2016年北京市中考数学试卷及答案
2016年北京中考数学真题卷含答案解析
2016年北京市高级中等学校招生考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.··1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A.45°B.55°C.125°D.135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000 千米.将28 000用科学记数法表示应为( )A.2.8×103B.28×103C.2.8×104D.0.28×1053.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3C.a>-bD.a<-b4.内角和为540°的多边形是( )5.下图是某个几何体的三视图,该几何体是( )A.圆锥B.三棱锥C.圆柱D.三棱柱6.如果a+b=2,那么代数式(a-b2a )·aa-b的值是( )A.2B.-2C.12D.-127.甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是··轴对称图形的是( )8.在1~7月份, 某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n.在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )A.O1B.O2C.O3D.O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是( )A.①③B.①④C.②③D.②④第Ⅱ卷(非选择题,共90分)二、填空题(本题共18分,每小题3分)有意义,那么x的取值范围是.11.如果分式2x-112.下图中的四边形均为矩形.根据图形,写出一个正确的等式: .13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n10001500250040008000150002000030000成活的棵数m 8651356222035007056131701758026430成活的频率mn 0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m.已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明、演算步骤或证明过程.17.计算:(3-π)0+4sin 45°-√8+|1-√3|.18.解不等式组:{2x+5>3(x-1), 4x>x+72.19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)家庭人数 2 3 4 5用气量14 19 21 26表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4用气量1111513141515171718181818222表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3) 家庭人数 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5用气量112131417171819222226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2 189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化创意产业实现增加值2 406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2 794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局) 根据以上材料解答下列问题:(1)用折线图将2011—2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由是.25.如图,AB为☉O的直径,F为弦AC的中点,连接OF并延长交AC⏜于点D,过点D作☉O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x 的几组对应值.x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质: .27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK. ……请你参考上面的想法,帮助小茹证明PA=PM.(一种方法即可)29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上.若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)☉O的半径为√2,点M的坐标为(m,3).若在☉O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案全解全析:一、选择题1.B 由题图可知,∠AOB=55°.2.C 28 000=2.8×104.故选C.3.D 由数轴可知,-3<a<-2,1<b<2,所以选项A,B错误;因为1<b<2,所以-2<-b<-1,所以a<-b,所以选项C错误,D正确.故选D.评析本题考查了数轴与不等式,需要通过数轴确定a,b的取值范围,再由不等式的基本性质推出数量关系,属容易题.4.C 由多边形内角和公式得(n-2)×180°=540°,解得n=5,所以该多边形为五边形,故选C.5.D 由主视图是矩形,知选项A,B不符合题意;由俯视图是三角形,知选项C不符合题意.故选D.6.A 原式=a2-b2a ·aa-b=(a+b)(a-b)a·aa-b=a+b,∵a+b=2,∴原式=2.7.D 选项A、B、C都是轴对称图形,故选D.8.B 利润=售价-进价.在题图中,每一个月的两个点间的距离越大,说明利润越大.距离最大的是4月份的两个点,故4月份利润最大.故选B.9.A 因为点A的坐标为(-4,2),所以原点在点A右侧4个单位,且在点A下方2个单位处;因为点B 的坐标为(2,-4),所以原点在点B左侧2个单位,且在点B上方4个单位处,如图,只有点O1符合.故选A.评析本题考查平面直角坐标系,属中档题.10.B 由统计图可知:年用水量不超过180 m3的该市居民家庭共有4万户,占总体的80%,按第一档水价交费,故①正确;年用水量超过240 m3的该市居民家庭共有0.35万户,占总体的7%,超过5%,故②错误;该市居民家庭年用水量的中位数为120 m3左右,故③错误;由统计图可知,该市居民家庭年用=134.7 m3,134.7<180,故④正确.故选B.水量的平均数为0.25×45+0.75×75+…+0.05×3155评析本题考查了学生对统计图的理解.属中档题.二、填空题11.答案x≠1解析由分式有意义的条件,可得x-1≠0,所以x≠1.12.答案答案不唯一.如:m(a+b+c)=ma+mb+mc解析如图,S矩形ABEF=m(a+b+c),S矩形ABCH=ma,S矩形HCDG=mb,S矩形GDEF=mc,∵S矩形ABEF=S矩形+S矩形HCDG+S矩形GDEF,∴m(a+b+c)=ma+mb+mc.ABCH13.答案0.880(答案不唯一)解析由题意可知,移植成活的频率在0.880左右波动.用频率来估计概率,则成活的概率为0.880.14.答案 3解析如图,由题意可知,∠B=∠C=45°,AD⊥BC,∴BC=2AD=BF+FH+HC=1.8+2.7+1.5=6,∴AD=3.即路灯的高为3 m.15.答案 505解析 1~100这100个数的和是5 050,因为百子回归图的每行、每列、每条对角线的10个数的和都相等,所以这个和为5 050÷10=505.16.答案 三边分别相等的两个三角形全等;全等三角形的对应角相等;等腰三角形的顶角平分线与底边上的高重合;两点确定一条直线解析 连接PA 、QA 、PB 、QB.由题意可知PA=QA,PB=QB,又AB=AB, ∴△PAB ≌△QAB(三边分别相等的两个三角形全等), ∴∠PAB=∠QAB(全等三角形的对应角相等). 由两点确定一条直线作直线PQ. ∵PA=QA,∴AB ⊥PQ(等腰三角形的顶角平分线与底边上的高重合). 三、解答题17.解析 原式=1+4×√22-2√2+√3-1=√3. 18.解析 原不等式组为{2x +5>3(x -1),①4x >x+72.②解不等式①,得x<8. 解不等式②,得x>1.∴原不等式组的解集为1<x<8.19.证明 ∵四边形ABCD 为平行四边形,∴AB ∥CD.∴∠BAE=∠E.∵AE 平分∠BAD,∴∠BAE=∠DAE. ∴∠E=∠DAE,∴DA=DE.20.解析 (1)依题意,得Δ=(2m+1)2-4(m 2-1)=4m+5>0, 解得m>-54.(2)答案不唯一.如:m=1. 此时方程为x 2+3x=0. 解得x 1=-3,x 2=0.21.解析 (1)∵点B(m,4)在直线l 2:y=2x 上, ∴m=2.设直线l 1的表达式为y=kx+b(k ≠0). ∵直线l 1经过点A(-6,0),B(2,4), ∴{-6k +b =0,2k +b =4,解得{k =12,b =3. ∴直线l 1的表达式为y=12x+3. (2)n<2.22.解析 小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况. 小天的抽样调查的不足之处:抽样调查所抽取的家庭数量过少.小东的抽样调查的不足之处:抽样调查所抽取的15户家庭的平均人数明显小于3.4. 23.解析 (1)证明:在△ABC 中,∠ABC=90°,M 为AC 的中点, ∴BM=12AC. ∵N 为CD 的中点,∴MN=1AD.2∵AC=AD,∴BM=MN.(2)∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠CAD=30°.由BM=AM,可得∠BMC=2∠BAC=60°.由MN∥AD,可得∠CMN=∠CAD=30°.∴∠BMN=∠BMC+∠CMN=90°.∵AC=AD=2,∴BM=MN=1.在Rt△BMN中,BN=√BM2+MN2=√2.24.解析(1)(2)预估理由需包含折线图中提供的信息,且支撑预估的数据.评析本题考查折线统计图,以及借助统计图预估数据,属中档题.25.解析(1)证明:连接OC,如图.∵OA=OC,F为AC的中点,∴OD⊥AC.∵DE是☉O的切线,∴OD⊥DE.∴AC∥DE.(2)求解思路如下:①在Rt△ODE中,由OA=AE=OD=a,可得△ODE,△OFA为含30°角的直角三角形;②由∠ACD=1∠AOD=30°,可知CD∥OE;2③由AC∥DE,可知四边形ACDE是平行四边形;④由△ODE,△OFA为含有30°角的直角三角形,可求DE,DF的长,进而可求四边形ACDE的面积.26.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①x=4对应的函数值y约为1.98.②当x>2时,y随x的增大而减小.27.解析(1)y=mx2-2mx+m-1=m(x-1)2-1.∴抛物线的顶点坐标为(1,-1).(2)①当m=1时,抛物线的表达式为y=x 2-2x. 令y=0,解得x 1=0,x 2=2. ∴线段AB 上整点的个数为3. ②当抛物线经过点(-1,0)时,m=14. 当抛物线经过点(-2,0)时,m=19.结合函数的图象可知,m 的取值范围为19<m ≤14.28.解析 (1)∵△ABC 为等边三角形,∴∠B=60°.∴∠APC=∠BAP+∠B=80°.∵AP=AQ,∴∠AQB=∠APC=80°. (2)①补全的图形如图所示.②法1:证明:过点A 作AH ⊥BC 于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC.∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM.∴∠PAB=∠MAC,AM=AP.∴∠PAM=∠BAC=60°.∴△APM为等边三角形.∴PA=PM.法2:证明:在BA上取一点N,使BN=BP,连接PN,CM,如图.由△ABC为等边三角形,可得△BNP为等边三角形.∴AN=PC,∠ANP=120°.由AP=AQ,可得∠APB=∠AQC.又∵∠B=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠ACM=∠ACQ=60°,CM=CQ.∴NP=BP=CQ=CM.∵∠PCM=∠ACM+∠ACQ=120°,∴△ANP≌△PCM.∴PA=PM.法3:证明:将线段BP绕点B顺时针旋转60°,得到BK,连接KP,CK,MC,如图.∴△BPK为等边三角形.∴KB=BP=PK,∠KPB=∠KBP=60°.∴∠KPC=120°.由△ABC为等边三角形,可得△ABP≌△CBK.∴AP=CK.由AP=AQ,可得∠APB=∠AQC.∵AB=AC,∠ABC=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠BCM=2∠ACQ=120°,CQ=CM=PK.∴MC∥PK.∴四边形PKCM为平行四边形.∴CK=PM,∴PA=PM.29.解析(1)①如图,矩形AEBF为点A(1,0),B(3,1)的“相关矩形”.可得AE=2,BE=1.∴点A,B的“相关矩形”的面积为2.②由点A(1,0),点C在直线x=3上,点A,C的“相关矩形”AECF为正方形,可得AE=2.当点C在x轴上方时,CE=2,可得C(3,2).∴直线AC的表达式为y=x-1.当点C在x轴下方时,CE=2,可得C(3,-2).∴直线AC的表达式为y=-x+1.(2)由点M,N的“相关矩形”为正方形,可设直线MN为y=x+b或y=-x+b.(i)当直线MN为y=x+b时,可得m=3-b.由图可知,当直线MN平移至与☉O相切,且切点在第四象限时,b取得最小值,此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON1=√2,∴OT1=2,∴b的最小值为-2.∴m的最大值为5.当直线MN平移至与☉O相切,且切点在第二象限时,b取得最大值,此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.同理可得,b的最大值为2,m的最小值为1.∴m的取值范围为1≤m≤5.(ii)当直线MN为y=-x+b时,同理可得,m的取值范围为-5≤m≤-1.综上所述,m的取值范围为-5≤m≤-1或1≤m≤5.。
