Fuzzy Neural Network based on Particle Swarm Optimization in Intermittent Pumping--Chen Weishi
基于神经网络的混杂SiC_颗粒增强铝基复合材料力学性能预测
第16卷第4期精密成形工程2024年4月JOURNAL OF NETSHAPE FORMING ENGINEERING95基于神经网络的混杂SiC颗粒增强铝基复合材料力学性能预测李晓童1,庄乾铎1,牛志亮1,王锶杰1,邢正1,李赞2,岳振明1*(1.山东大学(威海)机电与信息工程学院,山东威海 264209;2.金属基复合材料国家重点实验室,上海 200240)摘要:目的提高混杂SiC颗粒增强铝基复合材料的韧性,利用卷积神经网络预测其力学性能,以得到力学性能关键因素的影响规律。
方法首先,通过实验得到了铝基复合材料的力学性能数据。
其次,基于相场裂纹扩展本构,采用Python代码批量生成了不同构型参数的代表性体积单元,并利用Abaqus软件进行了有限元仿真(FEM)。
通过代码实现了建模与仿真的一体化构建,利用得到的仿真数据,建立了神经网络模型,并实现了对复合材料力学性能的预测。
建模前,对数据进行预处理和筛选,以提高数据质量并降低模型复杂度。
最后,建立卷积神经网络,并优化模型的超参数。
结果通过建立的神经网络模型,实现了对复合材料力学性能的有效预测。
极限强度的预测误差保持在−7%~8.5%,能耗的预测误差保持在−5%~6%,预测精度较高。
结论通过结合实验、仿真和卷积神经网络模型,可以更有效地预测混杂SiC颗粒增强铝基复合材料的力学性能,从而为材料设计和制备提供指导。
关键词:混杂SiC颗粒;铝基复合材料;卷积神经网络;力学性能预测;相场裂纹扩展本构DOI:10.3969/j.issn.1674-6457.2024.04.012中图分类号:TG1 文献标志码:A 文章编号:1674-6457(2024)04-0095-06Prediction of Mechanical Properties of Hybrid SiC Particle-reinforcedAluminum-based Composites Based on Neural NetworkLI Xiaotong1, ZHUANG Qianduo1, NIU Zhiliang1, WANG Sijie1, XING Zheng1, LI Zan2, YUE Zhenming1*(1. School of Mechanical, Electrical and Information Engineering, Shandong University (Weihai), Shandong Weihai 264209,China; 2. State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China)ABSTRACT: The work aims to enhance the toughness of hybrid SiC particle-reinforced aluminum-based composites and pre-dict the mechanical properties of the composites by utilizing a convolutional neural network (CNN) to determine the key factors affecting their mechanical performance. Firstly, experimental data on the mechanical properties of the aluminum-based compos-ites were obtained. Then, based on the phase-field crack propagation constitutive model, representative volume elements (RVEs) with different configuration parameters were generated by Python code, and finite element simulations (FEM) were conducted收稿日期:2024-01-19Received:2024-01-19基金项目:国家自然科学基金(52175337,52192591)Fund:The National Natural Science Foundation of China (52175337, 52192591)引文格式:李晓童, 庄乾铎, 牛志亮, 等. 基于神经网络的混杂SiC颗粒增强铝基复合材料力学性能预测[J]. 精密成形工程, 2024, 16(4): 95-100.LI Xiaotong, ZHUANG Qianduo, NIU Zhiliang, et al. Prediction of Mechanical Properties of Hybrid SiC Particle-reinforced Aluminum-based Composites Based on Neural Network[J]. Journal of Netshape Forming Engineering, 2024, 16(4): 95-100.*通信作者(Corresponding author)96精密成形工程 2024年4月with Abaqus software. The integrated construction of modeling and simulation code was realized and the neural network model was constructed with the obtained simulation data, enabling the prediction of the mechanical properties of the com-posites. Prior to modeling, the data were preprocessed and selected to improve data quality and reduce model complexity. A convolutional neural network was established, and the hyperparameters of the model were optimized. The developed neural network model achieved effective prediction of the mechanical properties of the composites. The prediction error for ultimate strength ranged from −7% to 8.5%, and for energy absorption ranged from −5% to 6%, demonstrating high prediction accu-racy. By combining experiments, simulations, and convolutional neural network models, the mechanical properties of hybrid SiC particle-reinforced aluminum-based composites can be predicted more effectively, thereby providing guidance for mate-rial design and fabrication.KEY WORDS: hybrid SiC particles; aluminum-based composites; convolutional neural network; mechanical property predic-tion; phase-field crack propagation constitutive碳化硅颗粒(SiC p)是金属基复合材料的典型增强体[1-4],具有高强度、高模量和耐磨损等优点,作为第二相增强体广泛应用于铝基复合材料中[5]。
基于粒子群优化的深度神经网络分类算法
基于粒子群优化的深度神经网络分类算法董晴;宋威【摘要】针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度.%Aiming at problem that classification precision of neural network algorithm is not very high and node function doesn't have derivate,a new classification algorithm of deep neural network based on particle swarm optimization(PSO) is e autoencoder of deep study,and combined with PSO algorithm to optimize the weight,coder and decoder for input sample data using autoencoder.In order to improve the classification precision of network,take the error function of autoencoder and cost function of softmax classifier weight sum as evaluation function of PSO algorithm in common,making coded data more adapter to the classifier.The experimental results show that compared with other traditional neural network,the classification algorithm has higher classification precision on Email classification.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)009【总页数】5页(P143-146,150)【关键词】深度神经网络;自动编码机;粒子群优化算法;分类【作者】董晴;宋威【作者单位】江南大学物联网工程学院,江苏无锡214122;江南大学物联网工程学院,江苏无锡214122【正文语种】中文【中图分类】TP183近年来,神经网络的研究一直受到学者们的关注,如感知机[1],反向传播(back propogation,BP)神经网络[2],径向基函数(radial basis function,RBF)神经网络及其各种改进算法[3~5]等。
科技论文中引言的写作内容
14青岛大学学报(工程技术版)第33卷P S O算法和P S O算法相比性能更好。
对于单峰函数收敛速度更快,对于多峰函数A C F P S O算法能够很好地避 免陷人局部最优值。
下一步研究内容是将A C F P S O算法应用有约朿的复杂函数求解。
参考文献:[1] Kennedy J,Eberhart R. Particle Swarm Optimization[A]. Proceedings of IEEE International Conference on Neural Networks[C]7P i seataway,$IEEE Service Center,1995:1940 - 1948.[2] Eberhart R,Kennedy J. A New Optimizer UsingParticle Swarm Th eory[C] 7 International Symposium on MICRO Machineand Human Science. Washington: IEEE,2002: 39 - 43.[3] Eberhart R,Shi Y. Particle Swarm Optimization:Developments,Applications and Resources[C] 7Proceedings of the 2001Congress on Evolutionary Computation. Brussels:IEEE,2002,1(6):1-86.[]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004, 6(5): 87 - 94.[]黄少荣.粒子群优化算法综述[].计算机工程与设计,2009, 30(8): 1977 - 1980.[6] Shi Y,Eberhart R .Modified Particle Swarm Optimizer[J]. IEEE World Congress on Computational Intelligence,1998,112(6):67 - 72.[7] C lercM. The Swarm and the Queen: Towards a Deterministic and Adaptive Particles Swarm Optimization[J]. Proc of IEEECongressonEvolutionaryCom putation,1999(8):1951 - 1957.[8] Shi Y,Eberhart R, Chen Y.Implementation of Evolutionary Fuzzy Systems[J]. IEEE Transactions on Fuzzy Systems,1999,7(2):109-119.[9] Shi Y,Eberhart R. Fuzzy Adaptive Particle Swarm Optimization[C] 7 Proceedings of the IEEE Conference on EvolutionaryComputation. Lisbon :Piscataway,1997,1(12):101-106.[10] Alti A,Fateh M M. Intelligent Identification and Control Using Improved Fuzzy Particle Swarm Optimization[J]. ExpertSystemswith Applications,2011,38(10) :12312 - 12317.[11] Valdez F,Vazquez J C,Melin P,et al. Comparative Study of the Use of Fuzzy Logic in Improving Particle Swarm Optimization Variants for Mathematical Functions Using Co-evolution[J]. AppliedSoft Computing,2017,52:1070 - 1083.[12] Shi Y,Eberhart R C. Patameter Selection in Particle Swarm Optimization[J]. Lecture Notes in Computer Science,1998,1447:591 - 600.[13] Bai Q. Analysis of Particle Swarm Optimization Algorithm[J]. Computer 'InformationScience,2010, 3(1):180 - 184.[14]王东风,孟丽.粒子群优化算法的性能分析和参数选择[].自动化学报,2016, 42(0):552 - 1561.[15] Y a n g W,L iQ. SurveyonParticleSw arm O ptim izationAlgorithm[J]. EngineeringScience,2004,6(5):87 - 94.[16] Rana S,Jasola S,Kumar R. A Review on Particle Swarm Optimization Algorithms and Their Applications to data Clustering[J]. Artificial Intelligence Review,2011,35(3):211 -222.[17]张国良.模糊控制及其M A T L A B应用[M].西安:西安交通大学出版社,2002.[18]王立新,王迎军.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.[19] Liang J J,Qu B Y,Suganthan P N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization[C]7Computational Intelligence Laboratory. Zhengzhou:China and Technical Report,Nanyang Technological University,2013.[20] Derrac J,Garcia S, Molina D, et al. A Practical Tutorial on the Use of Non Parametric Statistical Tests as a Methodology forComparing Evolutionary and Swarm Intelligence Algorithms[J]. Swarm and Evolutionary Computation,2011,1(1) :3- 18.(下转第37页)科技论文中引言的写作内容引言(也称前言、序言或概述)经常作为科技论文的开端,提出文中要研究的问题,引导读者阅读和 理解全文。
人工智能英汉
