高中数学常用逻辑用语总复习

合集下载

高一数学逻辑用语知识点

高一数学逻辑用语知识点

高一数学逻辑用语知识点
以下是 8 条关于高一数学逻辑用语知识点:
1. 命题呀,就像我们说出的一句话,可以判断真假呢!比如“今天天气真好!”这就是一个命题。

2. 全称量词,嘿,那可不得了!像“所有的同学都很努力”,这里的“所有”就是全称量词。

3. 特称量词也很有趣哦,“存在一个数是奇数”,这里的“存在”就是啦。

4. 且命题呀,就像是同时要满足两个条件,好比“既要学习好,又要品德好”。

5. 或命题呢,就像有多个选择,“或者选文科,或者选理科”。

6. 否定命题,不就是把原来的说法否定一下嘛,“这个苹果不是红的”。

7. 充分条件和必要条件,这不就像要去一个地方,坐火车是充分条件,有车票是必要条件。

8. 等价命题就像是双胞胎一样,它们表达的意思几乎一样,比如“2+3=5”和“5=2+3”。

我觉得这些逻辑用语知识点就像是一把打开数学大门的钥匙,让我们能更好地理解和探索数学的奥秘呀!。

高中数学第一章集合与常用逻辑用语高频考点知识梳理(带答案)

高中数学第一章集合与常用逻辑用语高频考点知识梳理(带答案)

高中数学第一章集合与常用逻辑用语高频考点知识梳理单选题1、已知全集U={x|−3<x<3},集合A={x|−2<x≤1},则∁U A=()A.(−2,1]B.(−3,−2)∪[1,3)C.[−2,1)D.(−3,−2]∪(1,3)答案:D分析:利用补集的定义可得正确的选项.由补集定义可知:∁U A={x|−3<x≤−2或1<x<3},即∁U A=(−3,−2]∪(1,3),故选:D.2、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A3、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.B AQ当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.4、2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机坠毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:C分析:因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,根据充分与必要条件的定义即可判断出结果.因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,则“找到驾驶员座舱录音器”不能形成“初步事故原因认定”;而形成“初步事故原因认定”则表示已经“找到驾驶员座舱录音器”,故“找到驾驶员座舱录音器”是“初步事故原因认定”的必要不充分条件,故选:C.5、若a、b为实数,则“ab>1”是“b>1a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:D分析:利用推理判断或举特例说明命题“若ab>1,则b>1a ”和“若b>1a,则ab>1”的真假即可作答.若ab >1成立,取a =−1,b =−2,而−2<1−1,即命题“若ab >1,则b >1a ”是假命题, 若b >1a 成立,取a =−1,b =2,而(−1)⋅2<0,即命题“若b >1a ,则ab >1”是假命题,所以“ab >1”是“b >1a ”的既不充分也不必要条件.故选:D6、下面四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2.其中真命题的个数为( )A .3B .2C .1D .0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x 2=2时,只能得到x 为±√2,由此可判断;对于③,方程x 2+1=0无实数解;对于④,作差可判断.解:x 2-3x +2>0,Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题.当且仅当x =±√2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题.对∀x ∈R ,x 2+1≠0,∴③为假命题.4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.7、若集合A ={1,m 2},集合B ={2,4},若A ∪B ={1,2,4},则实数m 的取值集合为( )A .{−√2,√2}B .{2,√2}C .{−2,2}D .{−2,2,−√2,√2}答案:D分析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.8、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0= 0,0+1=1,故集合B={−2,−1,0,1,2}故选:D多选题9、对于集合A,B,定义A−B={x|x∈A,x∉B},A⊕B=(A−B)∪(B−A).设M={1,2,3,4,5,6},N= {4,5,6,7,8,9,10},则M⊕N中可能含有下列元素().A.5B.6C.7D.8答案:CD分析:根据所给定义求出M−N,N−M,即可求出M⊕N,从而判断即可;解:因为M={1,2,3,4,5,6},N={4,5,6,7,8,9,10},所以M−N={1,2,3},N−M={7,8,9,10},∴M⊕N=(M−N)∪(N−M)={1,2,3,7,8,9,10}.故选:CD10、(多选)下列命题的否定中,是全称量词命题且为真命题的是()A.,x2−x+14<0B.所有的正方形都是矩形R x∃∈C .,x 2+2x +2=0D .至少有一个实数x ,使x 3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x ∈R ,x 2−x +14≥0,是全称量词命题;因为x 2−x +14=(x −12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x 2+2x +2=0,Δ=22−8=−4<0,所以x 2+2x +2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x ,都有x 3+1≠0,如x =−1时,x 3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC11、给定命题p:∀x >m ,都有x 2>8.若命题p 为假命题,则实数m 可以是( )A .1B .2C .3D .4答案:AB分析:命题p 的否定:∃x >m ,x 2≤8是真命题. 再把选项取值代入检验即得解.解:由于命题p 为假命题,所以命题p 的否定:∃x >m ,x 2≤8是真命题.当m =1时,则x >1,令x =2,22<8,所以选项A 正确;当m =2时,则x >2,令x =2.5,2.52<8,所以选项B 正确;当m =3时,则x >3,x 2>9,x 2≤8不成立,所以选项C 错误;当m =4时,则x >4,x 2>16,x 2≤8不成立,所以选项D 错误.故选:AB12、下列四个选项中,q 是p 的充分必要条件的是( ).A .p:{a =0b =0,q:{a +b =0ab =0B .p:{a =1b =1,q:{a +b =2ab =1C .p:{a >0b >0,q:{a +b >0ab >0D .p:{a >1b >1,q:{a +b >2ab >1 R x ∃∈答案:ABC分析:利用充分条件和必要条件的定义判断.A.由a=0,b=0,可得a+b=0,ab=0,反之也成立,∴q是p的充分必要条件;B.由a=1,b=1,可得a+b=2,ab=1;反之也成立,∴q是p的充分必要条件;C.由a>0,b>0,可得a+b>0,ab>0;反之也成立,∴q是p的充分必要条件;D.由a>1,b>1,可得a+b>2,ab>1;反之不成立,.∴q是p的必要不充分条件.例如取a=6,b=12故选:ABC.13、(多选)下列说法中不正确的是()A.集合{x|x<1,x∈N}为无限集B.方程(x−1)2(x−2)=0的解构成的集合的所有子集共4个C.{(x,y)|x+y=1}={y|x−y=−1}D.{y|y=2n,n∈Z}⊆{x|x=4k,k∈Z}答案:ACD分析:根据题设条件利用无限集的定义、集合元素的性质、子集的意义、集合相等的定义逐一判断即可得解. 集合{x|x<1,x∈N}={0},不是无限集,故A中说法不正确;方程(x−1)2(x−2)=0的解构成的集合为{1,2},其所有子集为∅,{1},{2},{1,2},共4个,故B中说法正确;集合{(x,y)|x+y=1}的元素为直线x+y=1上的点,{y|x−y=−1}=R,故{(x,y)|x+y=1}≠{y|x−y=−1},故C中说法不正确;因为{y|y=2n,n∈Z}={⋅⋅⋅,−8,−6,−4,−2,0,2,4,6,8,⋅⋅⋅},{x|x=4k,k∈Z}={⋅⋅⋅,−8,−4,0,4,8,⋅⋅⋅},所以{y|y=2n,n∈Z}⊇{x|x=4k,k∈Z},故D中说法不正确.故选:ACD.填空题14、已知集合A={2,(a+1)2,a2+3a+3},且1∈A,则实数a的值为___________.答案:−1或0.分析:根据题意,考虑到各种可能性,分别解方程,并注意检验集合元素的互异性,即可得到答案.若(a+1)2=1,则a=0或a=−2,当a=0时,A={2,1,3},符合元素的互异性;当a=−2时,A={2,1,1},不符合元素的互异性,舍去若a2+3a+3=1,则a=−1或a=−2,当a=−1时,A={2,0,1},符合元素的互异性;当a=−2时,A={2,1,1},不符合元素的互异性,舍去;所以答案是:−1或0.小提示:关键点点睛:本题考查元素与集合的关系,检验集合元素的互异性排除不符合答案是解题的关键,属基础题.15、右图为由电池、开关和灯泡组成的电路,假定所有零件均能正常工作,则电路中“开关K1和K2有且只有一个闭合”是“灯泡L亮”的________条件.(填“充分不必要”、“必要不充分”“充要”“既不充分也不必要”)答案:充分不必要分析:根据充分必要条件的定义判断即可.当开关K1和K2有且只有一个闭合时,灯泡L亮当灯泡L亮时,开关K1和K2有可能都闭合即电路中“开关K1和K2有且只有一个闭合”是“灯泡L亮”的充分不必要条件所以答案是:充分不必要16、设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B≠∅的集合S有________个.答案:56分析:A的子集一共有26=64个,其中不含有元素4,5,6,7的有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共8个,由此能求出满足S⊆A且S∩B≠∅的集合S的个数.集合A={1,2,3,4,5,6},B={4,5,6,7},满足S⊆A且S∩B≠∅的集合S是集合A的子集,且至少含有4,5,6,7四个元素中的一个,A的子集一共有26=64个,其中满足条件的有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},共8个,因此满足S⊆A且S∩B≠∅的集合S的个数为64−8=56个所以答案是:56小提示:本题主要考查集合子集的概念,属于基础题.解答题17、已知集合A={x|−2<x<5},B={x|m+1≤x≤2m−1}(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.答案:(1)(∁R A)∩B={5};(2)m<3.分析:(1)根据集合的运算法则计算;(2)由A∪B=A得B⊆A,然后分类B=∅和B≠∅求解.(1)当m=3时,B中不等式为4≤x≤5,即B={x|4≤x≤5},∴∁R A={x|x≤−2或x≥5},则(∁R A)∩B={5}(2)∵A∪B=A,∴B⊆A,①当B=∅时,m+1>2m−1,即m<2,此时B⊆A;②当B≠∅时,{m+1≤2m+1m+1>−22m−1<5,即2≤m<3,此时B⊆A.综上m的取值范围为m<3.18、已知集合A={x|2a<x<a+1},B={x|−1<x<5},求满足A⊆B的实数a的取值范围.答案:[−12,+∞)分析:根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.由题意,集合A ={x|2a <x <a +1},B ={x|−1<x <5},因为A ⊆B ,若A =∅,则2a ≥a +1,解得a ≥1,符合题意;若A ≠∅,则,解得−12≤a <1,所求实数a 的取值范围为[−12,+∞). 212115a a a a <+⎧⎪≥-⎨⎪+≤⎩。