2016年北京市中考数学试题(含答案)
2016年北京市高级中等学样招生考试数学试卷学校 姓名 准考证号一、选择题(本题共30分,每小题3分) 第1—10题均有四个选项,符合题意的选项只有..一个. 1、如图所示,用量角器度量AOB∠,可以读出AOB ∠的度数为( ) A. 45° B. 55° C. 125° D. 135°2、神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( ) A. 2.8×103 B. 28×103 C. 2.8×104 D. 0.28×1053、实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )ba 23A. 2a >-B. 3a <-C. a b >-D. a b <- 4、内角和为540° 的多边形是( )A. B. C.D.5、下图是某个几何体的三视图,该几何体是( ) A. 圆锥 B. 三棱锥 C. 圆柱 D. 三棱柱6、如果2a b +=,那么代数式2b aa a ab ⎛⎫- ⎪-⎝⎭ 的值是( )A. 2 B. -2 C. 12 D. 12-7、甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是( )8、在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( ) A. 3月份 B. 4月份 C. 5月份 D. 6月份(第8题 图) (第9题 图)9、如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为(2,-4),则坐标原点为( ) A. 1O B. 2O C. 3O D. 4O10、为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m ),绘制了统计图,如图所示.下面有四个推断: 其中合理的是( ) A. ①③ B. ①④ C. ②③ D. ②④①年用水量不超过1803m的该市居民家庭按第一档水价交费②年用水量不超过2403m的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180二、填空题(本题共18分,每小题3分)11、如果分式21x有意义,那么x的取值范围是.12、下图中四边形均为矩形,根据图形,写出一个正确的等式:.13、14、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15、百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为_______。
2016年北京市中考数学试卷-答案
北京市2016年高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】A 、如图所示:32a -<<-,故此选项错误;B 、如图所示:32a -<<-,故此选项错误;C 、如图所示:12b <<,则21b -<-<-,故此选项错误;D 、由选项C 可得a b <-,此选项正确.【提示】利用数轴上a ,b 所在的位置,进而得出a 以及b -的取值范围,进而比较得出答案.【考点】实数与数轴4.【答案】C【解析】设多边形的边数是n ,则2180540n -∙︒=︒(),解得5n =,故选C. 【提示】根据多边形的内角和公式2180n -∙︒()列式进行计算即可求解.【考点】多边形内角与外角5.【答案】D【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选D.【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【考点】由三视图判断几何体6.【答案】A【解析】2a b +=【提示】原式括号中两项通分并利用同分母分式的减法法则计算,即可求出值.【解析】A 、是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确,故选D.【提示】根据轴对称图形的概念求解即可.【考点】轴对称图形8.【答案】B 【解析】由图象中的信息可知,3月份的利润7.5 4.53=-=元,4月份的利润6 2.4 3.6=-=元,5月份的利润 4.5 1.53=-=元,6月份的利润 2.51 1.5=-=元,故出售该种水果每斤利润最大的月份是4月份,故选B.【提示】根据图象中的信息即可得到结论.【考点】象形统计图9.【答案】A【解析】解:设过A 、B 的直线解析式为y kx b =+点A 的坐标为(4,2)-,点B 的坐标为(2,4)-24k b ∴-+=42k b -+=解得:1k -=, 2b -=∴直线AB 为 2y x =--∴直线AB 经过第二、三、四象限如图,连接AB ,则原点在AB 的右上方,∴坐标原点为O 1,故选A.【提示】先根据点A 、B 的坐标求得直线AB 的解析式,再判断直线AB 在坐标平面内的位置,最后得出原点的位置.【考点】坐标与图形性质,一次函数图象与系数的关系10.【答案】B【解析】解:①由条形统计图可得:年用水量不超过3180m 的该市居民家庭一共有0.250.75 1.5 1.0 1.54++++=(万),又4 100%80%5⨯=,故年用水量不超过3180m 的该市居民家庭按第一档水价交费,正确;②年用水量超过240m 3的该市居民家庭有 (0.150.150.05)0.35++=(万),0.35100%7%5%5∴⨯=≠,故年用水量超过240m 3的该市居民家庭按第三档水价交费,故此选项错误;③5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选B.【提示】利用条形统计图结合中位数的定义分别分析得出答案.【考点】频数(率)分布直方图,加权平均数,中位数第Ⅱ卷二、填空题11.【答案】1x ≠ 【解析】由题意,得:10x -≠,解得1x ≠,故答案为:1x ≠.【提示】根据分母不为零分式有意义,可得答案.【考点】分式有意义的条件12.【答案】()am bm cm m a b c ++=++(答案不唯一)【解析】由题意可得:()am bm cm m a b c ++=++,故答案为()am bm cm m a b c ++=++.【提示】直接利用矩形面积求法结合提取公因式法分解因式即可.【考点】因式分解-提公因式法13.【答案】0.882(答案不唯一)【解析】0.8650.9040.8880.8750.8820.8780.8790.88180.882x =+++++++÷≈(),∴这种幼树移植成活率的概率约为0.882,故答案为:0.882【提示】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【考点】利用频率估计概率14.【答案】3【解析】解:如图,CD ∥AB ∥MN ,ABE CDE ∴△∽△,ABF MNF △∽△,CD DE AB BE∴=,FN MN FB AB =, 即1.8 1.81.8+AB BD=,1.5 1.51.5 2.7AB BD =+-, 解得:=3AB m .答:路灯的高为3m .【解析】解:1~100的总和为:(1+100)15002500=⨯,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:505010505÷=,故答案为:505.【提示】根据已知得:百子回归图是由1,2,3……,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.【考点】规律型:数字的变化类16.【答案】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A 、B 都在线段PQ 的垂直平分线上),理由:如图,PA PQ =,PB PB =,∴点A 、点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线段PQ ,PQ AB ∴⊥.【解析】解不等式2531x x +>-(),得:8x <,解不等式742x x +>,得:1x >, ∴不等式组的解集为:18x <<.【提示】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集. 【考点】解一元一次不等式组19.【答案】四边形ABCD 是平行四边形,∴AB ∥CD ,E BAE ∠=∠∴,AE 平分∠BAD ,BAE DAE ∠=∠∴,【解析】解:(1)关于x 的一元二次方程222110x m x m +++-=()有两个不相等的实数根,2221411450m m m ∆=+-⨯⨯-=+>∴()(),解得:54m >-. (2)如当1m =,此时原方程为230x x +=.即(3)0x x +=,解得:10x =,23x =-.【提示】(1)由方程有两个不相等的实数根即可得出0∆>,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令1m =,将1m =代入原方程,利用因式分解法解方程即可得出结论.【考点】根的判别式,解一元二次方程的因式分解法,解一元一次不等式21.【答案】(1)3y x =+(2)2n <【解析】解:(1)点B 在直线2l 上,42m ∴=,2m ∴=,点B (2,4).设直线1l 的表达式为y kx b =+,由题意:60,2 4.k b k b -+=⎧⎨+=⎩解得1,23.k b ⎧=⎪⎨⎪=⎩ ∴直线1l 的表达式为132y x =+. (2)与图象可知2n <.【提示】(1)先求出点B 坐标,再利用待定系数法即可解决问题.(2)由图象可知直线1l 在直线2l 上方即可,由此即可写出n 的范围.【考点】两条直线相交或平行问题22.【答案】解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:23311415 2.87⨯+⨯+÷=(),远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:2237445215 3.4⨯+⨯+⨯+⨯÷=(),说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.【提示】首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可.【考点】抽样调查的可靠性,加权平均数23.【答案】【解析】(1)证明:在△CAD 中,M 、N 分别是AC 、CD 的中点.MN ∴∥AD ,12MN AD =. 在Rt △ABC 中,M 是AC 中点.12BM AC ∴=. AC AD =,MN BM ∴=.(2)解:60BAD ∠=︒,AC 平分∠BAD ,30BAC DAC ∴∠=∠=︒.由(1)可知,12BM AC AM MC ===, 260BMC BAM ABM BAM ∴∠=∠+∠=∠=︒,MN ∥AD ,30NMC DAC ∴∠=∠=︒.90BMN BMC NMC ∴∠=∠+∠=︒,222BN BM MN ∴=+,由(1)可知112MN BM AC ===,(2)首先证明90BMN ∠=︒,根据222BN BM MN =+即可解决问题.【考点】三角形中位线定理,直角三角形斜边上的中线,勾股定理24.【答案】(1)解:2011-2015年北京市文化创意产业实现增加值如图所示,(2)3300 预估理由须包含折线图中提供的信息,且支撑预估的数据.