人工智能英汉Aβα-Pruning, βα-剪枝, (2) Acceleration Coefficient, 加速系数, (8) Activation Function, 激活函数, (4) Adaptive Linear Neuron, 自适应线性神经元,(4)Adenine, 腺嘌呤, (11)Agent, 智能体, (6)Agent Communication Language, 智能体通信语言, (11)Agent-Oriented Programming, 面向智能体的程序设计, (6)Agglomerative Hierarchical Clustering, 凝聚层次聚类, (5)Analogism, 类比推理, (5)And/Or Graph, 与或图, (2)Ant Colony Optimization (ACO), 蚁群优化算法, (8)Ant Colony System (ACS), 蚁群系统, (8) Ant-Cycle Model, 蚁周模型, (8)Ant-Density Model, 蚁密模型, (8)Ant-Quantity Model, 蚁量模型, (8)Ant Systems, 蚂蚁系统, (8)Applied Artificial Intelligence, 应用人工智能, (1)Approximate Nondeterministic Tree Search (ANTS), 近似非确定树搜索, (8) Artificial Ant, 人工蚂蚁, (8)Artificial Intelligence (AI), 人工智能, (1) Artificial Neural Network (ANN), 人工神经网络, (1), (3)Artificial Neural System, 人工神经系统,(3) Artificial Neuron, 人工神经元, (3) Associative Memory, 联想记忆, (4) Asynchronous Mode, 异步模式, (4) Attractor, 吸引子, (4)Automatic Theorem Proving, 自动定理证明,(1)Automatic Programming, 自动程序设计, (1) Average Reward, 平均收益, (6) Axon, 轴突, (4)Axon Hillock, 轴突丘, (4)BBackward Chain Reasoning, 逆向推理, (3) Bayesian Belief Network, 贝叶斯信念网, (5) Bayesian Decision, 贝叶斯决策, (3) Bayesian Learning, 贝叶斯学习, (5) Bayesian Network贝叶斯网, (5)Bayesian Rule, 贝叶斯规则, (3)Bayesian Statistics, 贝叶斯统计学, (3) Biconditional, 双条件, (3)Bi-Directional Reasoning, 双向推理, (3) Biological Neuron, 生物神经元, (4) Biological Neural System, 生物神经系统, (4) Blackboard System, 黑板系统, (8)Blind Search, 盲目搜索, (2)Boltzmann Machine, 波尔兹曼机, (3) Boltzmann-Gibbs Distribution, 波尔兹曼-吉布斯分布, (3)Bottom-Up, 自下而上, (4)Building Block Hypotheses, 构造块假说, (7) CCell Body, 细胞体, (3)Cell Membrane, 细胞膜, (3)Cell Nucleus, 细胞核, (3)Certainty Factor, 可信度, (3)Child Machine, 婴儿机器, (1)Chinese Room, 中文屋, (1) Chromosome, 染色体, (6)Class-conditional Probability, 类条件概率,(3), (5)Classifier System, 分类系统, (6)Clause, 子句, (3)Cluster, 簇, (5)Clustering Analysis, 聚类分析, (5) Cognitive Science, 认知科学, (1) Combination Function, 整合函数, (4) Combinatorial Optimization, 组合优化, (2) Competitive Learning, 竞争学习, (4) Complementary Base, 互补碱基, (11) Computer Games, 计算机博弈, (1) Computer Vision, 计算机视觉, (1)Conflict Resolution, 冲突消解, (3) Conjunction, 合取, (3)Conjunctive Normal Form (CNF), 合取范式,(3)Collapse, 坍缩, (11)Connectionism, 连接主义, (3) Connective, 连接词, (3)Content Addressable Memory, 联想记忆, (4) Control Policy, 控制策略, (6)Crossover, 交叉, (7)Cytosine, 胞嘧啶, (11)DData Mining, 数据挖掘, (1)Decision Tree, 决策树, (5) Decoherence, 消相干, (11)Deduction, 演绎, (3)Default Reasoning, 默认推理(缺省推理),(3)Defining Length, 定义长度, (7)Rule (Delta Rule), 德尔塔规则, 18(3) Deliberative Agent, 慎思型智能体, (6) Dempster-Shafer Theory, 证据理论, (3) Dendrites, 树突, (4)Deoxyribonucleic Acid (DNA), 脱氧核糖核酸, (6), (11)Disjunction, 析取, (3)Distributed Artificial Intelligence (DAI), 分布式人工智能, (1)Distributed Expert Systems, 分布式专家系统,(9)Divisive Hierarchical Clustering, 分裂层次聚类, (5)DNA Computer, DNA计算机, (11)DNA Computing, DNA计算, (11) Discounted Cumulative Reward, 累计折扣收益, (6)Domain Expert, 领域专家, (10) Dominance Operation, 显性操作, (7) Double Helix, 双螺旋结构, (11)Dynamical Network, 动态网络, (3)E8-Puzzle Problem, 八数码问题, (2) Eletro-Optical Hybrid Computer, 光电混合机, (11)Elitist strategy for ant systems (EAS), 精化蚂蚁系统, (8)Energy Function, 能量函数, (3) Entailment, 永真蕴含, (3) Entanglement, 纠缠, (11)Entropy, 熵, (5)Equivalence, 等价式, (3)Error Back-Propagation, 误差反向传播, (4) Evaluation Function, 评估函数, (6) Evidence Theory, 证据理论, (3) Evolution, 进化, (7)Evolution Strategies (ES), 进化策略, (7) Evolutionary Algorithms (EA), 进化算法, (7) Evolutionary Computation (EC), 进化计算,(7)Evolutionary Programming (EP), 进化规划,(7)Existential Quantification, 存在量词, (3) Expert System, 专家系统, (1)Expert System Shell, 专家系统外壳, (9) Explanation-Based Learning, 解释学习, (5) Explanation Facility, 解释机构, (9)FFactoring, 因子分解, (11)Feedback Network, 反馈型网络, (4) Feedforward Network, 前馈型网络, (1) Feasible Solution, 可行解, (2)Finite Horizon Reward, 横向有限收益, (6) First-order Logic, 一阶谓词逻辑, (3) Fitness, 适应度, (7)Forward Chain Reasoning, 正向推理, (3) Frame Problem, 框架问题, (1)Framework Theory, 框架理论, (3)Free-Space Optical Interconnect, 自由空间光互连, (11)Fuzziness, 模糊性, (3)Fuzzy Logic, 模糊逻辑, (3)Fuzzy Reasoning, 模糊推理, (3)Fuzzy Relation, 模糊关系, (3)Fuzzy Set, 模糊集, (3)GGame Theory, 博弈论, (8)Gene, 基因, (7)Generation, 代, (6)Genetic Algorithms, 遗传算法, (7)Genetic Programming, 遗传规划(遗传编程),(7)Global Search, 全局搜索, (2)Gradient Descent, 梯度下降, (4)Graph Search, 图搜索, (2)Group Rationality, 群体理性, (8) Guanine, 鸟嘌呤, (11)HHanoi Problem, 梵塔问题, (2)Hebbrian Learning, 赫伯学习, (4)Heuristic Information, 启发式信息, (2) Heuristic Search, 启发式搜索, (2)Hidden Layer, 隐含层, (4)Hierarchical Clustering, 层次聚类, (5) Holographic Memory, 全息存储, (11) Hopfield Network, 霍普菲尔德网络, (4) Hybrid Agent, 混合型智能体, (6)Hype-Cube Framework, 超立方体框架, (8)IImplication, 蕴含, (3)Implicit Parallelism, 隐并行性, (7) Individual, 个体, (6)Individual Rationality, 个体理性, (8) Induction, 归纳, (3)Inductive Learning, 归纳学习, (5) Inference Engine, 推理机, (9)Information Gain, 信息增益, (3)Input Layer, 输入层, (4)Interpolation, 插值, (4)Intelligence, 智能, (1)Intelligent Control, 智能控制, (1) Intelligent Decision Supporting System (IDSS), 智能决策支持系统,(1) Inversion Operation, 倒位操作, (7)JJoint Probability Distribution, 联合概率分布,(5) KK-means, K-均值, (5)K-medoids, K-中心点, (3)Knowledge, 知识, (3)Knowledge Acquisition, 知识获取, (9) Knowledge Base, 知识库, (9)Knowledge Discovery, 知识发现, (1) Knowledge Engineering, 知识工程, (1) Knowledge Engineer, 知识工程师, (9) Knowledge Engineering Language, 知识工程语言, (9)Knowledge Interchange Format (KIF), 知识交换格式, (8)Knowledge Query and ManipulationLanguage (KQML), 知识查询与操纵语言,(8)Knowledge Representation, 知识表示, (3)LLearning, 学习, (3)Learning by Analog, 类比学习, (5) Learning Factor, 学习因子, (8)Learning from Instruction, 指导式学习, (5) Learning Rate, 学习率, (6)Least Mean Squared (LSM), 最小均方误差,(4)Linear Function, 线性函数, (3)List Processing Language (LISP), 表处理语言, (10)Literal, 文字, (3)Local Search, 局部搜索, (2)Logic, 逻辑, (3)Lyapunov Theorem, 李亚普罗夫定理, (4) Lyapunov Function, 李亚普罗夫函数, (4)MMachine Learning, 机器学习, (1), (5) Markov Decision Process (MDP), 马尔科夫决策过程, (6)Markov Chain Model, 马尔科夫链模型, (7) Maximum A Posteriori (MAP), 极大后验概率估计, (5)Maxmin Search, 极大极小搜索, (2)MAX-MIN Ant Systems (MMAS), 最大最小蚂蚁系统, (8)Membership, 隶属度, (3)Membership Function, 隶属函数, (3) Metaheuristic Search, 元启发式搜索, (2) Metagame Theory, 元博弈理论, (8) Mexican Hat Function, 墨西哥草帽函数, (4) Migration Operation, 迁移操作, (7) Minimum Description Length (MDL), 最小描述长度, (5)Minimum Squared Error (MSE), 最小二乘法,(4)Mobile Agent, 移动智能体, (6)Model-based Methods, 基于模型的方法, (6) Model-free Methods, 模型无关方法, (6) Modern Heuristic Search, 现代启发式搜索,(2)Monotonic Reasoning, 单调推理, (3)Most General Unification (MGU), 最一般合一, (3)Multi-Agent Systems, 多智能体系统, (8) Multi-Layer Perceptron, 多层感知器, (4) Mutation, 突变, (6)Myelin Sheath, 髓鞘, (4)(μ+1)-ES, (μ+1) -进化规划, (7)(μ+λ)-ES, (μ+λ) -进化规划, (7) (μ,λ)-ES, (μ,λ) -进化规划, (7)NNaïve Bayesian Classifiers, 朴素贝叶斯分类器, (5)Natural Deduction, 自然演绎推理, (3) Natural Language Processing, 自然语言处理,(1)Negation, 否定, (3)Network Architecture, 网络结构, (6)Neural Cell, 神经细胞, (4)Neural Optimization, 神经优化, (4) Neuron, 神经元, (4)Neuron Computing, 神经计算, (4)Neuron Computation, 神经计算, (4)Neuron Computer, 神经计算机, (4) Niche Operation, 生态操作, (7) Nitrogenous base, 碱基, (11)Non-Linear Dynamical System, 非线性动力系统, (4)Non-Monotonic Reasoning, 非单调推理, (3) Nouvelle Artificial Intelligence, 行为智能,(6)OOccam’s Razor, 奥坎姆剃刀, (5)(1+1)-ES, (1+1) -进化规划, (7)Optical Computation, 光计算, (11)Optical Computing, 光计算, (11)Optical Computer, 光计算机, (11)Optical Fiber, 光纤, (11)Optical Waveguide, 光波导, (11)Optical Interconnect, 光互连, (11) Optimization, 优化, (2)Optimal Solution, 最优解, (2)Orthogonal Sum, 正交和, (3)Output Layer, 输出层, (4)Outer Product, 外积法, 23(4)PPanmictic Recombination, 混杂重组, (7) Particle, 粒子, (8)Particle Swarm, 粒子群, (8)Particle Swarm Optimization (PSO), 粒子群优化算法, (8)Partition Clustering, 划分聚类, (5) Partitioning Around Medoids, K-中心点, (3) Pattern Recognition, 模式识别, (1) Perceptron, 感知器, (4)Pheromone, 信息素, (8)Physical Symbol System Hypothesis, 物理符号系统假设, (1)Plausibility Function, 不可驳斥函数(似然函数), (3)Population, 物种群体, (6)Posterior Probability, 后验概率, (3)Priori Probability, 先验概率, (3), (5) Probability, 随机性, (3)Probabilistic Reasoning, 概率推理, (3) Probability Assignment Function, 概率分配函数, (3)Problem Solving, 问题求解, (2)Problem Reduction, 问题归约, (2)Problem Decomposition, 问题分解, (2) Problem Transformation, 问题变换, (2) Product