概率论与数理统计课后习题答案徐雅静版

合集下载

概率论与数理统计复习题目_徐雅静_河南理工大学

概率论与数理统计复习题目_徐雅静_河南理工大学

(θ + 1) x θ 27、设总体 X 的概率密度为 f ( x) = 0
其中, θ
0 < x <1 其他
> −1 是未知参数.
设X 1 ,X2,…,X n 是来自于总体X的简单随机
样本,试求出 θ 的极大似然估计量。 29、甲、乙、丙 3 人进行独立射击, 每人的命中率分别为 0.3, 0.4, 0.6, 设每人射 击一次, 试求 3 人命中总数之概率分布律及其分布函数。 30、设随机变量(X, Y)具有联合概率密度 1 | x | + | y |≤1 , f ( x, y) = 2 0 其他 试求(1) E(X),E(Y); (2)Cov(X,Y) ,问 X 与 Y 是否不相关?(3)X 与 Y 是否 相互独立? 33、设每门高射炮击中飞机的概率均为 0.6. 三门高射炮同时向一架入侵飞机射 击. 若飞机被一门炮击中,则飞机被击落的概率为 0.6. 若飞机被两门炮击中, 则飞机被击落的概率为 0.9. 若飞机被三门炮击中, 则飞机一定被击落. 求飞机 被击落的概率. 34、设随机变量 X 具有概率密度 x f X ( x) = 8 0 求随机变量 Y = 2 X + 8 的概率密度。 0< x<4 其他
{
}
≤ 0)= ____ቤተ መጻሕፍቲ ባይዱ______。
34、设 X~t(10) ,Y=1/ X 2 ,则 Y~_____________。 44、设总体X,均值E (X) =µ存在,样本(X 1 ,X 2 ,…,X n ) ,则样本均值 X = 是总体均值E (X) =µ的 估计。 5、设样本(X 1 ,X 2 ,…,X n )来自于总体X~N(µ,σ2) , X 是样本均值,S2是 (n − 1) s 2 X −µ 样本方差,则 ~ , ~ σ2 σ/ n 35、正态总体X~ N ( µ , σ 2 ) ( σ 未知) ,X 1 ,X 2 ,…,X n 为来自总体X的简单随机 样本,对假设检验 H 0 :µ =µ0 ,H1:µ ≠ µ0 ,µ0为已知常数 ,当 σ 已知时应选取检验 统计量是 是 ;则当 σ 未知时应选取检验统计量 。

概率论与数理统计课后题参考答案

概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。

解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。

(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。

(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。

)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。

试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。

解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。

概率论和数理统计课后习题集答案解析徐雅静版

概率论和数理统计课后习题集答案解析徐雅静版

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k =-25C法五:考虑对立事件:410C k =-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间Ω = {(x ,y ):0 ≤ x ,y ≤ 1} 事件A =“两数之和小于6/5”= {(x ,y ) ∈ Ω : x + y ≤ 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,θ表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间Ω={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P .311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计课后习题答案1-8章_习题解答

概率论与数理统计课后习题答案1-8章_习题解答

第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。

本文档将提供《概率论与数理统计》课后习题的详细答案。

2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。

b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。

1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。

【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。

所以,P(A ∩ B) = 【答案】0.2。

b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。

【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。

所以,P(B) = 【答案】1.67。

第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。

b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P ,又因为)()(B A P B P 即.0)()( B A P B P 所以(1) 当)()(B A P B P 时P (AB )取到最大值,最大值是)()(A P AB P =0.6.(2)1)( B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P ,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P ,即)()()(1)(1)()(AB P B P A P B A P B A P AB P ,所以.1)(1)(p A P B P4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)( AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k +25C其中:!2161815C C C为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k +25C其中:)(142815C C C 为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k -25C法五:考虑对立事件:410C k -45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k其中:!4141618110C C C C 为没有一双配对的方法数所求概率为.2113410C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025 C C p ,法二:1213102513 A A C p (2) 法二:20131024 C C p ,法二:2013102413 A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341 A M P , 1694)(324232 A C M P , 1614)(3143C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232 C C M P ,6.0)(2512131 C C C M P ,1.0)(25221 C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则2121M M M M M 且.所以.2813C C C C )()()()(282328252121 M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2的面积的面积A A P . 图?11.随机地向半圆220x ax y(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标, 表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x}事件A =“原点和该点的连线与x 轴的夹角小于4” ={(x ,y ):40,20,202x ax y a x }因此211214121)(222 a aa A A P 的面积的面积.12.已知21)(,31)(,41)( B A P A B P A P ,求)(B A P . 解:,1213141)()()( A B P A P AB P ,6121121)|()()(B A P AB P B P.311216141)()()()(AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