高中数学备课资料帮你复习常用逻辑用语

高中数学备课资料帮你复习常用逻辑用语

帮你复习常用逻辑用语一、本章知识网络⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩命题命题及其关系四种命题四种命题的相互关系充分条件与必要条件充分条件与必要条件充要条件且简单的逻辑联结词或非全称量词全称量词与存在量词存在量词含有一个量词的命题的否定二、重点、难点回顾1.命题与其关系(1)写原命题的逆命题、否命题与逆否命题时,比较容易错的是写否命题.原命题是“若p ,则q ”的形式时,否命题应为“若p ⌝,则q ⌝”,既要否定条件,又要否定结论.(2)四种命题形式之间的关系是相对的,如逆命题的逆命题是原命题,逆否命题的逆否命题也是原命题.原命题与逆否命题同真假,原命题与逆命题(或否命题)不一定同真假.由于逆命题与否命题之间的关系是“互为逆否”,因此逆命题与否命题同真假.当原命题的真假不易判断时,常转换为判断它的逆否命题的真假.2.充分条件与必要条件在判断时应注意以下几点:(1)确定一个命题,条件是什么,结论是什么.(2)若原命题为真,则条件是结论的充分条件.(3)若逆命题为真,则原命题中条件是结论的必要条件.(4)若原命题及其逆命题同时为真,则条件(或结论)是结论(或条件)的充要条件.3.简单的逻辑联结词会判断由简单的逻辑联结词构成的命题的真假性.4.全称量词与存在量词(1)全称量词与存在量词的基本特征;(2)含一个量词的全称命题与特称命题的否定.特称命题:()p x A p x ∃∈,,它的否定是::p x A ⌝∀∈,()p x ⌝,全称命题:q x A ∀∈,()q x ,它的否定是::()q x A q x ⌝∃∈⌝,.非常提示:互为逆否命题的两个命题具有相同的真假性与充要条件是本章中两个特别重要的内容,它们在以后的学习中将经常用到,因此,要特别引起同学们的注意.三、学习中应注意的问题1.学习过程中要注意总结解题规律,反思章节知识中的数学思想方法总结解题规律,反思章节知识中的数学思想方法,这是对章节知识的升华,是对学习能力的进一步提高.学习知识要经过由表及里,从量变到质变的转化,经过这个环节的梳理,我们不再以"题海"为终结目标,而是通过真实的感受、愉快的体验、实效的互动,学习数学文化,接纳数学问题,提高数学品位.本章主要的数学思想方法有等价转化思想、逆向思想、递推法等.2.要注意对易错题的总结有用的经验都是在对数学问题的挫折与差异分析中总结出来的.同学们可通过这方面的积累与总结,降低出错率.如,在使用常用逻辑用语的过程中,要注意掌握常用逻辑用语的用法,纠正出现的逻辑错误,用心体会运用常用逻辑用语表述数学内容的准确性、简洁性.四、学习常用逻辑用语的意义正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维.学习常用逻辑用语,要体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流.通过本章的学习,还要努力培养自己观察、比较、抽象、概括、逻辑推理能力,初步形成运用逻辑知识准确地表达数学问题和实际问题的意识和能力,培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观打下基础.。

高中数学常用逻辑用语总复习(pdf版)

高中数学常用逻辑用语总复习(pdf版)

它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )
A.3
B. 2
C.1
D.
例 1 解析:原命题是真命题,则逆否命题一定也是真命题,逆命题为 y f (x) 不过第 四象限,则 y f (x) 是幂函数,很明显是一个假命题,逆命题和否命题等价,所
以否命题也是假命题,真命题的个数只有 1 个
[常用逻辑用语]
常用逻辑用语
命题及其关系
常用 逻辑 用语
充分条件与必要条件 简单的逻辑连接词
命题 四种命题 四种命题间的相互关系 充分条件与必要条件 充分条件、必要条件的四种类型 “且”“或”“非” 命题pq,pq ,p的真假判定
全称量词与全程命题
全称量词与存在量词
存在量词与特称命题
含有一个量词的命题的否定
A. (,2]
B. (2,2)
C. (2,) D.[2,)
解析:命题为真命题,即 (a 2)x2 4x a 1 0 恒成立;
例 2 当 a 2 时,不等式变为 4x 3 0 ,此不等式不能恒成立;当 a 2 时,要是
不等式恒成立,则需满足
a 2 0 14 4(a
2)(a
1)
0
1 解析:根据命题的定义:能判断真假的陈述句,符合条件的只有 C.
答案:C
下列语句是命题的是( )
A.你吃过午饭了吗
B.过点 A 作直线 MN
2 C.同角的余角相等
D.红扑扑的脸蛋
解析:根据命题的定义:能判断真假的陈述句,符合条件的只有 C.
答案:C
已知 f (x) ln(1 x) ln(1 x), x(1,1) ,现有下列命题: 3
D.若 tan 1,则 4
解析:逆否命题是把命题反过来说,再把条件和结论否了.

高三总复习集合与常用逻辑用语

高三总复习集合与常用逻辑用语

第一章集合与常用逻辑用语1.集合与元素(1)概念:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。

构成集合的每个对象叫做这个集合的元素(或成员)(2)集合中元素的特征:1确定性:作为一个集合,必须是确定的2互异性:集合中的元素必须是互异的3无序性:集合与其中元素的排列顺序无关(3)元素与集合的两种关系:(属于)(不属于)(4)集合的分类:有限集,无限集,空集(5)常用的数集及其表示符号名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N+N*Z Q R (6)集合的表示方法:列举法、描述法、图示法(Venn图)2.集合间的基本关系关系自然语言符号表示图示子集集合 A 中的任意一个元素都在集(或A)A BB BA 合B 中(即 x A,则 x B)真子集集合 A 是集合 B 的子集,且集合 B A BBA 中至少有一个元素不在集合 A 中等集集合 A ,B 中的元素完全相同或集A=BA(B)合 A,B 互为子集交集由属于集合 A 且属于集合 B 的所有 A ∩B={x |x∈A B元素组成的集合A,且 x ∈B}并集由所有属于集合 A 或属于集合 B A ∪B={x |x∈A B的元素组成的集合A,或 x∈B}补集由全集 U 中不属于集合 A 的所有U A={x |x∈U,UA且 x≠A} .元素组成的集合3.集合间基本关系的几个结论(1)空集是任意一个集合的子集,是任意一个非空集合的真子集(2)任何一个集合都是它本身的子集, A A。

空集只有一个子集,即它本身。

(3)集合的子集和真子集具有传递性:若A B,B C,则A C;若A B,B C,则A C(4)含有 n 个元素的集合有2n个子集,有2n -1 真子集,有2n -1 非空子集,有2n-2个非空真子集。

4.逻辑联结词(1)命题:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)

高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)