Rule, 产生式规则, (3)Product System, 产生式系统, (3) Programming in Logic (PROLOG), 逻辑编程, (10)Proposition, 命题, (3)Propositional Logic, 命题逻辑, (3)Pure Optical Computer, 全光计算机, (11)QQ-Function, Q-函数, (6)Q-learning, Q-学习, (6)Quantifier, 量词, (3)Quantum Circuit, 量子电路, (11)Quantum Fourier Transform, 量子傅立叶变换, (11)Quantum Gate, 量子门, (11)Quantum Mechanics, 量子力学, (11) Quantum Parallelism, 量子并行性, (11) Qubit, 量子比特, (11)RRadial Basis Function (RBF), 径向基函数,(4)Rank based ant systems (ASrank), 基于排列的蚂蚁系统, (8)Reactive Agent, 反应型智能体, (6) Recombination, 重组, (6)Recurrent Network, 循环网络, (3) Reinforcement Learning, 强化学习, (3) Resolution, 归结, (3)Resolution Proof, 归结反演, (3) Resolution Strategy, 归结策略, (3) Reasoning, 推理, (3)Reward Function, 奖励函数, (6) Robotics, 机器人学, (1)Rote Learning, 机械式学习, (5)SSchema Theorem, 模板定理, (6) Search, 搜索, (2)Selection, 选择, (7)Self-organizing Maps, 自组织特征映射, (4) Semantic Network, 语义网络, (3)Sexual Differentiation, 性别区分, (7) Shor’s algorithm, 绍尔算法, (11)Sigmoid Function, Sigmoid 函数(S型函数),(4)Signal Function, 信号函数, (3)Situated Artificial Intelligence, 现场式人工智能, (1)Spatial Light Modulator (SLM), 空间光调制器, (11)Speech Act Theory, 言语行为理论, (8) Stable State, 稳定状态, (4)Stability Analysis, 稳定性分析, (4)State Space, 状态空间, (2)State Transfer Function, 状态转移函数,(6)Substitution, 置换, (3)Stochastic Learning, 随机型学习, (4) Strong Artificial Intelligence (AI), 强人工智能, (1)Subsumption Architecture, 包容结构, (6) Superposition, 叠加, (11)Supervised Learning, 监督学习, (4), (5) Swarm Intelligence, 群智能, (8)Symbolic Artificial Intelligence (AI), 符号式人工智能(符号主义), (3) Synapse, 突触, (4)Synaptic Terminals, 突触末梢, (4) Synchronous Mode, 同步模式, (4)TThreshold, 阈值, (4)Threshold Function, 阈值函数, (4) Thymine, 胸腺嘧啶, (11)Topological Structure, 拓扑结构, (4)Top-Down, 自上而下, (4)Transfer Function, 转移函数, (4)Travel Salesman Problem, 旅行商问题, (4) Turing Test, 图灵测试, (1)UUncertain Reasoning, 不确定性推理, (3)Uncertainty, 不确定性, (3)Unification, 合一, (3)Universal Quantification, 全称量词, (4) Unsupervised Learning, 非监督学习, (4), (5)WWeak Artificial Intelligence (Weak AI), 弱人工智能, (1)Weight, 权值, (4)Widrow-Hoff Rule, 维德诺-霍夫规则, (4)。
因子模糊化BP神经网络在磨粒识别中的应用
因子模糊化BP神经网络在磨粒识别中的应用摘要:随着工业化的发展,磨粒识别在工业生产中变得越来越重要。
因子模糊化BP神经网络作为一种优秀的模式识别算法,在磨粒识别中具有广泛的应用。
本文介绍了因子模糊化BP神经网络的基本理论,并以磨粒识别为例,详细分析了其应用过程。
实验结果表明,因子模糊化BP神经网络在磨粒识别中的应用能够有效提高识别准确率,具有很好的应用前景。
关键词:因子模糊化BP神经网络;磨粒识别;模式识别;识别准确率1. 引言随着机械制造业的不断发展,磨粒识别在工业生产中越来越重要。
磨粒识别可以帮助企业提高生产效率和质量,减少生产成本。
目前,许多机构已经开始研究磨粒识别的技术,其中因子模糊化BP神经网络是一种非常有效的模式识别算法。
2. 因子模糊化BP神经网络因子模糊化BP神经网络(Factorial Fuzzy BP Neural Network,FFBP)是一种基于模糊理论和神经网络理论的模式识别算法。
该算法可以对模糊样本进行分类,具有很好的识别能力和鲁棒性。
FFBP算法的基本理论如下:(1)模糊化处理:将输入模式进行模糊化处理,即将模糊样本映射至模糊空间中。
(2)因子分解:对模糊因子进行分解,得到各个因子的权重系数。
(3)权重更新:根据误差进行权重更新,不断调整权重系数,提高识别效果。
3. 磨粒识别的应用磨粒识别是指通过特征提取和模式识别技术,对磨粒进行分类。
在实际应用中,磨粒的型号、尺寸、形状各异,因此磨粒的特征提取比较困难。
为了解决这一问题,可以采用因子模糊化BP神经网络进行磨粒识别。
具体操作步骤如下:(1)收集磨粒样本数据,并对其进行特征提取。
(2)对特征提取所得数据进行模糊化处理,映射至模糊空间中。
(3)对映射所得数据进行因子分解,得到各个因子的权重系数。
(4)采用加速梯度下降法对权重系数进行更新,提高识别准确率。
4. 实验结果为验证因子模糊化BP神经网络在磨粒识别中的应用效果,我们进行了实验。
基于粒子群优化的人工神经网络模型参数调优研究
基于粒子群优化的人工神经网络模型参数调优研究人工神经网络(Artificial Neural Networks, ANN)作为一种基于生物神经系统模拟的人工智能技术,被广泛应用于模式识别、数据挖掘、图像处理等领域。
人工神经网络模型的性能很大程度上取决于其参数的选择。
因此,如何有效地优化神经网络模型的参数成为一个重要的研究问题。
本文将基于粒子群优化(Particle Swarm Optimization, PSO)算法,探讨在人工神经网络模型中进行参数调优的研究。
一、粒子群优化算法简介粒子群优化算法是一种基于种群智能的全局优化算法,它模拟了鸟群觅食的行为。
算法通过引入粒子的概念,将优化问题转化为粒子在解空间中搜索最优解的过程。
每个粒子根据自身的当前位置和速度,以及整个种群中历史最优位置的信息,通过不断更新来寻找全局最优解。
二、基于粒子群优化的人工神经网络参数调优方法1. 神经网络模型的构建首先,需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元数量和连接方式。
根据实际问题,选择适当的激活函数和误差函数。
然后,初始化神经网络的权重和偏置值。
2. 参数优化目标函数的定义在人工神经网络中,通常采用误差函数(Error Function)作为优化的目标函数。
例如,对于回归问题,可以选择均方误差(Mean Squared Error, MSE)作为目标函数;对于分类问题,可以选择交叉熵损失函数(Cross-Entropy Loss)作为目标函数。
3. 粒子群优化算法与神经网络模型的结合将粒子群优化算法引入到神经网络参数优化的过程中。
初始化一定数量的粒子,每个粒子表示一组神经网络的参数。
根据粒子的当前位置和速度,计算下一次迭代的位置和速度,并更新每个粒子的最佳位置。
在每一次迭代中,对每个粒子的位置进行更新,并计算目标函数的值。
最后,选择全局最优粒子的位置作为优化后的神经网络参数。
三、实验设计与结果分析本研究选取了经典的鸢尾花数据集作为实验对象,构建了一个包含两个隐藏层的前馈神经网络模型,并将该模型的参数进行优化。
利用改进T-S模糊神经网络恢复MMW图像
利用改进T-S模糊神经网络恢复MMW图像尚丽;周燕【摘要】为有效消除毫米波(MMW)图像中的非线性噪声,利用T-S模糊神经网络(T-S-FNN)对不确定信息进行有效区分的特性,实现MMW图像中非线性信息噪声的逼近,达到消噪的目的.为克服T-S-FNN规则冗余的缺点,考虑前件网络基于自适应模糊聚类的隶属度函数约束及后件网络的权值优化学习,对其前件及后件的结构和学习算法进行改进,使T-S-FNN的计算简化、鲁棒性更强.利用改进的T-S-FNN 对MMW图像进行处理,实验结果表明,该模型具有较好的非线性噪声抑制能力.【期刊名称】《计算机工程与设计》【年(卷),期】2018(039)005【总页数】5页(P1463-1466,1489)【关键词】非线性信息;模糊神经网络;TS模糊模型;毫米波图像;图像消噪【作者】尚丽;周燕【作者单位】苏州市职业大学电子信息工程学院,江苏苏州215104;苏州市职业大学电子信息工程学院,江苏苏州215104【正文语种】中文【中图分类】TN911.730 引言毫米波(milli-meter wave,MMW)图像在系统成像过程中会渗入很多未知的噪声[1,2],且图像的非线性信息缺失非常严重,图像视觉效果较差,研究有效的MMW图像恢复方法一直是备受关注的课题[2]。
而模糊神经网络(fuzzy neural network,FNN)模型兼有模糊系统和神经网络模型的优点[3-5],能够解决很多传统技术无能为力的、不确定的、且非常复杂的非线性问题[6-8]。
因此,本文引入FNN技术来实现MMW图像的非线性滤波,从而获得图像细节和轮廓边缘较清晰的MMW图像。
目前,T-S模糊系统已被实践证实是一种典型的、有效的非线性处理手段[2,8,9]。
然而,常用的T-S模糊系统中的规则数目和规则层的神经元数目都没有合理的确定方法,常常出现规则冗余的情况;另外,T-S模糊模型中的结构和优化算法也比较复杂,计算速度较慢。
混沌粒子群算法-高斯过程回归的SOH估计
电气传动2022年第52卷第10期ELECTRIC DRIVE 2022Vol.52No.10摘要:提出基于混沌粒子群算法-高斯过程回归(CPSO-GPR )的铅酸蓄电池健康状态估计方法。
首先考察了铅酸蓄电池充电过程的电压电流变化曲线,进行了恒流充电特征的分析对比,建立了铅酸蓄电池恒流充电时间与电池容量衰减的高斯过程回归模型。
针对传统的智能算法易陷入局部最优解的问题,将混沌过程引入传统粒子群算法中,增强其优化的广度和深度,形成混沌粒子群算法来优化回归模型中的超参数,从而获得更高质量的超参数解,以提高回归模型的预测精度。
两种算法相协同,形成了CPSO-GPR 算法。
实验结果表明,该算法能够实现对铅酸蓄电池健康状态的精准估计和在线监测,对新数据点的估计精度在3%以内。
关键词:混沌粒子群算法;铅酸蓄电池;SOH 估计;储能中图分类号:TM46文献标识码:ADOI :10.19457/j.1001-2095.dqcd22520SOH Estimation of Gaussian Process Regression Based on Chaotic Particle Swarm OptimizationDING Yi 1,LIU Shengzhong 1,WANG Xudong 2,HUO Xianxu 1,HU Zhigang 3,JIANG Fan 4(1.Electric Power Research Institute of State Grid Tianjin Electric Power Company ,Tianjin 300384,China ;2.State Grid Tianjin Electric Power Pompany ,Tianjin 300010,China ;3.Chengdong Power Supply Branch of State Grid Tianjin Electric Power Company ,Tianjin 300250,China ;4.Jizhou PowerSupply Branch of State Grid Tianjin Electric Power Company ,Tianjin 301900,China )Abstract:The estimation method of state of health (SOH )of lead-acid battery based on chaotic particle swarm optimization -Gaussian process regression (CPSO -GPR )was proposed.Firstly ,the voltage and current curves of lead-acid battery during charging process were investigated ,and the characteristics of constant current charging were analyzed and compared.The Gaussian process regression (GPR )model of constant current charging time and battery capacity attenuation was established.Aiming at the problem that the traditional intelligent algorithm is easy to fall into the local optimal solutions ,the chaotic process was introduced into the traditional particle swarm optimization algorithm to enhance the breadth and depth of its optimization ,and forms the chaotic particle swarm optimization (CPSO )algorithm to optimize the super parameters in the regression model ,so as to obtain higher quality of the super parameter solution and improve the prediction accuracy of the regression model.The CPSO -GPR algorithm was formed by the cooperation of the two algorithms.The experimental results show that CPSO -GPR algorithm can achieve accurate estimation and online monitoring of SOH of lead-acid batteries ,and the estimation accuracy of new data points is less than 3%.Key words:chaotic particle swarm optimization (CPSO )algorithm ;lead-acid battery ;state of health (SOH )estimation ;energy storage基金项目:国网天津市电力公司科技项目(KJ19-1-14)作者简介:丁一(1990—),男,硕士,高级工程师,Email :混沌粒子群算法-高斯过程回归的SOH 估计丁一1,刘盛终1,王旭东2,霍现旭1,胡志刚3,姜帆4(1.国网天津市电力公司电力科学研究院,天津300384;2.国网天津市电力公司,天津300010;3.国网天津市电力公司城东供电分公司,天津300250;4.国网天津市电力公司蓟州供电分公司,天津301900)铅酸蓄电池被广泛应用在电动汽车、光伏电站、分布式电源和航空航天等领域中,其维护简单,使用寿命长,功率高,稳定性和可靠性较强。
第三届中国青年女科学家奖候选人