【提示】(1)画出2011-2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x ,列出方程求出x ,用近3年的平均增长率估计2016年的增长率即可解决问题.【考点】解直角三角形的应用方向角问题25.【答案】(1)证明:ED 与⊙O 相切于D .OD DE ∴⊥,F 为弦AC 中点,OD AC ∴⊥,AC ∴∥DE .(2)解:作DM OA ⊥于M ,连接CD ,CO ,AD .首先证明四边形ACDE 是平行四边形,根据•ACDE S AE DM =平行四边形,只要求出DM 即可. AC ∥DE ,AE AO =,OF DF ∴=.AF DO ⊥,AD AO ∴=,AD AO OD ∴==.ADO ∴△是等边三角形,同理△CDO 也是等边三角形,.60CDO DOA ∴∠=∠=︒,AE CD AD AO DD a =====,AO ∴∥CD ,又AE CD =,∴四边形ACDE 是平行四边形,易知AE =,(2)作D M O A ⊥于M ,连接CD ,CO ,AD ,首先证明四边形ACDE 是平行四边形,根据平行四边形ACDE 的面积•AE DM =,只要求出DM 即可.【考点】切线的性质 26.【答案】解:(1)如图,(2)根据图形可知4x =对应的函数值y 约为2.0;由图可知该函数有最大值.故答案为2,该函数有最大值.【提示】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.【考点】函数的概念【解析】(1)2221(1)1y mx mx m m x =-+-=--,∴抛物线顶点坐标(1,1)-.(2)①1m =,∴抛物线为22y x x =-,令0y =,得0x =或2,不妨设A (0,0),B (2,0),∴线段AB 上整点的个数为3个.②如图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点, ∴点A 在(1,0)-与(2,0)-之间(包括(1,0)-),当抛物线经过(1,0)-时,14m =. 当抛物线经过点(2,0)-时,19m =. ∴m 的取值范围为1194m <≤.【提示】(1)利用配方法即可解决问题.(2)①1m =代入抛物线解析式,求出A 、B 两点坐标即可解决问题.②根据题意判断出点A 的位置,利用待定系数法确定m 的范围.【考点】抛物线与x 轴的交点,二次函数图象上点的坐标特征28.【答案】解:(1)AP AQ =,APQ AQP ∴∠=∠,APB AQC ∴∠=∠.ABC ∆是等边三角形,60B C ∴∠=∠=︒.20BAP CAQ ∴∠=∠=︒.80AQB APQ BAP B ∴∠=∠=∠+∠=︒.(2)如图2,AP AQ =,APQ AQP ∴∠=∠,APB AQC ∴∠=∠.ABC ∆是等边三角形.60B C ∴∠=∠=︒.BAP CAQ ∴∠=∠.点Q 关于直线AC 的对称点为M ,AQ AM ∴=,QAC MAC ∠=∠.MAC BAP ∴∠=∠.60BAP PAC MAC CAP ∴∠+∠=∠+∠=︒.60PAM ∴∠=︒.AP AQ =.AP AM ∴=.∴APM ∆是等边三角形.AP PM ∴=.【提示】(1)根据等腰三角形的性质得到APQ AQP ∠=∠,由邻补角的定义得到APB AQC ∠=∠,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到APQ AQP ∠=∠,由邻补角的定义得到APB AQC ∠=∠,由点Q 关于直线AC 的对称点为M ,得到AQ AM =,OAC MAC ∠=∠,等量代换得到MAC BAP ∠=∠,推出△APM 是等边三角形,根据等边三角形的性质即可得到结论.【考点】三角形综合题29.【答案】(1)①2②直线AC 的表达式为1y x =-或1y x =-+(2)m 的取值范围是:15m ≤≤或-51m ≤≤-【解析】解:(1)①A (1,0),B (3,1)由定义可知:点A ,B 的“相关矩形”的底与高分别为2和1,∴点A ,B 的“相关矩形”的面积为212⨯=;②由定义可知:AC 是点A ,C 的“相关矩形”的对角线,又点A ,C 的“相关矩形”为正方形∴直线AC 与x 轴的夹角为45°,设直线AC 的解析为:y x m =+或y x n =-+,把(1,0)代入y x m =+,1m ∴=-,∴直线AC 的解析为:1y x =-,把(1,0)代入y x n =-+,1n ∴=,1y x ∴=-+,综上所述,若点A ,C 的“相关矩形”为正方形,直线AC 的表达式为1y x =-或1y x =-+;(2)设直线MN 的解析式为y kx b =+,点M ,N 的“相关矩形”为正方形,∴由定义可知:直线MN 与x 轴的夹角为45°,1k ∴=±,点N 在⊙O 上,∴当直线MN 与⊙O 有交点时,点M ,N 的“相关矩形”为正方形,当1k =时,作⊙O 的切线AD 和BC ,且与直线MN 平行,其中A 、C 为⊙O 的切点,直线AD 与y 轴交于点D ,直线BC 与y 轴交于点B ,连接OA ,OC ,把M (,3)m 代入y x b =+,3b m ∴=-,∴直线MN 的解析式为:3y x m =+-45ADO ∠=︒,90OAD ∠=︒.2OD ∴==.D ∴(0,2)同理可得:B (0,-2),∴令0x =代入3y x m =+-,3y m ∴=-,232m ∴-≤-≤,15m ∴≤≤,当1k =-时,把M (m ,3)代入y x b =-+,3b m ∴=+,∴直线MN 的解析式为:3y x m =++,同理可得:232m -≤+≤,51m ∴-≤≤-;综上所述,当点M ,N 的“相关矩形”为正方形时,m 的取值范围是:15m ≤≤或51m -≤≤-.【提示】(1)①由相关矩形的定义可知:要求A 与B 的相关矩形面积,则AB 必为对角线,利用A 、B 两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC 必为正方形的对角线,所以AC 与x 轴的夹角必为45,设直线AC 的解析式为;y kx b =+,由此可知1k =±,再(1,0)代入y kx b =+,即可求出b 的值;(2)由定义可知,MN 必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN 与x 轴的夹角为45°,由因为点N 在圆O 上,所以该直线MN 与圆O 一定要有交点,由此可以求出m 的范围.【考点】圆的综合题。
2016年北京市中考数学试卷含答案
2016年北京市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如图,用量角器度量∠AOB ,可以读出∠AOB 的度数为( )(第1题图)A .45°B .55°C .125°D .135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为( ) A .2.8×103 B .28×103C .2.8×104D .0.28×1053.实数a ,b 在数轴上的对应点的位置如图,则正确的结论是( )(第3题图)A .a >-2B .a <-3C .a >-bD .a <-b4.内角和为540°的多边形是( )A B C D5.如图是某个几何体的三视图,该几何体是( )(第5题图)A .圆锥B .三棱锥C .圆柱D .三棱柱6.如果a +b =2,那么代数式(a -a b 2)•ba a 的值是( )A .2B .-2C .21 D .-217.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文不是轴对称的是()A B C D8.在1~7月份,某种水果的每斤进价与售价的信息如图,则出售该种水果每斤利润最大的月份是()(第8题图)A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()(第9题图)A.O1B.O2C.O3D.O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图,下面四个推断合理的是()①年用水量不超过180 m3的该市居民家庭按第一档水价交费;②年用水量超过240 m 3的该市居民家庭按第三档水价交费; ③该市居民家庭年用水量的中位数在150~180之间; ④该市居民家庭年用水量的平均数不超过180.(第10题图)A .①③B .①④C .②③D .②④二、填空题(本题共6小题,每小题3分,共18分) 11.如果分式12x 有意义,那么x 的取值范围是 . 12.如图中的四边形均为矩形,根据图形,写出一个正确的等式: .(第12题图)13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据: 移植的棵数n 1 000 1 500 2 500 4 000 8 000 15 000 20 000 30 000 成活的棵数m 865 1 356 2 220 3 500 7 056 13 170 17 580 26 430 成活的频率nm0.8650.904 0.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为 .14.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,若小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为 m .(第14题图)15.百子回归图(如图)是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.(第15题图)16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2.(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.(第16题图)三、解答题(本题共13小题,共72分) 17.(5分)计算:(3-π)0+4sin 45°-8+|1-3|.18.(5分)解不等式组:⎪⎩⎪⎨⎧+>->+.2741352x x x x ),(19.(5分)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA =DE .(第19题图)20.(5分)关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.21.(5分)如图,在平面直角坐标系xOy 中,过点A (-6,0)的直线l 1与直线l 2:y =2x 相交于点B (m ,4). (1)求直线l 1的表达式;(2)过动点P (n ,0)且垂于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.(第21题图)22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量(单位:m 3)统计表:表2 抽样调查小区15户家庭5月份用气量 (单位:m 3)统计表: 家庭 人数 222333333333334用气量101115131415151717181818182022表3 抽样调查小区15户家庭5月份用气量 (单位:m 3)统计表: 家庭人数 223333333444455用气量101213141717181920202226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1)求证:BM =MN .(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.(第23题图)24.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2 189.2亿元,占地区生产总家庭人数2345用气量14192126值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2 406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2 749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011~2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据.(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值亿元,你的预估理由为.25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE.(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.(第25题图)26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x… 1 2 3 5 7 9 …y… 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图像与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图像.