《概率论与数理统计答案》第二章 徐静雅

《概率论与数理统计答案》第二章  徐静雅

第二章2一、填空题:1. {}x X P ≤,)()(12x F x F -2. ==}{k X P k n kk n p p C --)1(,k = 0,1,…,n3. 0,!}{>==-λλλe k k X P k为参数,k = 0,1,…4.λ+115. ⎪⎩⎪⎨⎧<<-=其它,0 ,1)(b x a a b x f 6. +∞<<-∞=--x ex f x ,21)(22)(σμσπ7. +∞<<-∞=-x e x x ,21)(22πϕ8. )()(σμσμ-Φ--Φa b9.分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。

10. 649分析:每次观察下基本结果“X ≤1/2”出现的概率为412)(2121-==⎰⎰∞xdx dx x f ,而本题对随机变量X 取值的观察可看作是3重伯努利实验,所以{}649)411()41(223223=-==-C Y P11. {}7257.0)212.2(212.2212.2=-Φ=⎭⎬⎫⎩⎨⎧-<-=<X P X P ,{},8950.01)3.1()4.2()3.1()4.2()216.1()218.5(218.521216.15.86.1=-Φ+Φ=-Φ-Φ=--Φ--Φ=⎭⎬⎫⎩⎨⎧-<-<--=<<-X P X P 同理,P {| X | ≤ 3.5} =0.8822.12. {})31(3113)(-=⎭⎬⎫⎩⎨⎧-≤=≤+==y F y X P y X Y P y G . 13.4813,利用全概率公式来求解: {}{}{}{}{}{}{}{}{}.4813414141314121410 442332 2221122=⨯+⨯+⨯+⨯====+===+===+=====X P X Y P X P X Y P X P X Y P X P X Y P Y P 二、单项选择题:1. B ,由概率密度是偶函数即关于纵轴对称,容易推导F (-a)=dx x f dx x f dx x f dx x f dx x f a a ⎰⎰⎰⎰⎰-===∞--∞-00a -0a -0)(21)(-21)(-)()(2. B ,只有B 的结果满足1)(lim )(==+∞+∞→x F F x3. C ,根据分布函数和概率密度的性质容易验证4. D ,⎩⎨⎧<≥=2,2,2X X X Y ,可以看出Y 不超过2,所以{}{}0,2,12 ,12,12 ,12,2 ,1)(0>⎪⎩⎪⎨⎧<-≥=⎪⎩⎪⎨⎧<≥=⎩⎨⎧<≤≥=≤=--⎰θθθϑy e y y dx e y y y X P y y Y P y F y x y Y ,可以看出,分布函数只有一个间断点.5. C, 事件的概率可看作为事件A (前三次独立重复射击命中一次)与事件B (第四次命中)同时发生的概率,即p p p C B P A P AB P p ⋅-===-2313)1()()()(.三、解答题(A )1.(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.1!==-∞=∑λλae k ak k,所以λ-=e a .4.(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f , (2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P 、{}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P ; 5.(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→ii i X P 偶数, (2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6.(1) ()()5.15.0~P t P X = {}5.10-==e X P . (2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7.解:设射击的次数为X ,由题意知().20400~,B X {}{}kk k kC X P X P -=∑-=≤-=≥4001040098.002.011129972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(1313322541155005C C C X P X P p ++-=<-=≥=1631.08369.01=-=;9. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,则50,1,k ,)1()(}{5225 =-==---k k ke e C k Y P 0.516711}0{-1}1{52=--===≥-)(e Y P Y P10. (1)、由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a . (2)、42|sin 21cos 21}40{4040===<<⎰πππx xdx X P . 11. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='= ,010,2)()(x x x F x f .12. 解 因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即 12-≤≥X X ,所以有实根的概率为 {}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13. 解: (1) 因为4)(3~,N X 所以 )2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P996.01998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-= [])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=(2) {}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足 式.解:由表格知并且,361)12()2(====X P X P ;362)11()3(====X P X P ;363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论与数理统计复习题目 徐雅静 河南理工大学