[1]Image segmentation by clustering of spatial patterns, Pattern Recognition Letters, 2007,他引频次:23引证文献:1.X Yang, et al., Image segmentation with a fuzzy clustering algorithm based on Ant-Tree,Signal Processing, 2008 – Elsevier2.J Fan, et al., Single point iterative weighted fuzzy C-means clustering algorithm forremote sensing image segmentation, Pattern Recognition- 20093.Cariou, et al., Unsupervised texture segmentation/classification using 2-Dautoregressive modeling and the stochastic expectation-maximization algorithmC,Pattern Recognition Letters, 20084.M Kühne, et al., A novel fuzzy clustering algorithm using observation weighting andcontext information for reverberant blind speech separation, Signal Processing, 20095.Y Xia, et al., Segmentation of brain structures using PET-CT images,20086.W Chen, et al., A 2-phase 2-D thresholding algorithm, Digital Signal Processing, 20107.Chaoshun Li, et al.,A Fuzzy Cluster Algorithm Based on Mutative Scale ChaosOptimization, Proceedings of the 5th international symposium on Neural Networks:Advances in Neural Networks, Part II,20088.Kun Qin, et al., Image Segmentation Based on Cloud Concept Analysis,20109.Long Chen, et al.,Multiple kernel fuzzy C-means based image segmentation,201010.Reddy, B.V.R., et al.,A Random Set View of Texture Segmentation,201011.Lefèvre, S., A New Approach for Unsupervised Classification in Image Segmentation,201012.Kai-jian, XIA, et al., An Image Segmentation Based on Clustering of Spatial Patternsand Watershed Algorithm, 201013.Rajeswari, M., et al., Spatial Multiple Criteria Fuzzy Clustering for Image Segmentation,201014.CH Wu, et al., A greedy strategy for images segmentation by support vector machines,201015.Wei, B.C, et al., Multi-objective nature-inspired clustering techniques for imagesegmentation, 201016.Ruta, A, Video-based Traffic Sign Detection, Tracking and Recognition, 200917.Camilus, K.S., et al., A Robust Graph Theoretic Approach for Image Segmentation,201018.WP Zhu, et al., Image segmentation by improved clustering of spatial patterns, JisuanjiYingyong Yanjiu, 200919.S Lefèvre, Une nouvelle approche pour la classification non superviséeen segmentationd’image, et gestion des connaissances: EGC'200920.Callejo, R, et al., Segmentación automática de texturas en imágenes agrícolas,201021.Marcos, I, Estrategias de clasificación de texturas en imágenes forestales hemisféricas,201022.Seo ST, et al., Co-occurrence Matrix-Based Image Segmentation IEICETRANSACTIONS ON INFORMATION AND SYSTEMS. NOV 2010, E93D(11):3128-313123.Pedrycz W, et al., Fuzzy clustering with semantically distinct families of variables:Descriptive and predictive aspects.PA TTERN RECOGNITION LETTERS. OCT 1 2010, 31(13): 1952-1958[2]Robust Shape-Based Head Tracking, Advanced Concepts for Intelligent Vision Systems,2007, 他引频次:10引证文献:1. A Bottino, et al., A fast and robust method for the identification of face landmarks inprofile images, WSEAS Transactions on Computers, 2008 - 2. D Jiang, et al., Speech driven realistic mouth animation based on multi-modal unitselection, Journal on Multimodal User Interfaces,2004.63.Chen, D, et al., Audio-Visual Emotion Recognition Based on a DBN Model withConstrained Asynchrony,20104. A Bottino, et al., Robust identification of face landmarks in profile images, 2008Proceedings of the 12th WSEAS international conference on Computers, 20085.Hou, Y, et al., Smooth Adaptive Fitting of 3D Face Model for the Estimation of Rigidand Non-rigid Facial Motion in Video Sequences, 20106.Gonzalez, I, et al., Automatic Recognition of Lower Facial Action Units, 20107.Jiang, X, et al., Perception-Based Lighting Adjustment of Image Sequences, 20108.Jiang, D, et al., Realistic mouth animation based on an articulatory DBN model withconstrained asynchrony, 20109.Y Hou, et al., 3D Face Alignment via Cascade 2D Shape Alignment and ConstrainedStructure from Motion, Advanced Concepts for Intelligent Vision Systems,200910.刘培桢,等,I RAVYSE, Hichem, S, 基于发音特征DBN 模型的嘴部动画合成,2010[3]An Efficient Physically-Based Model for Chinese Brush, Frontiers in Algorithmics, 2007,他引频次:5引证文献:1.TD Chen, Chinese Calligraphy Brush Stroke Interactive Model with Ink Diffusion Style,20102.TD Chen, Hairy Brush and Rice Paper Interactive Model with Chinese Ink PaintingStyle, 20103.Y Hou, et al., Model for Evaluating the Safety Innovation Effects in Coal Mines basedon' Security Force Engineering, 20094.MZ Zhu,et al., Virtual brush model based on statistical analysis and its application,20095.朱墨子,等, 基于统计分析的虚拟毛笔模型及其应用, 计算机工程, 2009[4]Segmentation of images using wavelet packet based feature set and Clustering Algorithm,International Journal of Information Technology, 2005, 他引频次:4引证文献:1.Lv, H, et al., Medical image segmentation based on wavelet packet and improved FCM,20082.Afifi, A, et al., Particle Swarm Optimization Based Medical Image SegmentationTechnique, 20103.吕回,等,基于小波包和改进的FCM 的医学图像分割,计算机工程与应用,20084.AFIFI. A, et al., Shape and Texture Priors for Liver Segmentation in AbdominalComputed Tomography Scans Using the Particle Swarm Optimization, 2010[5] A New Method of SAR Image Segmentation Based on Neural Network, Proceedings of the5th International Conference on Computational Intelligence and Multimedia Applications, 2003, 他引频次:3引证文献:1.徐海祥,等,基于改进的一对一支持向量机方法的多目标图像分割,微电子学与计算机,20052.徐海祥,等,彭复员,基于支持向量机方法的多目标图像分割,计算机工程与应用,20053.BU Shankar, Novel Classification and Segmentation Techniques with Application toRemotely Sensed Images, Transaction on Rough Sets VII, 2007[6] A modified particle swarm optimization algorithm for support vector machine training, TheSixth World Congress on Intelligent Control and Automation, 2006, 他引频次:3引证文献:1.Matthias Becker, et al., Traffic Analysis and Classification with Bio-Inspired andClassical Algorithms in Sensor Networks, SPECTS 2008 Committees2.Matthias Becker, et al., Sebastian Bohlmann, Helena Szczerbicka, On ClassificationApproaches for Misbehavior Detection in Wireless Sensor Networks, Journal ofComputers, Vol 4, No 5 (2009), 357-365, May 20093.Q WU, et al., Particle Swarm Optimization for Semi-supervised Support VectorMachine, 2010[7] A Novel Immune Quantum-Inspired Genetic Algorithm, Advances in Natural Computation,2005,他引频次:3引证文献:1.X You, et al. Immune Quantum Evolutionary Algorithm Based on Chaotic SearchingTechnique for Global Optimization, 20082.G Zhang, Quantum-inspired evolutionary algorithms: a survey and empirical study,20103.Xiaoming You , et al., Real-coded Quantum Evolutionary Algorithm based on ImmuneTheory for Multi-modal Optimization Problems, 2008 International Conference onComputer Science and Software Engineering[8]New method for image target recognition, Second International Conference on Image andGraphics, 2002, 他引频次:2引证文献:1.陈亮,等,基于SVM 的遥感影像目标检测中的样本选取,计算机工程与应用,20062.梅建新,等, 基于支持向量机的特定目标检测方法,武汉大学学报: 信息科学版,2004[9] A New Method for Detecting Bridges Automatically, JOURNAL OF NORTHWESTERNPolytechnical University, 2003,他引频次:2引证文献:1.Y Fu, et al., Recognition of Bridge over Water in High-Resolution Remote SensingImages, 2009 WRI World Congress on Computer Science and InformationEngineering,20092.L Zhang, et al., Adaptive river segmentation in SAR images, 2009[10]The research of the match of corresponding points in multi-view and the realization byevolutionary programming, 2004 7th International Conference on Signal Processing2004, 他引频次:1引证文献:1.Guangpeng Zhang, et al., A 3D FACIAL FEATURE POINT LOCALIZATIONMETHOD BASED ON STATISTICALSHAPE MODEL, Proc. of Internat. Conf. onAcoustics, Speech and Signal Processing ICASSP, pp. 15–20.[11]A fuzzy integral method of applying support vector machine for multi-class problem,LECTURE NOTES IN COMPUTER SCIENCE, 2006,他引频次:1引证文献:1.Hu YC, Fusing fuzzy association rule-based classifiers using Sugeno integral withordered weighted averaging operators, INTERNATIONAL JOURNAL OFUNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, DEC 2007,15(6): 717-735[12]Robust object tracking based on uncertainty factorization subspace constraints optical flow,International Conference on Computational Intelligence and Security, LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 2005, 他引频次:1引证文献:1.Hou Y, et al., Robust shape-based head tracking, Advanced Concepts for IntelligentVision Systems, Proceedings, AUG 28-31, 2007, 4678: 340-351[13]On Good-Quality Edge Detection of SAR Image, Journal of Northwestern PolytechnicalUniversity, 2003, 他引频次:1引证文献:1.LI Wei-bin, et al., New operator for edge detection in SAR image, ComputerEngineering and Design 2007-17[14]An Adaptive Immune Genetic Algorithm for Edge Detection, Advanced IntelligentComputing Theories and Applications. With Aspects of Artificial Intelligence,2007,他引频次:1引证文献:1.Judy,et al., A multi-objective evolutionary algorithm for protein structure predictionwith immune operators, Computer Methods in Biomechanics and BiomedicalEngineering, V olume 12, Number 4, August 2009 , pp. 407-413(7)[15]视频监视中运动目标的检测与跟踪算法, 系统工程与电子技术, 2002, 他引频次:111引证文献:1.