14生活中的优化问题举例

合集下载

1.4 生活中的优化问题举例

1.4 生活中的优化问题举例
=3.2-2x(m).
4
高为
由题意知 x>0,x+0.5>0,且 3.2-2x>0,
∴0<x<1.6.
设容器的容积为 V m3,
则有 V=x(x+0.5)(3.2-2x)
=-2x3+2.2x2+1.6x(0<x<1.6).
∴V'=-6x2+4.4x+1.6.
目录
退出
令 V'=0,有 15x2-11x-4=0,
解得
4
x1=1,x2=-15(舍去).
∴当 x∈(0,1)时,V'(x)>0,V(x)为增函数,
x∈(1,1.6)时,V'(x)<0,V(x)为减函数.
∴V 在 x∈(0,1.6)时取极大值 V(1)=1.8,这个极大值就是 V 在
x∈(0,1.6)时的最大值,即 Vmax=1.8.这时容器的高为 1.2 m.
此时 Smax=42=16(m2).
答案:16 m2
目录
退出
2.用总长为 14.8 m 的钢条制作一个长方体容器的框架,如果所
制作容器的底面的一边比另一边长 0.5 m,那么高为多少时容器的容
积最大?并求出它的最大容积.
解:设容器底面短边的边长为 x m,则另一边长为(x+0.5) m,
14.8-4x-4(x+0.5)
思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助
椭圆的方程,可表示出等腰梯形的高.
目录
退出
解:(1)依题意,以 AB 的中点 O 为原点建立平面直角坐标系(如
图所示),则点 C 的横坐标为 x,点 C 的纵坐标为

生活中的优化问题举例

生活中的优化问题举例

利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示的数学问题
解决数学模型
作答
优化问题解决方案
用导数解决数学问题
这是一个典型的数学建模过程
解决优化问题的一般步骤:
(1)审题 (2)建模
(3)解模
(4)回归
温馨提示:用导数解决实际问题,要特
别注意在实际问题中变量的取值范围.
课堂小结
解决优化问题的步骤:
' 当x∈(0,16)时, S x > 0; 当x∈(16,+∞) 时, S' x < 0; .因此,x=16是函数S(x)的 极小值点,也是最小值点.所以,当版心 高为16dm,宽为8dm时,能使四周空白 面积最小.
例2.饮料瓶大小对饮料公司利润的影响
某制造商制造并出售球形瓶装的某种饮料.瓶子的 制造成本是 0.8πr 2 分,其中r(单位:cm)是瓶子的半 径.已知每售出1 mL的饮料,制造商可获利0.2分,且制 造商能制作的瓶子的最大半径为6 cm.那么瓶子半径多 大时,能使每瓶饮料的利润最大和最小?
解:由于瓶子的半径为r,所以每瓶饮料的利润是
y =f
r = 0.2
4 πr 3 - 0.8πr 2 3
r3 2 = 0.8π - r , 0 < r ≤ 6. 3

f'
r
= 0.8π r 2 - 2r = 0
r 0.当r 0,2时, 当r 2,6时, f ' r 0.
0 < x < 2.5
令 V ' = 12x 2 - 52x + 40 = 0
4 x - 1 3x - 10 = 0 10 得: x1 = 1, x 2 = (舍去) 3 '

生活中的优化问题举例(27)

生活中的优化问题举例(27)
解决生活中优化问题的四个步骤 (1)分析实际问题中各量之间的关系,建立实际问题的数学模 型,写出实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最 大(小)者为最大(小)值; (4)写出答案.
整理课件
【解析】设圆锥的高为x cm,则底面半径为 202 xc2m,
其体积为V=1 πx(202-x2)(0<x<20),
3
V′= 1π(400-3x2),令V′=0,
3
解得x1=2 0
3
3 ,x2=
2(0舍去3 ).
3
当0<x<2 0 3 时,V′>0;当 2 0<x3 <20时,V′<0,
整理课件
2.解应用题的思路和方法
解应用题首先要在阅读材料、理解题意的基础上把实际问题抽
象成数学问题,就是从实际问题出发,抽象概括,利用数学知
识建立相应的数学模型,再利用数学知识对数学模型进行分析、
研究,得到数学结论,然后再把数学结论返回到实际问题中去.
其思路如下:
实际问题
数学化 转化成数学问题
问 决题
整理课件
2.在边长为60 cm的正方形铁片的四角切去相等的正方形,再 把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底 的边长是多少时,箱子的容积最大?最大容积是多少?
整理课件
【解析】1.由题意,设矩形边长AD=2x,则AB=4-x2,
∴矩形面积为S=2x(4-x2)=8x-2x3(0<x<2).∴S′=8-6x2.
整理课件
【归纳】解答题1,2时的注意点与解答本题2时的关键点. 提示:(1)解答题1,2时,注意函数的定义域应该是实际问题 情境中符合实际情况的自变量的取值范围. (2)解答题2时,关键是正确地得到函数解析式后对函数极值点 的判断,当函数在给定的区间上只有一个极值点时,该极值点 为最值点.