(2)根据画出的函数图像,写出:①x=4对应的函数值y约为;②该函数的一条性质:.(第26题图)27.(7分)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标.(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图像,求m的取值范围.(第27题图)28.(7分)如图,在等边三角形ABC中.(第28题图)(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数.(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全.②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK….请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式.(2)⊙O的半径为2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.(第29题图)参考答案一、1.B 【分析】由题图可知,∠AOB的度数为55°.故选B.2.C 【分析】28 000=2.8×104.故选C.3.D 【分析】由题图可知,-3<a<-2,1<b<2,所以-2<-b<-1,所以a<-b,故D正确.故选D.4.C 【分析】设多边形的边数是n,则(n-2)•180°=540°,解得n=5.故选C.5.D 【分析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D .6.A 【分析】∵a +b =2,∴原式=a b a b a ))((-+•ba a-=a +b =2.故选A .7.D 【分析】A .是轴对称图形,故此选项不符合题意;B .是轴对称图形,故此选项不符合题意;C .是轴对称图形,故此选项不符合题意;D .不是轴对称图形,故此选项符合题意.故选D .8.B 【分析】由图像中的信息可知,3月份的利润为7.5-5=2.5(元),4月份的利润为6-3= 3(元),5月份的利润为4.5-2=2.5(元),6月份的利润为3-1.2=1.8(元),故出售该种水果每斤利润最大的月份是4月份.故选B .9.A 【分析】设过点A ,B 的直线表达式为y =kx +b .∵点A 的坐标为(-4,2),点B 的坐标为(2,-4),∴⎩⎨⎧+=-+-=,,b k b k 2442解得⎩⎨⎧-=-=.21b k ,∴直线AB 为y =-x -2,∴直线AB 经过第二、三、四象限,如答图,由A ,B 的坐标可知,沿CD 方向为x 轴正方向,沿CE 方向为y 轴正方向,故将点A 先沿着CD 方向平移4个单位长度,再沿着EC 方向平移2个单位长度,即可到达原点位置,则原点为点O 1.故选A .(第9题答图)10.B 【分析】①由条形统计图可知,年用水量不超过180 m 3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万户),54×100%=80%,故年用水量不超过180 m 3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m 3的该市居民家庭有(0.15+0.15+0.05)=0.35(万户),∴535.0×100%=7%≠5%,故年用水量超过240 m 3的该市居民家庭按第三档水价交费,错误;③∵5万个数据的中间是第25 000个和第25 001个数据的平均数,∴该市居民家庭年用水量的中位数在120~150之间,错误;④由①知,该市居民家庭年用水量的平均数不超过180,正确.故选B .二、11.x ≠1 【分析】由题意,得x -1≠0,解得x ≠1.12.am +bm +cm =m (a +b +c )13. 0.881 【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,所以这种幼树移植成活率的概率约为0.881.14. 3 【分析】如答图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴BE DE AB CD =,AB MN FB FN =,即BD AB +=8.18.18.1,BDAB -+=7.25.15.15.1,解得AB =3(m ).所以路灯的高为3 m .(第14题答图)15.505 【分析】1~100的总和为21001001⨯+)(=5 050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为5 050÷10=505.16.到线段两个端点的距离相等的点在线段的垂直平分线上(点A ,B 都在线段PQ 的垂直平分线上) 【分析】如答图,∵P A =AQ ,PB =QB ,∴点A ,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线段PQ ,∴PQ ⊥AB .(第16题答图)三、17.解:(3-π)0+4sin 45°-8+|1-3|=1+4×22-22+3-1 =1+22-22+3-1=3.18.解:解不等式2x +5>3(x -1),得x <8.解不等式4x >27+x ,得x >1. ∴不等式组的解集为1<x <8.19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠E =∠BAE .∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠E =∠DAE ,∴DA =DE .20.解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根, ∴∆=(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-45. (2)当m =1时,原方程为x 2+3x =0,即x (x +3)=0,解得x 1=0,x 2=-3.21.解:(1)∵点B 在直线l 2上,∴4=2m ,解得m =2,∴点B 的坐标为(2,4).设直线l 1的表达式为y =kx +b .由题意,得⎩⎨⎧=+-=+,,0642b k b k 解得⎪⎩⎪⎨⎧==.321b k , ∴直线l 1的表达式为y =21x +3. (2)由图像可知,n <2.22.解:小天调查的人数太少.在小东抽样的调查数据中,家庭人数的平均值为(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好.因此,小芸的抽样调查的数据能较好地反映该小区家庭5月份用气量情况.23.(1)证明:在△CAD 中,∵M ,N 分别是AC ,CD 的中点,∴MN ∥AD ,MN =21AD . 在Rt △ABC 中,∵M 是AC 的中点,∴BM =21AC . ∵AC =AD ,∴MN =BM .(2)解:∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°.由(1)可知,BM =21AC =AM =MC , ∴∠BMC =∠BAM +∠ABM =2∠BAM =60°.∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°,∴BN 2=BM 2+MN 2.由(1)可知,MN =BM =21AC =1,∴BN =2. 24.解:(1)2011~2015年北京市文化创意产业实现增加值如答图.(第24题答图)(2)3 471.7;用近3年的平均增长率估计2016年的增长率.设2013年到2015年的年平均增长率为x ,则2 406.7(1+x )2=3 072.3,解得x ≈13%.用近3年的平均增长率估计2016年的增长率, 所以2016年的创意产业实现增加值为3 072.3×(1+13%)≈3 471.7(亿元).25.(1)证明:∵ED 与⊙O 相切于点D ,∴OD ⊥DE .∵F 为弦AC 的中点,∴OD ⊥AC ,∴AC ∥DE .(2)解:如答图,作DM ⊥OA 于点M ,连接CD ,CO ,AD .(方法一)证明四边形ACDE 是平行四边形,根据S 平行四边形ACDE =AE •DM ,只要求出DM 即可.(方法二:证明△ADE 的面积等于四边形ACDE 的面积的一半)∵AC ∥DE ,AE =AO ,∴OF =DF .∵AF ⊥DO ,∴AD =AO ,∴AD =AO =OD ,∴△ADO 是等边三角形.同理可知,△CDO 也是等边三角形.∴∠CDO =∠DOA =60°,AE =CD =AD =AO =DO =a ,∴AO ∥CD .又∵AE =CD ,∴四边形ACDE 是平行四边形.易知,DM =23a , ∴平行四边形ACDE 的面积为23a 2.(第25题答图)26.解:(1)如答图.(第26题答图)(2)①2;②该函数有最大值.27.解:(1)∵y =mx 2-2mx +m -1=m (x -1)2-1,∴抛物线的顶点坐标为(1,-1).(2)①∵m =1,∴抛物线为y =x 2-2x .令y =0,得x =0或x =2.不妨设A (0,0),B (2,0),∴线段AB 上整点的个数为3. ②如答图,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,∴点A 在(-1,0)与(-2,0)之间[包括(-1,0)],当抛物线经过点(-1,0)时,m =41, 当抛物线经过点(-2,0)时,m =91, ∴m 的取值范围为91<m ≤41.(第27题答图) 28.解:(1)∵AP =AQ ,∴∠APQ =∠AQP ,∴∠APB =∠AQC .∵△ABC 是等边三角形,∴∠B =∠C =60°.又∵∠BAP =20°,∴∠CAQ =∠BAP =20°,∴∠AQB =∠APQ =∠BAP +∠B =80°.(2)如答图.∵AP =AQ ,∴∠APQ =∠AQP ,∴∠APB =∠AQC .∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠BAP =∠CAQ .(将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证P A =PM ,只需证P A =CK ,PM =CK …, 请你参考上面的想法,帮助小茹证明P A =PM )∵点Q 关于直线AC 的对称点为M ,∴AQ =AM ,∠QAC =∠MAC ,∴∠MAC =∠BAP ,∴∠BAP +∠P AC =∠MAC +∠CAP =60°,∴∠P AM =60°.∵AP =AQ ,∴AP =AM ,∴△APM 是等边三角形,∴AP =PM .∴△ABP ≌△ACM ≌△BCK .(第28题答图)29.解:(1)①∵A(1,0),B(3,1),且由定义可知,点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2.②由定义可知,AC是点A,C的“相关矩形”的对角线.又∵点A,C的“相关矩形”为正方形,∴直线AC与x轴的夹角为45°.设直线AC的表达式为y=x+m或y=-x+n.把(1,0)代入y=x+m,得m=-1,∴直线AC的表达式为y=x-1.把(1,0)代入y=-x+n,得n=1,∴直线AC的表达式为y=-x+1.综上所述,若点A,C的“相关矩形”为正方形,则直线AC的表达式为y=x-1或y=-x+1.(2)设直线MN的表达式为y=kx+b.∵点M,N的“相关矩形”为正方形,∴由定义可知,直线MN与x轴的夹角为45°,∴k=±1.∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形.如答图,作⊙O的切线AD和BC,且与直线MN平行,其中A,C为⊙O的切点,直线AD 与y轴交于点D,直线BC与y轴交于点B,连接OA,OC.当k=1时,把M(m,3)代入y=x+b,得b=3-m,∴直线MN的表达式为y=x+3-m.∵∠ADO=45°,∠OAD=90°,∴OD=2OA=2,∴D(0,2).同理可知,B(0,-2).∴将x=0代入y=x+3-m,得y=3-m.∴-2≤3-m≤2,∴1≤m≤5.当k=-1时,把M(m,3)代入y=-x+b,得b=3+m,∴直线MN的表达式为y=-x+3+m.同理可知,-2≤3+m≤2,∴-5≤m≤-1.综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是1≤m≤5或-5≤m≤-1.(第29题答图)。
北京市2016年中考数学试题含答案