高中数学第一章集合与常用逻辑用语知识汇总大全单选题1、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.2、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.3、设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .4、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B分析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.7、在下列命题中,是真命题的是()A.∃x∈R,x2+x+3=0B.∀x∈R,x2+x+2>0C.∀x∈R,x2>|x|D.已知A={a∣a=2n},B={b∣b=3m},则对于任意的n,m∈N∗,都有A∩B=∅答案:B分析:可通过分别判断选项正确和错误,来进行选择/选项A,∃x∈R,x2+x+3=0,即x2+x+3=0有实数解,所以Δ=1−12=−11<0,显然此方程无实数解,故排除;选项B,∀x∈R,x2+x+2>0,x2+x+2=(x+12)2+74≥74>0,故该选项正确;选项C,∀x∈R,x2>|x|,而当x=0时,0>0,不成立,故该选项错误,排除;选项D,A={a∣a=2n},B={b∣b=3m},当n,m∈N∗时,当a、b取得6的正整数倍时,A∩B≠∅,所以,该选项错误,排除.故选:B.8、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a =−3时,A ={2,14,4}满足集合中元素的互异性,故a =−3满足要求.综上,a =2或a =−3.故选:D .多选题9、已知集合A ={x ∣1<x <2},B ={x ∣2a −3<x <a −2},下列命题正确的是A .不存在实数a 使得A =B B .存在实数a 使得A ⊆BC .当a =4时,A ⊆BD .当0⩽a ⩽4时,B ⊆AE .存在实数a 使得B ⊆A答案:AE分析:利用集合相等判断A 选项错误,由A ⊆B 建立不等式组,根据是否有解判断B 选项;a =4时求出B ,判断是否A ⊆B 可得C 错误,分B 为空集,非空集两种情况讨论可判断D 选项,由D 选项判断过程可知E 选项正确.A 选项由相等集合的概念可得{2a −3=1a −2=2解得a =2且a =4,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A ⊆B ,得{2a −3≤1a −2≥2即{a ≤2a ≥4,此不等式组无解,因此B 错误; C 选项当a =4时,得B ={x ∣5<x <2}为空集,不满足A ⊆B ,因此C 错误;D 选项当2a −3≥a −2,即a ≥1时,B =∅⊆A ,符合B ⊆A ;当a <1时,要使B ⊆A ,需满足{2a −3≥1a −2≤2解得2≤a ≤4,不满足a <1,故这样的实数a 不存在,则当0≤a ≤4时B ⊆A 不正确,因此D 错误; E 选项由D 选项分析可得存在实数a 使得B ⊆A ,因此E 正确.综上AE 选项正确.故选:AE.小提示:本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.10、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④¬p 是¬s 的必要条件而不是充分条件;则正确命题序号是 ( )A.①B.②C.③D.④答案:ABD分析:根据题设有p⇒r⇔s⇔q,但r⇏p,即知否定命题的推出关系,判断各项的正误. 由题意,p⇒r⇔s⇔q,但r⇏p,故①②正确,③错误;所以,根据等价关系知:¬s⇔¬q⇔¬r⇒¬p且¬p⇏¬r,故④正确.故选:ABD11、已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A.0∉M B.2∈M C.−4∈M D.4∈M答案:CD分析:讨论x,y,z的正负数分布情况判断对应代数式的值,即可确定集合M,进而确定正确的选项.当x,y,z均为负数时,x|x|+y|y|+z|z|+|xyz|xyz=−4;当x,y,z两负一正时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z两正一负时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z均为正数时,x|x|+y|y|+z|z|+|xyz|xyz=4;∴M={−4,0,4},A、B错误,C、D正确.故选:CD12、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.13、对任意实数a,b,c,下列命题中真命题是()A.a=b是ac=bc的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.a>b是a2>b2的充要条件D.a<5是a<3的必要条件答案:BD分析:利用充分条件和必要条件的定义进行判断解:∵“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;∵“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;∵“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;∵{a|a<3}{a|a<5},故“a<5”是“a<3”的必要不充分条件,故D为真命题.故选:BD.填空题14、已知A={x∈R|2a≤x≤a+3},B={x∈R|x<-1或x>4},若A⊆B,则实数a的取值范围是________.答案:a<-4或a>2分析:按集合A为空集和不是空集两种情况去讨论即可求得实数a的取值范围.①当a>3即2a>a+3时,A=∅,满足A⊆B;.②当a≤3即2a≤a+3时,若A⊆B,则有{2a≤a+3a+3〈−1或2a〉4,解得a<-4或2<a≤3综上,实数a的取值范围是a<-4或a>2.所以答案是:a<-4或a>215、命题“∃x∈R,x≥1或x>2”的否定是__________.答案:∀x∈R,x<1根据含有量词的命题的否定,即可得到命题的否定分析:特称命题的否定是全称命题,∴命题“∃x∈R,x≥1或x>2”的等价条件为:“∃x∈R,x≥1”,∴命题的否定是:∀x∈R,x<1.所以答案是:∀x∈R,x<1.16、用符号∈或∉填空:3.1___N,3.1___Z, 3.1____N∗,3.1____Q,3.1___R.答案:∉∉∉∈∈分析:由元素与集合的关系求解即可因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N∗;3.1∈Q;3.1∈R.所以答案是:∉,∉,∉,∈,∈.解答题17、已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.(1)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围.答案:(1){x|−4≤x<−1或5<x≤6};(2)[4,+∞).分析:(1)由“p∨q”为真命题,“p∧q”为假命题,可得p与q一真一假,然后分p真q假,p假q真,求解即可;(2)由p是q的充分条件,可得[−1,5]⊆[1−m,1+m],则有{m>01−m≤−11+m≥5,从而可求出实数m的取值范围(1)当m=5时,q:−4≤x≤6,因为“p∨q”为真命题,“p∧q”为假命题,故p与q一真一假,若p真q假,则{−1≤x≤5x<−4或x>6,该不等式组无解;若p假q真,则{x<−1或x>5−4≤x≤6,得−4≤x<−1或5<x≤6,综上所述,实数的取值范围为{x|−4≤x<−1或5<x≤6};(2)因为p是q的充分条件,故[−1,5]⊆[1−m,1+m],故{m>01−m≤−11+m≥5,得m≥4,故实数m的取值范围为[4,+∞).18、已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B={x|3<x<4},求实数a的值;(2)若A∩B=∅,求实数a的取值范围.答案:(1)3(2){a|a≤23或a≥4}分析:(1)根据交集结果直接判断即可.(2)按B=∅,B≠∅讨论,简单计算即可得到结果. (1)因为A∩B={x|3<x<4},所以a=3.(2)因为A∩B=∅,所以可分两种情况讨论:B=∅,B≠∅. 当B=∅时,有a≥3a,解得a≤0;当B≠∅时,有{a>0a≥4或3a≤2,解得a≥4或0<a≤23.综上,实数a的取值范围是{a|a≤23或a≥4}.。