1.4生活中的优化问题举例(三).ppt1

1.4生活中的优化问题举例(三).ppt1

半径为 6cm时,利润最大 .
y 换一个角度: 如果 我 们不用导 数工具 ,直接 从函数的图象 (图 r3 2 1.4 4)上观察,你有什么发现? f r 0.8π 3 r 从图象上容 易看出,当 r 3 时,
f 3 0,即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
解:⑴P(x) = R(x) – C(x) = – 10x3 + 45x2 + 3240x – 5000 MP (x) = P ( x + 1 ) – P (x) = – 30x2 + 60x +3275 (其中 xN 且 x[1, 20]). ⑵∵ P( x ) = – 30x2 + 90x + 3240 = – 30( x +9 )(x – 12) ∴当 1< x < 12 时, P( x ) > 0, P(x)单调递增, 当 12 <x < 20 时, P( x ) < 0 , P ( x ) 单调递减. ∴ x = 12 时, P(x)取最大值,即年建造 12 艘船时, 公司 造船的年利润最大. ⑶由 MP(x ) = – 30( x – 1) 2 + 3305 (xN 且 x[1, 20]). ∴当 1< x ≤ 20 时,MP (x)单调递减. MP (x)是减函数说明:随着产量的增加,每艘利润与前一 台比较,利润在减少.
4 3 S 3 S S 3 h h 3h 由①得 b= h,代入②,∴l= 3 h 3 h h 3
l′ = 3
S S S S =0, ∴ h = , 当 h < 时, l ′ <0, h > 时,l′>0. 2 4 4 4 h 3 3 3

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。

为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。

在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。

什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。

通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。

在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。

生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。

我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。

以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。

2.打破大目标:学会将大目标分解成小目标,逐步推进。

这样可以减少任务的压力,并更好地管理时间。

3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。

这样可以提高效率,并避免时间的浪费。

4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。

2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。

以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。

合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。

2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。

根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。

3.规律作息:良好的作息习惯对于身体和心理健康至关重要。

合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。

4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。

3. 金融规划金融规划是一个经济优化的问题。

3.4生活中的优化问题举例(1)

3.4生活中的优化问题举例(1)

1dm
512 2x 8, x 0 x
128 解:设版心的高为xcm,则宽为 x dm,
2dm
此时四周空白面积为:
128 s ( x) ( x 4)( 2) 128 x 512 2x 8, x 0 x
128dm2
1dm
x + 4
求导数,有
令s '( x) 2
S '( x) 2
512 , 2 x
512 0, 解得,x=16 (x=-16舍去) 2 x 128 128 于是宽为 8 x 16 当x (0,16)时, s '( x) 0; 当x (16, )时, s '( x) 0;
因此,x=16是函数s(x)的极小值点,也是最小值点。 答:当版心高为16dm,宽为8dm时,能使四周空白面积最小。
解:设容器高为xcm,则底面边长为(30-2x)cm, 则得容器的容积V是x的函数, V(x)=(30-2x)2·x (0<x<15)
=4x3-120x2+900x. ∴V′(x)=12x2-240x+900, 令V′(x)=0,得x=5,或x=15(舍去) 当0<x<5时,V′(x)>0,当5<x<15时,V′(x)<0.
∴f ′(x)=12x2-240x+900, 令f ′(x)=0,得x=5,或x=15(舍去) 当0<x<5时,f ′(x)>0, 当5<x<15时,f ′(x)<0.
∴当x=5时,f (x)取极大值,这个极大值就是f (x)的
最大值. 注意:区间(0,30)为开区间,f (x)无最小值.
512 8, x (0, ) 的最小值。 2)求函数 f ( x) 2 x x 512 8, x (0, ) 解: f ( x) 2 x x 512 令f '( x) 2 2 0, 得:x 16( x 0) x