(A)(B)(C)(D)一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量AOB ∠,可以读出AOB ∠的度数为(A)45°(B)55°(C)125°(D)135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为(A)2.8×103(B)28×103(C)2.8×104(D)0.28×1053.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A)2a >-(B)3a <-(C)a b >-(D)a b<-4.内角和为540°的多边形是5.右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱(A)(B)(C)(D)6.如果2a b +=,那么代数式2b a a a a b ⎛⎫- ⎪-⎝⎭ 的值是(A)2(B)-2(C)12(D)12-7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是8.在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A)3月份(B)4月份(C)5月份(D)6月份9.如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为24-(,),则坐标原点为(A)1O (B)2O (C)3O (D)4O 10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m ),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过1803m 的该市居民家庭按第一档水价交费②年用水量不超过2403m 的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是(A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11.如果分式21x -有意义,那么x 的取值范围是.12.右图中四边形均为矩形,根据图形,写出一个正确的等式:.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n 10001500250040008000150002000030000成活的棵数m 8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为__________.14.如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯小的影长分别为1.8m 、1.5m ,已知小军、小珠的身高分别为1.8m 、1.5m ,则路灯的高为__________m15.百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为________。
2016北京中考数学答案
13. 【答案】0.880 (答案不唯一)
爱
智
康
14. 【答案】3
15. 【答案】505
16. 【答案】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;两点确定一条直线.
三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)
17. 【答案】√3
2016年北京中考真题数学试卷
一、选择题(本题共30分,每小题3分)
1. 【答案】B
2. 【答案】C
3. 【答案】D
4. 【答案】C
5. 【答案】D
6. 【答案】A
7. 【答案】D
8. 【答案】B
9. 【答案】A
10. 【答案】B
二、填空题(本题共 分,每题 分)
11. 【答案】x ≠ 1
12. 【答案】m(a + b + c) = ma + mb + mc (答案不唯一)
2
m
的取值范围为
1 <m⩽ 9
1 4
.
28. 【答案】(1)∠AQB = 80∘ . (2) 1 画图见解析.
2 证明见解析.
29. 【答案】(1) 1 点A ,B 的“相关矩形”的面积为2 .
2Leabharlann AC的解析式为y = x − 1 或y = −x + 1 .
(2)m的取值范围为:−5 ⩽ m ⩽ −1 或1 ⩽ m ⩽ 5 .
亿元.
25. 【答案】(1)证明见解析. (2)四边形AC DE 面积为
√3 a 2
2
,思路见解析.
26. 【答案】(1)画图见解析. (2) 1
1.98
北京市2016年中考数学试题(word版含答案)
2016年北京市高级中等学校招生考试数学试卷土1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
考t 2.在试卷与答题卡上准确填写学校名称、姓名与准考证号。
生不3.试题答案一律填涂在答题卡上,在试卷上作答无效。
须. 4.在答题卡上,选择题用2B铅笔作答,其她试题用黑色字迹签字笔作答。
知5.考试结束后,将本试卷、答题卡与草稿纸一并交回。
一、选择题(本题共30分,每小题3分)1、如图所示,用量角器度量AOB,可以读出AOB得度数为(A)45 ° (B)55 °(C)125 °(D) 135 °2、神舟十号飞船就是我国神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为(A)2、8M03(B) 28M03 (C) 2、8M04(D)0、28X105 3、实数a, b在数轴上得对应点得位置如图所示,则正确得结论就是a b-3-2-1。
1 2 3(A) a 2 (B) a 3 (C) a b (D) a b学校姓名准考证号7、甲骨文就是我国得一种古代文字,就是汉字得早期形式,下列甲骨文中,不就是 ...轴对称得就是8、在1〜7月份,某种水果得每斤进价与每斤售价得信息如图所示, 润最大得月份就是(A)3月份(B) 4月份(C)5月份(D)6月份9、如图,直线m n ,在某平面直角坐标系中,点B得坐标为(2, 4),则坐标原点为x轴// m, y轴// n,点A得坐标为(4,2),(A)O i (B) O2(C) O3 (D) O410、为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增、计划使第一档、第二档与第三档得水价分别覆盖全市居民家庭得80%,15%与5%、为合理确定各档之间得界限,随机抽查了该市5万户居民家庭上一年得年用水量(单位:m3),绘制了统计图,如图所示、下面有四个推断:①年用水量不超过180 m3得该市居民家庭按第一档水价交费②年用水量不超过240 m3得该市居民家庭按第三档水价交费③该市居民家庭年用水量得中位数在150〜180之间④该市居民家庭年用水量得平均数不超过180其中合理得就是(A)①③(B)①④(C)②③ (D)②④二、填空题(本题共18分,每小题3分)II卜第8题图第9题图则出售该种水果每斤利11、如果分式G—有意义,那么x得取值范围就是x 112、右图中四边形均为矩形,根据图形,写出一个正确得等13、林业部门要考察某种幼树在一定条件下得移植成活率,下表就是这种幼树在移植过程中得一组统计数据:移植得棵数n 1000 1500 2500 4000 8000 15000 20000 30000 成活得棵数m1865 1356 2220 3500 7056 13170 17580 26430成活得频率m n0、865 0、9040 、8880 、8750 、8820、878 0、879 0、88114、如图,小军、小珠之间得距离为2、7m,她们在同一盏路灯小得影长分别为1、8m、1、5m,已知小军、小珠得身高分别为1、8m、1、5m,则路灯得高为m15、百子回归图就是由1,2,3,、、、,100无重复排列而成得正方形数表,它就是一部数化得澳门简史,如:中央四位“1999 12 20”标示澳门回归日期,最后一行中间两位“23 50标示澳门面积,……,同时它也就是十阶幻方,其每行10个数之与、每列10个数之与、每条对角线10个数之与均相等,则这个与为。
北京市2016年中考数学试题解析版
北京市2016年中考数学试题解析版2016年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A)45° (B)55° (C)125° (D)135° 答案:B 考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。
2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)(B) 28 (C)(D)答案:C 考点:本题考查科学记数法。
解析:科学记数的表示形式为形式,其中,n为整数,28000=。
故选C。
3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A) a (B)(C)(D)答案:D 考点:数轴,由数轴比较数的大小。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内角和为540 的多边形是答案:c考点:多边形的内角和。
解析:多边形的内角和为,当n=5时,内角和为540°,所以,选C。
5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D 考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
6. 如果 ,那么代数的值是(A) 2 (B)-2 (C)(D)答案:A 考点:分式的运算,平方差公式。
解析:====2。
7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D 考点:轴对称图形的辨别。
解析:A、能作一条对称轴,上下翻折完全重合,B和C也能作一条对称轴,沿这条对称翻折,左右两部分完全重合,只有D不是轴对称图形。
2016北京中考数学试卷及答案
2016年北京市中考数学一、选择题(共10小题;共50分)1. 如图所示,用量角器度量∠AOB,可以读出∠AOB( )A. 45∘B. 55∘C. 125∘D. 135∘2. 神舟十号飞船是我国“神舟”系列飞船之一.每小时飞行约28000公里,将28000用科学记数法表示应为( )A. 2.8×103B. 28×103C. 2.8×104D. 0.28×1053. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a>−2B. a<−3C. a>−bD. a<−b4. 内角和为540∘的多边形是( )A. B.C. D.5. 下图是某个几何体的三视图,该几何体是( )A. 圆锥B. 三棱锥C. 圆柱D. 三棱柱6. 如果a+b=2,那么代数式(a−b2a )⋅aa−b的值是( )A. 2B. −2C. 12D. −127. 甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是轴对称的是( )A. B.C. D.8. 在1 ∼ 7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A. 3月份B. 4月份C. 5月份D. 6月份9. 如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(−4,2),点B的坐标为(2,−4),则坐标原点为( )A. O1B. O2C. O3D. O410. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180m3的该市居民家庭按第一档水价交费②年用水量超过240m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150∼180之间④该市居民家庭年用水量的平均数不超过180其中合理的是( )A. ①③B. ①④C. ②③D. ②④二、填空题(共6小题;共30分)11. 如果分式2有意义,那么x的取值范围是.x−112. 下图中的四边形均为矩形,根据图形,写出一个正确的等式:.13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为.14. 如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身髙分别为1.8m,1.5m,则路灯的高为m.15. 百子回归图是由1,2,3,⋯,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,⋯⋯,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、毎条对角线10个数之和均相等.则这个和为.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图,(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(共13小题;共169分)17. 计算:(3−π)0+4sin45o−√8+∣1−√3∣ .18. 解不等式组:{2x+5>3(x−1), 4x>x+72.19. 如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20. 