付晓薇,一种基于动态图像的多目标识别计数方法,武汉科技大学,20032.汪颖进,目标跟踪过程中的遮挡问题研究,华中科技大学,20043.杨俊,变电站遥视图像的识别研究,华北电力大学(河北),20044.高腾,静止背景下运动目标跟踪方法的研究,西北大学,20055.崔宇巍,运动目标检测与跟踪中有关问题的研究,西北大学,20056.胡嘉凯,智能视频监控系统中运动目标跟踪有关问题研究及其DSP实现,合肥工业大学,20067.刘天国,红外防火监视监控系统的设计与实现,吉林大学,20068.刘昕,实时视频中选定物体追踪算法的研究,吉林大学,20069.程江华,基于DSP的视频分析系统设计与实现,国防科学技术大学,200510.廖雪超,基于粒子滤波和背景建模的多目标跟踪技术的研究和实现,武汉科技大学,200611.张之稳,嵌入式视频跟踪算法的研究,山东大学,200612.乔月,基于三层动态交互体系的多目标监控系统,哈尔滨工业大学,200613.周香珍,基于DSP的目标跟踪系统的实现,南京理工大学,200614.刘青青,智能式数字视频监控系统的研究与实现,厦门大学,200415.辛瑞红,运动目标的检测与跟踪研究,北京交通大学,200716.单海涛,复杂环境下运动人体分割算法的研究,大连海事大学,200617.武爱民,视频检测与跟踪技术在行人计数中的应用研究,合肥工业大学,200718.魏瑞斌,基于多特征的运动目标跟踪,西北大学,200719.吴雪刚,一种有效的基于粒子滤波器的多目标跟踪技术,西南大学,200720.胡志刚,基于移动通信网络的视频监控系统设计与实现,国防科学技术大学,200621.于晨,基于模板匹配技术的运动物体检测的研究,重庆大学,200722.吴园,运动车辆的检测与跟踪,南京航空航天大学,200723.周敬兵,复杂背景下的目标检测与跟踪技术研究,南京理工大学,200724.罗勤,基于序列图像处理的桥墩防撞预警系统的研究,华中科技大学,200625.肖海燕,动态目标检测与跟踪技术的研究,大连理工大学,200726.汪泉,基于运动目标检测与跟踪的视频测速技术的研究与应用,南昌大学,200727.司长哲,基于DSP的火箭自动跟踪与识别系统,重庆大学,200728.高原,海背景下弱小运动目标的检测和跟踪研究,北京交通大学,200729.庄志国,视频监控系统中有遮挡运动目标的提取和重构,厦门大学,200730.杨洋,智能场景监控系统的研究及其在室内监控中的应用,吉林大学,200831.张恒娟,基于分块高斯背景的运动目标检测与跟踪技术研究,天津师范大学,200832.马杰,视频人脸检测与识别方法研究,湖南大学,200833.陈家树,像素差的平方和增强核粒子滤波的非刚体目标跟踪,西南大学,200834.黄苜,支持向量回归机粒子滤波器非刚体目标跟踪,西南大学,200835.陈方晖,基于DSP的图像识别技术研究,国防科学技术大学,200736.王柱,复杂背景下动态目标的检测与跟踪,昆明理工大学,200737.马樱,基于视频流的步态识别,昆明理工大学,200838.梁昌斌,视频监控系统中运动目标检测和跟踪技术的研究与实现,合肥工业大学,200839.王虎,运动目标检测和跟踪的研究及应用,中国海洋大学,200840.李凤凯,多运动目标的检测与跟踪算法研究,天津大学,200741.刘月明,视频目标运动轨迹提取算法的分析与仿真,哈尔滨工业大学,200742.王久明,基于高速处理器的CMOS数字图像采集系统的硬件设计,哈尔滨工业大学,200743.伍翔,视频图像中运动目标检测与跟踪方法研究与实现,哈尔滨工业大学,200744.戴若愚,基于帧间运动能量差的跟踪算法研究与实现,华中科技大学,200745.闫丽媛,单移动目标跟踪装置的研究,沈阳工业大学,200946.杨翠萍,基于图像处理的视频监控系统的研究与实现,东华大学,200947.江雪剑,东华大学,基于PTZ摄像机的跟踪算法研究,200948.贾鸿儒,遮挡情况下基于特征相关匹配的目标跟踪方法研究,东北师范大学,200949.李明君,基于计算机视觉的运动目标的检测与跟踪的研究,青岛大学,200950.杨隽姝,车辆检测与实时跟踪算法研究,华东师范大学,200951.韩亚伟,视频交通流背景提取与运动目标跟踪检测技术研究,长安大学,200952.山茂泉,运动目标检测和跟踪算法研究,大庆石油学院,200853.罗莹,网络实时音视频处理中运动检测技术的研究与实现,上海交通大学,200854.刘钢,基于小波变换的航空图像处理及动载体多目标跟踪方法研究,中国科学院研究生院(长春光学精密机械与物理研究所),200455.潘锋,仿人眼颈视觉系统的理论与应用研究,浙江大学,200556.岳润峰,等,基于小波分解与运动补偿的弹迹检测方法,兵工自动化,200757.王蓉晖,等,基于小波变换的分层块匹配多目标跟踪方法,吉林大学学报(信息科学版),200458.刘春华,等,运动中的多目标电视跟踪方法,弹箭与制导学报,200459.胡志刚,等,基于无线通信网络的视频监控研究,电脑知识与技术(学术交流),200760.程成,等,眼动交互的实时线性算法构造和实现,电子学报,200961.宋世军,等,运动人体图像分割算法研究,中国工程机械学报,200762.刘钢,等,运动背景下多目标跟踪的小波方法,光电工程,200563.门立彦,等,种视频序列中运动目标的跟踪方法,装备制造技术,200964.杨伟,等,基于mean-shift的多目标粒子滤波跟踪算法设计,光电技术应用,200965.杨伟, 等,基于Mean-shift的多目标跟踪算法的设计[J]. 红外,2009,(3).66.朱冬,等,一种改进的自适应运动目标检测算法,信息通信,200667.杨伟,等,基于mean-shift的多目标粒子滤波跟踪算法设计,红外技术,200968.蒋文斌,等,一种基于位移概率矩阵的目标跟踪方法,华中科技大学学报(自然科学版),200669.孙剑,等,基于mean-shift的快速跟踪算法设计与实现,计算机工程,200670.徐璟,DSP视频监控中运动目标检测方法研究,计算机仿真,200871.余静,等,自动目标识别与跟踪技术研究综述,计算机应用研究,200572.宋世军,等,复杂背景下运动目标的智能检测方法,计算机应用与软件,200873.唐俐,等,运动目标检测的三帧差分和背景消减研究,科技信息,200874.袁基炜,等,一种基于灰色预测模型GM(1,1)的运动车辆跟踪方法,控制与决策,200675.李衡宇,等,杨晓敏基于计算机视觉的公交车人流量统计系统,四川大学学报(自然科学版),200776.唐宏震,等,基于多分辨率分级分块处理的边缘检测方法,陕西师范大学学报(自然科学版),200777.关向荣,等,视频监视中背景的提取与更新算法,微电子学与计算机,200578.杨建国,等,基于自适应轮廓匹配的视频运动车辆检测和跟踪,西安交通大学学报,200579.王先培,等,变电站遥视智能化系统中除噪问题的研究,襄樊学院学报,200980.鹿雪娇,基于视频图像的运动物体识别与跟踪技术研究,大庆石油学院,200981.焦安霞,视频序列中动目标检测与跟踪算法的研究,哈尔滨工程大学,200882.王笑雨,运动目标检测与跟踪系统设计,哈尔滨工程大学,200883.张敏,视频监控中运动目标检测与清晰化方法的研究,江苏大学,201084.马小博,基于FPGA的视频监控跟踪系统研究,大连海事大学,201085.邓俊云,基于DAM6416P处理平台对弱小目标的检测与跟踪,南京航空航天大学,200986.余晓蓉,运动目标检测与跟踪技术研究,西安电子科技大学,201087.赵红丽,基于多光谱图像融合的视频运动目标检测[,西安电子科技大学,201088.宋岩,交通信息采集系统中运动车辆的检测与识别技术研究,黑龙江大学,200989.汪冲,运动目标检测与跟踪在鱼眼图像中的应用,哈尔滨工程大学,200990.吕斌,交通监控系统中目标跟踪与行为识别研究,中南大学,201091.刘玟,基于驾驶员眼睛状态的疲劳驾驶检测算法,华南理工大学,201092.陆珺,交通道口运动目标检测与跟踪方法的研究,江苏大,200793.陈奕奕,运动目标检测分割算法研究,武汉科技大学,201094.王二力,红外监控系统中关键技术研究,西安电子科技大学,200695.陈爱斌,基于视觉的运动目标跟踪方法研究,中南大学,201096.邹策千,等,序列图像运动目标的检测与提取,内蒙古农业大学学报(自然科学版),201097.关向荣,等,视频监视中背景的提取与更新算法,微电子学与计算机,200598.孙剑,等,基于mean-shift 的快速跟踪算法设计与实现,计算机工程,200699.何健刚,AdHoc 网络在WindowsXP 环境下的应用实例,计算机应用与软件,2008100.庄志国,视频监控系统中有遮挡运动目标的提取和重构,硕士学位论文,厦门大学,2007101.陈方晖,基于DSP 的图像识别技术研究,硕士学位论文,国防科技大学,2007 102.付晓薇,一种基于动态图像的多目标识别计数方法,硕士学位论文,武汉科技大学,2003103.李衡宇,等,基于计算机视觉的公交车人流量统计系统,四川大学学报: 自然科学版, 2007104.徐璟,DSP 视频监控中运动目标检测方法研究,计算机仿真, 2008105.肖海燕,动态目标检测与跟踪技术的研究,硕士学位论文,大连理工大学,2007 106.黄扬帆,等,改进PDA-AI方法的运动目标跟踪性能分析[J]. 重庆大学学报,2010 107.赵陈, 等,基于混合模型的运动目标检测算法[J].电子测试,2011108.曹晖. 运动多目标检测与跟踪算法研究[D]. 哈尔滨工程大学,2010109.何娜. 视频监控中运动物体自动跟踪技术的研究[D]. 南华大学,2010110.杨勇. 基于粒子滤波目标跟踪方法研究[D]. 中南林业科技大学,2009111.李姗姗. 智能视频跟踪系统中的运动目标检测与跟踪技术研究[D]. 华中科技大学: ,2009[16]角点检测技术综述, 计算机应用研究, 2006, 他引频次:94引证文献:1.李宝昭,基于匹配的图像识别算法的应用研究,硕士学位论文,广东工业大学,20072.陆兵,视频中的文本提取及其应用,硕士学位论文,河海大学,20073.庄志国,视频监控系统中有遮挡运动目标的提取和重构,硕士学位论文,厦门大学,20074.韩啸,基于遗传算法的摄像机内参数标定研究,硕士学位论文,吉林大学,20085.吴亚鹏,基于双目视觉的运动目标跟踪与三维测量,硕士学位论文,西北大学6.邓再强,基于特征点匹配的电子稳像算法研究,硕士学位论文,电子科技大学,20087.赵万金,图像自动拼接技术研究与应用,硕士学位论文,苏州大学,20088.汪心昕,基于内容的广告垃圾图像检测关键技术研究,硕士学位论文,北京邮电大学,20089.代建辉,智能交通系统车辆流量检测技术的研究,硕士学位论文,天津大学,200710.赵文闯,基于视觉的多机器人实验系统室内实时定位研究,硕士学位论文,哈尔滨工业大学,200711.兰信旭,视觉坐标测量的仿真环境设计,硕士学位论文,青岛大学,200812.刘晶晶,基于双目立体视觉的三维定位技术研究,硕士学位论文,华中科技大学,200713.刘永强,基于视觉测量的汽车车轮定位技术的研究,硕士学位论文,大连理工大学,200814.王娟,图像拼接技术研究,硕士学位论文,陕西师范大学,200815.王树峰,基于立体视觉方法的图像三维模型重建研究,硕士学位论文,南京航空航天大学200816.张晶,基于比值算法的图像拼接技术的实现,硕士学位论文,吉林大学,200917.陈光,亚像素级角点提取算法,硕士学位论文,吉林大学,200918.徐江玲,基于非平行双目视觉的三维重建,硕士学位论文,大连理工大学,200919.蒋虎,航片拼接及其与矢量地图的可视化集成技术,硕士学位论文,电子科技大学,200920.李建敏,基于轮廓片段的图像识别技术研究,硕士学位论文,厦门大学,200921.徐秀眉,基于SVG的校园导航系统开发研究,硕士学位论文,长安大学,200922.魏娟,双目视觉在自动倒车系统中的应用研究,硕士学位论文,哈尔滨工程大学,200923.张明志,基于微特征的指纹识别算法研究,硕士学位论文,厦门大学,200824.李海峰,基于要素的图像统计模型研究,硕士学位论文,北京交通大学,200925.李绍君,基于Snake模型的肿瘤显微图像分割技术研究,硕士学位论文,华东交通大学,200826.钱苏斌,曲面重建[D].硕士学位论文,江南大学,200927.倪奎,人脸器官拼接融合及其在人脸动画中的应用,硕士学位论文,中国科学技术大学,200928.阮国威,高速电脑绣花机视频运动检测分析系统,硕士学位论文,北京工商大学,200929.刘军学,移动机器人视觉检测和跟踪研究,硕士学位论文,哈尔滨工业大学,2008.30.陈二龙,PCB视觉检测系统中相机标定算法与位姿测定技术,硕士学位论文,哈尔滨工业大学,200831.徐涛,基于多个广角相机的图像拼接技术,硕士学位论文,浙江大学,201032.邹虹,基于计算机视觉的动作识别对人机界面消隐的研究,硕士学位论文,哈尔滨工业大学,200933.裴聪,基于计算机视觉中双目立体匹配技术研究,江苏大学,201034.肖建军,车辆遮挡检测的研究与应用,北方工业大学,201035.杨文鲜,基于形状的图像匹配复合模型研究,华北电力大学(北京),201036.李畅,基于曲率乘积的直接曲率尺度空间角点检测算法,硕士学位论文,南京航空航天大学,200937.钱镜洁,基于视频的车型识别技术研究,硕士学位论文,南京航空航天大学,200938.孟犇,图像局部特征技术在图像检索系统中的应用,上海交通大学,201039.赵勇,基于覆盖分类的视觉跟踪算法研究,安徽大学,201040.王靖韬,三维重建的摄像机标定技术和多尺度空间下角点检测技术的研究,内蒙古农业大学,201041.李蕊艳,基于机器视觉的芯片识别及定位软件的研究开发,硕士学位论文,西安理工大学,200942.曾东方,单晶生长过程直径检测与化料过程模式分类方法研究,硕士学位论文,西安理工大学,200943.兰昆艳,基于特征检测的车辆跟踪技术的研究,硕士学位论文,北京邮电大学,201044.彭旭,机场监控视频相关事件检测,硕士学位论文,北京邮电大学,201045.时洪光,基于双目视觉的运动目标定位研究,硕士学位论文,青岛大学,201046.戴剑锋,摄像头径向畸变自动校正系统,硕士学位论文,华南理工大学,201047.王奇,基于脸部器官关系的嘴巴检测算法研究,硕士学位论文,湖南大学,201048.吴祺,基于视觉技术的陈展交互设计与实现,硕士学位论文,浙江大学,浙江大学,201049.唐新星,具有立体视觉的工程机器人自主作业控制技术研究,博士学位论文,吉林大学,200750.王立中,基于机器视觉的奶牛体型评定中的关键技术研究,内蒙古农业大学,200951.孙文昌,等,基于熵和独特性的角点提取算法,计算机应用,200952.张裕,等,基于Harris算法的黑白棋盘格角点检测,计算机应用与软件,201053.欧剑,等,基于头部跟踪的虚拟画展系统,计算机应用,201054.兰海滨,等,基于角点检测的彩色图像拼接技术,计算机工程与设计,200955.张登银,等,边缘检测算法改进及其在QoE测定中的应用,计算机技术与发展,200956.王科俊,等,基于共面圆的双目立体视觉分步标定法,应用科技,201057.时洪光,等,双目视觉中的角点检测算法研究,现代电子技术,201058.万敏,基于角点的汉字特征提取与识别算法,宜宾学院学报,201059.李健,抗几何攻击的数字图像水印技术的研究,南京理工大学,200960.张金玲,面向空间舱内机器人遥操作的增强现实仿真场景构建技术研究,北京邮电大学,200961.谭立东,道路交通事故现场快速勘查图像信息处理技术研究,吉林大学,200962.王军南,等,基于视觉的机械臂末端执行器坐标获取,2007系统仿真技术及其应用学术会议论文集,200763.李勃,等,路况PTZ摄像机自动标定方法,中国通信学会通信软件技术委员会2009年学术会议论文集,200964.陈宇波,等,在人脸图像中确定嘴巴位置的方法,电子科技大学学报,200765.陶骏,等,特定视频采集系统中的身份识别的实现,电脑知识与技术,200966.宋洁,等,基于金字塔和模糊聚类的路面图像拼接方法,河北工业大学学报,200867.韩斌,等,改进的亚像素级快速角点检测算法,江苏科技大学学报(自然科学版),200968.张铁楠,等,针对棋盘格角点快速检测的一种新方法,计算机工程与应用,200869.赵万金,等,一种自适应的Harris角点检测算法,计算机工程,200870.王娟,师军,吴宪祥,图像拼接技术综述,计算机应用研究,200871.王立中,等,基于图像分块的多尺度Harris特征点检测算法,内蒙古大学学报(自然科学版),200972.冯宇平,等,一种用于图像序列拼接的角点检测算法,计算机科学,200973.任雁,角点检测方法研究,机械工程与自动化,200974.华瑞娟,等,一种多椭圆曲线拟合的新算法,长春理工大学学报(自然科学版),201075.顾国庆,等,基于曲率多尺度的高精度角点检测,光学技术,201076.盛遵冰,等,点对核值匹配的角点检测,计算机工程与应用,201077.马品奎,基于图像分析的超塑性自由胀形实验测量与力学解析,吉林大学,201078.倪奎,人脸器官拼接融合及其在人脸动画中的应用, 硕士学位论文,中国科学技术大学,200979.禹蒲阳,分类算法的一种改进,计算机应用与软件, 201080.吴祺, 基于视觉技术的陈展交互设计与实现, 硕士学位论文,浙江大学,201081.肖啸,等,基于数字有机体的访问控制链表(ACL) 的设计与实现,电脑知识与技术: 学术交流,200982.徐涛,基于多个广角相机的图像拼接技术, 硕士学位论文,浙江大学,201083.兰昆艳,等,基于图像金字塔光流的角点跟踪法的车辆监测系统,中国智能交通,200984.蔡胜利, 等,基于Harris角点检测的图像旋转测量[J]. 计算机测量与控制,2011,(1).85.全星慧, 等. 一种基于角点匹配的图像拼接算法研究[J]. 科学技术与工程,2011,(4).86.谭振宇, 等. 一种基于支持向量机的角点检测算法[J]. 电子测试,2011,(1).87.孙秋成. 基于机器视觉的轴径测量[D]. 吉林大学,2010.88.张炜. 基于点特征的图像拼接技术研究[D]. 河南科技大学: 2010.89.张金金. 基于SIFT的遥感影像自动配准的研究与实现[D]. 河南理工大学: 2009.90.肖若秀. 图像匹配方法研究与应用[D]. 昆明理工大学:2008.91.王静. 基于SIFT和角点检测的自动图像配准方法研究[D]. 华中科技大学: 2010.92.唐红梅. 基于辐射与空间信息的遥感图像检索[D]. 山东科技大学:2010.93.卓磊. 视频序列电子稳像技术研究[D]. 天津大学:2010.94.戴磊. 基于视觉反馈的移动机器人控制[D]. 上海交通大学:2011[17]可恢复的脆弱数字图像水印, 计算机学报, 2004, 他引频次:26引证文献:1.郭越,基于小波变换的鲁棒性与脆弱性数字水印算法的研究与实现,上海海事大学,20042.郭彦琦,数字图书馆工程中数字产品的版权保护和访问权限控制的研究和实现,上海海事大学,20043.刘为超,基于小波的数字图像认证水印研究,西安电子科技大学,20054.赵敏,医学图象数字水印系统研究与实践,苏州大学,20055.孙建梅,基于内容的图像认证技术研究,西北大学,20056.桑晓青,基于离散小波变换的数字图像篡改验证技术的研究,浙江工商大学,20067.杨艳萍,基于数字水印的图像认证技术研究,西北大学,20068.朱兴力,鲁棒图像数字水印算法及其协议研究,西南交通大学,20069.余淼,用于JPEG图像认证的数字水印算法研究,西南交通大学,200710.吴志伟,基于CRC的脆弱型文本数字水印研究与应用,中南大学,200711.廖昌兴,压缩域图像水印与隐写算法研究,西南交通大学,200812.潘季芳,差错控制数据库水印算法研究,湖南大学,200913.张宪海,数字水印技术在版权保护与内容认证中的应用研究,哈尔滨工程大学,200614.叶登攀,图像认证及视频数字水印的若干算法研究,南京理工大学,2005。