1.4生活中的优化问题举例

1.4生活中的优化问题举例

练习1、 一条长为l的铁丝截成两段,分别弯成两个 正方形,要使两个正方形的面积和最小, 两段铁丝的长度分别是多少?
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
=
s1
+ s2
=( x)2 4
+( l
- x)2 4
=
1 (2x2 16
-
2lx
+
l2
)
S 1 (4x 2l) 1 (2x l)
生活中经常遇到求利润最大、用料 最省、效率最高等问题,这些问题称 为优化问题,优化问题有时也称为最 值问题.解决这些问题具有非常重要 的现实意义.
通过前面的学习,我们知道,导数是求函 数最大(小)值的有力工具,本节我们运 用导数,解决一些生活中的优化问题。
类型一:求面积、容积的最大问题
例1、海报版面尺寸的设计: 学校或班级举行活动,通常需要张贴海报进行宣传,
解:设版心的高为xdm,则版心的
1dm
m
宽 128 dm,此时四周空白面积为 2dm x
S( x) ( x 4)(128 2) 128 x
2x 512 8 ( x 0) x
S
'(
x
)
2
512 x2
2dm
S(
x)
2
x
512 x
8,S
'(
x)
2
512 x2
令S '(x) 0可解得x 1(6 x -16舍去)
V(x)=x2h=(60x2-x3)/2(0<x<60).

V(x)= 60x - 3 x2 = 0 2
,解得x=0(舍去),x=40.且

四年级上册优化设计答案数学

四年级上册优化设计答案数学

四年级上册优化设计答案数学【篇一:2014最新版小学四年级上册《优化》例题+习题】确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明白事情先后,哪些事情可以同时做。

例:妈妈怎样安排所用的时间最少?下面方案好不好?5+10+20=35(分钟)1.用了43分钟才去上学。

请你合理安排,使刘英起床后用最短的时间就能上学。

2、丽丽长大了,想和妈妈学做菜,星期天要学做一个炒鸡蛋,妈妈告诉她这道菜有以下几项工序:一、思维训练:(1)5人同唱一支歌要5分钟,25人同唱这支歌要()分钟。

(2)3只猫同吃3条鱼要3分钟,9只猫同吃9条鱼要()分钟。

(3)3只猫3天捉了3只老鼠,照这样计算,要在50天里捉50只老鼠需要()只猫。

二、探索方法:1.妈妈在一口小锅里煎鸡蛋,每次只能煎两个鸡蛋,两面都要煎,每面2分钟,煎3个鸡蛋最少要多长时间?煎5个呢?煎7个、8个呢?仔细算一算,看从中你能发现什么?(1)我来探究煎3个鸡蛋的所有方法。

方法二:因为锅里每次只能放二个,所以可以先煎2个,再煎一个,共需() +()=()分钟。

方法三:争取让锅里每次都煎2个鸡蛋,我把鸡蛋编上号,按下表来(2)比较三种煎鸡蛋的方法,煎鸡蛋最优方案是第()种方法。

(3)举一反三算时间:(4)我能填得准:a.每次只能烙两张饼,两面都要烙,每面都要4分钟,请问烙4张饼最快()分钟可以烙完,要烙5张饼,最快()分钟可以烙好。

b.用一只平底锅煎饼,每次只能放两张饼,煎一张饼需要2分钟(规定正反两面各需要1分钟),则煎3张饼至少需要()分钟。

1. 张大妈用平底锅煎烧饼,煎好一面需要3分钟,锅内每次只能放2只烧饼,要煎好10个烧饼,至少需要几分钟?2. 小华每天早上在家烤面包吃。

烤第一面要烤2分钟,烤第二面只需要1分钟就够了。

小华用的架子一次只能放两块面包。

小华每天早上要吃3片面包,最少要烤多长时间?一、参加跳绳比赛的队员最近一次记录四(1四(2如果要进行团体比赛,三局两胜制,你能找出四(1)班胜出四(2)班的策略吗?二、有20颗豆,甲、乙两人轮流取走,每次只能取1颗或2颗,谁取到最后一颗豆谁就赢。

