《平面直角坐标系》练习
平面直角坐标系练习题3套带答案
6.1.1 有序数对(1)一、选择题:(每小题3分,共12分)1.如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5);B.(5,4);C.(4,2);D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( )A.(2,5);B.(5,2);C.(2,2);D.(5,5) 3.如图1所示,如果队伍向西前进,那么A 北侧第二个人的位置是 ( ) A.(4,1); B.(1,4); C.(1,3); D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( )A.AB.BC.CD.D二、填空题:(每小题4分,共12分)1.如图2所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母______的下面寻找.(2)A B C D E F G H I J K L M N O P Q R S T U V W X Y2.如图3所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点C 的位置为______,点D 和点E 的位置分别为______,_______.3.A 的位置为(1,2),那么点B 的位置为___,点C 的位置为______. 分) ,(2,4)与(4,2)表示的位置相同吗? 分) (2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小?五、探索发现:(共15分)如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?(街)(巷)23541145326.1.2 平面直角坐标系(2)一、选择题:(每小题3分,共12分) 1.如图1所示,点A 的坐标是 ( )A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如图1所示,横坐标和纵坐标都是负数的点是 ( ) A.A 点 B.B 点 C.C 点 D.D 点3.如图1所示,坐标是(-2,2)的点是 ( ) A.点A B.点B C.点C D.点D4.若点M 的坐标是(a,b),且a>0,b<0,则点M 在( ) A.第一象限;B.第二象限;C.第三象限;D.第四象限 二、填空题:(每小题3分,共15分)1.如图2所示,点A 的坐标为____,点A 关于x 轴的对称点B 的坐标为____, 点B 关于y 轴的对称点C 的坐标为______.2.在坐标平面内,已知点A(4,-6),那么点A 关于x 轴的对称点A ′的坐标为___,点A 关于y 轴的对称点A″的坐标为___.3.在坐标平面内,已知点A(a,b),那么点A 关于x 轴的对称点A ′的坐标为______,点A 关于y 轴的对称点A″的坐标为_____.4.点A(-3,2)在第______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第____象限,点D(-3,-2)在第____象限,点E(0,2)在____轴上, 点F( 2, 0) 在_____轴上.5.已知点M(a,b),当a>0,b>0时,M 在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M 在第四象限;当a<0,b<0时,M 在第______象限. 三、基础训练:(共12分)如果点A 的坐标为(a 2+1,-1-b 2),那么点A 在第几象限?为什么?四、提高训练:(共15分)如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x 轴对称,求s,t 的值.五、探索发现:(共15分)如图所示,C,D 两点的横坐标分别为2,3,线段CD=1;B,D 两点的横坐标分别为-2,3,线段BD=5;A,B 两点的横坐标分别为-3,-2,线段AB=1.(1)如果x 轴上有两点M(x 1,0),N(x 2,0)(x 1<x 2),那么线段MN 的长为多少? (2)如果y 轴上有两点P(0,y 1),Q(0,y 2)(y1<y 2),那么线段PQ 的长为多少?六、 如果│3x -13y+16│+│x+3y -2│=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在坐标平面内的什么位置? (1)D C B A 五行三行六行二行六列五列四列三列二列一行一列(4)(1)答案:一、1.A 2.A 3.B 4.C二、1.M 2.(0,1) (1,3) (2,5) (2,1) 3.(0,1) (-1,0)三、解:不相同,如图所示,(2,4)表示A的位置,而(4,2)则表示B的位置.四、3个格.五、解:如图所示的是最短路线的6种走法.(3)(2)(1)(6)(5)(4)六、解:可利用角度和距离,如图所示,画一条水平的射线OA,则点B 的位置可以表示为(45,3),因此平面内不同的点可以用这样的有序数对进行表示.七、解:如图所示.(2)答案:一、1.B 2.C 3.D 4.D二、1.(-1,2) (-1,-2) (1,-2)2. (4,6) (-4,-6)3.(a,-b) (-a,b)4. 二四一三 y x5.一 <0 >0 >0 <0 三三、解:∵a2+1>0,-1-b2<0,∴点A在第四象限.四、解:∵关于x轴对称的两个点的横坐标相等,纵坐标互为相反数,∴3142223220t s t st s t s-=-+⎧⎨+++-=⎩即3414542t st s-=⎧⎨+=⎩,两式相加得8t=16,t=2.3×2-4s=14,s=-2.五、(1)MN=x2-x1 (2)PQ=y2-y1六、解:根据题意可得3x-13y+16=0,x+3y-2=0,由第2个方程可得x=2-3y,∴第1个方程化为3(2-3y)-13y+16=0,解得y=1,x=2-3y=-1,∴点P(x,y),即P(-1,1) 在第二象限,Q(x+1,y-1),即Q(0,0)在原点上.七、提示: 马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可.第6章平面直角坐标系综合练习题(2)一、选择题1,点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4)2,在直角坐标系xOy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.2个B.3个C.4个D.5个3,如图1所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4,在平面直角坐标系中,若点()13-+,m m P在第四象限,则m 的取值范围为( )A 、-3<m <1B 、m >1C 、m <-3D 、m >-35,已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( ) A.3 B.5 C.6 D.76,小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向7、已知如图2中方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格的顶点上确定一 点C ,连结AB ,AC ,BC ,使△ABC 的面积为2平方单位.则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)8,如图3,若△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-3)那么将△ABC 作同榉的平移得到△A 1B 1C 1,则点A 的对应点A 1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9,已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10,已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( )A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能 二、填空题11,已知点M (a ,b ),且a ·b >0,a +b <0,则点M 在第___象限.12,如图4所示,从2街4巷到4街2巷,走最短的路线的走法共有___种.13,如图5所示,进行“找宝”游戏,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母___的下面寻找.14,点P (a ,b )与点Q (a ,-b )关于___轴对称;点M (a ,b )和点N (-a ,b ) 关于___轴对称. 15,△ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为___、___、___. 16,已知点M (-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M 在新坐标系内的坐标为___.17,在一座共8层的商业大厦中,每层的摊位布局基本相同.小明的父亲在6楼的位置如图3所示,其位置可以表示为(6,2,3).若小明的母亲在5楼,其摊位也可以用如图6表示,则小明的母亲的摊位的位置可以表示为___.18,观察图象,与如图7中的鱼相比,图5中的鱼发生了一些变化.若图7中鱼上点P 的坐标为(4,3.2),则这个点在如图8中的对应点P 1的坐标为___(图中的方格是1×1).19,长方形ABCD 中,A 、B 、C 三点的坐标分别是A (6,4),B (0,4),C (0,0)则D 点的坐标是 .图4 (街)(巷)2354114532Px图7y 图8xyP 1图5(2)A B C D E F G H I J K L M N O P Q R S TU V W X Y小明父小明母图60 1 2 3 4432 1图3相帅炮图1图3图2图920,如图9在一个规格为4×8的球台上,有两个小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则O 点的位置可表示为 .三、解答题(共36分)21,如图10所示的直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),确定这个四边形的面积.22,如图11所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23,如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y -1)在坐标平面内的什么位置?24,如图12所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为-2,3,线段BD =5;A 、B 两点的横坐标分别为-3,-2,线段AB =1.(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少? (2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?25,如图13,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置.26,如图14将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?图12 -2xy2341-1-3-40-3-2-12143DCB A 图13(1,1)(-4,-1)C (-1,4)B Axy012345-1-2-3-4-5-4-3-2-154321图10(3,6)(16,0)(14,8)(0,0)C D B A xy图1123654177145632A第6章平面直角坐标系综合练习题(2)一、1,B;2,C;3,C;4,A;5,A;6,B;7,C;8,A;9,C;10,C.二、11,三;12,6;13,X;14,x、y;15,(0,1)、(3,0)、(2,2);16,(-1,5);17,(5,4,2);18,P1(4,2.2);19,(6,0);20,(3,4).三、21,94;22,3个格;23,根据题意可得3x+3=0,x+3y-2=0,解得y=1,x=2-3y =-1,所以点P(x,y),即P(-1,1) 在第二象限Q(x+1,y-1),即Q(0,0)在原点上;24,(1)MN=x2-x1.(2)PQ=y2-y1;25,A1(2,-1),B1(-1,6) C1(4,-4),图略;26,(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度;27,P2(1,-1) ,P7(1,1) ,P100(1,-3).第6章平面直角坐标系综合练习题(3)一、选择题1,如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5)B.(5,4)C.(4,2)D.(4,3)2,如图2所示,横坐标正数,纵坐标是负数的点是( )A.A 点B.B 点C.C 点D.D 点 3,(2008年扬州市)在平面直角坐标系中,点P (-1,2)的位置在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4,已知点A (-3,2),B (3,2),则A 、B 两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度 5,点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上 6,若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 7,已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )A.