽△BCD。
3.给定△ABC,D为内点,ED、AD分别与BC、AB相交,以BC为边在△ABC外作∠XXX∠ABD,∠XXX∠BAD。
证明△DBE∽△ABC。
4.给定矩形ABCD,BC=3AB,E、F是BC边上的三等分点,连结AE、AF、AC。
证明图中不存在非全等的相似三角形。
5.给定△ABC,AC上截取AD,CB延长线上截取BE,使AD=BE。
证明DF•AC=BC•FE。
6.给定△ABC,∠BAC=90°,M是BC的中点,DM⊥BC于点E,交BA的延长线于点D。
证明(1)MA=MD•ME;(2)2MD²=AD²+4AE²。
7.给定△ABC,AD为中线,CF为任一直线,CF交AD于点E,交AB于点F。
证明AE:ED=2AF:FB。
8.给定正方形ABCD,E、F分别是XXX和AD上的点,且。
证明∠XXX∠XXX。
9.给定平行四边形ABCD,AR、BR、CP、DP各为四角的平分线。
证明SQ∥AB,RP∥BC。
10.给定四边形XXX和四边形BDFE,其中AB∥ED,BC∥FE。
证明AF∥CD。
11.给定直角三角形ABC,BCDE是正方形,AE交BC于点F,FG∥AC交AB于点G。
证明FC=FG。
12.给定锐角三角形ABC,C的平分线交AB于点E,交斜边上的高AD于点O,过O引BC的平行线交AB于点F。
证明OE=OF。
相似三角形培优训练(含答案)
相似三角形培优(含答案)1、如图;等腰△ABC 中,CA=CB, ∠EPF=∠ECB.证明:PBPAPF PE2. △ABC 中,∠ACB=900,CD ⊥AB 于D,CD=2BD,点E 在AC 上,BE 交CD 于点G, EF ⊥BE 交AB 于F.(2) 如图2: AE=3EC,试探究EG 与EF 的数量关系,并证明你的结论。
3、 △ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AB 于E,F 为ED 的中点。
证明:AF ⊥EC图2G F E DCB A FEDCBA4、 如图1正方形ABCD,E 为CD 的中点,F 在AE 上,CB=CF. (1) 证明:BF ⊥AE(2) 如图2:M 在BF 的延长线上,CM 交AD 于K 。
且KF=KD 证明:AM ⊥CM(相似SAS )2作CG ⊥BM, △KCF ≌△KCD, 则∠KCF=∠KCD. 证明∠KCM=45度, 证明△CGB ∽△CMA5.如图1已知菱形ABCD 中,∠ADC=1200,N 为DB 延长线上,且DE=BN .(1)证明:∠ENC=600(2)如图2:延长CA 交NE 的延长线于G.过O 作OM ⊥AB 于F 交GN 于M. 证明:EM=MN图2图1ANN图2图2E F B D CA AD B F E6、如图,△ABC 为等边三角形,D 点为BC 边上一动点,DE ⊥BA 于E ,连CE 交AD 于F ,已知BC =nBD(1)若n =3时,则BE AC = (2)若n =4时,求EFFC的值 (3)当n = 时,EF =FC (直接写出答案,不证明)答案;(1)1126n = (2)解:∵△ABC 为等边△ ∠B = 60° DE ⊥ AB ∴EDB = 30°设BD = x AB = AC = BC = nx 过E 作EM ∥BC 交AD 于M 1sin 2EDB ∠=12E B x = 12A E n xx =- EM ∥BD ∠AEM = ∠B ∠AMF = ∠ADB△AEM ∽△CDFAE EM AB BD=1()2n xEM nx x -= (1)三角形CDE 与CBN 全等N图2图1C E F G BD AA EFD 12n EM x n-=EM ∥CD ∴△EMF ∽△CDF112()2(1)(1)n xn EF EM n CF CD n x n n --===-- 把n = 4代入 7724324EF CF ==⨯ (3)22n =7、如图,在边长为6的正方形ABCD 中,点P 为AB 上一动点,连接DB 、DP , AE ⊥DP 于E .(1) 如图①,若P 为AB 的中点,则DF BF = ;=ACBF; (2)如图②,若21=BP AP 时,证明AC =4BF ;(3)如图③,若P 在BA 的延长线上,当ACBF= 时,31=AB AP .答案;(1)21,31;(2)延长AF 交BC 于M ,证△ABM ≌△DAP 得BM=AP ,又△MBF ∽△ADF 得31===AD AP AD BM FD BF ,∴FD =3BF ∴AC =BD =4BF.(3)21.8、矩形ABCD 中,E 为AB 的中点,BF ⊥CE 于点F ,过点F 作DF 的垂线交直线BC 于点G ,若AD =n AB .(1)如图1,当n=1时,BGCG= ;(2)如图2,当n=2时,求证:CG =7BG ;②ABCDEFP③ABCDEFP①PFED C BA图3F AD GE C B 图2FEDCBA图1FAB CD E(3)如图3,当G 点落在BC 的延长线上时,当n= 时,C 为BG 的中点.(直接写出结果)9.