混沌粒子群优化神经网络算法应用于SRG建模
混沌粒子群优化神经网络算法应用于SRG建模肖文平;叶家玮【摘要】粒子群算法是解决非线性、不可微问题的一种优秀算法.利用混沌映射的随机性与遍历性,引入防旱熟机制,加强了粒子群的全局搜索能力,但该算法仍然容易在进化后期出现速度变慢现象.BP神经网络具有很强的非线性处理能力和逼近能力,但BP算法是基于梯度下降的方法,存在容易陷入局部最优及初值敏感的缺点.将两种算法优势互补,构建了一种混沌粒子群优化BP神经网络(CPSO-BPNN)的算法.该算法应用到开关磁阻发电机(SRG)的非线性建模中,建模效果表明CPSO-BPNN算法的泛化能力很强,可以比较完美地表达开关磁阻发电机的磁链和转矩特性.【期刊名称】《计算机工程与应用》【年(卷),期】2010(046)027【总页数】4页(P238-241)【关键词】混沌;粒子群优化;神经网络;群智能;开关磁阻发电机【作者】肖文平;叶家玮【作者单位】华南理工大学土木与交通学院,广州,510640;顺德学院电子系,广东,佛山,528333;华南理工大学土木与交通学院,广州,510640【正文语种】中文【中图分类】TP39神经网络的权值训练问题实际是一种复杂的连续参数优化问题,即寻找最优的连续权值。
目前广泛研究的前向神经网络主要采用误差传播算法(BP),BP算法目前广泛应用于非线性建模、模式识别、系统辨识、预测、控制等领域。
但它是基于梯度下降的方法,因而对初始权值向量异常敏感,在具体计算过程中,学习率、动量系统等参数的选取,只能凭实验与经验来确定,容易陷入局部极值,使得神经网络的训练效果变差,影响了BP神经网络的推广应用。
粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy J和Eberhart R C于1995年提出的一种优化算法[1],是一种基于群智能的随机全局优化计算技术,源于对鸟群和鱼群群体运动行为的研究。
PSO算法是根据全体粒子和自身搜索经验向着最优解的方向“飞行”,在进化后期收敛速度明显变慢,同时容易陷入局部极值。
粒子群优化算法PSO介绍中英文翻译word版
粒子群优化算法(PSO)介绍在频谱资源日趋紧张的今天,想要通过增加频谱宽度来提高系统容量的方式已经很难实现;同时,想在时域、频域或码域进一步提高系统容量已经十分困难。
在这种情形下,人们把目光投向了空域,期望能够从中寻觅新的源泉。
随着人们对于无线移动通信的要求愈来愈高,专门是对高速多媒体传输的迫切需求,与之相关能够提高系统容量的技术也开始受到人们的特别重视。
20世纪90年代以来,对于群体智能的研究逐渐兴起。
Eberhart和Kennedy于1995年提出的粒子群优化算法(PSO),作为一种简单有效的优化算法迅速在各个领域取得了普遍的应用。
PSO算法的思想来源是鸟群在觅食进程中表现的群体智慧。
通常单个自然生物并非是智能的,可是整个生物群体却表现出处置复杂问题的能力,这就是群体智能。
各类生物聚集成生物种群,都有其内在行为规律,而人类作为高级生物,研究并掌握了这种规律,模拟设计出各类优化算法并运用于各类问题。
类似的还有按照生物繁衍特性产生的遗传算法,对蚂蚁群落食物收集进程的模拟产生的蚁群算法。
PSO算法目前已经普遍用于函数优化、神经网络训练、模糊系统控制和其他遗传算法涉及到的应用领域。
PSO算法较之其他的优化算法实现简单,也没有许多参数需要调整。
可是它也有着收敛过快、易收敛于局部极值的现象,专门是面对高维复杂的问题时如阵列天线方向图综合问题。
人们提出了很多的改良算法,来提高PSO算法的性能。
惯性权重和紧缩因子是目前应用比较普遍的对大体粒子群算法的改良,能够改善优化性能可是收敛较慢。
文献中将粒子群算法和遗传算法在方向图综合上的应用做了比较,能够看出粒子群算法较之遗传算法有计算量小易于实现等特点,但也能够看到大体的PSO算法和遗传算法的收敛速度都不快或往往在某个局部极值停滞太久很难跳出。
粒子群优化算法(PSO粒子群优化(PSO:Particle Swarm Optimization))是一种进化计算技术(evolutionary computation)是一种有效的全局优化技术,有Eberhart 博士和kennedy博士发明。
基于粒子群的改进模糊聚类图像分割算法
基于粒子群的改进模糊聚类图像分割算法刘欢;肖根福【摘要】基于粒子群优化的改进模糊聚类图像分割算法将微粒群搜索聚类中心作为图像分割的聚类初值,克服了FCM分割算法对聚类中心初值敏感的缺点,大幅提高了图像分割算法的计算速度。
改进的模糊聚类图像分割算法,一方面考虑到像素的空间位置信息和相互邻域之间像素有很大的相关性,在目标函数中引入邻域惩罚函数;另一方面提出聚类在二维方向上进行更新的思想,建立了包含邻域单元熵的新聚类目标函数。
实验结果表明,该方法可以使模糊聚类的速度得到明显提高,对初始聚类中心不敏感,抗噪能力强,是一种有效的模糊聚类图像分割方法。
%In improved fuzzy clustering image segmentation method based on Particle Swarm Optimization(PSO_TDFCM), the clustering centers searched by particle swarm are taken as image segmentation clustering initializations, which overcomes the sensitive to the clustering center initializations for Fuzzy C-Means(FCM)algorithm as well as improves the speed of FCM algorithm greatly. Meanwhile, on the one hand, the new idea taken into account the great correlation between the spatial site information of a pixel and it’s neighborin g pixels, consequently, the neighboring penalized function is added in the objective function;on the other hand, it suggests to update the clustering centers at the two-dimension directions, from which the new objective function combines cell entropy. The results of comparative experiments demonstrate that this approach is an effective fuzzy clustering image segmentation algorithm, which can make a markedimprovement in the speed of fuzzy clustering as well as insensitive to the initial clustering patters and robust to the noise.【期刊名称】《计算机工程与应用》【年(卷),期】2013(000)013【总页数】4页(P152-155)【关键词】粒子群;模糊C均值聚类;图像分割;邻域信息;单元熵【作者】刘欢;肖根福【作者单位】井冈山大学电子与信息工程学院,江西吉安 343009;井冈山大学机电学院,江西吉安 343009【正文语种】中文【中图分类】TP391.41图像分割是图像分析和模式识别需要解决的首要问题和基本问题,也是图像处理和计算机视觉的经典难题之一,它决定了图像的最终分析质量和模式识别的判别结果[1]。
利用轨迹模板匹配方法的实时动态手势识别
利用轨迹模板匹配方法的实时动态手势识别彭露茜;姚加飞【摘要】利用混合高斯模型进行运动检测,分割出运动前景,采用粒子滤波器结合皮肤椭圆模型进行手势跟踪,获得手势中心点运动轨迹,在此基础上提出利用轨迹模板匹配方法进行动态手势识别.该方法利用基本的几何和三角函数就能完成手势运动轨迹的定义和识别,不需要选择特征或训练样本.实验结果表明,该算法能够实现实时动态手势识别.%The Gaussian mixture model is used to segment the motion foreground.A particle filter anda skin ellipse model are used to track the motion of the center of the gesture.Based on this,the dynamic gesture recognition is proposed using the track template matching method.This method can use the basic geometric and trigonometric functions to complete the recognition of the trajectory of the gesture,without selecting features or training samples.The experiment results show that the algorithm can achieve real-time dynamic gesture recognition.【期刊名称】《单片机与嵌入式系统应用》【年(卷),期】2017(017)008【总页数】4页(P17-20)【关键词】轨迹模板匹配;动态手势识别;皮肤椭圆模型;粒子滤波器【作者】彭露茜;姚加飞【作者单位】重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400044;重庆大学建筑设计研究院【正文语种】中文【中图分类】TP391.4手势识别作为新型人机交互方式之一,成为一项越来越重要的热点研究内容。
基于粒子群算法的永磁同步电机模型预测控制权重系数设计
2021年1月电工技术学报Vol.36 No. 1 第36卷第1期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jan. 2021 DOI: 10.19595/ki.1000-6753.tces.200752基于粒子群算法的永磁同步电机模型预测控制权重系数设计李家祥1,2汪凤翔1,2柯栋梁2李政2何龙2(1. 福州大学电气工程与自动化学院福州 3501082. 电机驱动与功率电子国家地方联合工程研究中心中国科学院海西研究院泉州装备制造研究所泉州 362200)摘要针对模型预测控制算法(MPC)在处理多目标多约束条件时权重系数设计问题,该文提出一种基于混沌变异的动态重组多种群粒子群算法(CDMSPSO)实现权重系数自整定。
通过分析模型预测转矩控制(MPTC)代价函数,以两相旋转坐标系下电流误差方均根为参考,将降低转矩脉动和减小电流总谐波畸变(THD)作为主要控制目标,设计粒子群算法中粒子的目标函数。
采用CDMSPSO算法,将整个种群划分为多个小的子粒子群,并以一定重组周期将粒子进行随机重组,然后随机选择一个子粒子群,以其中任一粒子为基础迭代生成混沌序列,并将新的混沌序列替代选择的子粒子群,实现粒子的混沌变异。
仿真和实验结果验证了该方法能较好地解决权重系数整定问题,且稳态性能优异。
关键词:永磁同步电机模型预测控制权重系数粒子群优化动态重组混沌变异中图分类号:TM341Weighting Factors Design of Model Predictive Control for PermanentMagnet Synchronous Machine Using Particle Swarm Optimization Li Jiaxiang1,2 Wang Fengxiang1,2 Ke Dongliang2 Li Zheng2 He Long2(1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China2. National and local joint Engineering Research Center for Electrical Drives and Power ElectronicsQuanzhou Institute of Equipment Manufacturing Haixi Institute Chinese Academy of SciencesQuanzhou 362200 China)Abstract In this paper, a dynamic recombined multi-population particle swarm optimization algorithm based on chaotic-mutation (CDMSPSO) is proposed to realize self-tuning of the weighting factors when model predictive control algorithm (MPC) is dealing with multi-objective and multi-constraint conditions. By analyzing the design principle of cost function in the model predictive torque control (MPTC), taking the root mean square of the current error in the two-phase rotating coordinate system as a reference, the objective function of particles in particle swarm optimization is designed with reducing the torque ripple and reducing the current total harmonic distortion (THD) as the main control objectives. The whole population was divided into several small sub-particle swarms by using CDMSPSO, and the particles were randomly recombined with a certain recombination period, then a random sub-particle swarm is selected and chaotic sequence is generated iteratively on the basis of any particle, and the selected sub-particle swarm is replaced by the new chaotic sequence to realize chaotic国家自然科学基金项目(51877207)和中国科学院海西研究院“前瞻跨越”计划重大项目(CXZX-2018-Q01)资助。
改进的粒子群算法优化TSFNN的交通流预测
A bstract:In order to im prove the accuracy of trafi c flow prediction,a prediction algorithm for trafi c flow of T-S fuzzy neural network optimized Improved Particle Swarm Optimization(IPSOTSFNN)is proposed.In the algorithm,Impf low prediction based on T-S fuzzy neural netw ork optim ized im proved particle
swarm optim ization.Computer Engineering and Applications,2014,50(4):236—239.