关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21. 如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分別为C,D,当点C位于点D上方时,写出n的取值范围.22. 调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,毎户家庭人数在2∼5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分別为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23. 如图,在四边形ABCD中,∠ABC=90∘,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60∘,AC平分∠BAD,AC=2,求BN的长.24. 阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化创意产业实现增加值2406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011—2015年北京市文化创意产业实现增加值表示出來,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由是.25. 如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长AC⏜交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26. 已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:① x=4对应的函数值y约为;②该函数的一条性质:.27. 在平面直角坐标系xOy中,抛物线y=mx2−2mx+m−1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点,①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28. 在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20∘,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60∘,得到线段BK,要证PA=PM,只需证PA= CK,PM=CK.⋯⋯请你参考上面的想法,帮助小茹证明PA=PM.(―种方法即可)29. 在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.(1)己知点A的坐标为(1,0)①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为√2,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案第一部分1. B2. C3. D4. C5. D6. A【解析】(a −b 2a )⋅a a−b =(a+b )(a−b )a ⋅a a−b =a +b .7. D 8. B 9. A 10. B 【解析】提示:年用水量不超过 180 m 3 的占0.25+0.75+1.5+1+0.55=45=80% .①中推理合理; 年用水量超过 240 m 3 的占0.15+0.15+0.55=425=16% .②中推理不合理;中位数在 90∼150 之间;年用水量的平均约为 133.65 m 3 .第二部分11. x ≠1 12. m (a +b +c )=ma +mb +mc (开放性试题,答案合理即可) 13. 0.88114. 3【解析】依题意,得 BC =1.8,FH =1.5,CD =1.8,EF =1.5 . ∴∠H =∠B =45∘ .∴BO =HO =AO =12BH .又 CF =2.7 ,∴BH =6 .∴AO =3 .15. 50516. 到线段两端距离相等的点在线段的中垂线上;两点确定一条直线.第三部分17. 原式=1+4×√22−√8+√3−1=1+2√2−2√2+√3−1=√3.18. 原不等式为 {2x +5>3(x −1), ⋯⋯①4x >x+72. ⋯⋯②解不等式①,得x <8.解不等式②,得x >1.原不等式组的解集为 1<x <8.19. ∵ 四边形 ABCD 是平行四边形,∴AB ∥DC .∴AB ∥DE .∴∠AED =∠BAE .∵AE 平分 ∠BAD ,∴∠BAE =∠EAD ,∴∠EAD =∠AED ,∴DA =DE .20. (1) 由题意,得 Δ=(2m +1)2−4(m 2−1)>0 .∴4m 2+4m +1−4m 2+4>0 .解得 m >−54 .(2) 取 m =−1 .方程为 x 2−x =0 .解得 x =1 或 x =0 .(m 取值在范围内,计算正确即可)21. (1) 由题可知,点 B (m,4) 在直线 l 2:y =2x 上,∴4=2m .∴m =2 .∴B (2,4).设 l 1 的解析式为 y =kx +b .∵l 1 过点 A (−6,0),B (2,4),{2k +b =4,−6k +b =0.解得 {k =12,b =3.∴l 1 的表达式为 y =12x +3. (2) 由题可知:C (n 2+3,n),D (2n,n ), C 在 D 上方,∴n 2+3>2n∴n <2.22. 小芸同学比较好.小天的样本容量较少,不具有代表性;小东的样本中家庭平均人口为 2×3+3×11+415=2.87 (人),与 300 户家庭的平均人数 3.4 人 有较大偏差,∴ 小东的样本类型不全面,不具有代表性;小芸的样本中家庭平均人口为 2×2+3×7+4×4+5×215=3.4 (人),与 300 户家庭的平均人数相近,∴小芸抽样调查的数据能较好地反映出该小区家庭5月份用气量情况.23. (1)∵∠ABC=90∘,M为AC的中点,∴BM=12AC.∵在△ACD中,M,N分别为AC,CD的中点.∴MN∥AD,MN=12AD.∵AC=AD,∴BM=12AC=12AD=MN,即BM=MN.(2)∵∠BAD=60∘,AC平分∠BAD,∴∠BAC=∠CAD=12∠BAD=30∘.∵∠BCA=90∘−∠BAC=60∘,BM=12AC=MC,∴△BMC为等边三角形.∴∠BMC=60∘.∴MN∥AD,∴∠CMN=∠CAD=30∘.∴∠BMN=∠BMC+∠CMN=90∘.∵AC=2,∴BM=MN=12AC=1 .∴BN=√BM2+MN2=√12+12=√2.24. (1)如图(2)① 3355.7,2012年到2015年平均每年增加3072.3−1938.64=283.425(亿元). 3072.3+283.4≈3355.7 .【解析】② 3340,去除2014年最高值计算.因为题目问法比较灵活,学生答出(3289.8∼3459.9)之间均可.25. (1)如图所示,连接BC.∵AB为⊙O的直径,∴∠ACB=90∘ .ED为⊙O的切线.∴∠EDO=90∘.∵F是AC中点且AO=BO,∴在△ABC中,FO是△ABC的一条中位线.∴FO∥BC,∴∠AFO=∠ACB=90∘ .∴∠AFO=∠EDO .∴AC∥DE.(2)方法一:思路:①作DH⊥AB于H,连接AD.②由∠EDO=90∘,EA=AO,得AD=AO=DO,△DAO为等边三角形;③由EA=AO,AC∥ED,得2AF=DE=AC .④由AC∥ED,AC=DE得四边形AEDC为平行四边形;⑤由△DAO为等边三角形,得DH=√32a;⑥ S平行四边形AEDC =EA×DH=√22a2.求解过程:连接AD,过点D作DH⊥AB于H . 在Rt△EDO中,∵OA=AE,∴DA=OA=AE=a .∴DA=AO=OD=a .∴△DAO为等边三角形.∴DH=√32AO=√32a.∵AC∥ED,OA=AE,∴AF为△EOD的一条中位线. ∴ED=2AF .∴F为AC中点.∴AC=2AF .∴AC=ED .又∵AC∥ED,∴四边形AEDC为平行四边形.S平行四边形AEDC =EA×DH=a×√32a=√32a2.【解析】方法二:①连接AD,DC.②由直角三角形斜边中线性质可得AD=a,进而可得△ADO是等边三角形.③由∠AOD=60∘,可解得:ED=√3a,DF=12a,AC=√3a.④ S四边形ACDE =S△EDA+S△ADC=√32a2.由(1)可得:∠EDO=90∘,又∵OA=AE=a,∴AD=OA=a.又∵OD=OA=a,∴△ADO为正三角形,∴∠AOD=60∘,∴∠DEO=∠CAO=30∘,∴ED=√3a,OF=12a,∴DF=12a,∴S四边形ACDE=S△EAD+S△ADF+S△DFC=12×DF×ED+12DF×AF+12DF×FC=12(ED+AF+FC)×DF=12(√3a+√32a+√32a)×12a=√32a2.26. (1)如图即为所求.(2)① 2;② x>2时,y随x的增大而减小.(答案不唯一)27. (1)y=mx2−2mx+m−1 =m(x−1)2−1.∴ 顶点坐标为 (1,−1).(2) ① 当 m =1 时,y =x 2−2x .当 y =0 时,x 1=0,x 2=2 .∴ A (0,0),B (2,0),∴ 线段 AB 上整点有三个 (1,0),(0,0),(2,0).② ∵ 顶点坐标为 (1,−1) ,∴6 个整点为 (−1,0),(0,0),(1,0),(2,0),(3,0),(1,1) .∴x =3 时 y ≤0,且 x =4 时,y >0,即{4m −1≤0,9m −1>0.解得 19<m ≤14.28. (1) ∵AP =AQ ,∴∠AQP =∠APQ .∵∠APC =∠B +∠BAP =60∘+20∘=80∘.∴∠AQB =80∘. (2)∵△ABC 为等边三角形,∴∠ABC =∠ACB =∠BAC =60.∵AP =AQ ,∴∠AQP =∠APQ .∴∠BAP +∠ABC =∠CAQ +∠ACB∴∠BAP =∠CAQ .∵Q ,M 关于 AC 对称,∴AQ =AM ,∠QAC =∠MAC .∴∠PAM =∠PAC +∠MAC =∠PAC +∠BAP =∠BAC =60∘.又PA=QA=MA,∴△APM为正三角形.∴PA=PM.29. (1)①如图.A,B的“相关矩形”的长为3−1=2,宽为1−0=1,∴S=2×1=2.②若C在x=3上.则A,C相关矩形与x轴平行的边长度为2 .设C(3,y).则∣y∣=3−1=2,∴y=±2.当C(3,2)时,AC表达式y=x−1;当C(3,−2)时,AC表达式y=−x+1.(2)当⊙O上存在点N,使MN的相关矩形为正方形时,设直线MN解析式为y=kx+b . ∵MN为正方形对角线,∴k=±1 .∴当y=x+b或y=−x+b与⊙O有交点时,存在点N .当直线y=−x+b与⊙O相切时.如图l1与l2,直线l1与⊙O切于点N1,直线l2与⊙O切于点N2 . ∵⊙O的半径为√2,∴P1(0,−2).∴l1与y轴交于P1(0,−2).∴l1的解析式为y=−x−2 .当y=3时,x=−5 .∴M1(−5,3).同理可得M2(−1,3).当k=1时,当直线y=x+b与⊙O相切时.如图 .同理可得M3(1,3),M4(5,3).因此m取值范围为−5≤m≤−1或1≤m≤5.。
2016年北京市中考数学试卷附详细答案(原版+解析版)