如图,在△ABC 中,∠ACB =90°,BC =k ·AC,CD ⊥AB 于D ,点P 为AB 边上一动点,PE ⊥AC ,PF ⊥BC ,垂足分别为E 、F.(1)若k=2时,则=BFCE . (2)若k=3时,连EF 、DF ,求DFEF的值(3)当k= 时,332=DF EF . 10、点D 为Rt △ABC 的斜边AB 上一点,点E 在AC ⊥CD 交DE 的延长线于点F ,连结AF (1)如图1,若AC=BC,求证:AF ⊥AB;(2) 如图2,若AC ≠BC ,当点D 在AB 上运动时,求证:AF ⊥AB.答案. (1)∵∠ADE=∠BCD ∴∠FDC=∠B=45°∴CD=CF ∴△CDB ≌△CAF ∴∠CAF=45°∴AF ⊥AB(2) ∵∠ADE=∠BCD ∴∠FDC=∠B ∴△ACB ∽△FDC ∴BC ACCD CF=∴△BCD ∽△ACF ∴∠B=∠CAF ∴AF ⊥AB;11.如图: 等腰Rt △ABC 中,∠ACB=900,P 在直线AB 上,以CP 为腰作等腰Rt △CPE. (1)证明:BE //AC (2)若AB=5AP,求BEAC的值。
第27章相似三角形培优(教案)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形的对应角相等,对应边成比例。它在几何学中具有重要地位,广泛应用于解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
二、核心素养目标
1.培养学。
-学生能够运用相似三角形的性质和判定方法,对几何图形进行有效分析。
2.培养学生的逻辑思维能力和问题解决能力,能够运用相似三角形知识进行论证和推理。
-学生能够通过严密的逻辑推理,解决复杂几何问题,形成解题策略。
我意识到,对于这类几何概念的教学,仅仅依靠理论讲解是不够的。下次我会尝试增加更多的互动环节,比如让学生自己动手画图,通过实际操作来感受相似三角形的性质。这样不仅能够提高他们的几何直观,还能加深对知识的理解。
在实践活动和小组讨论中,我发现学生们表现得相当积极。他们对于相似三角形在实际生活中的应用提出了很多有趣的想法。这让我感到很高兴,因为这说明学生们能够将所学知识应用到实际中去。不过,我也注意到有些小组在讨论时可能会偏离主题,今后我需要更好地引导他们的讨论方向,确保讨论内容与教学目标紧密相关。
-解决方法:通过案例分析,引导学生学会从实际问题中提炼出相似三角形的几何模型,并运用相关知识解决问题。
(4)几何直观和空间观念的培养。
-难点解析:学生在解决几何问题时,缺乏直观想象力和空间观念。
-解决方法:教师应注重培养学生的几何直观和空间观念,通过观察、分析、抽象和推理,帮助学生形成良好的几何直觉。
八年级上册数学同步和培优-相似三角形的判定
相似三角形的判定【知识要点】1.相似三角形的判定①平行定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.②“AA”:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.③“SAS”:如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.④“SSS”:如果一个三角形的三条边与另一个三角形的边对应成比例,那么这两个三角形相似.⑤“HL”:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.2.全等与相似的比较:三角形全等三角形相似①三边对应相等(SSS)②两边及夹角对应相等(SAS)③两角夹一边对应相等(ASA)④两角一对边对应相等(AAS)⑤直角三角形中一直角边与斜边对应相等(HL) ①两角对应相等②两边对应成比例,且夹角相③三边对应成比例④直角三角形中斜边与一直角边对应成比例知识点一平行型例1.如图,CDAB∥,FDAE∥,AE,FD分别交BC于点G,H,则图中共有相似三角形( )A.4对B.5对C.6对D.7对变式练习1.1 如图,四边形ABCD 中,BC AD ∥,点E 是边AD 的中点,连接BE 交AC 于点F ,BE 的延长线交CD 的延长线于点G .求证:BCAEGB GE =.知识点二 AA 型例2.21∠=∠是下列四个图形的共同条件,则四个图中不一定有相似三角形的是( )变式练习2.1如图,D ,E 分别在△ABC 的边AB ,AC 上,且∠1=∠2=∠B ,则图中相似三角形有( )A .1对B .2对C .3对D .4对图变式练习2.2如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.例3.如图,下列条件中,能使△ACD∽△ABC的是( )A.ACCD=ABBCB.CDBC=ADACC.CD2=AD·BD D.AC2=AD·AB变式练习3.1如图,∠DAB=∠CAE,AB·AD=AE·AC,则∠D=.变式练习3.2如图,四边形ABCD的对角线AC,BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似变式练习3.3如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,求证:△DBA∽△ABC.