14生活中的优化问题举例学案-吉林省长春市第八中学人教A版高中数学选修2-2(无答案)

14生活中的优化问题举例学案-吉林省长春市第八中学人教A版高中数学选修2-2(无答案)

3.4 生活中的优化问题举例组卷人:孙艳华审卷人:刘德荣[学习目标] 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题..知识点一优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.知识点二利用导数解决生活中优化问题的基本思路优化问题→用函数表示的数学问题优化问题的答案←用导数解决的数学问题知识点三解决优化问题的基本步骤(1)分析实际问题中各变量之间的关系,根据实际问题建立数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求导函数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和极值点的函数值的大小,最大者为最大值,最小者为最小值;(4)依据实际问题的意义给出答案.题型一用料最省问题例1有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的B处,乙厂到河岸的垂足D与A相距50千米,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?跟踪演练1一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?题型二面积、容积的最值问题例2如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?跟踪演练2圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?。

生活中的优化问题举例

生活中的优化问题举例

=v3 -5v2+6 000(0<v≤100).
48 2
(2)Q′= v2 - 16
5v,
令 Q′=0,则 v=0(舍去)或 v=80,
当 0<v<80 时,Q′<0;
当 80<v≤100 时,Q′>0,
∴v=80 千米/时时,全程运输成本取得极小值,即最小值,

Qmin= Q(80)=2
000(元). 3
栏目 导引
第一章 导数及其应用
由V′=12x2-552x+4 320=0,得x1=10,x2=36. ∵0<x<10时,V′>0,10<x<36时,V′<0,x>36时, V′>0, ∴当x=10时,V有极大值V(10)=19 600. 又∵0<x<24, ∴V(10)又是最大值. ∴当x=10时,V有最大值V(10)=19 600. 故当容器的高为10 cm时,容器的容积最大,最大容积是19 600 cm3.
栏目 导引
第一章 导数及其应用
方法归纳 注意利用导数的方法解决实际问题时,如果在定义区间内只 有一个点使f′(x)=0,且函数在这点有极大(小)值,那么不 与端点值比较,也可以知道该点的函数值就是最大(小)值.
栏目 导引
第一章 导数及其应用
2.甲、乙两地相距 400 千米,汽车从甲地匀速行驶到乙 地,速度不得超过 100 千米/时,已知该汽车每小时的运 输成本 P(元)关于速度 v(千米/时)的函数关系是 P= 1 v4- 1 v3+15v.
栏目 导引
用料(费用)最省问题
第一章 导数及其应用
一艘轮船在航行中每小时的燃料费和它的速度的立方 成正比.已知速度为每小时10海里时,燃料费是每小时6元, 而其他与速度无关的费用是每小时96元,问轮船的速度是多 少时,航行1海里所需的费用总和最小? [解] 设速度为每小时 v 海里的燃料费是每小时 p 元,那 么由题设的比例关系得 p=k·v3,其中 k 为比例系数,它

中学《生活中的数学》校本课程教材14页word

中学《生活中的数学》校本课程教材14页word

《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。

小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。

”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为 y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2019美元,以后每半年增加200美元。

生活中的优化问题举例

生活中的优化问题举例
1.4生活中的优化问题
1、实际应用问题的表现形式,常常不是以纯数学模 式反映出来:
首先,通过审题,认识问题的背景,抽象出问题的实质; 其次,建立相应的数学模型, 将应用问题转化为数学问题,再解.
2、求最大(最小)值应用题的一般方法: (1)分析实际问题中各量之间的关系,把实际问题化为 数学问题,建立函数关系式,这是关键一步; (2)确定函数定义域,并求出极值点; (3)比较各极值与定义域端点函数的大小, 结合实际, 确定最值或最值点.
(所说区间的也适用于开区间或无穷区间)
2、要生产一批带盖的圆柱形铁桶,要求每个铁
桶的容积为定值V,怎样设计桶
3、 如图,在二次函数f(x)=
4x-x2的图象与x轴所
y
围成的图形中有一个
内接矩形ABCD,求这
个矩形的最大面积.
x
1、在边长为60cm的正方形铁皮的四角切去相
等的正方形,再把它的边沿虚线折起,做成一 个无盖的方底箱子,箱底边长为多少时,箱子 容积最大?最大容积是多少?
x
60 x
x x
60
说明
1、设出变量找出函数关系式;确定出定义域; 所得结果符合问题的实际意义
2、若函数 f ( x )在定义域内只有一个极值点x0 , 则不需与端点比较, f ( x0 )即是所求的最大值或 最小值.