第一象限B.第二象限C.第三象限D.第四象限8,把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( ) A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)9,如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是( )A.(2,2)(3,4)(1,7) B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)10,在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A 与A ′的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位 二、填空题11,电影票上“4排5号”,记作(4,5),则5排4号记作___.12,点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___. 13,在平面直角坐标系中,点(3,-5)在第___象限.14,已知a <b <0,则点A (a -b ,b )在___象限.15,△ABO 中,OA =OB =5,OA 边上的高线长为4,将△ABO 放在平面直角坐标系中,使点O 与原点重合,点A 在x 轴的正半轴上,那么点B 的坐标是___.16,已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___. 17,△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B 、C 两点坐标分别为 , . 18,把面积为10cm 2的三角形向右平移5cm 后其面积为 .19,菱形的四个顶点都在坐标轴上,已知其中两个顶点的坐标分别是(3,0),(0,4),则另两个顶点的坐标是____.20,如图4所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.三、解答题21,用有序数对表示物体位置时,(-3,2)与(2,-3)表示的位置相同吗?请结合图形说明.22,如果点A 的坐标为(-a 2-3,b 2+2),那么点A 在第几象限?说说你理由.(1)DCB A五行四行三行六行二行六列五列四列三列二列一行一列图1 xy2341-1-2-3-4-3-2-12143(1)DCBA图2E(3)DCBA 图423,如图5所示,图中的“马”能走遍棋盘中的任何一个位置吗?若不能,指出哪些位置“马”无法走到;若能,请说明原因.24,在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来. (1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0); (2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.25,如图6笑脸的图案中,左右两眼的坐标分别为(4,3)和(6,3),嘴角左右端点分别为(4,1)和(6,1)试确定经过下列变化后,左右眼和嘴角左右两端的点的坐标. (1)将笑脸沿x 轴方向,向左平移2个单位的长度. (2)将笑脸沿y 轴方向,向左平移1个单位的长度.26,如图7,在平面直角坐标系中,已知点为A (-2,0),B (2,0).(1)画出等腰三角形ABC (画出一个即可); (2)写出(1)中画出的ABC 的顶点C 的坐标.27,如图8,△ABC 三个顶点的坐标分别为A (4,3),B (3,1),C (4,1).(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得△A 1B 1C 1与三角形ABC 的大小、形状和位置上有什么关系?(2)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?图7图5界 河马图6图8第6章平面直角坐标系综合练习题(3)一、1,A;2,B;3,B;4,D;5,A;6,B;7,B;8,C;9,C;10,B.二、11,(5,4);12,(0,0);13,四;14,三;15,(3,4)或(3,-4);16,(-3,2);17、B(一3,一6)、C(一4,一1);18,10;19,(-3,0)、(0,-4);20,(-2,3)、(0,2)、(2,1)、(-2,1).三、21,不同,图略;22,第二象限,因为-a2-3<0,b2+2>0;23,马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可;24,至少要向上平移3个以单位长度;25,(1)(2,3)、(4,3)、(2,1)、(4,1).(2)(4,4)、(6,4)、(4,2)、(6,2);26,略;27,(1)所得△A1B1C1与△ABC的大小、形状完全相同,△A1B1C1可以看作△ABC向左平移6个单位长度得到的.(2)类似地△A2B2C2与△ABC的大小、形状完全相同,可以看作△ABC向下平移5个单位长度得到的.图略.。
七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题含答案
七年级数学(下)第七章《平面直角坐标系——用坐标表示平移》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,将点A向右平移几个单位长度可得到点BA.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度【答案】B长度,故选B.2.如图所示,将点A向下平移5个单位长度后,将重合于图中的A.点C B.点FC.点D D.点E【答案】D【解析】本题主要考查了用坐标表示平移.注意左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.因为点A的纵坐标是2,向下平移5个单位长度,即2–5=–3,所以与点E重合,故选D.3.如图所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A';将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B';则A'与B'相距A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【答案】A相距4个单位长度,故选A.4.如图所示,点G(–2,–2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为A.(6,5) B.(4,5)C.(6,3) D.(4,3)【答案】D5.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度【答案】B【解析】由点A,B的平移规律可知,此题规律是(x–1,y–1),照此规律可知线段AB向下平移了1个单位长度,向左平移了1个单位长度.故选B.6.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为A.(5,0),(4,2),(6,–1)B.(–1,0),(–2,2),(0,–1)C.(–1,2),(–2,4),(0,1)D.(5,2),(4,4),(6,1)【答案】B【解析】本题主要考查图形的平移及平移特征.分别将A、B、C三点的横坐标都减去3,纵坐标都减去1得(–1,0),(–2,2),(0,–1),故选B.二、填空题:请将答案填在题中横线上.7.将点(–3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点__________.【答案】(1,3)【解析】–3+4=1,1+2=3,∴点A′的坐标是(1,3).故答案为:(1,3).8.在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向__________(或向__________)平移__________个单位长度.【答案】右;左;a【解析】在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或都减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.9.已知三角形ABC,A(–3,2),B(1,1),C(–1,–2),现将三角形ABC平移,使点A到点(1,–2)的位置上,则点B,C的坐标分别为______,________.【答案】(5,–3);(3,–6)点C横坐标为:–1+4=3;纵坐标为:–2+(–4)=–6;∴B点的坐标为(5,–3),C点的坐标为(3,–6).10.已知点A(–4,–6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为__________.【答案】(0,0)【解析】由题中平移规律可知:A′的横坐标为–4+4=0;纵坐标为–6+6=0;∴A′的坐标为(0,0).故答案为:(0,0).11.如图所示,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(–4,2),(–2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__________.【答案】(5,4)【解析】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).12.如图,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.【答案】(9,12)【解析】根据题意建立如图所示的平面直角坐标系,题中机器人运动的过程,实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(–6,6)→A4(–6,–6)→A5(9,–6)→A6(9,12).因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12).故答案为(9,12).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,有一条小船.若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.【解析】平移后的小船如答图所示.14.如图所示,三角形A′B′C′是三角形ABC经过平移得到的,三角形ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).分别写出点A′,B′,C′的坐标.【解析】A′(2,3),B′(1,0),C′(5,1).15.坐标平面内有4个点A(0,2),B(–1,0),C(1,–1),D(3,1).(1)建立坐标系,描出这4个点;(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABC D的面积.【解析】(1)根据题意,直接描点;坐标系及4个点的位置,如图所示;(2)分别过A、C两点作x轴的平行线,过B、D两点作y轴的平行线,围成矩形,利用“割补法”求四边形ABCD的面积.如图,用矩形EFGH围住四边形ABCD,则S四边形ABCD=S矩形EFGH–S三角形ABE–S三角形BCF–S三角形CDG–S三角形ADH=3×4–12×1×2–12×1×2–12×2×2–12×1×3=6.5.16.三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG的三个顶点坐标;(2)求三角形EFG的面积.【解析】(1)如图所示:点E(4,1),点F(0,–2),点G(5,–3);(2)S三角形EFG=4×5–12×4×3–12×1×5–12×1×4=192.。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;
人教版初1数学7年级下册 第7章(平面直角坐标系)练习试题(含解析)