专题02 常用逻辑用语(学生版)高中数学53个题型归纳与方法技巧总结篇

专题02 常用逻辑用语(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】一、充分条件、必要条件、充要条件1高中数学53个题型归纳与方法技巧总结篇专题02常用逻辑用语.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件.2.从逻辑推理关系上看(1)若p q ⇒且q p ,则p 是q 的充分不必要条件;(2)若p q 且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价);(4)若p q 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立).二.全称量词与存在童词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题).三.含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝.(2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.注:全称、存在量词命题的否定是高考常见考点之一.【方法技巧与总结】1.从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.2.常见的一些词语和它的否定词如下表原词语等于)(=大于)(>小于)(<是都是任意(所有)至多有一个至多有一个否定词语不等于)(≠小于等于)(≤大于等于)(≥不是不都是某个至少有两个一个都没有(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例.(2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型归纳目录】题型一:充分条件与必要条件的判断题型二:根据充分必要条件求参数的取值范围题型三:全称量词命题与存在量词命题的真假题型四:全称量词命题与存在量词命题的否定题型五:根据命题的真假求参数的取值范围【典例例题】题型一:充分条件与必要条件的判断例1.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例2.(2022·重庆·三模)已知0a >且1a ≠,“函数()x f x a =为增函数”是“函数()1a g x x -=在()0,∞+上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例3.(2022·湖北·模拟预测)在等比数列{}n a 中,已知20200a >,则“20212024a a >”是“20222023a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例4.(2022·山东·德州市教育科学研究院二模)已知m ,n 是两条不重合的直线,α是一个平面,n ⊂α,则“m α⊥”是“m n ⊥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例5.(2022·四川·宜宾市教科所三模(理))已知两条直线m ,n 和平面α,则m n ⊥的一个充分条件是()A .m α⊥且n α⊥B .m α∥且n ⊂αC .m α⊥且n ⊂αD .m α∥且n α∥(多选题)例6.(2022·山东临沂·二模)已知a ,b ∈R ,则使“1a b +>”成立的一个必要不充分条件是()A .221a b +>B .||||1a b +>C .221a b +>D .4110b a b++>【方法技巧与总结】1.要明确推出的含义,是p 成立q 一定成立才能叫推出而不是有可能成立.2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.3.充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.题型二:根据充分必要条件求参数的取值范围例7.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例8.(2022·浙江·高三专题练习)若2()4x a -<成立的一个充分不必要条件是1102x+≤-,则实数a 的取值范围为()A .(,4]-∞B .[1,4]C .(1,4)D .(1,4]例9.(2022·山西晋中·二模(理))已知条件p :11x -<<,q :x m >,若p 是q 的充分不必要条件,则实数m 的取值范围是()A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-例10.(2022·河南平顶山·高三期末(文))若1102x+≤-是()24x a -<成立的一个充分不必要条件,则实数a 的取值范围为()A .(],4 -B .[]1,4C .()1,4D .(]1,4例11.(2022·全国·高三专题练习(文))若关于x 的不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是()A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)例12.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例13.(2022·重庆·高三阶段练习)若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.例14.(2022·全国·高三专题练习(文))已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________.例15.(2022·全国·高三专题练习)已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.例16.(2022·天津·汉沽一中高三阶段练习)不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B .(1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.例17.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知条件{}22:4410p A x x ax a =-+-≤∣,条件{}2:20q B xx x =--≤∣.U =R .(1)若1a =,求()U A B ⋂ .(2)若q 是p 的必要不充分条件,求a 的取值范围.【方法技巧与总结】1.集合中推出一定是小集合推大集合,注意包含关系.2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错.题型三:全称量词命题与存在量词命题的真假例18.(2022·黑龙江齐齐哈尔·三模(理))已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log x a a x >.其中是真命题的有()A .①③B .②④C .①②D .③④例19.(2022·江西·二模(理))已知命题1p :存在00x >,使得0044+≤x x ,命题2p :对任意的x ∈R ,都有tan 2x =22tan 1tan xx-,命题3p :存在0x ∈R ,使得003sin 4cos 6+=x x ,其中正确命题的个数是()A .0B .1C .2D .3例20.(2022·河南·新乡县高中模拟预测(理))已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为()A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x >B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x >C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x >D .[],x a b ∀∈,()()f xg x >例21.(2022·浙江·高三专题练习)下列命题中,真命题为()A .存在0x R ∈,使得00x e ≤B .直线a b ⊥,a ⊂平面α,平面b αβ= ,则平面αβ⊥C .224sin (,)sin y x x k k Z xπ=+≠∈最小值为4D .1a >,1b >是1ab >成立的充分不必要条件(多选题)例22.(2022·全国·高三专题练习)下列命题中的真命题是()A .∀x ∈R ,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2例23.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号)(1)[]0,x a b ∃∈,使()()00f x g x >,只需()()max min f x g x >;(2)[],x a b ∀∈,()()f x g x >恒成立,只需()()min 0f x g x ->⎡⎤⎣⎦;(3)[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立,只需()()min max f x g x >;(4)[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,只需()()min min f x g x >.【方法技巧与总结】1.全称量词命题与存在量词命题的真假判断既要通过汉字意思,又要通过数学结论.2.全称量词命题和存在量词命题的真假性判断较为简单,注意细节即可.题型四:全称量词命题与存在量词命题的否定例24.(2022·四川成都·三模(理))命题“x ∀∈R ,e 20x +>”的否定是().A .0x ∃∈R ,0e 20x +≤B .x ∀∈R ,e 20x +≤C .0x ∃∈R ,0e 20x +>D .0x ∀∈R ,0e 20x +<例25.(2022·云南昆明·模拟预测(文))已知命题p :*N n ∀∈,22n n +≥,则p ⌝为()A .*N n ∀∉,22n n +<B .*N n ∀∈,22n n +<C .*0N n ∃∉,2002n n +<D .*0N n ∃∈,2002n n +<例26.(2022·江西赣州·二模(文))已知命题p :x ∀∈R ,sin cos x x +≥p ⌝为()A .x ∀∈R ,sin cos x x +<B .x ∃∉R ,sin cos x x +<C .x ∀∉R ,sin cos x x +<D .x ∃∈R ,sin cos x x +<例27.(2022·辽宁·建平县实验中学模拟预测)命题“()00,x ∃∈+∞,00ln 1x x ≥-”的否定是()A .()00,x ∃∈+∞,00ln 1x x <-B .()00,x ∃∉+∞,00ln 1x x ≥-C .()0,x ∀∈+∞,ln 1x x <-D .()0,x ∀∉+∞,ln 1x x ≥-例28.(2022·山东潍坊·二模)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为()A .对任意正整数n ,关于x ,y ,z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解例29.(2022·全国·高三专题练习(文))已知命题p :存在一个无理数,它的平方是有理数,则p ⌝为()A .任意一个无理数,它的平方不是有理数B .存在一个无理数,它的平方不是有理数C .任意一个无理数,它的平方是有理数D .存在一个无理数,它的平方是无理数例30.(2022·山西晋中·模拟预测(理))命题p :0x ∀≥,222e 3x x -+≤,则¬p 为___________.【方法技巧与总结】1.全称量词命题与存在量词命题的否定是将条件中的全称量词和存在量词互换,结论变否定.1.全称量词命题和存在量词命题的否定要注意否定是全否,而不是半否.题型五:根据命题的真假求参数的取值范围例31.(2022·山东青岛·一模)若命题“R x ∀∈,210ax +≥”为真命题,则实数a 的取值范围为()A .0a >B .0a ≥C .0a ≤D .1a ≤例32.(2022·浙江·高三专题练习)若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是()A .(],1-∞B .(),1-∞C .()1,+∞D .[)1,+∞例33.(2022·江苏·南京市宁海中学模拟预测)若命题“[]1,4x ∀∈时,2x m >”是假命题,则m 的取值范围()A .16m ≥B .m 1≥C .16m <D .1m <例34.(2022·黑龙江齐齐哈尔·二模(文))若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦ D .[)51,0,43⎛⎤- ⎥⎝⎦例35.(2022·全国·高三专题练习)若“[,34x ππ∀∈-,tan x m ≥”是真命题,则实数m 的最大值为___________.例36.(2022·全国·高三专题练习)已知定义在R 上的函数()h x 满足'2()()0h x h x +>且21(1)e h =,其中2x1()e h x >的解集为A .函数21()1x x f x x -+=-,()()1xg x a a =>,若1x A ∀∈,2x A ∃∈使得()()12f x g x =,则实数a 的取值范围是___________.例37.(2022·湖北·荆门市龙泉中学二模)若命题“0,,63x ππ⎡⎤∃∈⎢⎥⎣⎦0tan x m >”是假命题,则实数m 的取值范围是__________.例38.(2022·全国·高三专题练习)若“[]01,1x ∃∈-,020x a +->”为假命题,则实数a 的最小值为______.例39.(2022·全国·高三专题练习)在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅ 这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.例40.(2022·全国·高三专题练习)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),求实数a 的取值范围.【方法技巧与总结】1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求真命题的补级即可.2.全称量词命题和存在量词命题的求参数问题相对较难,要注重端点出点是否可以取到.【过关测试】一、单选题1.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·北京房山·二模)已知,αβ是两个不同的平面,直线l α⊄,且αβ⊥,那么“//l α”是“l β⊥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2022·江苏·华罗庚中学高三阶段练习)若1z ,2z 为复数,则“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(2022·全国·高三专题练习)命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是()A .1a ≥B .3a ≥C .2a ≥D .4a ≤5.(2022·全国·高三专题练习)已知下列四个命题:正确的是()1p :00x ∃>,使得00ln 1x x >-;2p :R x ∀∈,都有210x x -+>;3p :00x ∃>,使得001ln1x x >-+;4p :()0,x ∀∈+∞,使得121log 2xx ⎛⎫> ⎪⎝⎭.A .2p ,4pB .1p ,4pC .2p ,3pD .1p ,3p 6.(2022·重庆南开中学模拟预测)命题“2x ∀≥,24x ≥”的否定为()A .02x ∃≥,204x <B .2x ∀≥,24x <C .02x ∃<,204x <D .2x ∀<,24x <7.(2022·江西景德镇·模拟预测(理))已知命题:函数32()(21)(0,0)f x x ax m a x m a m =++--->>,且关于x 的不等式|()|f x m <的解集恰为(0,1),则该命题成立的必要非充分条件为()A .m a ≥B .m a ≤C .2m a ≥D .2m a ≤8.(2022·全国·高三专题练习)定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是A B C =∅ 的()A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件二、多选题9.(2022·广东茂名·模拟预测)下列四个命题中为真命题的是()A .“a b <”是“22ac bc <”的必要不充分条件B .设,A B 是两个集合,则“A B A = ”是“A B ⊆”的充要条件C .“0,0x x e ∀>>”的否定是“0,0x x e ∃≤≤”D .8名同学的数学竞赛成绩分别为:80,68,90,70,88,96,89,98,则该数学成绩的15%分位数为70(注:一般地,一组数据的第P 百分位数是这样一个值,它使得这组数据中至少有%P 的数据小于或者等于这个值,且至少有()100%P -的数据大于或者等于这个值.)10.(2022·全国·高三专题练习)设0a >,0b >,且a b ,则“2a b +>”的一个必要条件可以是()A .332a b +>B .222a b +>C .1ab >D .112a b+>11.(2022·辽宁实验中学模拟预测)已知x ,y 均为正实数,则下列各式可成为“x y <”的充要条件是()A .11x y>B .sin sin x y x y ->-C .cos cos x y x y -<-D .22e e x y x y -<-12.(2022·湖北·武汉市武钢三中高三阶段练习)下列命题正确的是()A .“关于x 的不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是14m >B .设,x y ∈R ,则“2x 且2y ”是“224x y + ”的必要不充分条件C .“1a >”是“11a<”的充分不必要条件D .命题“[]0,1,0x x a ∃∈+ ”是假命题的实数a 的取值范围为{0}aa >∣三、填空题13.(2022·河南·南阳中学高三阶段练习(文))若命题“20001,30x x ax a ∃>-++<”是假命题,则a 的取值范围是_______.14.(2022·浙江·高三学业考试)已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.15.(2022·全国·模拟预测(理))已知函数()()2221f x x ax a a =-+-∈R ,则“方程()0f x =在区间(),0 -和()1,+∞上各有一个解”的一个充分不必要条件是a =______.(写出满足条件的一个值即可)16.(2022·全国·高三专题练习)已知():ln p f x x a x =-在[)2+∞,上单调递增,:q a m <.若p 是q 的充分不必要条件,则实数m 的取值范围为____________.四、解答题17.(2022·全国·高三专题练习)已知函数()f x =的定义域为集合A ,函数()g x =B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.18.(2022·全国·高三专题练习)已知集合11122x A x ⎧⎫-=-<⎨⎬⎩⎭,{}227100B x x ax a =-+<,a ∈R .(1)当0a >时,x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若R B A ⊆ ,求实数a 的取值范围.19.(2022·全国·高三专题练习)已知p :22114x y m m+=+-表示焦点在x 轴上的椭圆,q :2,10x R x mx ∃∈-+<,(1)若p 是真命题,求m 的取值范围;(2)若p ,q 都是真命题,求m 的取值范围.20.(2022·全国·高三专题练习)设:24p x ≤<,q :实数x 满足()222300x ax a a --<>.(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.(2022·全国·高三专题练习)已知集合{}2,1x A y y x ==≤,{}21,R B x a x a a =+≤≤-∈.求:(1)若A B =∅ ,求实数a 的取值范围.(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围22.(2022·全国·高三专题练习)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.。

高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)

高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)

高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。

高中数学必修一第一章集合与常用逻辑用语重点知识点大全(带答案)

高中数学必修一第一章集合与常用逻辑用语重点知识点大全(带答案)