生活中的优化问题举例

生活中的优化问题举例

当L ' 0时,q 84, 当L ' 0时,q 84,
当产量q为84时,利润L最大
ห้องสมุดไป่ตู้
1 另解:利润L pq C (25 q )q (100 4q ) 8
1 2 q 21q 100 8
b 21 当q 1 84时,L的值最大 2a 4
则 S ( y 4)(x 2) - xy (2) 4x 2 y 8 由(1)式得: y
128 x
x
2
y
x
代入(2)式中得: S ( x) 4 x 256 8( x 0).
256 令S'(x)=0,即4- 2 0 x 256 x 8, 最小面积S 4 8 8 72 (dm 2 ) 8 128 此时y 16(dm) x 8dm 8
3.4 生活中的优化问题举例
问题一:
1:学校或班级举行活动,通常需要张贴 海报进行宣传.现让你设计一张如图所示 的竖向张贴的海报,要求版心面积为128dm2
上、下两边各空2dm.左、右两边各空 1dm.如何设计海报的尺寸,才能使四周 空白的面积最小?
1
设版心宽为x,高为y
则有 xy=128,(1) 另设四周空白面积为S,
问题2:饮料瓶大小对饮料公司利润有影响吗?
你是否注意过,市场上等量的小包装的物 品一般比大包装的要贵些?你想从数学上 知道它的道理吗? 是不是饮料瓶越大,饮料公司的利润越大?

例如:
某制造商制造并出售球形瓶装饮料.瓶子 制造成本是0.8πr2分.已知每出售1ml的饮 料,可获利0.2分,且瓶子的最大半径为6cm.
1)瓶子半径多大时,能使每瓶饮料的利润最大? 2)瓶子半径多大时,每瓶饮料的利润最小?

生活中的节约问题——数学优化问题举例

生活中的节约问题——数学优化问题举例

教学设计生活中的节约问题——数学优化问题举例大兴一中张秀春一.内容和内容解析随着低碳生活逐步深入,节约问题成了人们最为关注的问题了。

而数学中的“优化问题”是现实生活中常碰到的节约问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。

而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值以及用导数求函数的单调性、最值等。

线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益,即解决节约问题。

它在工程设计、经济管理、科学研究等方面的应用非常广泛。

而本节内容主要是应用线性规划和导数解决生活中的节约问题,使学生体会线性规划、导数在解决生活中的节约问题的广泛作用和强大实力。

教材主要在效率、利润、最大容量三个方面举例说明。

从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的节约问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。

二、教学目标:1、知识目标:(1)进一步了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;巩固线性规划问题的一般解法(即图解法);会求线性目标函数的最大值、最小值。

(2)巩固导数的相关概念、性质及导数的意义,用导数求实际问题的最大值、最小值。

理解什么是数学中的优化问题。

2、能力目标:培养学生建模能力及提高学生解决实际问题的能力;同时渗透数形结合、化归的数学思想方法,培养学生的节约意识和“用数学” 的意识及创新能力。

3、情感目标:通过对物资调运、产品安排、下料问题等问题的调查、研究,培养学生的节约意识和习惯,倡导学生的低碳生活,使学生了解社会主义市场经济,建立市场经济意识,焕发学生振兴中华的责任感。

三.教学难点和重点分析重点:线性规划、导数的应用,了解生活中的节能问题,熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案。

14生活中的优化问题举例

14生活中的优化问题举例

2 x 512 8, x 0 x
求导数,有
512 S'(x) 2 x2 ,
令s'(
x)
2
512 x2
0,
解得,x=16 (x=-16舍去)
于是宽为 128 128 8 x 16
第4P页a,ge共27页4 。
当x (0,16)时, s'( x) 0; 当x (16,)时, s'( x) 0;
V.
2
从而h
V
R 2
23
V
2
即h=2R.
可以判断S(R)只有一个极值点,且是最小值点.
答 罐高与底的直径相等时, 所用材料最省.
第1P4a页g,e共271页4 。
问题3:如何使一个圆形磁盘储存更多信息?
例3 磁盘的最大存储量问题
1你知道计算机是如何存 储、检索信息的吗 ? 2你知道磁盘的结构吗 ? 3如何使一个圆环状的磁 盘存储尽可能多的
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
s1
s2
( x)2 4
(l
x)2 4
1 (2x2 2lx l 2 ) 16
第6P页a,ge共27页6 。
S 1 (2x2 2lx l 2 ) 16
S 1 (4x 2l) 1 (2x l)
16
8
令S 0,得x l 2
1.4 生活中的优化问题举例
第1页,共27页。
生活中经常遇到求利润最大、用料
最省、效率最高等问题,这些问题通常
称为优化问题,通过前面的学习,知道, 导数是求函数最大(小)值的有力工具, 本节我们运用导数,解决一些生活中的 优化问题。