初中数学七年级下册第七章平面直角坐标系综合练习(考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果点M (a +3,a +1)在直角坐标系的x 轴上,那么点M 的坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4)2、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)3、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-4、一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)5、若点B (m +1,3m ﹣5)到x 轴的距离与到y 轴的距离相等,则点B 的坐标是( )A .(4,4)或(2,2)B .(4,4)或(2,﹣2)C .(2,﹣2)D .(4,4)6、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--7、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)8、点P 在第二象限内,P 点到x 、y 轴的距离分别是4、3,则点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)9、在平面直角坐标系中,李明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数是1时,则向右走1个单位长度;当n 被3除,余数是2时,则向右走2个单位长度.当走完第12步时,棋子所处位置的坐标是( )A .(9,3)B .(9,4)C .(12,3)D .(12,4)10、在平面直角坐标系中,若点M (﹣2,3)与点N (﹣2,y )之间的距离是5,那么y 的值是( )A .﹣2B .8C .2或8D .﹣2或8二、填空题(5小题,每小题4分,共计20分)1、若点P (m ,n )的坐标满足m n mn +=,则称点P 为“和诣点”,请写出一个“和诣点”的坐标____.2、已知点P (﹣10,3a +9)不在任何象限内,则a 的值为_____.3、如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2021秒点P 所在位置的坐标是 ___.4、如图所示,在平面直角坐标系中,射线OA 将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A 的坐标为________.5、在平面直角坐标系中,点A (﹣2,1),B (2,4),C (x ,y ),BC //y 轴,当线段AC 最短时,则此时△ABC 的面积为____.三、解答题(5小题,每小题10分,共计50分)1、五一假期到了,七年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是(4,2)-.”王磊说:“丛林飞龙的坐标是(2,1)--.”若他们二人所说的位置都正确,请完成下列问题.(1)在图中建立适当的平面直角坐标系;(2)用坐标表示出西游传说、华夏五千年、太空飞梭、南门的位置.2、已知点3(22P a +,23)a -,根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点Q 的坐标为(3,)a -,直线//PQ x 轴.3、在平面直角坐标系中,点A 的坐标是()35,1a a -+.(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 在第二象限且到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.4、如图所示,在平面直角坐标系中,已知点A (-5,0),B (-3,0),C (-1,2),求出△ABC 的面积.5、如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 在x 轴上,顶点C 在y 轴上,且∠ACB =90°.(1)图中与∠ABC 相等的角是 ;(2)若AC =3,BC =4,AB =5,求点C 的坐标.---------参考答案-----------一、单选题1、B【分析】因为点(3,1)M a a ++在直角坐标系的x 轴上,那么其纵坐标是0,即10a +=,1a =-,进而可求得点M 的横纵坐标.【详解】点(3,1)M a a ++在直角坐标系的x 轴上,10a ∴+=,1a ∴=-,把1a =-代入横坐标得:32a +=.则M 点坐标为(2,0).故选:B .【点睛】本题主要考查了点在x 轴上时纵坐标为0的特点,解题的关键是掌握在x 轴上时纵坐标为0.2、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】解: 点M 在第四象限,∴点M的横坐标为正数,纵坐标为负数,点M到x轴的距离为1,到y轴的距离为2,∴点M的纵坐标为1-,横坐标为2,M-,即(2,1)故选:D.【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.3、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4、C【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;故选:C.【点睛】本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.5、B【分析】根据到x轴的距离与它到y轴的距离相等可得m+1=3m-5,或m+1+3m-5=0,解方程可得m的值,求出B 点坐标.【详解】解:由题意得:m+1=3m-5,或m+1+3m-5=0,解得:m=3或m=1;当m=3时,点B的坐标是(4,4);当m=1时,点B的坐标是(2,-2).所以点B的坐标为(4,4)或(2,-2).故选:B.【点睛】本题主要考查了点的坐标,关键是掌握到x轴的距离与它到y轴的距离相等时横坐标的绝对值=纵坐标的绝对值.6、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】-在第四象限,故本选项不合题意;解:A、(2,1)-在第二象限,故本选项不合题意;B、(2,1)C、(2,1)在第一象限,故本选项符合题意;--在第三象限,故本选项不合题意;D、(2,1)故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.8、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.9、D【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【详解】解:设走完第n 步,棋子的坐标用A n 来表示.观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A 5(6,1),A 6(6,2),…,∴A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n ).∵12=4×3,∴A 12(12,4).故选:D .【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A 点的坐标,根据坐标的变化发现规律是关键.10、D【分析】根据点M (﹣2,3)与点N (﹣2,y )之间的距离是5,可得35y -=,由此求解即可.【详解】解:∵点M (﹣2,3)与点N (﹣2,y )之间的距离是5,∴35y -=,∴8y =或2y =-,故选D .【点睛】本题主要考查了坐标与图形,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题【解析】【分析】+=,当m=2时,代入得到2+n=2n,求出n即可.由题意点P(m,n)的坐标满足m n mn【详解】+=,,解:∵点P(m,n)的坐标满足m n mn当m=2时,代入得:2+n=2n,∴n=2,故答案为(2,2).【点睛】此题主要考查了点的坐标,正确掌握“和谐点”的定义是解题关键.2、-3【解析】【分析】根据点P(﹣10,3a+9)不在任何象限内,可得390a+=,从而得解.【详解】解:∵点P(﹣10,3a+9)不在任何象限内,∴390a+=,a=-,解得:3故答案为:3-.【点睛】本题考查了在平面直角坐标系表示点,熟知平面直角坐标系中点的坐标特征是解本题的关键.【解析】【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2024-2021=3,∴按照运动路线,差3个单位点P到达(44,0),∴第2021秒点P所在位置的坐标是(44,3),故答案为:(44,3).【点睛】本题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.4、(113,3)##(233,3)【解析】【分析】过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即12OB×AB=5.5,可解AB,则A点坐标可求.【详解】解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,则AC=OB,AB=OC.∵正方形的边长为1,∴OB=3.∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,∴两边的面积分别为3.5.∴△AOB面积为3.5+2=5.5,即12OB×AB=5.5,1 2×3×AB=5.5,解得AB=113.所以点A坐标为(113,3).故答案为:(113,3).【点睛】本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.5、6【解析】【分析】由垂线段最短可知点BC ⊥AC 时,AC 有最小值,从而可确定点C 的坐标,进而可求面积.【详解】解:依题意可得://BC y Q 轴,2x ∴=,根据垂线段最短,当BC AC ⊥于点C 时,点A 到BC 的距离最短,此时点C 的坐标为:(21),,∴4,3AC BC ==,∴1143622ABC S AC BC ==⨯⨯= ,故答案为:6.【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.三、解答题1、(1)见解析;(2)(3,3),(1,4)--,(0,0),(0,5)-【解析】【分析】(1)根据题意可的,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)由题意可得,太空飞梭为坐标原点,水平方向为x ,竖直方向为y ,建立平面直角坐标系,如下图:(2)西游传说(3,3),华夏五千年(1,4)--,太空飞梭(0,0)、南门(0,5)-【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键.2、(1)P 点的坐标为17(0,)3-;(2)P 点的坐标为13(2,3).【解析】【分析】(1)根据y 轴上的点横坐标为0,列式求出a 的值即可得出结果;(2)根据//PQ x 可得23a a -=,求解即可.【详解】解:(1)令3202a +=,解得43a =-,417232()333a ∴-=⨯--=-,P ∴点的坐标为17(0,)3-;(2)令23a a -=,解得3a =.∴3313232222a +=⨯+=,232333a -=⨯-=,所以P 点的坐标为13(2,3).【点睛】本题考查平面直角坐标系中点的坐标特征,熟知y 轴上的点横坐标为0以及平行于x 轴上的点纵坐标相等是解本题的关键.3、(1)53a =,80,3⎛⎫⎪⎝⎭;(2)1a =,()2,2A -【解析】【分析】(1)根据A 点在y 轴上可得35=0a -,解方程即可求出a 的值和A 点坐标;(2)根据点A 在第二象限且到x 轴的距离与到y 轴的距离相等,可得()351a a -=-+,解方程求解即可求出a 的值和A 点坐标.【详解】解:(1) 点A 在y 轴上,∴350a -=,解得:53a =,813a +=,点A 的坐标为:80,3⎛⎫ ⎪⎝⎭;(2) 点A 在第二象限且A 到x 轴的距离与到y 轴的距离相等,∴()351a a -=-+,解得:1a =,则点()2,2A -.【点睛】此题考查了平面直角坐标系中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中点的坐标特点.4、2【解析】【分析】首先根据题意求出AB 的长度和AB 边上的高的长度,然后根据三角形面积公式求解即可.【详解】解:作CD ⊥x 轴,垂足为点D .因为A (- 5,0),B (- 3,0),C (-1,2),所以OA =5,OB =3,CD =2,所以AB =OA -OB =5-3=2.所以S △ABC =12AB ·CD =12×2×2=2.【点睛】此题考查了网格中三角形面积的求法,解题的关键是根据题意求出AB的长度和AB边上的高.5、(1)∠ACO;(2)点C的坐标为(0,125).【解析】【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°1 2AB⨯CO=12AC⨯BC,即CO=345⨯=125,∴点C的坐标为(0,125).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.。
平面直角坐标系练习题