概率论与数理统计复习题目 徐雅静 河南理工大学

概率论与数理统计基本题目(题目类型分:1、填空题,2、选择题,3、计算叙述题,4、综合应用题与证明题)一、 填空题:1、设A 、B 、C 为三个事件,则事件“A 、B 至少一个不发生,而C 发生”可表示为2、从5双不同的鞋子中任取4只,则取到的4只鞋子中至少有2只配成双的概率为3、设随机变量X 服从参数为λ的泊松分布,且已知[(1)(2)]1E X X --=,则λ=4、设随机变量12,,,n X X X 相互独立,分布相同,μ=)(i X E ,8)(=i X D ,),2,1(n i ⋯⋯=,则概率{}≥+<<-44μμX P 5、设样本(X 1,X 2,…,X n )来自于总体N (μ,σ2),记号 X 、S 2分别表示其样本均值、样本方差,则nX /σμ-~ ,22)1(σs n -~1、设A 、B 、C 为三个事件,则事件“A 发生,而B 、C 至少一个不发生”可表示为2、设A 、B 、C 为三个事件,则事件“A 发生,而B 、C 至少一个发生”可表示为3、随机试验E :将一枚硬币连抛三次,观察出现正面H ,反面T 情况。

写出E 的样本空间4、在11张卡片上分别写上Probability 这11个字母,从中任意连取7张,其排列结果恰好是ability 的概率为5、从5双不同的鞋子中任取4只,这4只鞋子中至少有2只配成双的概率为6、设10把钥匙中有3把能打开某把锁,今从中任取2把钥匙,则能打开此锁的概率为7、把6本中文书和4本英文书任意地放成一排,则4本英文书放在一起的概率为 .8、袋中有10球,7个白球,3个红球,10个人依次从袋中取一球,取后不放回,问第3个人取得红球的概率是_____________.9、10把钥匙中有3把能打开门,今任取2把,能将门打开的概率P(A)=。

10、袋中有10球,7个白球,3个红球,10个人依次从袋中取一球,取后不放回,问第3个人取得红球的概率是_____________11、 把6本中文书和4本英文书任意地放成一排,则4本英文书放在一起的概率为 .17、设A ,B 是两事件而且P (A )=0.6, P (B )= 0.7,则P(AB)的最小值是___________.26、 设A ,B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A )=0.8,则P (A B )=⋃______. 31、设P(A)=0.4,P(A ∪B)=0.7,那么若A 与B 互不相容,则P (B )=__________22、设P(A)=0.4,P(A ∪B)=0.7,那么若A 与B 相互独立,则P (B )=___________3、设随机变量X 服从泊松分布,E(X)=2,则P(X ≥1)=9、设随机变量X 在区间[1,5]上服从均匀分布,51<<<b a .则X a P <{<=}b .4、设随机变量X 、Y 相互独立,X~N (1,1) ,Y~N (-1,4 ),则随机变量函数Z=X -Y~6、对于随机变量X ,仅知其数学期望为3,标准差为0.2,则由切比雪夫不等式知}2|3{|<-X P .7、设随机变量X 服从二项分布),(p n B ,6.3)(,6)(==X D X E . 则=n .14、设随机变量X 、Y 相互独立,且X ~N(-1,4),Y ~N(1,1),则随机变量Z=X -Y 的均值E(Z)= ,方差D(Z)= 。