Key words:Particle Swarm Optimization(PSO);T-S model;fuzzy neural network;trafic flow prediction
摘 要 :为提 高T-S模糊神经 网络在 交通 流量预测的准确性,提 出了一种改进的粒 子群算 法优化 T-S模糊神经 网络预 测 交通流量的算法。该算法利用改进粒子群算法通 过群体极值进行 t分布变异 ,使 算法跳 出局部收敛 ,使用改进的粒 子群算 法优化 T-S模糊神 经网络 ,能够优化 网络参数 配置 ,进 而提 高网络 的预测精度。利用优化后的 T.s模糊神 经 网 络对 实测交通流量 进行预测,实验仿 真表 明优化的T-s模糊神经 网络可有效提 高交通流量预测精 度,减 小预测误差 。 关键词 :粒子群算法 ;T-S模型 ;模糊神经 网络 ;交通流量预测 文献标志码:A 中图分类号 :TP301.6 doi:10.3778/j.issn.1002.8331.1309.0478
FUZZY NEURAL NETWORK DEVICE AND LEARNING METHOD TH
专利名称:FUZZY NEURAL NETWORK DEVICE ANDLEARNING METHOD THEREFOR发明人:MATSUOKA TERUHIKO,松岡 輝彦,ARAMAKITAKASHI,荒巻 隆志申请号:JP特願平7-117218申请日:19950516公开号:JP特開平8-314881A公开日:19961129专利内容由知识产权出版社提供专利附图:摘要:PURPOSE: To provide a fuzzy neural network device which is capable ofobtaining an output value even for incomplete input data containing an unknown value inan input parameter and performing learning by using even incomplete learning data. CONSTITUTION: This device is provided with an input layer 1 outputting the value of an input parameter, membership layers 2 and 3 which is formed by dividing the ranges of the values which the input parameter can take, into plural areas defin the membership function of every area and outputs the membership value of each area in accordance with the output value from the input layer 1 for every input parameter, a rule layer 4 constructing a prescribed rule by the certain areas cooperating with each other between different input parameters and outputting the adaptability for the rule, an output layer 5 outputting the value of an output parameter in accordance with the output value from the rule layer 4 and a membership value setting means 6 setting the membership value corresponding to the unknown value to a prescribed value when a part of the input parameter has an unknown value.申请人:SHARP CORP,シャープ株式会社地址:大阪府大阪市阿倍野区長池町22番22号国籍:JP代理人:藤本 博光更多信息请下载全文后查看。
包装生产线用码垛机器人智能定位方法
第42卷 第23期 包 装 工 程2021年12月PACKAGING ENGINEERING ·219·收稿日期:2021-01-11基金项目:江苏省高校自然科学研究面上项目(19KJD470001)作者简介:吴萍(1980—),女,硕士,常州工业职业技术学院讲师,主要研究方向为机械制造自动化、工业机器人。
包装生产线用码垛机器人智能定位方法吴萍(常州工业职业技术学院,江苏 常州 213164)摘要:目的 为提高包装生产线中码垛机器人的智能定位精度,结合图像处理和智能算法设计一种码垛机器人定位方法。
方法 分析码垛机器人基本结构和工作流程。
介绍一种适用范围广的快速手眼标定方法,可通过图像处理得到物料实际位置。
设计一种模糊神经网络控制器,用于消除实际抓取位置和理论计算位置之间偏差。
采用遗传粒子群优化算法来解决控制器参数初始值优化问题。
通过实验验证智能定位方法的有效性。
结果 试验结果表明,实际抓取位置和理论计算位置之间偏差可控制在0.5 mm 以内,实际分拣速度最高支持180个/min 。
结论 所述视觉码垛控制系统可实现工作区域内物料的定位和识别,几乎不会出现漏抓、误抓等情况,满足精度要求。
关键词:码垛机器人;手眼标定;模糊神经网络;粒子群算法中图分类号:TP273 文献标识码:A 文章编号:1001-3563(2021)23-0219-06 DOI :10.19554/ki.1001-3563.2021.23.031Intelligent Positioning Method of Palletizing Robot for Packaging Production LineWU Ping(Changzhou Vocational Institute of Light Industry, Changzhou 213164, China)ABSTRACT: The work aims to design a positioning method of palletizing robot by combining image processing and in-telligent algorithm, so as to improve the intelligent positioning accuracy of palletizing robot in packaging production line. The basic structure and workflow of stacking robot were analyzed. A rapid hand-eye calibration method with a wide range of application was introduced. The actual position of material was obtained through image processing. A fuzzy neural network controller was designed to eliminate the deviation between actual grasping position and theoretical calculating position. Genetic Particle Swarm Optimization algorithm was used to solve the problem in initial value optimization of controller parameters. The effectiveness of the intelligent positioning method was verified by experiments. The experi-mental results showed that the deviation between the actual grasping position and the theoretical calculation position could be controlled within 0.5 mm, and the maximum actual sorting speed was 180 times/min. The visual palletizing con-trol system can realize the positioning and identification of materials in the working area, and almost no missing and wrong grasping occurs, which meets the requirements of accuracy.KEY WORDS: palletizing robot; hand-eye calibration; fuzzy neural network; particle swarm optimization随着自动化技术和计算机技术的不断发展,码垛机器人控制水平大幅度提高,在诸多行业的应用十分广泛。
基于量子粒子群优化算法的压缩感知数据重构方法
基于量子粒子群优化算法的压缩感知数据重构方法∗刘洲洲;李艳平【摘要】According to wireless sensor network monitoring object features,the compressed sensing theory is applied to data compression to reduce the communication energy. Considering that reconstruction accuracy of existing data reconstruction in compressed sensing can be easily influenced by sparsity,after analysis of compressed sensing data reconstruction principle,with sub-frame processing the original signal in fixed length to reduce the solution space, and applying quantum theory encoding in Particle Swarm Optimization, Compressed Sensing Data Reconstruction that based on Quantum-behaved Particle Swarm Optimization appears. According to wireless sensor network monito-ring object features,this algorithm improves the accuracy of the data reconstruction by improving particle initial po-sition and update mode in Particle Swarm Optimization from Statistics. Simulation results show that under conditions of sparsity less than 50,QP-CSDR gets20%~40%performance improvement on Reconstruction accuracy comparing to existing algorithms. Now the algorithm has been applied to micro-earthquakes and audio monitoring system,and in actual inspection,the actual system life is extended about 2~4 times with assurance data accuracy.%针对传感器监测对象特点,将压缩感知理论应用于数据压缩过程以降低通信能耗,并根据现有压缩感知数据重构算法存在的重构精度受稀疏度影响较大的缺点,在分析了压缩感知数据重构原理后,提出了将原始信号按固定长度进行分帧处理以减少算法解空间的数量,并将量子理论中的编码方式应用于粒子群优化算法,提出了基于量子粒子群优化算法的压缩感知数据重构方法QP-CSDR。
Fuzzy neural network image filter based on GA
Fuzzy neural network image filter based on GA刘涵;刘丁;李琦【期刊名称】《系统工程与电子技术(英文版)》【年(卷),期】2004(015)003【摘要】A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following,fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.【总页数】5页(P426-430)【关键词】遗传算法;模糊神经网络;图像过滤器;脉冲噪声【作者】刘涵;刘丁;李琦【作者单位】School of Automation & Information Engineering Xi' an University of Technology Xi' an 710048 P. R. China;School of Automation & Information Engineering Xi' an University of Technology Xi' an 710048 P. R. China;School of Automation & Information Engineering Xi' an University of Technology Xi' an 710048 P. R. China【正文语种】中文【中图分类】TP3因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Application of a Fuzzy Neural Network based on Particle Swarm Optimization inIntermittent PumpingZhang He,Chen Weishi(Electromechanic Engineering College,Southwest Petroleum University;Chengdu, Sichuan province, 610500, China)Abstract:In the intermittent pumping, due to the complexity and uncertainty of oil produc-tion process, it is difficult to accurately determine the pumping running status, result-ing in pumping unit start-stop cannot match the downhole oil quantity change. In or-der to more effectively evaluate the pumping running status, this paper presents an improved fuzzy neural network evaluation model. The model has used particle swarm optimization to optimize the membership function and the final output layer connec-tion weights of the fuzzy neural network, improving the traditional fuzzy neural net-work parameter selection randomness, reducing the possibility of falling into local optimal solution, enhancing the learning ability and generalization ability of model as well as the accuracy and the convergence speed.By comparison with the traditional fuzzy neural network, fuzzy neural network based on particle swarm optimization model has higher accuracy and faster convergence rate. Finally,the model is applied to the evaluation of the running status of a on-site well and it turns out that the evalua-tion results of the model are consistent with the actual situation, verifing the feasibili-ty of the model.Key words: Intermittent Pumping; PSO; Fuzzy Neural Network1.IntroductionIn the oil field exploitation,beam pumping plays a decisive role in oil ex-ploitation machinery because of its sim-ple structure, reliability, practicability and handiness. But on account that beam pumping rated extraction capacity is greater than oil well’s actual load and that there are different degrees of empty pumping , it makes electric motor light relatively and its power factor low, and makes pumping backlash increasing and energy waste[1]. If the motor can stop when it works lightly and the oil storing is less, and start up when the oil storing increases to the degree to which that the pumping can full pumping continuously, intermittent pumping can be realized, thus it can save energy, reduce wear, and improve economic benefit. In intermit-tent pumping, evaluating the running status of pumping, such as accurate judgement of full pumping and empty pumping, is the key to determine the start-stop interval of pumping. However power supply of each well, weight and position of counterbalance, motor power and suspension center’s load are diffe r-ent, and these factors are interconnected, which makes it difficult to have a clear criterion to judge the state of full and empty pumping. So how to use limited information to judge operation status of pumping is of practical significance forformulating reasonable intermittent pumping control plan.At present, intelligent control for pumping has become a hot spot. Among that, neural networks control, fuzzy log-ic control and expert control are typical control methods. However due to the complexity, randomness and nonlineari-ty of oil extraction systems, there isn’t a unified approach so far.Fuzzy neural network has been widely applied with good approximation ability of nonlinear function and learning ca-pacity. The article [1] proposed rule self-tuning RL fuzzy neural network, and has applied it to the intermittent pumping control with power-saving rate of 30%. The article [2] proposed a sim-plified fuzzy neural network intelligent control programme and has ener-gy-saving result. The article [3] pro-posed self-adapting fuzzy control system and has applied it to the energy saving retrofit of pumping oil production suc-cessfully. However, it still exists ran-domness of fuzzy neural network’s p a-rameter selecting and local optimal solu-tions when modeling with fuzzy neural network.In view of this, this paper improves fuzzy neural network using Particle Swarm Optimization algorithm through combinatorial optimization of center value and width value of membership function and the connection weights of final output layer of the fuzzy neural network.Particle Swarm Optimization algorithm improves fuzzy neural net-work’s learning ability and generaliza-tion ability. Through using this for eva-luating of operation state and being veri-fied by the actual data, the modified method improves the evaluation model’s accuracy and convergence rate. 2 T - S fuzzy neural networkFuzzy neural network is the com-bination of fuzzy logic and neural net-work, which has the advantages of rea-soning process is easily unders-tood,sample requirement is low,and stronger ability of self-learning. Howev-er, when modeling by fuzzy neural net-work,the relationship between learning ability and generalization ability of fuzzy nervous system is not direct ratio, only when the fuzzy neural network has moderate complexity, it has good gene-ralization ability [4].Moreover, when parameters of the network front section arbitrarily selected, improper selection will result in the convergence speed of fuzzy neural network slower, and falling into the local optimum.[5]Thus, accord-ing to the performance requirements of model, select the best combination val-ues of fuzzy neural network parameters.In this paper, T-S fuzzy neural network model structure shown in Fig-ure 1, the model is divided into five le-vels, namely input layer, fuzzification layer , fuzzy inference layer, normaliza-tion layer and defuzzification layer. The first layer and the second layer represent the predictor of fuzzy rules,namely the input space division of fuzzy sys-tems;the left three parts represent the consequent of fuzzy rules , namely completing fuzzy inference rules of the system.Fig. 1five-layer fuzzy neural networkstructureThe input layer is the first layer in graph 1,and its nodes are the entrance of fuzzy information. The input layer transfers the information to the next layer,and each node represent input message()ii=1,2,...,n x respective-ly.Therefore,the number of input layer nodes depend on dimensions of input message,1n N=.There are three input quantities inthis paper,such as current I of pumping unit motor,differential value dI /dt and integral value ∫Idt,so n=3.The second is fuzzification layer,where each node represents a lan-guage variable value. The layer is used to calculate the membership function of each input component which belongs to the fuzzy set of linguistic variables()1,2,...;1,2,...iji n j m μ==.We select thegaussian function as the membership function,as shown in the equation (1).()22ij iji ij =exp c x μσ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦- i=0,1,…n ; j=1,2,…m (1)ijcand ij σrepresent center and width ofmembership function in this equa-tion,respectively.n is dimension of in-put,m is number of fuzzy rules.In this article,we select n=3 and m=5. So the total number of this layer nodes isn2i=1=m N ∑=15 The third is fuzzy inference layer,where each node represents a fuzzy rule and used to match premis-es of fuzzy rules,and calucate fitness value of each rule.And it will be nor-malized by the fourth layer that is nor-malization layer. Normalized fitness value is calculated as follow:1,1,2,...,j m jii j m ααα===∑(2)There are equal numbers of nodes between the third layer and the fourth layer,that isn34i=1==m N N ∏,n=3 and m=5 in this paper ,so there are equal node numbers between fuzzy in-ference layer and normalization layer,that is 125.The fifth is output layer,also known as defuzzification layer,which realizes clear calculate in fuzzy neural network as shown in the equation (3)[6]mijjij=1=y ωα∑ i=1,2,…r (3)Where ,ij ωrepresent the connecting weigh between the ith output node andjth inference layer node.r is the node numbers of output layer ,there is only one output in this paper,therefore r=1. By the above analysis ,there are two kinds of learning parameters in Fuzzy neural network: one is the central value and width value of membership func-tion,which are ij c and ij σ,respectively;another one is the output weights ij ωin the last layer. 