高中数学必修一第一章集合与常用逻辑用语重点知识点大全单选题1、已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5答案:B分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C6、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B7、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B分析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a 2=4a4=16,解得a=±2故选:B8、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.多选题9、下列选项正确的是()A .√7∈RB .Z ∈QC .0∈∅D .∅⊆{0}答案:AD分析:根据元素与集合的关系,集合与集合的关系以及空集的概念进行判断即可.A .√7是无理数,无理数属于实数,所以√7∈R ,故正确;B .因为Z,Q 都是集合,所以不能用∈表示两者关系,故错误;C .因为∅不包含任何元素,所以0∉∅,故错误;D .因为空集是任何集合的子集,所以∅⊆{0},故正确;故选:AD.10、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为( )A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m , 因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13, 综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.填空题12、设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,则满足关系式(x ⊕x)⊕A 2=A 0的x (x ∈S )的个数为________.答案:2解析:由已知中集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,分别分析x 取A 0,A 1,A 2,A 3时,式子的值,并与A 0进行比照,即可得到答案. 当x =A 0时,(x ⊕x)⊕A 2=(A 0⊕A 0)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 1时,(x ⊕x)⊕A 2=(A 1⊕A 1)⊕A 2=A 2⊕A 2=A 4=A 0当x =A 2时,(x ⊕x)⊕A 2=(A 2⊕A 2)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 3时,(x ⊕x)⊕A 2=(A 3⊕A 3)⊕A 2=A 2⊕A 2=A 0=A 0则满足关系式(x ⊕x)⊕A 2=A 0的x(x ∈S)的个数为:2个.所以答案是:2.小提示:本题考查的知识点是集合中元素个数,其中利用穷举法对x 取值进行分类讨论是解答本题的关键.属于中档题.13、已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A ⊆B ,则实数a 的取值范围是________. 答案:a <-4或a >2分析:按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围.①当a >3即2a >a +3时,A =∅,满足A ⊆B ;.②当a ≤3即2a ≤a +3时,若A ⊆B ,则有{2a ≤a +3a +3<−1或2a >4,解得a <-4或2<a ≤3 综上,实数a 的取值范围是a <-4或a >2.所以答案是:a <-4或a >214、命题p:∀x >2,2x −3>0的否定是___________.答案:∃x >2,2x −3≤0分析:将全称命题否定为特称命题即可命题p:∀x >2,2x −3>0的否定是∃x >2,2x −3≤0,所以答案是:∃x >2,2x −3≤0解答题15、已知集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.答案:[4,5]分析:根据给定条件可得AB ,再借助集合的包含关系列式计算作答.因“x ∈A ”是“x ∈B ”的充分不必要条件,于是得AB ,而集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },因此,{a −4<1a −1≥3 或{a −4≤1a −1>3,解得4≤a <5或4<a ≤5,即有4≤a ≤5, 所以实数a 的取值范围为[4,5].。

高中数学知识点总结:常用逻辑用语

高中数学知识点总结:常用逻辑用语

优选精品优选精品 欢迎下载欢迎下载1 / 2高中数学知识点总结:常用逻辑用语高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。

常用逻辑用语:1、四种命题:⑴原命题:若p 则q;⑵逆命题:若q 则p;⑶否命题:若p;⑶否命题:若 p p 则 q;⑷逆否命题:若q;⑷逆否命题:若 q q 则 p注:注:11、原命题与逆否命题等价、原命题与逆否命题等价;;逆命题与否命题等价。

判断命题真假时注意转化。

2、注意命题的否定与否命题的区别:命题否定形式是、注意命题的否定与否命题的区别:命题否定形式是 ; ; ;否否命题是命题是 . . .命题命题或 的否定是 且 且 的否定是 或 . 3、逻辑联结词:⑴且⑴且(and) (and) (and) :命题形式:命题形式:命题形式 p q; p q p q p q p p q; p q p q p q p⑵或⑵或(or)(or)(or):命题形式:命题形式:命题形式 p q; p q; p q; 真真真 真 真 假 ⑶非⑶非(not)(not)(not):命题形式:命题形式:命题形式 p . p . p . 真真假 假 真 假 假 真 假 真 真假 假 假 假 真或命题的真假特点是一真即真,要假全假且命题的真假特点是一假即假,要真全真非命题的真假特点是一真一假4、充要条件优选精品优选精品 欢迎下载欢迎下载2 / 2 由条件可推出结论,条件是结论成立的充分条件由条件可推出结论,条件是结论成立的充分条件;;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。

含有全体量词的命题,叫做全称命题。

短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

通用版高中数学必修一常用逻辑用语知识点总结(超全)

通用版高中数学必修一常用逻辑用语知识点总结(超全)

(每日一练)通用版高中数学必修一常用逻辑用语知识点总结(超全)单选题1、对于给定的函数f (x )=(12)x −(12)−x (x ∈R ),给出五个命题其中真命题是①函数f (x )的图象关于原点对称;②函数f (x )在R 上具有单调性;③函数f (|x −1|)的图象关于y 轴对称;④函数f (|x |)的最大值是0.A .①②③B .①③④C .②③④D .①②④答案:D解析:①根据奇函数的定义进行判断;②根据函数单调性的性质进行判断;③根据偶函数的定义进行判断;④根据函数单调性和最值关系进行判断.解:①f(−x)=(12)−x −(12)x =−[(12)x −(12)−x ]=−f(x) 则函数f(x)是奇函数,则函数f(x)的图象关于原点对称;故①正确,②f(x)=(12)x −(12)−x =(12)x −2x 为减函数,故函数f(x)在R 上具有单调性;故②正确, ③f(|x −1|)=(12)|x−1|−(12)−|x−1|, 则设g(x)=f(|x −1|)=(12)|x−1|−(12)−|x−1| 则g(−x)=(1)|−x−1|−(1)−|−x−1|=(1)|x+1|−(1)−|x+1|则g(−x)≠g(x),则g(x)不是偶函数,则函数f(|x−1|)的图象关于y轴不对称;故③错误,④函数f(|x|)=(12)|x|−(12)−|x|为偶函数,且当x≥0时为减函数,故当x=0时,函数取得最大值,最大值为f(|0|)=(12)|0|−(12)−|0|=1−1=0,故④正确,故正确的是①②④,故选D.小提示:本题主要考查命题的真假判断,涉及函数奇偶性的判断和应用,以及函数最值和单调性的关系,综合性较强,有一定的难度.2、设曲线C是双曲线,则“C的方程为y28−x24=1”是“C的渐近线方程为y=±√2x”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案:B解析:根据C的方程为y 28−x24=1,则渐近线为y=±√2x;若渐近线方程为y=±√2x,则双曲线方程为x2−y22=λ(λ≠0)即可得答案.解:若C的方程为y 28−x24=1,则a=2√2,b=2,渐近线方程为y=±abx,即为y=±√2x,充分性成立;若渐近线方程为y=±√2x,则双曲线方程为x2−y22=λ(λ≠0),∴“C的方程为y28−x24=1”是“C的渐近线方程为y=±√2x”的充分而不必要条件.故选:B.小提示:本题通过圆锥曲线的方程主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p和结论q分别是什么,然后直接依据定义、定理、性质尝试p⇒q,q⇒p.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3、设x∈R,则“x2−5x<0”是“|x−1|<1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:分别求出两不等式的解集,根据两解集的包含关系确定.化简不等式,可知0<x<5推不出|x−1|<1;由|x−1|<1能推出0<x<5,故“x2−5x<0”是“|x−1|<1”的必要不充分条件,故选B.小提示:本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.解答题4、已知集合P={x∣x2−5x+4≤0},S={x∣1−m≤x≤1+m}.(1)用区间表示集合P;(2)是否存在实数m ,使得x ∈P 是x ∈S 的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上:①充分不必要;②必要不充分;③充要.答案:(1)[1,4];(2)答案见解析.解析:(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围.(1)因为x 2−5x +4即(x −1)(x −4)≤0,所以1≤x ≤4,P ={x|x 2−5x +4≤0}=[1,4].(2)若选择①,即x ∈P 是x ∈S 的充分不必要条件,则1−m ≤1+m 且{1−m ≤1,1+m ≥4(两个等号不同时成立), 解得m ≥3,故实数m 的取值范围是[3,+∞).若选择②,即x ∈P 是x ∈S 的必要不充分条件.当S =∅时,1−m >1+m ,解得m <0.当S ≠∅时,1−m ≤1+m 且{1−m ≥1,1+m ≤4,(两个等号不同时成立), 解得m =0.综上,实数m 的取值范围是(−∞,0].若选择③,即x ∈P 是x ∈S 的充要条件,则P =S ,即{1−m =1,1+m =4,此方程组无解, 则不存在实数m ,使x ∈P 是x ∈S 的充要条件.小提示:方法点睛:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)p是q的充分必要条件,则p对应集合与q对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.5、设命题α:A={x|x2+4x=0},命题β:B={x|x2+2(a+1)x+1−a=0},若α是β的必要条件,但α不是β的充分条件,求实数a的取值组成的集合.答案:(−3,0).解析:由α是β的必要不充分条件得出集合A与B的包含关系而得解.由x2+4x=0得x=0或x=−4,∴A={−4,0},由α是β的必要条件,但α不是β的充分条件得α⇏β且β⇒α,从而有BA,∴B=∅或B={−4}或B={0},当B=∅时,Δ=4(a+1)2−4(1−a)=4a(a+3)<0,∴−3<a<0;当B={−4}时,{42−8(a+1)+1−a=9−9a=0Δ=4(a+1)2−4(1−a)=4a(a+3)=0,无解;当B={0}时,{1−a=0Δ=4(a+1)2−4(1−a)=4a(a+3)=0,无解;综上:实数a的取值组成的集合为(−3,0).。

高中数学常用逻辑用语

高中数学常用逻辑用语
1)若A B且B A,则甲是乙的
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
逻辑联结词 : 或、且、非
一般地,用逻辑联结词”且”把命题p和命 题q联结起来.就得到一个新命题,记作
p q 读作”p且q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命
题是假命题时, p q 是假命题. pq
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。
三、四种命题之间的 关系
原命题
若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
四、命题真假性判断
(1) 原命题为真,则其逆否命题一定为 真。但其逆命题、否命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为 真。但其原命题、逆否命题不一定为真。
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充要条件
如果命题“若p则q”为真,则记
作p