概率论与数理统计答案 第三章 徐静雅

概率论与数理统计答案  第三章 徐静雅

第三章1解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式:P {X =1,Y =1}=P {X =1}P {Y =1|X =1|=2/3⨯1/2=/3 同理可求得P {X =1,Y =1}=1/3; P {X =2,Y =1}=1/3 (X ,Y )的分布律用表格表示如下:2 解:X ,Y 所有可能取到的值是0, 1, 2 (1) P {X=i , Y =j }=P{X =i }P{Y =j |X =i |= , i ,j =0,1,2, i +j ≤2或者用表格表示如下:(2)P{(X,Y)∈A}=P{X+Y ≤1}=P{X=0, Y=0}+P{X=1,Y=0}+P{X=0,Y=0}=9/14 3 解:P(A)=1/4, 由P(B|A)=2/14/1)()()(==AB P A P AB P 得P(AB)=1/8 由P(A|B)=2/1)()(=B P AB P 得P(B)=1/4 (X,Y)取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P{X=0,Y=0}=))(B A P =P((A)-P(B)+P(AB)=5/8P{X=0,Y=1}=P(B)=P(B-A)=P(B)-P(AB)=1/8P{X=1,Y=0}=P(A )=P(A-B)=P(A)-P(AB)=1/8 P{X=1,Y=1}=P(AB)=1/8 4.解:(1)由归一性知: 1=, 故A=4(2)P{X=Y}=0(3)P{X<Y}=(4)F(x,y)=即F(x,y)=5.解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x6 解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2, 3. P{X=0,Y=0}=0.53=0.125; 、P{X=0,Y=1}=0.53=0.125P{X=1,Y=1}=25.05.05.0212=⨯C , P{X=1,Y=2}=25.05.05.0212=⨯CP{X=2,Y=2}=0.53=0.125, P{X=2,Y=3}==0.53=0.125 X,Y 的分布律可用表格表示如下:0 0.125 0.125 0 00.25 1 0 0.25 0.25 0 0.520.125 0.125 0.25P .j 0.125 0.375 0.375 0.125 17. 解:⎩⎨⎧<<=-其它,00,),(y x e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8. 解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c =21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f xX⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y y Y 9 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10 解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|x y x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X 当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X 所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X 12 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X 644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y),W =min(X ,Y )的分布律为14 解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5 故Z 的分布律为15 解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()x (y f f Y X ≠,所以X 与Y 不相互独立.16 解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求fZ(z))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1xz x x ⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧=≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y 17 解:由定理3.1(p75)知,X +Y ~N (1,2) 故5.0)0(}21121{}1{==-≤-+=≤+ΦY X P Y X P18解:(1) )1(21)(21),()0)(X+=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y >0 显然,)()x (y f f Y X ≠,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f X Z )()(,⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x X ⎰+∞∞--=dx x z x f z f X Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z 19解:并联时,系统L 的使用寿命Z =max{X ,Y } 因X ~E (α),Y ~E (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ φαβα (B)组1 解:P {X =0}=a +0.4, P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +bP {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0|与{X +Y =1}相互独立, 所以P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y} 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P{-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X=1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0 (X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5 解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X ⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f 设F (x )和f (s )分别表示S =XY 的分布函数和密度函数F (s )=P {XY <s } s <0时,Fs (s )=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.解:由全概率公式:F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u}+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u-2) 所以,f U (u ) =0.3⨯f Y (u-1)+0.7⨯f Y (u -2)8. 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(xy x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f xX ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y y y dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z <0时,F Z (z )=0; 当z ≥2时,F Z (z )=1 当0≤z <2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z z z f Z 其它9.解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y (2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X 10.解:(1)P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z)=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z |X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[FY(z-1)+ FY(z)+ FY(z+1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y dxdy y x f Z X Y P z Y X P z Z P z ),(}{}{}{)(Z F如图,当z <0时,F Z (z )=0; 当z ≥1时,F Z (z )=1当0≤z <1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰- 综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z zz z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z <0时,F Z (z )=0; 当z ≥0时,220222222222121),(}{)(z z r z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。

概率论与数理统计习题解答(第8章)主编徐雅静

概率论与数理统计习题解答(第8章)主编徐雅静

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Zσμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6,31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:由于方差未知,选取ns X Tμ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.0t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由0:μμ=H 01:μμ≠Hn =10, 67.411∑===ni i x n x ,()35.155555611122∑==--=ni i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

205509-概率论与数理统计课后答案

205509-概率论与数理统计课后答案

习题答案 第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2)1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以.1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k =-45C 412)(C 其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P 8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间Ω = {(x ,y ):0 ≤ x ,y ≤ 1} 事件A =“两数之和小于6/5”= {(x ,y ) ∈ Ω : x + y ≤ 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,θ表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 Ω={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P.311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计课后习题谜底-徐雅静版