2016年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)(2016•北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°2.(3分)(2016•北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×1053.(3分)(2016•北京)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b4.(3分)(2016•北京)内角和为540°的多边形是()A. B.C. D.5.(3分)(2016•北京)如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱6.(3分)(2016•北京)如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣7.(3分)(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)(2016•北京)在1﹣7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9.(3分)(2016•北京)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O410.(3分)(2016•北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.(3分)(2016•北京)如果分式有意义,那么x的取值范围是.12.(3分)(2016•北京)如图中的四边形均为矩形,根据图形,写出一个正确的等式.13.(3分)(2016•北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是率估计该种幼树在此条件下移植成活的概率为.14.(3分)(2016•北京)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.15.(3分)(2016•北京)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.16.(3分)(2016•北京)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.(5分)(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.18.(5分)(2016•北京)解不等式组:.19.(5分)(2016•北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.(5分)(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.(5分)(2016•北京)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D 上方时,写出n的取值范围.22.(5分)(2016•北京)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.3小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.(5分)(2016•北京)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由.25.(5分)(2016•北京)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.(5分)(2016•北京)已知y是x的函数,自变量x的取值范围x>0,下表是y与x象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.27.(7分)(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.(7分)(2016•北京)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).29.(8分)(2016•北京)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.2016年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)(2016•北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【解答】解:由图形所示,∠AOB的度数为55°,故选B.2.(3分)(2016•北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×105【解答】解:28000=1.1×104.故选:C.3.(3分)(2016•北京)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选:D.4.(3分)(2016•北京)内角和为540°的多边形是()A. B.C. D.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.5.(3分)(2016•北京)如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D6.(3分)(2016•北京)如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣【解答】解:∵a+b=2,∴原式=•=a+b=2故选:A.7.(3分)(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)(2016•北京)在1﹣7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解答】解:由图象中的信息可知,3月份的利润=7.5﹣4.5=3元,4月份的利润=6﹣2.4=3.6元,5月份的利润=4.5﹣1.5=3元,5月份的利润=2.5﹣1=1.5元,故出售该种水果每斤利润最大的月份是4月份,故选B.9.(3分)(2016•北京)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O4【解答】解:设过A、B的直线解析式为y=kx+b∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4)∴解得∴直线AB为y=﹣x﹣2∴直线AB经过第二、三、四象限如图,连接AB,则原点在AB的右上方∴坐标原点为O1故选(A)10.(3分)(2016•北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③ B.①④ C.②③ D.②④【解答】解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选:B.二、填空题(本题共18分,每小题3分)11.(3分)(2016•北京)如果分式有意义,那么x的取值范围是x≠1.【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.12.(3分)(2016•北京)如图中的四边形均为矩形,根据图形,写出一个正确的等式am+bm+cm=m(a+b+c).【解答】解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).13.(3分)(2016•北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是率估计该种幼树在此条件下移植成活的概率为0.882.【解答】解:=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.882,∴这种幼树移植成活率的概率约为0.882.故答案为:0.88214.(3分)(2016•北京)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为3m.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m,答:路灯的高为3m.15.(3分)(2016•北京)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为505.【解答】解:1~100的总和为:=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.16.(3分)(2016•北京)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B 都在线段PQ的垂直平分线上).【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ 的垂直平分线上),理由:如图,∵PA=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.(5分)(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=18.(5分)(2016•北京)解不等式组:.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.19.(5分)(2016•北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.20.(5分)(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.21.(5分)(2016•北京)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D 上方时,写出n的取值范围.【解答】解:(1)∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意,解得,∴直线l1的表达式为y=x+3.(2)与图象可知n<2.22.(5分)(2016•北京)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.3小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【解答】解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.23.(5分)(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=24.(5分)(2016•北京)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约3471.7亿元,你的预估理由用近3年的平均增长率估计2016年的增长率.【解答】解:(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,(2)设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.25.(5分)(2016•北京)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【解答】(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.26.(5分)(2016•北京)已知y是x的函数,自变量x的取值范围x>0,下表是y与x小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为2;②该函数的一条性质:该函数有最大值.【解答】解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.27.(7分)(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【解答】解:(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,∴抛物线顶点坐标(1,﹣1).(2)①∵m=1,∴抛物线为y=x2﹣2x,令y=0,得x=0或2,不妨设A(0,0),B(2,0),∴线段AB上整点的个数为3个.②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),当抛物线经过(﹣1,0)时,m=,当抛物线经过点(﹣2,0)时,m=,∴m的取值范围为<m≤.28.(7分)(2016•北京)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.29.(8分)(2016•北京)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.【解答】解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京市中考数学试卷及答案2016年北京市中考数学试卷及答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【解析】由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以度数应为55°.故选B.2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105【解析】28000=2.8×104.故选C.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误;D.由选项C可得,此选项正确.故选D.4.内角和为540°的多边形是()【解析】设它是n边形,根据题意得(n﹣2)•180°=540°,解得n=5.故选C.5.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.6.如果a+b=2,那么代数式2()b aaa a b-⋅-的值是()A.2B.﹣2C.1 2D.1 2 -【解析】∵a+b=2,∴原式=22a b aa a b-⋅-=()()a b a b aa a b+-⋅-=a+b=2.故选A.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解析】A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.8.