平面直角坐标系练习题1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣42.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<04.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是.12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是.13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第象限.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是.17.在平面直角坐标系中,点P(m2+1,﹣3)在第象限.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.函数练习题一:平面直角坐标系答案1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣4【解答】解:∵点P的坐标为(﹣3,﹣4),∴点P到y轴的距离为:|﹣3|=3.故选:B.2.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<0【解答】解:由题意得:,解得:0<a<2,故选:A.4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)【解答】解:如图所示:则“兵”位于(﹣3,2).故选:B.5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)【解答】解:∵点P(x,y)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∵点P到x轴的距离为5,∴点P的纵坐标是﹣5,∴点P的坐标(3,﹣5);故选:A.6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)【解答】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2分钟,将向左运动,(2,2)表示粒子运动了6=2×3分钟,将向下运动,(3,3)表示粒子运动了12=3×4分钟,将向左运动,...于是会出现:(44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动,∴在第2021分钟时,粒子又向下移动了2021﹣1980=41个单位长度,∴粒子的位置为(44,3),故选:B.7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)【解答】解:A、(﹣3,5)在第二象限,不符合题意;B、(1,﹣2)在第四象限,不符合题意;C、(﹣2,﹣3)在第三象限,符合题意;D、(1,1)在第一象限,不符合题意,故选:C.8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)【解答】解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0 解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故选:C.9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【解答】解:如图所示:市场的位置是(5,3),故选:D.10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是(0,﹣5).【解答】解:∵P(m+3,2m+1)在y轴上,∴m+3=0,解得m=﹣3,即2m+1=﹣6+1=﹣5.即点P的坐标为(0,﹣5).故答案为:(0,﹣5).12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是(﹣5,).【解答】解:∵|x|=5,∴x=5或﹣5,∵xy<0,y=,∴x=﹣5,∴点P的坐标为(﹣5,).故答案为:(﹣5,).13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为4或﹣1.【解答】解:∵M(3a﹣2,a+6),若点M到两坐标轴的距离相等,∴|3a﹣2|=|a+6|,∴3a﹣2=a+6或3a﹣2=﹣(a+6),∴a=4或a=﹣1,故答案为4或﹣1.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第三象限.【解答】解:∵点P(1﹣a,1+b)在第四象限,∴1﹣a>0,1+b<0,∴a<1,b<﹣1,∴a﹣1<0,b<0,∴(a﹣1,b)在第三象限,故答案为:三.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=﹣2.【解答】解:由点P(a+5,2a+1)点在第二、四象限的角平分线上,得a+5+2a+1=0,解得a=﹣2,故答案为:﹣2.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是(3,4)或(﹣3,4).【解答】解:∵点P(a,b)到x轴的距离是4,到y轴的距离是3,∴a=±3,b=±4,∵|a﹣b|=b﹣a,∴b﹣a>0,则b>a,当b=4,则a=±3,当b=﹣4,a的值不合题意,故点P的坐标是:(3,4)或(﹣3,4).故答案为:(3,4)或(﹣3,4).17.在平面直角坐标系中,点P(m2+1,﹣3)在第四象限.【解答】解:因为m2+1≥1,所以点P(m2+1,﹣3)在第四象限.故答案为:四.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.【解答】解:如图,描出点A(﹣3,4)、B(﹣3,3)、C(3,﹣3)、D(3,4),19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣=7.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.【解答】解:(1)依题意,得:,解得a=﹣2;则b=﹣3.所以A(0,﹣2),B(﹣3,0);(2)设P(x,0),由题意知,|x+3|×2=6.解得x=3或x=﹣9.所以点P的坐标(3,0)或(﹣9,0).。
平面直角坐标系练习题
确定位置、平面直角坐标系(1)课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1.在平面内,确定一个点的位置一般需要的数据个数是 ( )A .1B .2C .3D .42. 如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为 ;(7,1)表示的含义是 .3. 已知A 在灯塔B 的北偏东20°的方向上,则灯塔B 在小岛A 的________ 的方向上.4. 在矩形ABCD 中,A 点的坐标为(1,3),B 点坐标为(1,-2),C 点坐标为(-4,-2),则D 点的坐标是_______典型例题分析例1、下图是游乐城的平面示意图,借助刻度尺、量角器,解决如下问题:(1)如果用(8,5)表示入口处的位置,那么激光战车的位置如何表示?(8,8)表示哪个地点的位置?(2)海底世界位于入口处的北偏西多少度的方向上?到入口处的距离约多少厘米?实际距离是多少米?在海底世界同一方向上还有什么设施?(3)在入口处的北偏西370方向上有什么设施?它到入口处的实际距离是多少?(4)说出球幕电影的位置位于入口处的什么地方?解:(1)激光战车的位置表示为(2,3),(8,8)表示童趣花园的位置.(2)海底世界位于人口处的北偏西约75o ,到人口处距离3cm,实际距离为300m ,在海底世界同一方向上还有太空秋千.(3)在人口处的北偏西370方向上有梦幻艺馆,它到入口处的实际距离为360m.(4)球幕电影位于入口处的南偏西约350方向,距人口处实际距离为260m 的位置上.[总结]平面内确定物体的位置的方法:(1)直角坐标法:以某一点为原点,利用点所在的行、列的位置来表示点的位置.(2)极坐标法:以某一点为极点,用方位角、目标到这个点的距离两个数据来确定目标所在的位置.(3)另外,生活中还常有区域定位法、经纬度定位法等来确定物体的位置例2:某校多媒体教室中有7排5列座位,请根据下面4个同叙的描述,在图中标出小红的乙例1位置:甲说:“小红在我的左后方” 乙说:“小红在我的右后方”丙说:“小红在我的左前方” 丁说:“小红离乙、丙的距离一样远” [点拨]结合生活中的经验,我们不难发现: 平面上确定物体的位置基本都需要两个数据.本题没有提供具体的数据,解题的关键是结合图形,认真分析题意,从观察图形中寻找解题的信息,全面分析四位同学所在的大致区域,最终分析出确定物体的位置的两个数据.解:不妨设座位表中从上往下横行依次为第1排,第2排,…第7排,从左往右直列依次为第1列,第2列,……第5列.首先,由甲、乙、丙三位同学的叙述确定小红的大体位置是在第3、4、5排第三列上,再由丁同学的叙述可知小红的位置应是第4排第3列.[总结] 一、本问题确定位置的方法属于区域定位法,生活中确定位置的方式还有很多,尽管确定位置的方法不同,但要确定的这个位置是固定不变的.例如:1.在确定我们国家的某一地方时,应先看它属于哪个省(城市),哪个县.2.在电影院找位置时,需要知道第几排和第几号.3.在海上确定船只的位置时,应确定其方位角和距离.4.在地图上确定某一地方时,应查它所处的经度和纬度,经度和纬度的交叉点即为所求.5.在查某一人的家庭住址时,应看他家住几号楼几单元哪个房间……基础训练:一、选择题(本大题共2小题在给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.如下图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为( ) ①实验楼的坐标是3 ②实验楼的坐标是(3,3)③实验楼的坐标为(4,4)A .1个B .2个C .3个D .4个2.如下图是沈阳市地图简图的一部分,图中“故宫”、“古楼”所在的区域分别是 ( )A. D7,E6B. D6,E7C. E7,D6D. E6,D7二、填空题(本大题共4小题,请把正确答案填在题中的横线上)3.已知A 在灯塔B 的北偏东30°的方向上,则灯塔B 在小岛A 的________的方向上.4. 在矩形ABCD 中,A 点的坐标为(1,3),B 点坐标为(1,-2),C 点坐标为(-4,-2),则D 点的坐标是_______ .5. 如果将电影票上“8排5号”简记为(8,5),那么“3排7号”可表示为 ;(5,9)表示的含义是 .6.(2006宁夏)右图是某学校的平面示意图,在1010 的正方形网格中(每个小方格都是边长为1的正方形),如果分别用(31)(35),,,表示图中图书馆和教学楼的位置,那么实验楼的位置应表示为 .三、解答题(本大题共5小题,解答应写出必要的文字说明或演算步骤)7. 某地为了城市发展,在现有的四个城市A 、B 、C 、D 附近新建机场E .试建立适当的直角坐标系,写出点A 、B 、C 、D 、E 的坐标.8. 如图,小明星期天骑自行车从学校出发,途经B4区、B3区、A3区、A2区、A1区、B1区、B2区、C2区、C3区、B3区、B4区回到学校,在下面城市简图上描出它的行车路线,他分别可能去了哪些地方?确定位置、平面直角坐标系(2) 课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1、呼和浩特市大约位于北纬400,东经1130,用一个有序数对表示为 ;2、小明班有35人参加学校运动会的入场式,队伍共7排5列.如(1,4)表示第1派从左至右第4站位,那么站在队伍中间的小明的站位可记作 .3、如用(8,3)表示电影票上的“8排3号”,那么(3,8)表示 ,(5,2)表示 .4、如果某校八年级一班表示为(8,1),那么九年级三班可以表 7题8题示成 ,(7,4)表示 .5、如图是一个公园的平面示意图(比例尺:1:10000),借助刻度尺和量角器解决如下问题:(1)大象馆位于大门的北偏东 的方向上,到大门的图上距离约为 厘米,实际距离约为 米.(2)某一动物馆位于大门的南偏东800的方向,到大门的距离约为310米,这一点是 .(3)如果用(1,4)表示图上大门的位置,那么猴山位置表示为 ,(4,1)表示的是 .典型例题分析例1:如图是某学校的平面示意图.借助刻度尺、量角器解决如下问题:(1)教学楼位于校门的北偏东 度的方向上?到校门的上距离约为厘米?实际距离为 ;(写出计算过程)(2)某楼位于校门的南偏东约750的方向,到校门的实际离约为240米.这一地点的名称是 ;(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置表示为 , (10,5)表示的 位置.基础训练:一、选择题1、如右图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )A .(0,3)B .(2,3)C .(3,2)D .(3,0)二、填空2、如右图,如果用(0,0)表示E 点的位置,用(4,0)表示F 点的位置,那么图中⊿ABC 的三个顶点的位置分别为A( , ), B( , ),C( , ).三、解答题3、在如下图的方格棋盘中放入3枚棋子,位置分别是(3,4),(7,4),(5,6).这三枚棋子组成一个什么样的图形?你能不能再放入一枚棋子,使得这四枚棋子组成一个平行四边形?如果能,请说出放在什么位置.F E C B A (109)87654321109876543210...A (68)87765544332211o4、如图,从前有一座方城,四面城墙的中间都有城门,出南门后,往前直走12.2里(1里=0.5千米),有一座宝塔A ,出西门后,往前直走4里到B 处,刚好此处可以直接看到宝塔,现测得有城中心O 点到西门的距离为5里.(1)若假定O 点用(0,0)表示,西门用(-5,0),问B 点,A 点怎样表示?(2)一个人参观的路径是由B 到A 走多远?拓展延伸5、五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱.其规则是:在15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图,是两个五子棋爱好者甲和乙对弈图:(甲执黑先行,乙执白后走).观察棋盘,思考:若A 点的位置记作(8,4),甲必须在哪个位置上落子,才不会让乙在短时间获胜?为什么?