概率论与数理统计课后习题谜底-徐雅静版

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P -+≤, 又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2)1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以.1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k =-25C法五:考虑对立事件:410C k =-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0x ,y 1}事件A =“两数之和小于6/5”= {(x ,y): x + y6/5}因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P.311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 第二种工艺两道工序出现不合格品的概率都是时,情况又如何
解:设 Ai=“第 1 种工艺的第 i 道工序出现合格品”,i=1,2,3; Bi=“第 2 种 工艺的第 i 道工序出现合格品”,i=1,2.
(1)根据题意,P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,
第一种工艺加工得到合格品的概率为
事件 A =“两数之和小于 6/5”= {(x,y)
: x + y 6/5}
因此
P(A)
A的面积 的面积
1
1 4 2 2 5
1
17 .
25

11.随机地向半圆 0 y 2ax x2 ( a 为常数)内掷一点,点落在半圆内任何 区域的概率与区域的面积成正比,求原点和该点的连线与 x 轴的夹角小于 的概
解:因为 P(A – B) = ,所以 P(A )– P(AB) = , P(AB) = P(A )– ,
又因为 P(A) = ,所以 P(AB) =– =, P(AB) 1 P(AB) 0.6 .
5. 从 5 双不同的鞋子种任取 4 只,问这 4 只鞋子中至少有两只配成一双的概 率是多少
解:显然总取法有 n C140 种,以下求至少有两只配成一双的取法 k :
所以 P(M )
P(M1
M2)
P(M1) P(M2 )
C52 C82
C32 C82
13 . 28
10. 若在区间(0,1)内任取两个数,求事件“两数之和小于 6/5”的概率.
解:这是一个几何概型问题.以 x 和 y 表示任取两个数,在平面上建立 xOy 直 角坐标系,如图.
任取两个数的所有结果构成样本空间 = {(x,y):0 x,y 1}
解:由于 A 与 B 相互独立,所以 P(AB)=P(A)P(B),且
P(A∪B)=P(A)+ P(B) - P(AB)= P(A)+ PB) = 代入上式解得 P(B) = ,所以
P(B A) 1 P(B A) 1 P( AB) 1 P(A)P(B) 1 P(B) 1 0.5 0.5.
P( A | M ) P( AM ) P( A)P(M | A) 1 0.6 0.75
P(M )
P(M )
0.8
19.某零件用两种工艺加工,第一种工艺有三道工序,各道工序出现不合格品 的概率分别为,,;第二种工艺有两道工序,各道工序出现不合格品的概率分别为,, 试问:
(1) 用哪种工艺加工得到合格品的概率较大些
P( A)
P( A)
或者,由于 A 与 B 相互独立,所以 A 与 B 相互独立,所以
P(B A) P(B) 1 P(B) 1 0.5 0.5.
18.甲乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被 命中,则它是甲射中的概率是多少
解:设 A=“甲射击目标”,B=“乙射击目标”,M=“命中目标”,
P(A1A2A3)= P(A1)P(A2)P(A3)= 0.70.80.9 0.504,
第二种工艺加工得到合格品的概率为
P(B1B2)= P(B1)P(B2)= 0.7 0.8 0.56,
可见第二种工艺加工得到合格品的概率大。
(2)根据题意,第一种工艺加工得到合格品的概率仍为,而 P(B1)=P(B2)=,
|
B)
P( A)P(B P(B)
|
A)
3 5
C51 C91
/
23 45
15 . 23
15.将两信息分别编码为 A 和 B 传递出去,接收站收到时,A 被误收作 B 的概 率为,而 B 被误收作 A 的概率为,信息 A 与信息 B 传送的频繁程度为 2:1,若接 收站收到的信息是 A,问原发信息是 A 的概率是多少
4
率.
解:这是一个几何概型问题.以 x 和 y 表示随机地向半圆内掷一点的坐标,
表示原点和该点的连线与 x 轴的夹角,在平面上建立 xOy 直角坐标系,如图.
随机地向半圆内掷一点的所有结果构成样本空间
={(x,y): 0 x 2a,0 y 2ax x2 }
事件 A =“原点和该点的连线与 x 轴的夹角小于 ”
法一:分两种情况考虑:
k
C51
C
2 4
(C
1 2
)
2
+ C52
其中:
C51C42
(C
1 2
)2
为恰有
1
双配对的方法数
法二:分两种情况考虑: k
C51
C81 C61 2!
+ C52
其中:
C51
C81 C61 2!
为恰有
1
双配对的方法数
法三:分两种情况考虑: k C51(C82 C41 ) + C52
P(M1)
A43 43
3,
8
P(M 2 )
C32 A42 43
9 16
,
P(M 3 )
C41 43
1 16
8.设 5 个产品中有 3 个合格品,2 个不合格品,从中不返回地任取 2 个,求 取出的 2 个中全是合格品,仅有一个合格品和没有合格品的概率各为多少
解:设 M2, M1, M0 分别事件表示取出的 2 个球全是合格品,仅有一个合格品和没 有合格品,则
2 0.98 ( 2 0.98 1 0.01) 196 .
P(M )P(N | M ) P(M )P(N | M ) 3
3
3
197
16.三人独立地去破译一份密码,已知各人能译出的概率分别为 1 , 1 , 1 ,问三
534
人中至少有一人能将此密码译出的概率是多少
解:设 Ai=“第 i 个人能破译密码”,i=1,2,3.
习题答案
三、解答题
第1章
1.设 P(AB) = 0,则下列说法哪些是正确的 (1) A 和 B 不相容; (2) A 和 B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P(A) = 0 或 P(B) = 0 (6) P(A – B) = P(A) 解:(4) (6)正确. 2.设 A,B 是两事件,且 P(A) = ,P(B) = ,问: (1) 在什么条件下 P(AB)取到最大值,最大值是多少 (2) 在什么条件下 P(AB)取到最小值,最小值是多少 解:因为 P(AB) P(A) P(B) P(A B) , 又因为 P(B) P(A B) 即 P(B) P(A B) 0. 所以 (1) 当 P(B) P(A B) 时 P(AB)取到最大值,最大值是 P(AB) P(A) =. (2) P(A B) 1时 P(AB)取到最小值,最小值是 P(AB)=+=.
解:设 A=“从第 1 个箱子中取出的 1 个球是白球”,B=“从第 2 个箱子中取出