高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点归纳总结(精华版)单选题1、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.2、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.3、设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、已知命题p:∃x ∈(−1,3),x 2−a −2≤0.若p 为假命题,则a 的取值范围为( )A .(−∞,−2)B .(−∞,−1)C .(−∞,7)D .(−∞,0)答案:A解析:由题可得命题p 的否定为真命题,即可由此求解.∵ p 为假命题,∴ ¬p:∀x ∈(−1,3),x 2−a −2>0为真命题,故a <x 2−2恒成立,∵ y =x 2−2在x ∈(−1,3)的最小值为−2,∴a <−2.故选:A.5、若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则实数a 的范围是( )A .a >2B .a ⩾2C .a >−2D .a ⩽−2答案:A解析:根据命题的否定为真命题可求.若命题“∃x 0∈[−1,2],−x 02+2⩾a ”是假命题,则命题“∀x ∈[−1,2],−x 2+2<a ”是真命题,当x =0时,(−x 2+2)max =2,所以a >2.6、若不等式|x −1|<a 成立的充分条件为0<x <4,则实数a 的取值范围是( )A .{a ∣a ≥3}B .{a ∣a ≥1}C .{a ∣a ≤3}D . {a ∣a ≤1}答案:A分析:由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x |0<x <4 }⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案.解:∵不等式|x −1|<a 成立的充分条件是0<x <4,设不等式的解集为A ,则{x |0<x <4 }⊆A ,当a ≤0时,A =∅,不满足要求;当a >0时,A ={x ∣1−a <x <1+a},若{x |0<x <4 }⊆A ,则{1−a ⩽01+a ⩾4,解得a ≥3. 故选:A.7、下列命题是假命题的有( )A .若x ∈A ,那么x ∈A ∩B B .若x ∈A ∩B ,那么x ∈AC .若x ∈A ∩B ,那么x ∈A ∪BD .若x ∈A ,那么x ∈A ∪B答案:A分析:由集合与元素的关系和交集并集的定义逐一判断,即可求解对于A ,若x ∈A ,那么x 可能不属于B ,故A 错误;对于B ,若x ∈A ∩B ,则x 是集合A 和B 的公共元素,那么x ∈A ,故B 正确;对于C ,若x ∈A ∩B ,那么x ∈A ∪B ,故C 正确;对于D ,若x ∈A ,那么x ∈A ∪B ,故D 正确.故选:A .8、已知命题p :∃x ∃N ,e x <0(e 为自然对数的底数),则命题p 的否定是( )A .∃x ∃N ,e x <0B .∃x ∃N ,e x >0C .∃x ∃N ,e x ≥0D .∃x ∃N ,e x ≥0分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是()A.(−∞,−5)B.(−3,−1]C.(3,+∞)D.[0,3]答案:AB解析:根据假命题的否定为真命题可知∀x∈M,x≤3,又∀x∈M,|x|>x,求出命题成立的条件,求交集即可知M满足的条件.∵∃x∈M,x>3为假命题,∴∀x∈M,x≤3为真命题,可得M⊆(−∞,3],又∀x∈M,|x|>x为真命题,可得M⊆(−∞,0),所以M⊆(−∞,0),故选:AB小提示:本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.11、下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示答案:ABC分析:根据集合的概念,以及元素与集合的关系,以及元素的特征,逐项判定,即可求解.对于A中,0是一个元素(数),而{0}是一个集合,可得0∈{0},所以A不正确;对于B中,集合M={3, 4}表示数3,4构成的集合,集合N={(3, 4)}表示点集,所以B不正确;对于C中,方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2},根据集合元素的互异性,可得方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},所以C不正确;对于D中,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,所以D正确.故选:ABC.填空题12、关于x的方程ax2+2x+1=0的实数根中有且只有一个负实数根(含两相等实根)的充要条件为____________.答案:a≤0或a=1分析:根据方程根的情况,讨论a=0和a≠0两种情况,结合一元二次方程根的分布情况,以及充要条件的概念,即可求解.,符合题意.若方程ax2+2x+1=0有且仅有一个负实数根,则当a=0时,x=−12当a≠0时,方程ax2+2x+1=0有实数根,则Δ=4−4a≥0,解得a≤1,当a=1时,方程有且仅有一个负实数根x=−1,当a<1且a≠0时,若方程有且仅有一个负实数根,则1<0,即a<0.a所以当a≤0或a=1时,关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根.综上,“关于x的方程ax2+2x+1=0的实数根中有且仅有一个负实数根”的充要条件为“a≤0或a=1”.所以答案是:a≤0或a=1.13、设非空集合Q⊆M,当Q中所有元素和为偶数时(集合为单元素时和为元素本身),称Q是M的偶子集,若集合M={1,2,3,4,5,6,7},则其偶子集Q的个数为___________.答案:63分析:对集合Q中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q的个数,综合可得结果.集合Q中只有2个奇数时,则集合Q的可能情况为:{1,3}、{1,5}、{1,7}、{3,5}、{3,7}、{5,7},共6种,若集合Q中只有4个奇数时,则集合Q={1,3,5,7},只有一种情况,若集合Q中只含1个偶数,共3种情况;若集合Q中只含2个偶数,则集合Q可能的情况为{2,4}、{2,6}、{4,6},共3种情况;若集合Q中只含3个偶数,则集合Q={2,4,6},只有1种情况.因为Q是M的偶子集,分以下几种情况讨论:若集合Q中的元素全为偶数,则满足条件的集合Q的个数为7;若集合Q中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q中的元素是2个奇数1个偶数,共6×3=18种;若集合Q中的元素为2个奇数2个偶数,共6×3=18种;若集合Q中的元素为2个奇数3个偶数,共6×1=6种;若集合Q中的元素为4个奇数1个偶数,共1×3=3种;若集合Q中的元素为4个奇数2个偶数,共1×3=3种;若集合Q中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q的个数为7+7+18+18+6+3+3+1=63.所以答案是:63.14、写出一个使得命题“∀x∈R,ax2−2ax+3>0恒成立”是假命题的实数a的值__________.(写出一个a的值即可)答案:−1分析:根据题意,假设命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,根据不等式恒成立,分类讨论当a=0和a≠0时两种情况,从而得出实数a的取值范围,再根据补集得出命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题时a的取值范围,即可得出满足题意的a的值.解:若命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,则当a=0时成立,当a≠0时有{a>0Δ=4a2−12a<0,解得:0<a<3,所以当0≤a<3时,命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,所以当a∈(−∞,0)∪[3,+∞)时,命题“∀x∈R,ax2−2ax+3>0恒成立”为假命题,所以答案是:−1.(答案不唯一,只需a∈(−∞,0)∪[3,+∞))解答题15、已知命题p:∀1≤x≤2,x2−a≥0,命题q:∃x∈R,x2+2ax+2a+a2=0.(1)若命题¬p为真命题,求实数 a 的取值范围;(2)若命题 p 和¬q均为真命题,求实数 a 的取值范围.答案:(1){a|a>1};(2){a|0<a≤1}.分析:(1)写出命题p的否定,由它为真命题求解;(2)由(1)易得命题p为真时a的范围,再由q为真命题时a的范围得出非q为真时a的范围,两者求交集可得.解:(1)根据题意,知当1≤x≤2时,1≤x2≤4.¬p:∃1≤x≤2,x2−a<0,为真命题,∴a>1.∴实数 a 的取值范围是{a|a>1}.(2)由(1)知命题 p 为真命题时,a≤1.命题 q 为真命题时,Δ=4a2−4(2a+a2)≥0,解得a≤0,∴¬q为真命题时,a>0.∴{a≤1a>0,解得0<a≤1,即实数 a 的取值范围为{a|0<a≤1}.。

高中数学必修一常用逻辑用语知识点归纳总结(精华版)

高中数学必修一常用逻辑用语知识点归纳总结(精华版)

(每日一练)高中数学必修一常用逻辑用语知识点归纳总结(精华版)单选题1、若a 、b 为实数,则“ab >1”是“b >1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:D解析:利用推理判断或举特例说明命题“若ab >1,则b >1a ”和“若b >1a ,则ab >1”的真假即可作答.若ab >1成立,取a =−1,b =−2,而−2<1−1,即命题“若ab >1,则b >1a ”是假命题, 若b >1a 成立,取a =−1,b =2,而(−1)⋅2<0,即命题“若b >1a,则ab >1”是假命题, 所以“ab >1”是“b >1a ”的既不充分也不必要条件.故选:D2、设x ∈R ,则"log 2(x −2)<1"是"x >2"的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分又不必要答案:A解析:解出log 2(x −2)<1,利用集合包含关系即可判断.由log 2(x −2)<1解得2<x <4,∵{x|2<x<4}{x|x>2},∴"log2(x−2)<1"是"x>2"的充分不必要条件.故选:A.3、设m∈R,则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C解析:求出z=(m+2i)(1+i)为纯虚数时m的值,与m=2比较,判断出结果z=(m+2i)(1+i)=m−2+(m+2)i,复数z=(m+2i)(1+i)为纯虚数,则m−2=0,解得:m=2,所以则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的充要条件故选:C4、已知命题p:“∀x∈R,ax2+bx+c>0”,则¬p为()A.∀x∈R,ax2+bx+c≤0B.∃x0∈R,ax2+bx+c≥0C.∃x0∈R,ax2+bx+c≤0D.∀x∈R,ax2+bx+c<0答案:C解析:由全称命题的否定可得出结论.命题p为全称命题,该命题的否定为¬p:∃x0∈R,ax2+bx+c≤0.故选:C.5、已知p:a>b>0 q:1a2<1b2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:根据a>b>0与1a2<1b2的互相推出情况判断出属于何种条件.当a>b>0时,a2>b2>0,所以1a2<1b2,所以充分性满足,当1a2<1b2时,取a=−2,b=1,此时a>b>0不满足,所以必要性不满足,所以p是q的充分不必要条件,故选:A.。