生活中的优化问题举例(一)

生活中的优化问题举例(一)

例1:海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行 宣传。现让你设计一张如图3.4-1所示的竖向张贴 的海报,要求版心面积为128dm2,上、下两边各 空2dm,左、右两边各空1dm,如何设计海报的 尺寸,才能使四周空白面积最小?
x
分析:已知版心的面 积,你能否设计出版心 的高,求出版心的宽, 从而列出海报四周的面 积来?
2 .解决实际应用问题时,要把问题中所
涉及的几个变量转化成函数关系式,这需 要通过分析、联想、抽象和转化完成,函 极值 和 端点的函数值 数的最值要由 确定,当定义域是开区间 且 函 数 只 有 一 个 极值时,这个 极值也就是它的 最值 . 3 .生活中经常遇到求利润最大、用料最 省、效率最高等问题,这些问题通常称为 优化问题 .通过前面的学习,我们知道导数 导数 是求函数最大(小)值的有力工具,运用 可以解决一些生活中的 优化问 .
18x -84x
2
3
3 0<x< ,V′=36x-252x2, 14

1 1 由 V′=0 得 x=7或 x=0(舍去). x∈0,7时, V′>0, 1 3 x∈7,14时,V′<0,所以在
1 x=7处,V 有最大值,此
时高为 0.5m.
[答案]
A
当r 0,2时, f r 是减函数, 你能 解释它的实际意义吗?
图1.4 4
y
一、选择题 1 .曲线 y = ln(2x - 1) 上的点到直线 2x - y + 3 = 0 的最短距离为( )
A. 5 C.3 5
[解析]
B.2 5 D.0
设曲线在点 P(x0, y0)处的切线与 2x-y+3=0