确定位置、平面直角坐标系(3)课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1.写出下图中A 、B 、C 、D 、E 、F 各点的坐标,并指出分别属于第几象限?A :______,______;B :______,______;C:______ ______;D: _____ , ______;E:______ ,______. 2.在下列点的坐标中,第四象限的点为( )A(-4,2) B(-3,3)C(1,2) D(1,-3)3.你能归纳出每个象限内的点的横纵坐标符号吗?(1)完成右表;(2)你能归纳出坐标轴上的点的坐标特征吗?x 轴上的点的____坐标为0,可记为________;y 轴上的点的_____坐标为0,可记为_________.典型例题分析例1:写出图中A 、B 、C 、D 、E 各点的坐标思路点拨:由点求坐标,分别过该点向x 、y 轴 作垂线,垂足所指示的两个数便是. 解:A 点的坐标是(1,3);记作A (1,3)B 点的坐标是(3,1);记作___________C 点的坐标是(-2,3);记作___________D 点的坐标是 ________; 记作__________E 点的坐标是 ________;记作__________解题反思:1、(a,b )和(b,a )是否为同一个点?2、点的横纵坐标,是否可以颠倒?3、点A 、B 、C 、D 、E 分别属于第几象限?例2:如图, 在直角坐标系中, O 是原点, A 在x 轴上, B 在y 轴上,则 (1)点O 的坐标是 ,点A 的坐标是 , 点B的坐标是 .(2)C 在一三象限的角平分线上,且与A 点的横坐标相同,点C 的坐标是 .(3)CD ∥y 轴,且CD=3,点D 的坐标是 .解:O(0,0)(2,0)A (0,4)B (2,2)C (2,5)D 或(2,1)D -[总结]坐标平面内的点P 的坐标(a ,b)与点P 的位置的关系.1.点P 在象限内:点P 在第一象限内⇔a>0,b>0;点P 在第二象限内⇔a <0,b>0;点P 在第三象限内⇔a <0,b<0; 点P 在第四象限内⇔a>0,b<0.2.点P 在坐标轴上:点P 在x 轴的正半轴上⇔a>0,b=0;点P 在x 轴的负半轴上⇔a<0,b=0;点P 在y 轴的正半轴上⇔b>0,a=0; 点P 在Y 轴的负半轴上⇔b<0,a=0.3.两坐标轴夹角平分线上的点:第一、三象限两坐标轴夹角平分线上的点的横、纵坐标相等,一般记作(a ,a ).第二、四象限两坐标轴夹角平分线上的点的横、纵坐标互为相反数,一般记作(a ,-a ).4.若1122(,),(,)A a b B a b 在平行于x 轴的直线上,则1212,a a b b ≠=若1122(,),(,)A a b B a b 在平行于y 轴的直线上,则1212,a a b b =≠ 2.•A 4•B O 2 例3基础训练一、选择题(本大题共4小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.设点A(m,n)在x轴上,位于原点的左侧,则下列结论正确的是()A. m=0,n为一切数B. m=O,n<0C. m为一切数,n=0D. m<0,n=02.在已知M(3,-4),在x轴上有一点与M的距离为5,则该点的坐标为()A. (6,0)B. (0,1)C. (0,-8)D. (6,0)或(0,0)3.如右图,若在象棋盘上建立直角坐标系,使“炮”位于点(-2,1),“帅”位于点(1,-1),则“卒”位于点().A(1,3) B(-2,1) C(-1,2) D(3,2)4.如果同一直角坐标系中两个点的横坐标相同(横坐标不为0),那么过这两点的直线()A是x轴或平行于x轴 B是y轴或平行于y轴 C经过原点 D经过(1,0)二、填空题(本大题共3小题,请把正确答案填在题中的横线上)5.若点P(m+3,2m-1)在x轴上,则m的值是______6.点A(3,-4)到x轴的距离为___________,到y轴的距离为___________.到原点的距离为___________.7.已知点Q(a+2,5a-3)在y轴上,则a=_______三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)8.由三个实数 -2,5,0在平面内可以组成几个横坐标与纵坐标不相等的点?请你写出这几个点的坐标.9.若P(a,b)在第二象限,Q(c,d)在第三象限,则点M(a+c,b2d)在第几象限?拓展延伸一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.在直角坐标系中,点p(-1,-m2)一定在()A 第一象限B 第二象限C 第三象限D 第四象限2.如果点M(a+b,ab)在第二象限,则点N (a,b)在()A 第一象限B 第二象限C 第三象限D 第四象限3.点P(x 1,y 1)和P 2(x 2,y 2),如果P 1P 2=12x x ,那么P 1P 2的位置是( )A P 1P 2必在x 轴上B P 1P 2必在y 轴上C P 1P 2 ∥x 轴或 P 1、P 2在x 轴上D P 1P 2 ∥y 轴或 P 1、P 2在y 轴上二、填空题(本大题共3小题,请把正确答案填在题中的横线上)4.若m >0,n <0,则点P (m ,n )到x 轴的距离是___________,到y 轴的距离是___________,到原点的距离为___________.5.平面直角坐标系中x 轴的上方有一点P ,它到x 轴的距离为2,到y 轴的距离为3,则P点坐标为___________6.(1)若y (m,3-m )是第二象限内的点,则必须满足条件___________________(2)已知点M (x,y ),①若xy=0,则点M 在______________;②若xy>0,则点M 在______________;③若xy<0,则点M 在 _____________ ; ④若yx =0,则点M 在 _______________. 三、解答题7.如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P 的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.确定位置、平面直角坐标系(4)课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1、点P(-1,5)关于x 轴对称的点的坐标是( )A 、(1,-5)B 、(-1,-5)C 、(1,5)D 、(5,1)2、点P(-5,6)关于原点对称的点的坐标是( )A 、(-5,-6)B 、(5,6)C 、(6,-5)D 、(5,-6)3、连接A (1,2), B (-3,2), C (-1,-1) 三点所成的三角形是( )A 锐角三角形B 等腰三角形C 直角三角形D 等边三角形4、已知三点A 、B 、C ,A 点关于原点中心对称点是B ,B 关于x 轴的对称点是C ,若C 点(-7,4),则A 的坐标是( )A (7,4)B (7,-4)C (-7,-4)D 无法确定5、若A (a, b )B (b, a)表示同一个点,那么这个点一定在( )A 第二、四象限角平分线上B 第一、三象限角平分线上C 平行x 轴的直线上D 平行y 轴直线上典型例题分析例1:在平面直角坐标系中,描出下列各点:(1) A (1,2), B(-1,2)(2) C (1,25-), D (1,25--) 点拨:观察图中点A 与点B ,点C 与点D 的位置有什么特点,结合每组点的坐标特点,想一想为什么?自己再取一组同样特点的点,再试一试,结论是否一样.(3) 写出点(-5,2)关于y 轴的对称点的坐标_______.例2:在平面直角坐标系中,描出下列各组点:(1) M (1,2), N (1,-2)(2) P (-2,5), Q (-2,-5)(3) A(-2,1), B(2,-1)点拨:观察图中M 点与N 点,P 点与Q 点A 点与B 点的位置有什么特点,结合每组点的坐标特点,想一想为什么?(3)写出(-5,2)关于x 轴的对称点的坐标______,关于原点对称的点的坐标______ 根据以上两例总结:关于x 对称的两个点,横纵坐标有什么关系? 关于y 对称的两个点,横纵坐标有什么关系? 关于原点对称的两个点,横纵坐标有什么关系?对称点的坐标关系:P(a, b)关于x 轴的对称点为______;P(a, b)关于y 轴的对称点为______;P(a, b)关于原点的对称点为______.基础训练一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.已知三点A 、B 、C ,A 点关于原点中心对称点是B ,B 关于x 轴的对称点是C ,若C 点(-7,4),则A 的坐标是( )A (7,4)B (7,-4)C (-7,-4)D 无法确定2.在平面直角坐标系内,下列各结论成立的是()A平面内任一点与两坐标轴的距离相等B若点P(a, b)的坐标满足x y=0,那么点P一定是x轴或y轴上的点C点P(a, b)到x轴的距离是b,到y轴的距离是aD坐标(2,3)的点和坐标(-2,3)的点关于x轴对称3.若A(a, b)B (b, a)表示同一个点,那么这个点一定在()A第二、四象限角平分线上B第一、三象限角平分线上C平行x轴的直线上D平行y轴直线上二、填空题4.点A(4,-3)关于x轴对称点B的坐标为______点A(4,-3)关于y轴对称点C的坐标为______点A(4,-3)关于原点对称点D的坐标为______5.如果点M(m,-5)和点N(3,n)关于原点对称,那么3m+2n=_____三、解答题6.写出下列点关于x轴对称、y轴对称、原点对称的点的坐标.(1)(2,-3)(2)(-3,2)(3)(0,-3)(4)(2,0)7.已知点A(a,2),B(-3,b),根据下列条件求出a、b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB//y轴;8、现在方格纸上画出直角坐标系,再按要求完成下列各题:(1)描出A(-2,3),B(2,-3),C(4,-3),D(0,3)四点;(2)顺次连接AB,BC,CD,DA所得的图形是_____;拓展延伸一、选择题1.若A(a,-b)B (-b, a)表示同一个点,那么这个点一定在()A第二、四象限角平分线上B第一、三象限角平分线上C平行x轴的直线上D平行y轴直线上二、填空题2.点B(m+1, 3m-5)到x轴的距离是它到y轴距离的一半,(B点的横、纵坐标均大于0),则m的值为____.三、解答题3.平行四边形四个顶点的坐标分别为A(-3,0)B(1,0)第三个顶点C在y轴上,且与x 轴的距离为三个单位,求第四个顶点的坐标.4.在坐标系中描出下列各点,并给各点顺次连接起来:(4,4)、(5,4)、(5,5)、(4,5)、(4,4),能得到什么图形?5. 以点A(3,0)为圆心,以5为半径画一圆,试写出圆与坐标轴的交点坐标.确定位置、平面直角坐标系(5)课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1、写出各个象限内的点的横、纵坐标的符号第一象限:(,),第二象限:(,),第三象限:(,),第四象限:(,).2、x轴上的点的_____坐标为0,y轴的点的_____坐标为0;3、平行于x轴的直线上的点的____坐标相同,平行于y轴的直线上的点的____坐标相同;4、平面内任意一点P(m,n),到x轴的距离为_____,到y轴的距离为_____,到原点的距离的为______.5、P(3,-4)在_____象限,到x轴的距离为_____到y轴的距离为_____;6、已知A(m,n),点B与A关于y轴对称,点C与A关于x轴对称,点D与A关于原点对称,则点B、C、D的坐标分别为________________基础训练一、选择题(本大题共2小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1、等腰△ABC,AB=AC,要建立直角坐标求各顶点的坐标,你认为最合理的建立方法是()A、以BC中点O为坐标原点,BC所在直线为x轴,AO所在直线为y轴B、以B为坐标原点,BC所在直线为x轴,过B点作x轴的垂线为y轴C、以A为坐标原点,平行于BC的直线为x轴,过A作x轴的垂线为y轴D、以C为坐标原点,BC所在直线为x轴,过C点作x轴的垂线为y轴2、已知点A(2,4),B(-2,2),C(x,2)且△ABC的面积为1,则点C的坐标为( ).A .(-3,2)或(-1,2)B .(9,2) C.(-1,2) D .(0,2)二、填空题3.如图,以正方形ABCD的AB边所在直线为x轴,AB中点为原点建立坐标系,若AB=6,则A、B、C、D的坐标分别为_____________________.4. 如图,已知1(10)A,,2(11)A,,3(11)A-,,4(11)A--,,5(21)A-,,,则点2007A的坐标为______________.三、解答题6.在一次“寻宝”游戏中,小明已经找到坐标为A(-4,3)和B(4,-3)的两个标志点,同时也知道藏宝地点的坐标为(3,6),除此以外不知道其他信息,小明非常想找到宝藏,但不知道给定的直角坐标系,你能帮助他吗?用坐标表示平移课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1、点P(-5,1)沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位,得到点的坐标是2、在平面直角坐标系中,已知点A(2,0),B(1,-2),若E(2,2),F(1,0),则线段EF由线段AB 得到;若M(-1,0),N(-2,-2),则线段MN由线段AB 得到.3、在平面直角坐标系中,按照同样的规律对某一图形上的各个点的坐标进行变换,有一点的坐标(1,1)变为(2,1),如果以点坐标为 (x,y)则变化后为______________典型例题分析例1:点P(5,a )与点q(b,4)关于y 轴对称, 则a= , b= .