3. The realization of fuzzy neural network based on PSO algorithmFirst, the population of particles must be encoded and then the optimiza-tion for central values and width values of membership function and the final output layer connection weights of the fuzzy neural network are con-ducted again and again.The optimiza-tion stops until it has reached the pre-scribed scope of mean square error func-tion and outputs its optimal parameters.The particle population is com-posed by n vectors with D-dimension. The position vector X of the particle in the population represents the center val-ue ij c , the width value ij σof the mem-bership function of the fuzzy neural network, and final output layer connec-tion weights ij ω. Initialization of the particle swarm and updating the velocity and position of the particle according to the formula (4), (5).()()11212c c t t ttttttsisissgsisisis VV r P X r P X +=+-+-(4)11t t t isis is V XX ++=+ (5)Where,1c 、2c both are learning factors;1r,2r are uniform random numberswhich values from zero to one. tis V is the speed oftimes dimension in ttimes iterations for particle i, t isXis thecurrent position,t isPis individual op-timal position, andt gsPis global op-timal position of s times dimension in t times iterations for the entire population.In this paper, the output mean square error of the fuzzy neural network is used as the fitness function of the par-ticle swarm algorithm, and the outputmean square error function of the fuzzy neural network is expressed as follows:()k2i=11di i 2k -y y SE =∑ (6)Where , di y and i y represent ex-pected output and actual output respec-tively, and K is the total number of thesample.Parameter optimization of fuzzy neural network: the output mean square error of the fuzzy neural network is used as the fitness function of the particle swarm optimization algorithm. The maximum error is 0.005 and the maxi-mum number of iterations is 800. When the error reaches the specified range or reaches the maximum number of itera-tions, the optimization stops and net-work model achieves the best. Optimi-zation steps of PSO algorithm for fuzzy neural network are shown in figure 2.Fig.2 optimization steps of PSO algo-rithm for fuzzy neural network4 PSO-FNN evaluation model con-structionSince the oil pumping controlsys-tem has the characteristics of model un-certainty, highly nonlinear, and the sys-tem main equipment is placed under-ground, the measurable state variable are quite less. The most convenient, reliable and relatively low-cost method deter-mining whether the pumping unit is empty or not is to detect current. [3] Therefore, the evaluation model established in this paper has three inputs and one output.The inputs include the current I, differential value dI / dt and the integral value ∫Idt of motor of pumping unit, namely the load current, load changes, the load accumulated.The output stands for the levels of pumping unit operating status, that are full pump-ing, half pumping and empty pumping and the corresponding values are 0,1,2. Table 1 shows input and output data of two representative wells [7].According to the data of Table 1, it can be seen the trends of current, current changes and current accumulation of motor of pumping unit, the running sta-tus of the pumping unit could be eva-luated in turn.(1)Full pumping phaseAfter pumping starts, current has increased and current change will be larger and current accumulation will be small ,these datas show that pumping unit is in "full pumping " state.However,during the downtime to start ,oil pump should be filled in a short time as oil flow from the pump back to the oil wells.(2)Stable full pumping phaseAfter pumping start-up, current I remains stable, current change dI/dt is smaller.(3)Half pumping transitional phaseThe current decreases slowly and the load of oil pumping reduces since the pump suction capacity is greater than the oil seepage ability of oil well.(4)Empty pumping phaseAt oil production later period,the current stabilizes at a lesser extent, cur-rent change is small and current integra-tion reaches the maximum, indicating the pumping unit to "empty pumping".[8]4.1 network training and evaluation model(1) Sample dataAs table 1 shows, input and output data of two representative wells have been given ,then selecting 32 sets of da-tas in group A as the training sample data are used for training the model and another 32 sets of datas in group B as the testing sample for model testing and inspection.Due to the large differences between datas, data normalization has done beforehand.(2)Network structureAccording to the characteristics of current parameters, the first layer has three input variables and theirs fuzzy division numbers by the second layer are selected as 5, i.e., m = 5, whereby the second layer has 15 nodes, and the number of membership functions cor-responding for 15. By the second section analysis, the number of nodes in the fuzzy inference layer is same with the normalized layer’s and the number is 125.And output layer node number is 1, which can determine the topology of the fuzzy neural network based on PSO for the 3-15-125-125-1 type.(3) Determination of model para-metersThe determination of model para-meters is done through fuzzy neural network training process. Further para-meters adjustment through continuoustraining of the model, actually the train-ing process is correction procedure for the parameters.In this paper, the learning rate of the network is set as 0.2η=,the maximum number of iterations is set to 800, the error is set to 0.005. 32 sets of sample data are input for model training, spe-cific training process is:First, enter a set of sample data namely data a, the output could be ob-tained after the gradual spread between the layers,and then calculate the change amount of neurons’ weight in each layer of the data a,including a ω∆, c a ∆andaσ∆;Second, repeat the first step process until completing the calculation of all the sample. According to a ωω∆=∑∆,a c c ∆=∑∆,a σσ∆=∑∆, the change of theconnection weight of this round training are calculated,as ω∆、c ∆、σ∆;Again, according to the output mean square error (mse), center value and width value of the membership function of network with network con-nection weights can be adjusted through iteration , if mse of the output is less than the preset value or the maximum number of iterations is reached, the ite-ration stops; otherwise it continues .Thus, the fuzzy neural network evaluation model based on particle swarm optimization is established and it can be used to evaluate the running state of pumping unit.4.2 Comparative Example simulation and evaluation results(1)Convergence speed comparison The training for the traditionalfuzzy neural network (called FNN) hasdone with the same sample data and consistent parameters,as the learning rate is 0.2η=, the maximum number of iterations is set to 800, error is set to 0.005.The FNN model reaches steady state after 583 iterations and the fuzzy neural network model based on particle swarm optimization (referred to as the PSO-FNN) after 352 iterations is stabi-lized.Training error curve are shown in Figure 3 and Figure 4. Table 2 is the performance analysis of two kinds of models. From the figures and the table, when the MSE objective value is 0.005, PSO-FNN model can meet the require-ments after 352 iterations,which is less 231 iterations than the FNN’s.Also the running time is shorter than the latter. Therefore, PSO-FNN model has the ad-vantages of less iteration number and faster convergence speed.Fig.3 Mean square error curve of FNN modelFig.4 Mean square error curve of PSO-FNN modelTab.2 The performance analysis of two modelsPerformance FNNPSO-FNNMSE 0.005 0.005 iterations 352 583run time/s 23.6 37.3 (2)Evaluation accuracy comparisonThe network is trained and tested by the normalized training sample and test sample data. Using the already trained fuzzy neural network,the model is tested by 32 sets of data of group B in table 1. In contrast the model actual output to the expected output, the accu-racy of the PSO - FNN model could be checked,furthermore,comparing with the output results of the FNN model. Figure 5 and Figure 6 represent the test output results from the FNN model and PSO-FNN model respectively. Table 3 shows output average error comparison of test data of two models.Comparison of the two methods by the figures and the table, the PSO-FNN has better fitting degree since the actual output of it is very close to the expected output and average error of its test out-put is 0.0083 contrasting the FNN mod-el’s is 0.0693. It is visible that PSO-FNN model is more accurate. Fig.5 FNN model test output diagram Fig.6 PSO-FNN model test output dia-gramTab.3 Comparison of average error oftwo model test dataAverage errorFNN PSO-FNN0.0693 0.0083Comparative Cases verification shows that the fuzzy neural network model based on PSO has significantly improved on the convergence rate and accuracy of the evaluation results in contrast to the traditional fuzzy neural network model. The improved pumping state evaluation model has a strong self-learning ability, good generalization ability and precision,so it will be more suitable for the pumping operating status evaluation.4.3 Application of pumping unit op-erating state evaluation modelA field well is selected as the re-search object and its basic situation is as follow: pumping speed is 3.52 min-1, the length of stroke is 3m and pump diameter is 28mm. Data acquisition time is on 2016/3/9 15:00:23. A stroke of the current acquisition curve is shown in Figure 7 and the blue curve of which represents the process of downstroke while the red part represents up-stroke.The indicator diagram curve of the well is shown in Figure 8.Fig.7 The current curve in a stroke of the wellFig.8 The indicator diagram in a stroke of the wellAccording to table 1, the current parameters of the downhole stroke is selected as the research object with ex-tracting 20 sets of current values from it, then corresponding calculation including differential current and current integra-tion have done to ultimately form 20 groups of current data of the well’s downhole stroke, as shown in Table 4.Then these current data ,as the input of PSO-FNN model established in this pa-per, are used for pumping unit operation status evaluation and the model’s output is shown in Figure 9. The figure shows that there are 16 sets of data in 20 groups output is level 1 which stands for half pumping,while the remaining 4 sets is level 0 standing for full pumping. Taking into account a certain chrono-logical relationship of the 20 sets of da-ta,the output results of the model can be evaluated according to the overall trend. Therefore, it can be judged that the op-erating state of the well pumping unit is half pumping ,namely, liquid supply de-ficiencies and intermittent pumping measures need to be taken.The Figure 8 shows that the well has a "knife-type" indicator diagram that is typical characteristics for insufficient liquid supply of a well. Therefore, the well is currently in a state of insufficient supply.The results of the evaluation model consistent with the actual situa-tion.In addition, combined with the data and output evaluation results, the model not only can output the evaluation lev-el,but also can detail evaluation results through analysising data reflected in the level location. This would contribute to the analysis and accumulation of typical current parameters and provide more help to the decision makers.Fig.9 PSO - FNN model output evalua-tion results5. Conclusions(1) Improvement of fuzzy neural network uses PSO algorithm through combinatorial optimization of center value and width value of membership function and the connection weights of final output layer of the fuzzy neural network, enhancing the learning ability and the generalization ability of fuzzy neural network.(2) PSO-FNN model has good ge-neralization ability and has been im-proved both in the rate of convergence and the accuracy of evaluation results compared with traditional FNN model’s. And influences of some human factors may be avoided through this model's ability of evaluation and prediction, saving human and material resources and improving the intelligent degree of the running status evaluation of pumping unit.(3) The PSO-FNN model has been applied to a oil well and verified feasibly of the model as evaluation results are consistent with the actual situation. At the same time, detailing evaluation re-sults by the data location reflected in evaluating grade, contributes to analyz-ing and accumulating typical current parameters and providing arguments for qualitative and quantitative evaluation, which is of guiding significance of deci-sion in the field.Tab.1 data of two wellstime A BI dI/dt ∫Idt Output I dI/dt ∫Idt Output 12401031010 22512032220 32944032040 43127034240 53439035170 634012035080 7340140350100 834017035-1110 933-1180351130 1031-121034-2140………………………………………………27 20 1 37 2 27 0 35 128 21 1 38 2 26 -1 35 1 2919-2382260362 3018-138225-1362 31180382250372 321803822503726. References[1]Ding Bao,Zhang Yan-li,Sun Li-feng. RL Fuzzy Neural Network and its Applica-tion to Oil Pumping Control [J]. Control Engineering of China,2002,9(6):57-59.[2]Qi Wei-gui,Zhu Xue-li,Zhang Yan-li.A Study of Fuzzy Neural Network Controlof energy-saving of Oil Pump[J].Proceedings of the CSEE,2004,24(6):138-140.[3]Zhang Bingcheng.Application of energy saving control system of pumping unitintelligent control system[J].Energy Conservation,2010,336(7) :42-45.[4]Xue Qingsong.Reasearch on fuzzy neural network based on improved particleswarm optimization[D].Chongqing University,2008.[5]Xia Meijuan,Liang Xuechun,HanFengtao.Water quality comprehensive assess-ment approach based on T-S fuzzy neural network and improved FCM algo-rithm[J].Computers and Applied Chemistry, 2013,30(10):1197-1201.[6]Sun Hui,Zhang Xueying,Ning Aiping.The Application of Fuzzy Neural Networkbased on PSO Algorithm in Speech Recognition System[J].Mathematics Practice and Theory,2010,40(6):113-117.[7]Zhang Xuhua. Pumping Unit Energy-Saving Algorithm Based on Neural Net-work [D].X i’an Shiyou University,2014,5.[8]Ding Bao, Qi Wei-gui,Zhu Xue-li. A Study of Energy-Saving Control of OilPump Based on Fuzzy Neural Network Prediction[J]. Acta Eletronic Sinica, 2004,32(10):1742-1745.[9]Pan Feng,LiWeixing,GaoQi.Particle Swarm Optimizer and Multi-object Optimi-zation[M].Beijing:Beijing Institute of Technology Press,2013.[10]Zhou Runjing,Zhang Li-na. Design of fuzzy and neural network based onMATLAB and fuzzyTECH[M].Beijing:Publishing house of electronics indus-try,2010.。