在1~7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解析】各月每斤利润:3月:7.5-4.5=3(元),4月:6-2.5=3.5(元),5月:4.5-2=2.5(元),6月:3-1.5=1.5(元),所以4月份每斤水果利润最大.故选B.9.如图,直线m⊥n,在某平面直角坐标系中,x 轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.B.C.D.【解析】因为A点坐标为(-4,2),所以原点在点A的右边,且在点A的下边2个单位处,从点B来看,B(2,-4),所以原点在点B的左边,且在符合.故选A. 点B的上边4个单位处.如下图,O110.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180 正确的是()A.①③B.①④C.②③D.②④【解析】年用水量不超过180 m3的居民家庭有:0.25+0.75+1.5+1.0+0.5=4(万户),4×5 100%=80%,所以①正确;年用水量超过240 m3的居民家庭有:0.15+0.15+0.05=0.35(万户),0.355×100%=7%>5%,故②不正确;由图可知,样本中年用水量不超过120 m3的居民有0.25+0.75+1.5=2.5(万户),所以中位数不可能在150m3~180m3之间,故③不正确;由图中数据可得该市居民家庭年用水量的平均数为(0.25×45+0.75×75+1.5×105+1.0×135+0.5×165+0.4×195+0.25×225+0.15×255+0.15×285+0.05×315)÷5=134.7(m3)<180(m3),故④正确.故选B.二、填空题(本题共18分,每小题3分)11.如果分式21x 有意义,那么x的取值范围是.【解析】由题意,得x-1≠0,解得x≠1,故答案为:x≠1.12.下图中的四边形均为矩形,根据图形,写出一个正确的等式:.【解析】最大矩形的长为(a+b+c),宽为m,所以它的面积为m(a+b+c);又最大矩形的面积为三个小矩形面积之和,三个小矩形的面积分别为:ma,mb,mc,所以有m(a+b+c)=ma+mb+mc.故答案为:m(a+b+c)=ma+mb+mc.(开放性试题,答案合理即可)13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:估计该种幼树在此条件下移植成活的概率为.【解析】x=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+ 0.881)÷8≈0.882,∴这种幼树移植成活的概率约为0.882.故答案为:0.882.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为 m.【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE AB BE =,FN MN FB AB =,即1.8 1.81.8AB BD=+,1.5 1.51.5 2.7AB BD =+-,解得AB=3.故答案为:3.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为 .【解析】1+2+3+4+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=5050,共10行,每一行的10个数之和相等,所以每一行数字之和为5050=505.故答案为:505.1016.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图.(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心.AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求的垂线.请回答:该作图的依据是 .【解析】由作图可知,AP =AQ ,所以点A 在线段PQ 的垂直平分线上,同理,点B 也在线段PQ 的垂直平分线上,所以有AB ⊥PQ .【答案】(1)到线段两端距离相等的点在线段的垂直平分线上;(2)两点确定一条直线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(3)4sin 45813π-+o . 【解】原式=2142231 3.2+⨯-=18.解不等式组:253(1)74.2x x x x +>-⎧⎪⎨+>⎪⎩,【解】解不等式2x+5>3(x ﹣1),得x <8,解不等式742x x +>,得x >1,∴不等式组的解集为1<x<8.19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【解】∵四边形ABCD是平行四边形,∴AB P CD, ∴E BAE∠=∠,∵AE平分BAD∠,∴,.BAE DAE E DAE DA DE∠=∠∴∠=∠∴=,20.关于x的一元二次方程22(21)10x m x m+++-=有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解】(1)∵关于x的一元二次方程22(21)10x m x m+++-=有两个不相等的实数根,∴Δ=22(21)41(1)m m+-⨯⨯-=4m+5>0,解得m>54 -.(2)m=1,此时原方程为230x x+=,即x(x+3)=0,解得10x=,23x=-.(答案不唯一)20.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线1l 与直线2l ﹕y=2x 相交于点B (m ,4).(1)求直线1l 的表达式; (2)过动点P (n ,0)且垂于x 轴的直线与1l ,2l 的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.【解析】(1)由点B 在直线2l 上,可求出m 的值,设l 1的表达式为y=kx+b,由A 、B 两点均在直线1l 上,可求出1l 的表达式; (2)根据1l ,2l 表达式表示出C(,32n n +),D ,2)n n (,由于点C 在点D 的上方,得到322n n +>,解不等式即可得到结论.【解】(1) ∵点B 在直线2l 上, ∴4=2m, ∴m=2,设1l 的表达式为y=kx+b, 由A 、B 两点均在直线1l 上得到4=2k+b,06k+b,⎧⎨=-⎩解得1k=,2b=3,⎧⎪⎨⎪⎩则l 1的表达式为1y=x 3.2+(2) C(,32n n +),D ,2)n n ( ,点C 在点D 的上方,所以322n n +>,解得n <2.22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4.小天、小东、小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:m 3) 家庭人数2 3 4 5 用气量14 19 21 26表2 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3) 家庭人数2 2 23 3 3 3 3 3 3 3 3 3 34 用气量10 11 15 13 14 15 15 17 17 18 18 18 18 20 22表3 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【解】小天调查的样本容量较少;小东抽样的调查数据中,家庭人数的平均值为(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显问题;小芸抽样的调查数据中,家族人数的平均值为(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,且样本类型较全面,因此小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【证明】(1)△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC,又∵AC=AD,∴BM=MN.【解】(2)∵∠BAD=60°,且AC 平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN 2=BM 2+MN 2,而由(1)知,MN=BM=12AC=12×2=1,∴. 24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011~2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由:.【解】(1)如下图:(2)3355.7,按照增加值的平均增长量计算(答案不唯一)25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交»AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【证明】(1)∵ED与⊙O相切于D,∴OD⊥DE,∵F 为弦AC 中点,∴OD ⊥AC,∴AC ∥DE.【解】(2)作DM ⊥OA 于M,连接CD,CO,AD.首先证明四边形ACDE 是平行四边形,根据S 平行四边形ACDE =AE ·DM ,只要求出DM 即可.∵AC ∥DE,AE=AO,∴OF=DF,∵AF ⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO 是等边三角形,同理△CDO 也是等边三角形,∴∠CDO=∠DOA=60°,∴AO ∥CD,即AE ∥CD,又AC ∥DE,∴四边形ACDE 是平行四边形,易知DM=3a ,∴平行四边形ACDE 的面积=232a .26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值: x… 1 2 3 5 7 9 … y… 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.【解】(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).27.在平面直角坐标系xOy中,抛物线221=-+-(m>0)与x轴的交点为A,B.y mx mx m(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【解】(1)将抛物线表达式变为顶点式为2(1)1y m x=--,则抛物线顶点坐标为(1,-1). (2)①m=1时,抛物线表达式为22y x x=-,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0),共3个.②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含A,B两点)必须有5个整点;又有抛物线表达式,令y=0,则2210mx mx m-+-=,得到A、B两点坐标分别为(1,0),(1+0),即5个整点是以(1,0)为中心向两侧分散,进而得到23≤<,∴1194m<≤.28.在等边三角形ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【解】(1)∵AP=AQ,∴∠AQB=APC,∵△ABC是等边三角形,∴∠B=60°,∵∠BAP=20°,∴∠APC=∠BAP+∠B=60°+20°=80°.∴∠AQB=80°.(2)①如图3;②∵AP=AQ,∴∠APQ=AQP, ∴∠APB=AQC,∵△ABC是等边三角形,∴∠B=∠C =60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.29.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 2,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【解】(1)①S=2×1=2;②由题意知C 的坐标为(3,2)或者(3,-2),设AC 的表达式为y=kx+b,将A 、C 的坐标分别代入AC 的表达式得到:0=k+b,23k+b ⎧⎨=⎩或0=k+b,23k+b ⎧⎨-=⎩,解得k=1,b=-1⎧⎨⎩或k=-1,b=1.⎧⎨⎩则直线AC 的表达式为y=x-1或y=-x+1.(2)若⊙O 上存在点N,使M 、N 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N,当k=-1时,极限位置是直线与⊙O 相切,如图l 1与l 2,直线l 1与⊙O 切于点N,连接ON,ON=2,∠ONM=90°,∴l 1与y 轴交于P 1(0,-2).M 1(m 1,3),∴3-(-2)=0-m 1,∴m 1=-5,∴M 1(-5,3);同理可得M 2(-1,3);当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3).因此m 的取值范围为1≤m ≤5 或者51m -≤≤-.。