[点拨] 点P 的对称性:点P(x ,y)关于x 轴的对称点是1(,)P x y - 点P(x ,y)关于y 轴的对称点是2(,)P x y -; 点P(x ,y)关于原点的对称点是3(,)P x y --解:a=4 b=-5例2:如图所示,下列叙述正确的是( ). A .由图(1)到图(2),三角形向上平移了1个单位长度,各点的纵坐标保持不变,横坐标分别加1 B .由图(1)到图(3),三角形被纵向压缩21,各点的纵坐标分别乘以21, 横坐标保持不变C .由图(1)到图(4),三角形被纵向压缩21,各点的纵坐标分别乘以21, 横坐标保持不变D .由图(1)到图(5),两个三角形关于原点成中心对称,各点的纵坐标分别乘以-1,横坐标保持不变.解:B[总结] 图形上点的坐标变化与图形变化间的关系 1.纵坐标保持不变,横坐标分别变成原来的k 倍: (1)当k >1时,原图形被横向伸长为原来的k 倍;’ (2)0<k <1时,原图形被横向压缩为原来的k 倍. 2.横坐标保持不变,纵坐标分别变成原来的k 倍: (1)当k >1时,原图形被纵向伸长为原来的k 倍,(2)当0<k <1时,原图形被纵向压缩为原来的k 倍. 3.纵坐标保持不变,横坐标分别加k :(1)当k 为正整数时,原图形形状大小不变,原图形向右平移k 个单位长度;(5)(4)(2)(2)当k为负整数时,原图形形状大小不变,原图形向左平移k个单位长度.4.横坐标保持不变,纵坐标分别加k:(1)当k>0时,原图形形状大小不变,原图形向上平移k个单位;(2)当k<0时,原图形形状大小不变,原图形向下平移k个单位.5.横坐标保持不变,纵坐标分别乘一1,所得的图形与原图形关于横轴成轴对称.6.纵坐标保持不变,横坐标分别乘一1,所得的图形与原图形关于纵轴成轴对称.7.横、纵坐标分别乘一1,所得的图形与原图形关于原点成中心对称图形.8.横、纵坐标分别变成原来的k倍:(1) 当k>1时,所得的图形与原图形相比,形状不变,边长放大了k倍;(2)当0<k<1时,所得的图形与原图形相比,形状不变,边长缩小了k倍.基础训练一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.将某图形的各顶点的横坐标都减去5,纵坐标保持不变,则该图形 ( ) A.横向向右平移5个单位 B.横向向左平移5个单位C.纵向向上平移5个单位 D.纵向向下平移5个单位2. △ABC的三个顶点的坐标为A(1,0),B(3,0)C(2,-4),将△ABC的各点的横坐标都乘以-1,得△DEF,则()A、△DEF与△ABC关于x轴对称B、△DEF与△ABC关于y轴对称C、△DEF与△ABC关于坐标原点对称D、△DEF与△ABC向下平移1个单位得到的3.在直角坐标系中, 点P(-2,3)向右平移3个单位长度后的坐标为 ( )A. (3,6)B. (1,3)C. (1,6)D. (3,3)二、填空题4.在平面直角坐标系中,一个图形上各点的纵坐标不变,横坐标分别加-4,所得图形与原图形相比,.5.在平面直角坐标系中,一个图形沿x轴正方向平移3个单位,再沿y轴负方向平移4个单位,所得图形的坐标是得到.6.三角形的三个顶点的横坐标保持不变,纵坐标变为原来的3倍,所得三角形与原三角形相比,,面积为原来的.三、解答题7. 下图是10×5的正方形网格,每个小正方形的边长均为单位1,将△ABC向右平移4个单位,得到△A1B1C1,再把△A1B1C1绕点A1逆时针旋转90°,得到△A1B2C2. 请你画出△A1B1C1和△A1B2C2,并求出△A1B1C1和△A1B2C2顶点的坐标.7图拓展延伸一、选择题1.某同学将直角坐标系中点A 的横坐标乘2再加2,纵坐标减2再除以2,点A 恰好落在原点上,则点A 的坐标为( ) A 、(-1,-2) B 、(-2,1) C 、(-1,2) D 、(2,-1)2.将图1中各点的横坐标不变,纵坐标分别乘以-1,所得图形为 ( )二、填空题3. 图形的各点的横坐标保持不变,纵坐标分别加3,所得图形与原图形的关系是 .4. 如多边形各个顶点的横坐标保持不变,纵坐标分别乘以-1,那么所得到的图形与原多边形相比的变化是________________;如多边形各个顶点的纵坐标保持不变,横坐标分别乘以-1,那么所得到的图形与原多边形相比的变化是________________5. 点A (a ,b )和B 关于x 轴对称,而点B 与点C (2,3)关于y 轴对称,那么,a= _______ , b=_______ ,点A 和C 的位置关系是________________. 三、解答题 6.在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1 ,第二次将△OA 1B 1变换成△OA 2B 2 ,第三次将△OA 2B 2变换成△OA 3B 3 …….已知A (1,3),A 1(2,3), A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA 3B 3变换成△OA 4B 4 ,则A 4的坐标是 ,B 4的坐标是 .(2)若按以上规律将△OAB 进行n 次变换,得到△OA n B n ,推测A n 的坐标是 ,B n 的坐标是 .图1。
人教版初中七年级下册数学第七章《平面直角坐标系》检测练习题
七年级下学期第七章《平面直角坐标系》检测题一、耐心选一选。
(每题3分,共30分)1、下列各点中,在第二象限的点是 ( ) A .(5,3) B .(5,-3) C .(-5,3) D .(-5, -3)2、已知坐标平面内点M(a,b)在第一象限,那么点N(b, -a )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是 ( ) A .(4,2) B .(-2,4) C .(-4,-2) D .(2,4)4、若点P (x,y )的坐标满足xy=0(x ≠y),则点P 在 ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上5、已知点P (a,b ),a b >0,a +b <0,则点P 在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6、平面直角坐标中,和有序实数对一一对应的是 ( ) A .x 轴上的所有点 B .y 轴上的所有点 C .平面直角坐标系内的所有点 D . x 轴和y 轴上的所有点7、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是 ( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 8、点E 与点F 的纵坐标相同,横坐标不同,则直线EF 与y 轴的关系是 ( ) A .相交 B .垂直 C .平行 D .以上都不正确 9、将某图形的横坐标都减去2,纵坐标不变,则该图形 ( ) A .向右平移2个单位 B .向左平移2 个单位 C .向上平移2 个单位 D .向下平移2 个单位10、已知平面直角坐标系内点),(y x 的纵、横坐标满足2x y ,则点),(y x 位 于( )A 、 x 轴上方(含x 轴)B 、 x 轴下方(含x 轴)C 、 y 轴的右方(含y 轴)D 、 y 轴的左方(含y 轴) 二、仔细填一填。
人教版七下数学7.1平面直角坐标系专题练习(含答案)
平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
17.2.1平面直角坐标系(教案练习)
17.2.1平面直角坐标系同步练习时间:30分钟,总分:100分班级:_____________ 姓名:_____________ 一、选择题(每小题5分,共30分)1.在平面直角坐标系中,点M(-4,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,下列各点中在第二象限的是()A.(1,1)B.(1,-2)C.(-3,-1)D.(-2,4)3.若点P(m-1,m+2)在y轴上,则m的值为()A.1 B.-1 C.2 D.-24.点P(2,-4)到y轴的距离是()A.2 B.-4C.-2D.45.若点P(m,1)在第二象限内,则点Q(1-m,-1)在()A.第三象限B.x轴负半轴上C.第四象限D.y轴负半轴上6.如图,建立适当的直角坐标系后,正方形网格上B、C的坐标分别为(0,1),(1,-1),那么点A的坐标为()A.(-1,2)B.(2,-1)C.(-2,1)D.(1,-2)二、填空题(每小题5分,共30分)7.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是______________.8.在平面直角坐标系中,点A(-5,4)在第___________象限.9.点M(3,-1)到y轴的距离是__________.10.若点A(m,-n)在第二象限,则点B(—m,|n|)在第________象限.11.若点A(a+3,a-2)在y轴上,则a=________.12.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(-1,-2),“馬”的坐标为(2,-2),则“兵”的坐标为__________.三、解答题(共40分)13.(本题满分12分)如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.14.(本题满分14分)已知:如图,在平面直角坐标系中,A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1).(1)继续填写A5(_________),A6(_________),A7(_________),A8(_________),A9(_________),A10(_________),A11(_________);(2)依据上述规律,写出点A2018、A2019.15.(本题满分14分)已知平面直角坐标系中有一点P(2m+1,m-3).(1)若点P在第四象限,求m的取值范围;(2)若点P在y轴上,求m的值;(3)若点P到y轴的距离为3,求点P的坐标.参考答案一、选择题:3.【答案】A.【解析】∵点P(m-1,m+2)在y轴上,∴m-1=0,解得m=1.故选A.4.【答案】A.【解析】点P(2,-4)到y轴的距离是2.故选A.5.【答案】C.【解析】∵点P(m,1)在第二象限内,∴m<0,1-m>0,∴点Q(1-m,-1)在第四象限.故选C.6.【答案】A.【解析】如图所示:点A的坐标为:(-1,2).故选A.二、填空题:7.【答案】8排13号.【解析】根据题意可知前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.8.【答案】二.【解析】∵-5<0,4>0,∴点A在第二象限.故答案为:二.9.【答案】3.【解析】点M(3,-1)到y轴的距离是3.故答案为:3.10.【答案】一.【解析】∵点A(m,-n)在第二象限,∴m<0,-n>0,∴—m>0,|n|>0,∴点B(—m,|n|)在第一象限.故答案为:一.11.【答案】—3.【解析】∵点A(a+3,a-2)在y轴上,∴a+3=0,解得a=—3.故答案为:—3.12.【答案】(-3,1).【解析】∵“帥”的坐标为(-1,-2),“馬”的坐标为(2,-2),建立如图所示的坐标系,则“兵”的坐标为(-3,1).三、解答题:13.【答案】(1)略;(2)(1,0),(-4,3);(3)略.【解析】(1)如图所示:(2)由平面直角坐标系可知,教学楼的坐标为(1,0),体育馆的坐标为(-4,3);(3)行政楼的位置如图所示.14.【答案】(1)A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3);(2)(505,505),(-505,505).【解析】(1)A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3);(2)通过观察可得数字是4的倍数的点在第三象限,4的倍数余1的点在第四象限,4的倍数余2的点在第一象限,4的倍数余3的点在第二象限;∵2018÷4=506…2,2019÷4=506…3,∴点A2018在第一象限,A2019在第二象限,∴A2018(505,505),A2019(-505,505).15.【答案】(1)132m-<<;(2)12m=-;(3)(3,-2)或(-3,-5).【解析】(1)由题意可得21030mm+>⎧⎨-<⎩,解得:132m-<<;(2)∵点P在y轴上,∴2m+1=0,解得12m=-;(3)由题意可知|2m+1|=3,解得m=1或m=-2.当m=1时,得P(3,-2);当m=-2时,得P(-3,-5).综上所述,点P的坐标为(3,-2)或(-3,-5).。
《平面直角坐标系》经典练习题
《平面直角坐标系》章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限8、如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.考点2:点在坐标轴上的特点x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0)1、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。