高中数学必修一常用逻辑用语基础知识点归纳总结

高中数学必修一常用逻辑用语基础知识点归纳总结

(每日一练)高中数学必修一常用逻辑用语基础知识点归纳总结单选题1、已知a,b∈R,则“a+b>6”是“a>3且b>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件答案:B解析:根据充分必要条件的定义分别判断充分性和必要性即可.∵a,b∈R,若a+b>6,则a,b的大小无法确定,不能得出a>3且b>3,故充分性不成立,若a>3且b>3,则a+b>6,故必要性成立,∴“a+b>6”是“a>3且b>3”的必要而不充分条件.故选:B.2、命题∃x∈R,x2+1≤0的否定是()A.∀x∈R,x2+1>0B.∃x∈R,x2+1>0C.∀x∈R,x2+1≥0D.∃x∈R,x2+1≥0答案:A解析:根据特称命题的否定形式直接求解.特称命题的否定是全称命题,即命题“∃x∈R,x2+1≤0”的否定是“∀x∈R,x2+1>0”.故选:A3、已知圆C:x2+y2+Dx+Ey+F=0,则“E=F=0且D<0”是“圆C与y轴相切于原点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:根据圆的方程,结合充分条件、必要条件的判定方法,即可求解.由圆C与y轴相切于原点,可得圆C的圆心在x轴上,设圆心坐标为(a,0),且半径r=|a|,所以当E=F=0且D<0时,可得圆心为(−D2,0),半径为r=|D|2,此时圆C与y轴相切于原点,所以充分性成立;例如:圆(x+1)2+y2=1与y轴相切于原点,但D=2>0,所以必要性不成立所以“E=F=0且D<0”是“圆C与y轴相切于原点”的充分不必要条件.故选:A.4、下列命题:①“若a≤b,则a<b”的否命题;②“函数y=x2−ax+a的图象在x轴的上方”是“0<a<1”的充要条件;③“若√3x为有理数,则0<a<1为无理数”的逆否命题.其中真命题的个数为()A.0B.1C.2D.3答案:C解析:①先求否命题,再用不等式性质证明即可;②用一元二次方程根的判别式及充要条件概念判断;③用原命题与其逆否命题等价判断.解:对于①,“若a≤b,则a<b”的否命题是“若a>b,则a≥b”,因为a>b⇒a≥b,所以①为真命题;对于②,“函数y=x2−ax+a的图象在x轴的上方”⇔Δ=(−a)2−4a<0⇒0<a<4“0<a<4”不是“0<a<1”的充要条件,所以②是假命题;⋅√3为无理数,对于③,先证明原命题为真命题,因为√3x为有理数,√3x=t(t∈Q),则x=t3因为原命题与其逆否命题等价,所以③为真命题.故选:C.5、已知直线l的方向向量为m⃑⃑ ,平面α的法向量为n⃑,则“m⃑⃑ ⋅n⃑=0”是“l∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:根据线面平行的定义结合充分必要条件的定义判断,即可求得答案.∵m⃑⃑ ⋅n⃑=0∴m⃑⃑ ⊥n⃑∵m⃑⃑ ⋅n⃑=0,即m⃑⃑ ⊥n⃑,不一定有l∥α,也可能l⊂α∴“m⃑⃑ ⋅n⃑=0”是“l∥α”的不充分条件∵l∥α,可以推出m⃑⃑ ⊥n⃑,∴“m⃑⃑ ⋅n⃑=0”是“l∥α”是必要条件,综上所述, “m⃑⃑ ⋅n⃑=0”是“l∥α”必要不充分条件.故选:B.小提示:本题主要考查了判断必要不充分条件,解题关键是掌握充分条件和必要条件的定义,属于中档题.。

人教版高中数学必修一常用逻辑用语知识汇总笔记

人教版高中数学必修一常用逻辑用语知识汇总笔记

(每日一练)人教版高中数学必修一常用逻辑用语知识汇总笔记单选题1、关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案:A解析:对甲、乙、丙、丁分别是假命题进行分类讨论,分析各种情况下方程x2+ax+b=0的两根,进而可得出结论. 若甲是假命题,则乙丙丁是真命题,则关于x的方程x2+ax+b=0的一根为3,由于两根之和为2,则该方程的另一根为−1,两根异号,合乎题意;若乙是假命题,则甲丙丁是真命题,则x=1是方程x2+ax+b=0的一根,由于两根之和为2,则另一根也为1,两根同号,不合乎题意;若丙是假命题,则甲乙丁是真命题,则关于x的方程x2+ax+b=0的两根为1和3,两根同号,不合乎题意;若丁是假命题,则甲乙丙是真命题,则关于x的方程x2+ax+b=0的两根为1和3,两根之和为4,不合乎题意.综上所述,甲命题为假命题.故选:A.小提示:关键点点睛:本题考查命题真假的判断,解题的关键就是对甲、乙、丙、丁分别是假命题进行分类讨论,结合已知条件求出方程的两根,再结合各命题的真假进行判断.2、设z=(12+32i)(1+a i)(a∈R),则“a<12”是“z在复平面内对应的点在y轴右侧的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:化简z,根据z对应点在y轴右侧求得a的范围,从而确定正确答案.z=(12+32i)(1+a i)=12+32i+12a i−32a=12−32a+(32+12a)i,1 2−32a>0⇒a<13,所以“a<12”是“z在复平面内对应的点在y轴右侧的必要不充分条件.故选:B3、已知直线a,b,平面,,α∩β=b,a//α,a⊥b,那么“a⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,∴a′⊥b,由a⊥β可推出α⊥β,由α⊥β可推出a⊥β,故“a⊥β”是“α⊥β”的充要条件.解:若a⊥β,过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,又a⊥β,∴a′⊥β,又∵a′⊆α,∴α⊥β,若α⊥β,过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,∵a⊥b,∴a′⊥b,又∵α⊥β,α∩β=b,∴a′⊥β,∴a⊥β,故“a⊥β”是“α⊥β”的充要条件,故选:C.填空题4、命题“∀x∈R,ax2+4ax+3>0”为真,则实数a的范围是__________)答案:[0,34解析:将问题转化为“不等式ax2+4ax+3>0对x∈R恒成立”,由此对a进行分类讨论求解出a的取值范围. 由题意知:不等式ax2+4ax+3>0对x∈R恒成立,当a=0时,可得3>0,恒成立满足;当a≠0时,若不等式恒成立则需{a>0Δ=16a2−12a<0,解得0<a<34,所以a的取值范围是[0,34),所以答案是:[0,34).小提示:思路点睛:形如ax2+bx+c<0(>0)的不等式恒成立问题的分析思路:(1)先分析a=0的情况;(2)再分析a≠0,并结合Δ与0的关系求解出参数范围;(3)综合(1)(2)求解出最终结果.5、已知函数f(x)=|x2−2ax+b|,(x∈R).下列四个命题:①∃a∈R,使f(x)为偶函数;②若f(0)=f(2),则f(x)的图象关于直线x=1对称;③若a2−b≤0,则f(x)在区间[a,+∞)上是增函数;④若a2−b−2>0,则函数ℎ(x)=f(x)−2有两个零点.其中所有真命题的序号是___________.答案:①③解析:根据一元二次函数及绝对值函数的性质,结合奇偶性,对称性,单调性对每一项进行分析即可. 若f(x)为偶函数,则f(−x)=|x2+2ax+b|=f(x)=|x2−2ax+b|,则|x2+2ax+b|2=|x2−2ax+b|2⇒4ax(x2+b)=0对∀x∈R恒成立,则a=0,故①正确;f(0)=|b|,f(2)=|4−4a+b|,若f(0)=f(2),即|b|=|4−4a+b|,则b=4−4a+b⇔a=1或−b=4−4a+b⇔2a−b=2,若取a=0,b=−2,则f(x)=|x2−2|关于x=0对称,②错误;若a2−b≤0,函数y=x2−2ax+b的判别式Δ=4a2−4b≤0,即y=x2−2ax+b≥0,f(x)=|x2−2ax+b|=x2−2ax+b,由二次函数性质,知f(x)在区间[a,+∞)上是增函数,③正确;取a=0,b=−4,满足a2−b−2>0,则f(x)=|x2−4|=2⇔x2−4=2或−2,解得x=±√2或±√6,即ℎ(x)=f(x)−2有4个零点,④错误;所以答案是:①③小提示:关键点点睛:对函数的综合性质考察比较综合,除解出参数关系或值外,判断正误也可以通过取一些特殊值快速的找到答案.。

通用版高中数学必修一常用逻辑用语知识点总结全面整理

通用版高中数学必修一常用逻辑用语知识点总结全面整理

(每日一练)通用版高中数学必修一常用逻辑用语知识点总结全面整理单选题1、“M<N”是“log2M<log2N”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:C解析:利用对数函数的定义域是单调性可判断。

若log2M<log2N,则M<N,M>0,N>0,故可以推出M<N若M<N,不能推出log2M<log2N,比如M=0,N=1不满足log2M<log2N,故选:C.小提示:此题为容易题,考查充分条件和必要条件的概念和对数函数的定义域和单调性。