例4.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形( ) A.一定相似 B.一定不相似 C.不一定相似 D.无法判断变式练习4.1如图,4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )变式练习4.2如图,在直角坐标系中有两点()04,B,如果点C在x轴上A,()20,(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与AOB△相似(不包括全等)知识点五 HL型例5.(HL型)如图,矩形ABCD中,点E,F分别在AD,CD上,且∠BEF=90°,则三角形Ⅰ,Ⅱ,Ⅲ,Ⅳ中一定相似的是( )A.Ⅰ和Ⅲ B.Ⅲ和Ⅳ C.Ⅰ和Ⅳ D.Ⅱ和Ⅳ变式练习5.1如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE 于点F,则CF= .变式练习5.2如图,在矩形ABCD中,AB=6,AD=12,点E在边AD上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.【课堂练习】基础训练1.下列各组图形中有可能不相似的是( )A各有一个角是45°的两个等腰三角形 B各有一个角是60°的两个等腰三角形C各有一个角是105°的两个等腰三角形 D.两个等腰直角三角形2.如图,要使△ACD∽△ABC,只需添加条件 .3.如图,若A,B,C,P,Q,甲、乙、丙、丁都是方格纸的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁点中的( )A.甲 B.乙C.丙 D.丁4.如图,AB·AE=AC·AD,则△ADE∽,∠D=.5.如图,已知AB AD =BC DE =ACAE,∠BAD =20°,求∠CAE 的大小.6.如图,点C ,D 在线段AB 上,B A ∠=∠,3=AE ,2=AD ,3=BC ,5.4=BF ,5=DE ,求CF 的长.7.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为( )A .9B .12C .15D .188.如图,在△ABC 中,AB=2,AC=4,将△ABC 绕点C 按逆时针方向旋转得到△A ′B ′C ,使CB ′∥AB ,分别延长AB 、CA ′相交于点D ,则线段BD 的长为_______.9.已知CD 是Rt △ABC 斜边上的高,则下列各式中不正确的是( )A .2BC BD AB =⋅ B .2CD BD AD =⋅C .2AC AD AB =⋅D .BC AD AC BD ⋅=⋅10.在Rt △ABC 中,90BAC ∠=︒,AD ⊥BC 于点D ,1BD =,25AC =,则AD 等于( ) A .1 B .32C .2D .3提高训练1.如图,在边长为9的正方形ABCD 中,F 为AB 上一点,连接CF ,过点F 作FE CF ⊥,交AD 于点E ,若3AF =,则AE 等于( )A .1B .1.5C .2D .2.52.如图所示,E 是正方形ABCD 的边AB 上的动点,EF DE ⊥交BC 于点F . (1)求证:ADE BEF △∽△;(2)设正方形的边长为4,AE x =,BF y =.当x 取什么值时,y 有最大值?并求出这个最大值.ABCDEF3.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=,BG=3,求FG的长.【课后作业】1.如图,若CD是Rt△ABC斜边上的高,3CD=,则BC=________AD=,42.如图,已知∠DAB=∠CAE,请补充一个条件:________,使△ABC∽△ADE.3.如图,已知△ABC中,∠ABC=90°,在△BCD中,∠BDC=90°,且AC=5,BC=4,则BD=________时,图中的两个直角三角形相似.4.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是( )①AC •BC=AB •CD ②AC 2=AD •DB ③BC 2=BD •BA ④CD 2=AD •DB . A .1个B .2个C .3个D .4个5.如图,在ABC ∆中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.6.如图,点C ,D 在线段AB 上,△PCD 是等边三角形. (1)当AC ,CD ,BD 满足什么数量关系时,△ACP ∽△PDB? (2)当△ACP ∽△PDB 时,求∠APB 的度数.FEC D B A。
第5周培优 三角形相似定理及中考题应用学生版
第5周培优三角形相似定理及中考题应
用学生版
一、引入
三角形相似定理是初中数学三角形章节中的一个重要内容,而且在中考中相似三角形相关的题目也是必考的内容之一,因此学好相似定理对于中考来说非常重要。