考点3:考对称点的坐标知识解析:1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。
2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。
(基础)坐标系知识 巩固练习全部整理 含参考
平面直角坐标系(基础)一、选择题1.为确定一个平面上点的位置,可用的数据个数为().A.1个B.2个C.3个D.4个2.下列说法正确的是().A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置D.(m,n)和(n,m)表示的位置不同3.(2016•大连)在平面直角坐标系中,点M(1,5)所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m,n)在第三象限,则点Q(-m,-n)在().A.第一象限B.第二象限C.第三象限D.第四象限5.知点P(m+3,2m+4)在y轴上,那么点P的坐标是().A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)二、填空题7.已知有序数对(2x-1,5-3y)表示出的点为(5,2),则x=________,y=________.8.某宾馆一大楼客房是按一定规律编号的,例如房间403号是指该大楼中第4层第3个房间,则房间815号是指第________层第________个房间;第6层第1个房间编号为________.9.点P(-3,4)到x轴的距离是________,到y轴的距离是________.10.指出下列各点所在象限或坐标轴:点A(5,-3)在_______,点B(-2,-1)在_______,点C(0,-3)在_______,点D(4,0)在_______,点E(0,0)在_______.11.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.12.(2015•安溪县模拟)若点(3﹣x,x﹣1)在第二象限,则x的取值范围是.三、解答题13.在图中建立适当的平面直角坐标系,使A、B两点的坐标分别为(-4,1)和(-1,4),写出点C、D的坐标,并指出它们所在的象限.14.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?15.已知A,B,C,D的坐标依次为(4,0),(0,3),(-4,0),(0,-3),在平面直角坐标系中描出各点,并求四边形ABCD的面积.答案、分析一、选择题1.答案B.2.答案B.3.答案B;析:四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).4.答案A;析:因为点P(m,n)在第三象限,所以m,n均为负,则它们的相反数均为正.5.答案B;析:m+3=0,∴m=-3,将其代入得:2m+4=-2,∴P(0,-2).二、填空题7.答案3,1;析:由2x-1=5,得x=3;由5-3y=2,得y=1.8.答案8,15,601;9.答案4,3;析:到x轴的距离为:│4│=4,到y轴的距离为:│-3│=3.10.答案第四象限,第三象限,y轴的负半轴上,x轴的正半轴上,坐标原点.11.答案(﹣3,4)析:解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).12.答案x>3;析:解:∵点(3﹣x,x﹣1)在第二象限,∴,解不等式①得,x>3,解不等式②得,x>1,所以不等式组的解集是x>3.故答案为:x>3.三、解答题13.解:建立平面直角坐标系如图:得C(-1,-2)、D(2,1).由图可知,点C在第三象限,点D在第一象限.14.解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.15.解:描点如下:14443242ABCD AOBS S==⨯⨯⨯=四边形三角形坐标平面内图形的轴对称和平移(基础)一、选择题1.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)2.平面直角坐标系中,点P 的坐标为(-5,3),则点P 关于x 轴的对称点的坐标是()A.(5,3)B.(-5,-3)C.(3,-5)D.(-3,5)3.如图,△COB 是由△AOB 经过某种变换后得到的图形,请同学们观察A 与C 两点的坐标之间的关系,若△AOB 内任意一点P 的坐标是(a,b),则它的对应点Q 的坐标是().A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)4.(2016•贵港)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(-1,1)B.(-1,-2)C.(-1,2)D.(1,2)5.在平面直角坐标系中,将某个图象上各点的横坐标都加上3,得到一个新图形,那么新图形与原图形相比().A.向右平移3个单位B.向左平移3个单位C.向上平移3个单位D.向下平移3个单位6.(2015春•赵县期末)线段CD 是由线段AB 平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D 的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)二、填空题7.点A(-3,0)关于y 轴的对称点的坐标是______.8.点P(2,-1)关于x 轴对称的点P′的坐标是______.9.在平面直角坐标系中,点A(1,2)关于y 轴对称的点为B(a,2),则a=_____.10.通过平移把点A(1,-3)移到点A 1(3,0),按同样的平移方式把点P(2,3)移到点P 1,则点P 1的坐标是__________.11.(2016•广安)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A′的坐标为.12.(2014秋•嘉鱼县校级月考)点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=1对称的坐标是.三、解答题13.已知点P(a+1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.14.如图,正方形ABCD 关于x 轴、y 轴均成轴对称,若这个正方形的面积为100,请分别写出点A、B、C、D 的坐标.15.(2014春•环翠区校级期末)如图,回答下列问题:(1)将△ABC 沿x 轴向左移一个单位长度,向上移2个单位长度,则A 1的坐标为,B 1的坐标为,C 1的坐标为.(2)若△ABC 与△A 2B 2C 2关于x 轴对称,则A 2的坐标为,B 2的坐标为,C 2的坐标为.答案、分析一、选择题1.答案B;2.答案B;3.答案D;析:观察图形可得,△COB 与△AOB 关于x 轴对称,则P (a,b)关于x 轴对称点坐标为(a,-b).4.答案A;析:将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,即坐标变为(1-2,-2+3),即点A′的坐标为(-1,1).故选A.5.答案A .6.答案C;析:解:平移中,对应点的对应坐标的差相等,设D 的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D 的坐标为(1,2).故选:C.二、填空题7.答案(3,0);8.答案(2,1);9.答案-1;析:∵点A(1,2)关于y 轴对称的点为B (a,2),∴a=-1.10.答案(4,6);析:从点A 到A 1点的横坐标从1到3,说明是向右移动了3-1=2,纵坐标从-3到0,说明是向上移动了0-(-3)=3,那点P 的横坐标加2,纵坐标加3即可得到点P 1.则点P 1的坐标是(4,6).11.答案(﹣2,2).12.答案(1,0),(1,2);析:解:如图所示:点P(1,2)关于直线y=1对称的点的坐标是(1,0);关于直线x=1对称的坐标是:(1,2).故答案为:(1,0),(1,2).三、解答题13.解:依题意得p 点在第四象限,∴10210a a +>⎧⎨-<⎩,解得:-1<a<12,即a 的取值范围是-1<a<12.14.解:设正方形的边长为a.则2a =100∴a=10∴A(5,5),B(-5,5),C(-5,-5),D(5,-5).15.解:(1)A(3,0),B(﹣2,4),C(0,﹣1),将△ABC 沿x 轴向左移一个单位长度,向上移2个单位长度,则A 1的坐标为(3﹣1,0+2),B 1的坐标为(﹣2﹣1,4+2),C 1的坐标为(0﹣1,﹣1+2),即:A 1的坐标为(2,2),B 1的坐标为(﹣3,6),C 1的坐标为(﹣1,1),故答案为:(2,2),(﹣3,6),(﹣1,1);(2)若△ABC 与△A 2B 2C 2关于x 轴对称,则A 2的坐标为(3,0),B 2的坐标为(﹣2,﹣4),C 2的坐标为(0,1),故答案为:(3,0),(﹣2,﹣4),(0,1).《平面直角坐标系》全章复习与巩固(基础)巩固练习一、选择题1.点P(0,3)在().A.x轴的正半轴上B.x的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)3.将某图形的横坐标减去2,纵坐标保持不变,可将图形().A.横向向右平移2个单位B.横向向左平移2个单位C.纵向向右平移2个单位D.纵向向左平移2个单位4.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限 C.第三象限 D.第四象限5.点P的坐标为(3a-2,8-2a),若点P到两坐标轴的距离相等,则a的值是().A.23或4B.-2或6C.23 或-4D.2或-66.如图是被墨迹污染的旅游区各景点地图,隐约可见,第一景点的坐标为(0,3),第二景点的坐标为(5,3),景区车站坐标为(0,0),则车站大约在().A.点A B.点B C.点C D.点D7.若点A(m,n)在第二象限,则点B(|m|,-n)在().A.第一象限B.第二象限C.第三象限D.第四象限8.点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为().A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)二、填空题9.如图,若点E坐标为(-2,1),点F坐标为(1,-1),则点G的坐标为.GEF10.点P(-5,4)到x轴的距离是,到y轴的距离是.11.若点M在第二象限,到x轴的距离是2,到y轴的距离是3,则M的坐标是.12.若点(a,b)在第二象限,则点(b,a)在第象限.13.将点P(-1,-2)向下平移2个单位,再向右平移3个单位,得到P1,则点P1的坐标是.14.点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为.15.(2015春•道县校级期中)在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有个.三、解答题17.(2016春•潮南区月考)已知三角形ABC的两个顶点坐标为A(﹣4,0),B(2,0),如图,且过这两个点的边上的高为4,第三个顶点的横坐标为﹣1,求顶点C的坐标及三角形的面积.18.(2015春•和县期末)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到三角形ABC,求三角形ABC的面积.19.已知A(0,0),B(9,O),C(7,5),D(2,7),求四边形ABCD的面积.答案、分析一.选择题1.答案C;析:横坐标为0,说明点在y 轴上,又纵坐标大于0,说明点在y 轴的正半轴上.2.答案C;析:∵点A (0,6)平移后的对应点A 1为(4,10),4﹣0=4,10﹣6=4,∴△ABC 向右平移了4个单位长度,向上平移了4个单位长度,∴点B 的对应点B 1的坐标为(﹣3+4,﹣3+4),即(1,1).3.答案B.4.答案A;析:解:由A (a+1,b ﹣2)在第二象限,得a+1<0,b ﹣2>0.解得a <﹣1,b >2.由不等式的性质,得﹣a >1,b+1>3,点B (﹣a ,b+1)在第一象限,故选:A .5.答案D ;析:由题意得:3282a a -=-,解得:2a =或6-.6.答案B;析:根据已知的坐标,可建立平面直角坐标系,如图,由此可得答案.7.答案D;析:第二象限的点横坐标为负,纵坐标为正,所以m<0且n>0,所以|m|>0,-n<0,点B(|m|,-n)在第四象限,故选D.8.答案B;析:在x 轴上点的纵坐标为0,所以m+1=0,可得m=-1,m+3=2,所以P 点的坐标为(2,0),故选B.二.填空题9.答案(1,2);析:由图可知,点G 的横坐标与点F 的横坐标相同,均为1,而纵坐标比点E 的纵坐标大1,所以点点G 的坐标为(1,2).10.答案4,5.11.答案(-3,2).12.答案四;析:由点(a,b)在第二象限,可得a<0,b>0,即得点(b,a)的横坐标大于0,而纵坐标小于0,所以点(b,a)在第四象限.13.答案(2,-4);析:-1+3=2,-2-2=-4.14.答案垂直.15.答案3;析:解:点A 的坐标是(3,4),因而OA=5,坐标轴上到点A (3,4)的距离等于5的点就是以点A 为圆心,以5为半径的圆与坐标轴的交点,圆与坐标轴的交点是原点,另外与两正半轴有两个交点,共有3的点.所以坐标轴上到点A (3,4)的距离等于5的点有3个.故答案填:3.16.答案1.析:∵点A(1-2k,k-2)在第三象限,∴1-2k<0,k-2<0,解得:0.5<k<2,又∵k 为整数,∴k=1.三.解答题17.解:(1)∵AB 边上的高为4,∴点C 的纵坐标为4或﹣4,∵第三个顶点C 的横坐标为﹣1,∴点C 的坐标为(﹣1,4)或(﹣1,﹣4);(2)∵A (﹣4,0),B (2,0),∴AB=2﹣(﹣4)=2+4=6,∴△ABC 的面积=×6×4=12.18.解:(1)如下图;(2)如下图;(3)S △ABC =3×4﹣×2×1﹣×1×4﹣×3×3=4.5.19.解:过点C 作CF⊥x 轴于点F,过D 作DE⊥x 轴于点E 则AE=2,DE=7,BF=2,CF=5,EF=5∴ADE BCFABCD DEFC S S S S ∆∆=++四边形梯形11127(75)52542222=⨯⨯+⨯+⨯+⨯=.。