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 生活中的优化问题举例
生活中经常遇到求利润最大、用 料最省、效率最高等问题,这些问题 通常称为优化问题,通过前面的学习, 知道,导数是求函数最大(小)值的 有力工具,本节我们运用导数,解决 一些生活中的优化问题。
问题1:海报版面尺寸的设计
例1 学校或班级举行活动,通常需要张贴海报进行宣传,
2、若函数 f ( x )在定义域内只有一个极值点x0 , 则不需与端点比较, f ( x0 )即是所求的最大值或 最小值.
(所说区间的也适用于开区间或无穷区间)
练习3:某种圆柱形的饮料罐的容积一定时,如何确定它 的高与底半径,使得所用材料最省?
解 设圆柱的高为h,底面半径为R.
则表面积为 S(R)=2πRh+2πR2. R>0
3
令 f '(r) 0.8 (r 2 2r) 0
当r 2时, f '(r) 0. 当r (0,2)时, f '(r) 0; 当r (2,6) 时, f '(r) 0. 因此,当r<2时,f’(r)<0,它表示f(r)单调递减,即 半径越示f(r)单调递增,即 半径越大,利润越高; (1)半径为2时,利润最小。这时f(2)<0,表示此种瓶 内饮料的利润还不够瓶子的成本,此时利润是负值;
23
V
2
2R
答 罐高与底的直径相等时, 所用材料最省.
如何解决优化问题?
优化问题
用函数表示的数学问题
优化问题的答案
用导数解决数学问题
生活中的优化问题举例(二)
利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示数学问题
优化问题的答案
解决数学模型
作答
用导数解决数学问题
这节课,我们来继续学习几个优化问题的例子
(2)半径为6时,利润最大。
练习2:在边长为60cm的正方形铁皮的四角切去边长
相等的正方形,再把它的边沿虚线折起(如图),做成一个
无盖的方底铁皮箱.箱底边长为多少时,箱子容积最大?
最大容积是多少? 解: 设箱底边长为 x,则箱高为
h
60
x
箱子容积
V (x) x2(60 x)
2 (0 x 60)
∴函数V (x)在x=40处取得极大值,这个 极大值就是函数V (x)的最大值.
V (40) 402 (60 40) 16000(cm)3 答 :当箱箱底边长为2 40cm时,箱子容积最大,
最大值为16000cm3
h x
说明
1、设出变量找出函数关系式;确定出定义域; 所得结果符合问题的实际意义
x
求导数,有
S'( x)
2
512 x2 ,
令s'(
x)
2
512 x2
0,
解得,x=16 (x=-16舍去)于是宽为128 128 8
x 16
当x (0,16)时, s'( x) 0; 当x (16,)时, s'( x) 0;
因此,x=16是函数s(x)的极小值点,也 是最小值点。所以,当版心高为16dm,宽 为8dm时,能使四周空白面积最小。
h
由V=πR2h,
S(R) 2R
得h
V
V R
2
2R
2
R 2
2V R
2R2.
R
由S ( R)
2V R2
4R
0.
解得R 3
V.
2
当R (0,3 V )时,S(' R) 0;当R (3 V ,)时,S(' R) 0;
2
2
因此,R 3
V
2
是. 函数 S(R)的极小值点,也是最小值点.此时
h
V
R 2
2
由 V (x) 60x 3 x2 0 2
解得 x1=0 (舍), x2=40.
h x
解: 设箱底边长为 x, 箱子容积为h 60 x
V (x) x2(60 x) (0 x 60) 2
2
由 V (x) 60x 3 x2 0
解得
x1=0
(舍),
2
x2=40.
当x∈(0,40)时,V'(x)>0;当x∈(40,60)时,V'(x)<0.
练习4:如图,铁路线上AB段长100km,
C
工厂C到铁路的距离CA=20km.
现在要在AB上某一处D,向C修
一公条路公每路吨千.已米知的铁运路费每之吨比千为米3与:5.为B 了使原料D
A
从供应站B运到工厂C的运费最省,D应修在何处?
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x2 400 x2 km.
• 是不是饮料瓶越大,饮料公司的利润越大?
知识背景
某制造商制造并出售球形瓶装的某种饮料.瓶子制造成 本是0.8πr2分.其中r是瓶子的半径,单位是厘米.已知每出 售1mL的饮料,制造商可获利0.2分,且制造商能制造的瓶 子的最大半径为6cm.
(1)瓶子半径多大时,能使每瓶饮料的利润最大? (2)瓶子半径多大时,每瓶饮料的利润最小?
答:当版心高为16dm,宽为8dm时,海报 四周空白面积最小。
练习1、一条长为l的铁丝截成两段,分别弯 成两个正方形,要使两个正方形的面积和最 小,两段铁丝的长度分别是多少?
解:设两段铁丝的长度分别为x,l-x, 其中0<x<l
则两个正方形面积和为
S
s1
s2
( x)2 4
(l
x)2 4
1 (2x2 2lx l 2 )
16
S 1 (4x 2l) 1 (2x l)
16
8
令S 0,得x l 2
由问题的实际意义可知:
当x l 时, S取最小值. 最小值为 l 2 .
2
32
问题2:饮料瓶大小对饮料公司 利润有影响吗?
• 你是否注意过,市场上等量的小包装的物品 一般比大包装的要贵些?你想从数学上知道 它的道理吗?
解:由于瓶子的半径为r,所以每瓶饮料的利
润为:y
4r 3
f (r) 0.2

3
f '(r) 0.8 (r 2
0.8r 2
2r)
0
0
r
6
当r 2时, f '(r) 0. 当r (0,2)时, f '(r) 0;
当r (2,6) 时, f '(r) 0.
解: 由于瓶子的半径为r,所以每瓶饮料的利 润为: y f (r) 0.2 4r 3 0.8r 2 (0 r 6)
现让你设计一张如图所示的竖向张贴的海报,要求版心面 积为128dm2,上下边各空2dm,左右空1dm,如何设计海报 的尺寸,才能使四周空白面积最小?
解:设版心的高为xcm,则宽为 128 dm,
x
此时四周空白面积为:
128
s( x) ( x 4)(
2) 128
512 x
2x
8, x 0
相关文档
最新文档