二、相似定理定义
相似定理是指在平面内,若两个三角形的对角线分别成比,那么这两个三角形相似。
三、相似定理分类
1. AA相似定理:若两个三角形的两个角对应相等,则这两个三角形相似。
2. SSS相似定理:若两个三角形的对应边成比,则这两个三角
形相似。
3. SAS相似定理:若两个三角形的两边成比并且夹角相等,则
这两个三角形相似。
四、相似定理应用
如果在三角形中匹配到两个角分别相等或两个边成比且夹角相等,那么在两个相似的三角形之间可以建立对应关系。
应用相似定理,可以做出如下的题目:
1. 已知$\triangle ABC$,$AB=4cm$,$BC=3cm$,$AC=5cm$,求 $\triangle ABC$ 的高 $BD$ 所对的底边 $AC$ 的长度。
2. 在直角三角形$\triangle ABC$ 中,$\angle ABC=90^{\circ}$,$AD\perp BC$,$\angle BCD=30^{\circ}$,$AD=3\sqrt{3}cm$,求$\triangle BCD$ 中 $\angle CDB$ 的大小。
五、总结
相似定理是初中数学重要内容之一,相似定理的分类和应用可以帮助我们准确计算图形之间的比例,从而轻松做出与相似三角形有关的中考数学题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 《相似三角形》培优习题
1、如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .
求证:(1)CG AE =;
(2).MN CN DN AN ∙=∙
2、(本题满分7分)
如图11,已知△ABC 的面积为3,且AB=AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA .
(1)求四边形CEFB 的面积;
(2)试判断AF 与BE 的位置关系,并说明理由;
(3)若 15=∠BEC ,求AC 的长.
3、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,
连接DE ,F 为线段DE 上一点,且∠AFE =∠B.
(1)求证:△ADF ∽△DEC
(2)若AB =4,AD =33,AE =3,求AF 的长.
4、如图(4),在正方形ABCD 中,E F 、分别是边AD CD 、上的点,
14
A E E D D F D C ==,,连结EF 并延长交BC 的延长线于点G . (1)求证:ABE DEF △∽△; (2)若正方形的边长为4,求BG 的长.
A
E D F
B C
图(4)
5.如图(15),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘
米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运
动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t 秒.
(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;
(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?
6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.
你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)
B 图(5) 图1 E G B A C
F D
C D F 图2 第6题图
7、如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF=2OA ,OE=2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当α=30°时,求证:△AOE1为直角三角形.
8、将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的线段是 ,∠CAC ′= °.
图1 图2
C'A'B A
D C A B C D B C D A (A')C'
问题探究
如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB = k AE ,AC = k AF ,试探究HE 与HF 之间的数量关系,并说明理由.
图4 M N G F E C B A H 图3 A B C
E F G P Q
9.如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:
(1)、能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由;
(2)、再次移动三角板的位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由。