第11章 平面直角坐标系 沪科版数学八年级上册同步练习(3课时 含答案)
第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.下列各点中,在第二象限的是( )A.(5,3) B.(-5,0) C.(-5,1) D.(-5,-1)2.若点P(m-1,-2)在第四象限,则m的取值范围是( )A.m<1 B.m<0 C.m>1 D.m>03.若教室中5排3列的位置记为(5,3),则3排5列的位置记为________.4.在平面直角坐标系中,若点A(m-1,m+2)在x轴上,则点A的坐标为________.5.在平面直角坐标系中,有一点M(a-2,2a+6),试求满足下列条件的a值或a的取值范围.(1)点M在y轴上;(2)点M在第一象限;(3)点M到x轴的距离为2.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.已知平行四边形的对边平行且相等.以平行四边形ABCD的顶点A为原点,直线AD为x轴建立平面直角坐标系(如图),若B,C两点的坐标分别为(1,3),(5,3),则该平行四边形的面积是________.(第1题)2.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(-2,1),B(-4,5),C(-6,3).求三角形ABC的面积.(第2题)3.在如图所示的平面直角坐标系中,描出以下各点:A(0,0),B(2,5),C(6,6),D(5,0),并顺次连接形成四边形ABCD.求出这个图形的面积.(第3题)第11章 平面直角坐标系11.2 图形在坐标系中的平移1.在平面直角坐标系中,将点(-2,3)向右平移6个单位后得到的点的坐标是( )A.(4,3) B.(-8,3)C.(-2,9) D.(-2,-3)2.在平面直角坐标系xOy中,将三角形ABC平移得到三角形DEF,若点A(-1,3)的对应点为D(2,5),则点B(-3,-1)的对应点E的坐标是( ) A.(1,0) B.(0,1) C.(-6,0) D.(0,-6)3.把点(-2,3)先向上平移4个单位,再向左平移3个单位,得到的点的坐标为__________.4.如图,在平面直角坐标系中,已知点A(-3,3),B(-4,-1),C(-2,1),P(a,b)为三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+5,b-2).(第4题)(1)直接写出点A1,B1,C1的坐标;(2)在图中画出三角形A1B1C1.第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.C 2.C 3.(3,5) 4.(-3,0)5.解:(1)由题意得a-2=0,解得a=2.(2)由题意得{a-2>0,2a+6>0,解得a>2.(3)由题意得|2a+6|=2,解得a=-2或-4.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.12 2.解:S三角形ABC=12×3×2+12×3×2=6.3.解:如图所示.(第3题)S 四边形ABCD =12×2×5+12×(5+6)×4-12×1×6=24.第11章 平面直角坐标系11.2 图形在坐标系中的平移1.A 2.B 3.(-5,7)4.解:(1)A 1(2,1),B 1(1,-3),C 1(3,-1).(2)如图所示,△A 1B 1C 1即为所求.(第4题)。
平面直角坐标系练习卷
第六章平面直角坐标系综合练习卷一、选择题1.下列选项中,是平面直角坐标系的是()ABC D2.如果点()1,3++mmP在x轴上,则点P的坐标为()A()2,0B()0,2C()0,4D()4,0-3.若x轴上的点P到y轴的距离为3,则点P的坐标为()A()0,3B()()0,30,3-或C()3,0D()()3,03,0-或4.如果点()yP,5在第四象限,则y的取值范围是()A0<y B0>y C0≤y D0≥y5.过两点()()5,2,2,2---BA作直线,则直线AB()A平行于y轴B平行于x轴C与y轴相交D无法确定6.在平面直角坐标系中,点()1,22+-xP所在的象限是()A第一象限B第二象限C第三象限D第四象限7.从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的()A正东方向B正西方向C正南方向D正北方向8.小明闭上眼睛前行10米,右转前行10米,左转前行15米,左转前行30米,左转前行25米,这时他的位置在出发点的( )A 左10米处B 左20米处C 右20米处D 和出发点重合9.已知正方形的一个顶点()2,4-A ,当把坐标系先向上平移2个单位长度,再向左平移3个单位长度时,A 点坐标变为( ) A ()4,7- B ()0,1- C ()0,7- D ()4,1-10.如图所示,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别为( )A ()()()4,3,2,3,7,1-B ()()()3,4,2,3,7,1-C ()()()4,3,2,2,7,1-D ()()()3,3,2,2,7,1-11.已知一个平面直角坐标系中,一个单位长度代表1m 长,正东、正北方向分别为x 轴,y 轴的正方向,一辆长为10m 的汽车沿正东方向从甲市开往乙市,若汽车头的坐标变化为()()20,10020,10→,则汽车尾的坐标变化为( ) A ()()20,9020,0→ B ()()10,10010,10→ C ()()10,9020,10→ D ()()10,10020,0→ 12.△DEF 是由△ABC 平移得到的,点()4,1--A 的对应点为()1,1-D ,则点()1,1B 的对应点E ,点()4,1-C 的对应点F 的坐标分别为( ) A ()()4,3,2,2 B ()()7,1,4,3 C ()()7,1,2,2- D ()()2,2,4,3-13.已知点()b a A 2,3在x 轴上方,y 轴左侧,则点A 到x 轴、y 轴的距离分别为( ) A b a 2,3- B b a 2,3- C a b 3,2- D a b 3,2- 14.下列说法正确的说( )A 点()22,1b a P +一定在第一象限B 坐标轴上的点不属于任何一个象限C 点()1,2--A 到x 轴的距离是-1D 平面直角坐标系中点到坐标轴的距离可以是负数15.在平面直角坐标系中,对于平面内任一点()b a ,,若规定以下三种变换①()()()()3,13,1,,,-=-=f b a b a f 如 ②()()()()1,33,1,,,==g a b b a g 如 ③()()()()3,13,1,,,--=--=h b a b a h 如按照以上变换有:()()()()()()3,5,2,32,33,2-=-=-h f f g f 那么等于( ) A ()3,5-- B ()3,5 C ()3,5- D ()3,5- 16.若()()a c B b a A ,,,表示同一点,则这一点在( )A 平行于x 轴的直线上B 第一、三象限两坐标轴夹角的平分线上C 平行于y 轴的直线上D 第二、四象限两坐标轴夹角的平分线上17.过点()3,2-A 且垂直于y 轴的直线交y 轴于点B ,那么B 点的坐标为( ) A ()2,0 B ()0,2 C ()3,0- D ()0,3- 18.若点()n m A ,在第二象限,则点()n m B -,在( )A 第一象限B 第二象限C 第三象限D 第四象限19.在平面直角坐标系中有A 、B 两点,若以B 点为原点建立直角坐标系,则点 A 坐标为()3,2,若以A 点为原点建立直角坐标系(两直角坐标系中x 轴、y 轴的方向分别一致),则B 点的坐标是( ) A ()3,2-- B ()3,2- C ()3,2- D ()3,220.若点()a a P -4,是第一象限内的点,则a 必须满足( ) A 4<a B 4>a C 0<a D 40<<a21.如图,已知△ABC 的顶点坐标分别为()()()1,2,3,0,3,4----C B A ,如将B 点向右平移2个单位长度后再向上平移4个单位长度到达1B 点,若△ABC 的面积为1S ,△C AB 1的面积为2S ,则21,S S 的大小关系为( )A 21S S >B 21S S =C 21S S <D 不能确定x22.在平面直角坐标系中,点()y P ,5到x 轴的距离是5,则P 点所在的象限是( ) A 一或四 B 一 C 四 D 三二、 填空题23.点()y x N ,满足0=xy ,则点P 在( )上。
平面直角坐标系练习题
1.在平面直角坐标系中,OA=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。
(1)求点B 的坐标。
(2)若点P 从点C 以2个单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1个单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒(O ﹤t ﹤7),四边形OPBA 与△OQB 的面积分别记为S 四边形OPBA 与S △OQB ,是否存在时间t,使S 四边形OPBA=2S △OQB ,若存在,求出t 的值,若不存在,试说明理由。
(3)在(2)的条件下,S 四边形QOPB 的值是否不变,若不变,求出其值,若变化,求出其范围。
2.如图,梯形OABC 中,O 为直角坐标系的原点,A 、B 、C 的坐标分别为(14,0)、(14,3)、(4,3),且OC =5,点P 、Q 同时从原点出发作匀速运动.其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)如果点Q 的速度为每秒2个单位,求出发运动5秒时P 、Q 两点的坐标;(2)在(1)的条件下:经过多长时间,线段PQ 恰好将梯形OABC 的面积分成相等的两部分,并求这时点Q 点的坐标.xP Q O CBAy3.已知点)0,(a A 、)0,(b B ,且|2|)4(2-++b a =0. (1)求b a ,的值;(2)在y 轴上是否存在点C ,使得△ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由;(3)点P 是y 轴正半轴上一点,且到x 轴的距离为3,若点P 沿x 轴负半轴以每秒1个长度单位平行移动至Q ,当运动的时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位?写出此时Q 点的坐标.4.在直角坐标系中,A (-4,0),B (2,0),点C 在y 轴正半轴上,且△ABC (1)求点C 的坐标;(2)是否存在位于坐标轴上的点P ,S △ACP =12S △ABC .若存在,请求出P 点坐标,若不存在,说明理由.5.在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》练习
一、单项选择题(共6题,共52分)
1.下列在第四象限的点是()
A.(2,1)B.(5,﹣16)C.(10,0)D.(-2,-9)
2. 点B()在第二象限,则()
A.B.C.D.
3.点P()在轴上,则点P的坐标()
A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)
4.若点P()满足,,则点C在第()象限.A.一B.二C.三D.四
5.若实数满足,则点A()在第()象限.
A.一B.二C.三D.四
6.如果正方形ABCD,A(2,3),B(2,0),C点的横坐标是5,那么D 的坐标为()
A.(5,-1)
B.(5,3)
C.(2,5)
D.(3,5)
二、填空题(共3题,共24分)
1.在平面直角坐标系中,点A(-3,0)与点B(0,4)的距离是_______.
2.若点A(13,m)与B(n,﹣6)关于x轴对称,则m+n=___________.
3.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是________.
三、解答题(共3题,共24分)
1.如图,这是某市部分简图,已知医院的坐标为(1,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.
.
2.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).求这个四边形的面积.
3.已知点A(﹣5,0),B(3,0).
(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标(要有必要的步骤);
(2)在直角坐标平面上找一点C,能满足S△ABC=16的C有多少个?这些点有什么特征?。