2、“λ>2”是圆锥曲线y2λ+5−x22−λ=1的焦距与实数λ无关的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件答案:A解析:将曲线分为椭圆或双曲线两类,利用椭圆或双曲线的性质列不等式,由此求得λ的取值范围,进而判断出充分、必要条件.若圆锥曲线y 2λ+5−x22−λ=1,即y2λ+5+x2λ−2=1为椭圆,则c2=|λ+5−(λ−2)|=7,即焦距与λ无关.此时{λ+5>0λ−2>0λ+5≠λ−2,解得λ>2.若圆锥曲线y 2λ+5−x22−λ=1为双曲线,则c2=|λ+5+(2−λ)|=7,与λ无关.此时(λ+5)(2−λ)>0,解得−5<λ<2.所以当λ∈(−5,2)∪(2,+∞)时,圆锥曲线y 2λ+5−x22−λ=1的焦距与实数λ无关.所以“λ>2”是圆锥曲线y 2λ+5−x22−λ=1的焦距与实数λ无关的充分不必要条件.故选A.小提示:本小题主要考查椭圆和双曲线的几何性质,考查分类讨论的数学思想方法,考查充分、必要条件的判断,属于中档题.3、已知命题p:“∀x∈R,ax2+bx+c>0”,则¬p为()A.∀x∈R,ax2+bx+c≤0B.∃x0∈R,ax2+bx+c≥0C.∃x0∈R,ax2+bx+c≤0D.∀x∈R,ax2+bx+c<0答案:C解析:由全称命题的否定可得出结论.命题p为全称命题,该命题的否定为¬p:∃x0∈R,ax2+bx+c≤0.故选:C.解答题4、已知p:(m −3a )(m −4a )<0(a >0),q:x 2m−1+y 22−m =1.(1)若q 表示双曲线,求实数m 的取值范围;(2)若q 表示焦点在y 轴上的椭圆,且¬q 是¬p 中的充分不必要条件,求实数a 的取值范围.答案:(1)(–∞,1)∪(2,+∞);(2)[13,38].解析:(1)根据曲线方程,列式(m −1)(2−m )<0,求m 的取值范围;(2)分别求两个命题为真命题时,m 的取值范围,根据命题的等价性转化为p 是q 的充分不必要条件,转化为真子集关系,求实数a 的取值范围.(1)由(m −1)(2−m )<0,得m <1或m >2,即m ∈(–∞,1)∪(2,+∞)(2)命题p ∶由(m −3a )(m −4a )<0(a >0),得3a <m <4a .命题q ∶x 2m−1+y 22−m =1表示焦点在y 轴上的椭圆,则{m −1>02−m >02−m >m −1,解得1<m <32,因为¬q 是¬p 的充分不必要条件,所以p 是q 的充分不必要条件,则{3a ≥14a ≤32,解得13≤a ≤38,故实数a 的取值范围为:[13,38].小提示:结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.5、设命题p:实数x满足x2−4ax+3a2<0,其中a>0;命题q:实数x满足2<x≤3.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.答案:(1)2<x<3;(2)1<a≤2.解析:(Ⅰ)把a=1,代入命题p中,求出x的取值范围,因为p∧q为真,所以p和q都为真,对两个x的取值范围取交集即可.(Ⅱ)首先对命题p化简,然后表示出¬p和¬q.¬p是¬q的充分不必要条件,所以¬p中表示的x的集合是¬q中表示的x的集合的子集,进而建立不等式求出a的范围.(Ⅰ)对于命题p:由x2﹣4ax+3a2<0得(x−3a)(x−a)<0,又a>0,∴a<x<3a,当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由已知q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,∴实数x的取值范围是2<x<3.(Ⅱ)¬p是¬q的充分不必要条件,即¬p⊆¬q,且¬q≠¬p,设A={x|¬p},B={x|¬q},则A⊂B,又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x≤2或x>3},则0<a≤2且3a>3,∴实数a的取值范围是1<a≤2.小提示:逻辑联结词,且:全真为真,一假为假;或:一真为真,全假为假;非:真假相反.本题中¬p是¬q的充分不必要条件,也可以考虑逆否命题来解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语
常用逻辑用语
命题及其关系
命题
四种命题
四种命题间的相互关系
充分条件与必要条

充分条件与必要条件
充分条件、必要条件的四种类型简单的逻辑连接词
“且”“或”“非”
命题p∨q,p∧q ,⌝p 的真假判定
全称量词与存在量

全称量词与全程命题
存在量词与特称命题
含有一个量词的命题的否定
一、命题及其关系
1.命题
命题定义:能够判断真假的语句,即能够判断对错的陈述句. 真假命题:判断为真的语句叫真命题,判断为假的语句叫假命题. 一般形式:“若p ,则q ”,p 叫做命题的条件,q 叫做命题的结论. 例如: 命题:“太阳比地球大”(真命题),“若1x =,则13x +=”.(假命题) 非命题:“打篮球的个子都很高吗?”,“我到河北省来”.(不能判断真假)
2.四种命题
原命题:题目直接给的命题. 逆命题:把原命题反过来说.
否命题:把原命题条件和结论否了(用⌝ p 和⌝ q 表示,读作“非p ”和“非q ”). 逆否命题:把原命题反过来说,再把条件和结论否了.
例如:
3.四种命题的关系
关系图:
结论:
原命题和逆否命题真假性相同,逆命题和否命题真假性相同,即:如果两个命题互为逆否命题,它们有相同的真假性.
例如:
原命题:如果1
x=,那么2230
x x
+-=(真命题)
逆命题:如果2230
x x
+-=,那么1
x=(假命题)
否命题:如果1
x≠,那么2230
x x
+-≠(假命题)
逆否命题:如果2230
x x
+-≠,那么1
x≠(真命题)
如果两个命题互为逆命题或否命题,它们的真假性没有关系. 例如:
原命题:如果1x =,那么12x +=(真命题) 逆命题:如果12x +=,那么1x =(真命题) 否命题:如果1x ≠,那么12x +≠(真命题)
练习题:
ABC中,角
B.那么命题
B.1
a
解析:由正弦定理
sin
⇔>
sin B A
二、充分条件与必要条件
1.充分条件与必要条件
“若p ,则q ”为真命题,即p 通过推理可得出q ,记作p q ⇒,则p 为q 的充分条件,q 为p 的必要条件,(能过去叫充分,能回来叫必要,过不去不充分,回不来不必要).
例如:命题“p :1x =,那么q :12x +=”,p q ⇒,则p 为q 的充分条件,q 为p 的必要条件.
2.充分条件、必要条件的四种类型 四种类型的表示与读法:
重要结论:小范围可以推导出大范围.
q ,所以
练习题:
三、简单的逻辑连接词
1.“且”“或”“非”
且:既满足命题p又满足命题q,即“p且q”,记作p ∧q.
(我很高且我很帅,我很高∧我很帅)
或:满足命题p或满足命题q,即“p或q”,记作p ∨q.
(我很高或我很帅,我很高∨我很帅)
非:命题p的否定,即条件不变,否定结论,读作“非p”,记作⌝p.(我很帅,⌝我很帅(我不帅))
2.p ∨q,p ∧q,⌝p的真假判定:
真值表:
结论:
p ∧q:全真为真,一假为假.
p ∨ q :一真为真,全假为假. ⌝ p :p 真⌝ p 假,p 假⌝ p 真.
例如:p :2,0x x ∀>,q :,10x x ∃+=,p 假,q 真.
则p ∧ q 假 p ∨ q 真 ⌝ p 真 ⌝ q 假.
注意:否命题和命题的否定的区别
否命题是对条件和结论同时否定,命题的否定(即⌝ p )是条件不变,否定结论. 例如:
原命题:如果0x >,那么220x x +> 否命题:如果0x ≤,那么220x x +≤
命题的否定:如果0x >,那么220x x +≤
练习题:
四、全称量词与存在量词
1.全称量词及全称命题 例如:命题“对于一切实数x ,都有210x x ++≥”
可写为“x ∀,210x x ++≥”. 2.例如:命题“存在实数x ,都有11x x +=”可写为“x ∃,1
1x x
+=”.
3.含有一个量词的命题的否定
全称命题:p :,()x M p x ∀∈;它的否定⌝ p :00,()x M p x ∃∈⌝.
全称命题的否定是特称命题.
特称命题:p :00,()x M p x ∃∈;它的否定⌝ p :,()x M p x ∀∈⌝. 特称命题的否定是全称命题.
例如:命题“2,0x x ∀≥”的否定为:“2,0x x ∃<”.
命题“2,10a ax x ∃++>”的否定为:“2,10a ax x ∀++≤”.
命题“21,01x x x -∀=+”的否定为:“21,01
x x x -∃≠+”

练习题:
是C.答案:C
6命题“3
[0,),0
x x x
∀∈+∞+≥”的否定是()
A.3
(,0),0
x x x
∀∈-∞+<B.3
(,0),0
x x x
∀∈-∞+≥C.3
[0,),0
x x x
∃∈+∞+<D.3
[0,),0
x x x
∃∈+∞+≥解析:存在变任意,结论再否定.
答案:C
7已知命题p:2
R,0
x x x a
∀∈-+>,若⌝p为真命题,则实数a的取值范围是()
A.
1
4
a≥B.
1
4
a>C.
1
4
a≤D.
1
4
a<
解析:⌝p为2
R,0
x x x a
∃∈-+≤,是真命题,可知140
a
∆=-≥,解得
1
4
a≤
答案:C
8已知命题“2
5
R,50
4
x x x a
∀∈-+>”的否定为假命题,则实数a的取值范围是()
A.(5,)
+∞B.(1,)
-+∞C.[2,)
+∞D.[1,)
-+∞
解析:命题的否定为假命题,则原命题为真命题,所以
5
2540
4
a
∆=-⨯<,解得5
a>
答案:A
数学浪子整理制作,侵权必究。

相关文档
最新文档