1
个球是白球”,则
P( A)
C21 C51
3 , P(A) 5
2 5
,由全概率公式得
P(B)
P(A)P(B |
A) P(A)P(B |
A)
3 5
C51 C91
2 5
C41 C91
23 , 45
由贝叶斯公式得
P( A
C41
其中: C110 C81 C61 C41 为没有一双配对的方法数
4!
所求概率为
p
k C140
13 . 21
6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任取 3 人记录其 纪念章的号码.求:
(1) 求最小号码为 5 的概率;
(2) 求最大号码为 5 的概率.
解:(1)
设 A=“所取两件产品中至少有一件是不合格品”,B=“两件均为不合格品”;
P(
A)
1
P(
A)
1
C62 C120
2 , P(B)
3
C42 C120
2,
15
P(B | A) P( AB) P(B) 2 / 2 1 P( A) P( A) 15 3 5
14.有两个箱子,第 1 箱子有 3 个白球 2 个红球,第 2 个箱子有 4 个白球 4 个 红球,现从第 1 个箱子中随机地取 1 个球放到第 2 个箱子里,再从第 2 个箱子中取 出一个球,此球是白球的概率是多少已知上述从第 2 个箱子中取出的球是白球,则 从第 1 个箱子中取出的球是白球的概率是多少
P(M 2
)
C32 C52
0.3, P(M1)
C31C21 C52
0.6
,
P(M1
)
C22 C52
0.1
9.口袋中有 5 个白球,3 个黑球,从中任取两个,求取到的两个球颜色相同 的概率.
解:设 M1=“取到两个球颜色相同”,M1=“取到两个球均为白球”,M2=“取到两 个球均为黑球”,则 M M1 M 2且M1 M 2 .
4
={(x,y): 0 x 2a,0 y 2ax x2 ,0 }
4
因此
P( A)
A的面积 的面积
1 a 2 1 a 2 24
1 a 2
1
1.
2
2
12.已知 P( A) 1 , P(B A) 1 , P( A B) 1 ,求 P( A B) .
4
3
2
解: P(AB) P(A)P(B A) 1 1 1 , P(B) P( AB) 1 1 1 ,
解:设 M=“原发信息是 A”,N=“接收到的信息是 A”,
已知
所以
P(N | M ) 0.02, P(N | M ) 0.01, P(M ) 2 . 3
由贝叶斯公式得
P(N | M ) 0.98, P(N | M ) 0.99, P(M ) 1 , 3
相关文档
最新文档