人教版七上数学课本作业1.3
人教版七年级数学上册《1.3.1有理数的加法》同步练习(1)含答案
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则01 基础题知识点1 有理数的加法法则知识提要:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 在每题后面的横线上填写和的符号或结果:(1)(-3)+(-5)=-(3+5)=-8;(2)(-16)+6=-(16-6)=-10.1.下列各式的结果,符号为正的是(C )A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+52.(北海中考)计算(-2)+(-3)的结果是(A )A .-5B .-1C .1D .53.计算:(-12)+5=(B )A .7B .-7C .17D .-174.(玉林中考)下面的数与-2的和为0的是(A )A .2B .-2C .12D .-125.如果两个数的和是正数,那么(D )A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一知识点2 有理数加法的应用6.(北流期中)比零下3 ℃多6 ℃的温度是(D )A .-9 ℃B .9 ℃C .-3 ℃D .3 ℃7.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7;(2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).8.某人某天收入265元,支出200元,则该天节余65元.9.一艘潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为-50米.10.已知飞机的飞行高度为10 000 m ,上升3 000 m 后,又上升了-5 000 m ,此时飞机的高度是8__000m . 02 中档题11.(安顺中考)计算-|-3|+1结果正确的是(C )A .2B .3C .-2D .412.有理数a 、b 在数轴上对应的位置如图所示,则a +b 的值(A )A .大于0B .小于0C .小于aD .大于b13.下列结论不正确的是(D )A .若a>0,b>0,则a +b>0B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a <0,b>0,且|a|>|b|,则a +b>014.若x 是-3的相反数,|y|=5,则x +y 的值为(D )A .2B .8C .-8或2D .8或-215.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则B 地的海拔高度为-23米.16.已知两个数556和-823,这两个数的相反数的和是256. 17.计算:(1)120+(-120); (2)0+(-12); 解:原式=0. 解:原式=-12.(3)-9+(-11); (4)15+(-7);解:原式=-20. 解:原式=8.(5)-7+5; (6)-2.5+(-3.5);解:原式=-2. 解:原式=-6.(7)315+(-225); (8)-3.75+(-214). 解:原式=45. 解:原式=-6.03 综合题18.已知|m|=2,|n|=3,求m +n 的值.解:因为|m|=2,所以m =±2.因为|n|=3,所以n =±3.当m =2,n =3时,m +n =2+3=5;当m =2,n =-3时,m +n =2+(-3)=-1; 当m =-2,n =3时,m +n =(-2)+3=1;当m =-2,n =-3时,m +n =(-2)+(-3)=-5. 故m +n 的值为±1或±5.。
人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)
11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、若2,3==b a ,则=+b a ________。
3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
4、若1<a <3,求a a -+-31的值。
35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。
2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。
2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。
把同分母的数相结合进行简便运算。
4、756,4310-。
拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。
人教版数学七年级上册 第1章 1.3--1.5随堂练含答案
1.3有理数的加减法一.选择题1.计算1﹣|﹣3|=()A.﹣2 B.2 C.4 D.﹣42.下列各式中正确的是()A.﹣5﹣(﹣3)=﹣8 B.+6﹣(﹣5)=1 C.﹣7﹣|﹣7|=0D.+5﹣(+8)=﹣33.为计算简便,把(﹣2.4)﹣(﹣4.7)﹣(+0.5)+(﹣3.5)写成省略加号的和的形式,正确的是()A.﹣2.4﹣4.7﹣0.5﹣3.5 B.﹣2.4+4.7+0.5﹣3.5C.﹣2.4+4.7﹣0.5﹣3.5 D.﹣2.4+4.7﹣0.5+3.54.若x2=9,|﹣y|=4,且x>y,则x+y的值是()A.﹣1 B.7 C.﹣1或7 D.﹣1或﹣7 5.若|m|=3,n2=25,且m﹣n>0,则m+n的值为()A.±8 B.±2 C.2或8 D.﹣2或﹣8 6.冰箱的冷冻室气温为﹣2摄氏度,室内温度为25摄氏度,冰箱冷冻室的气温比室内气温低()摄氏度.A.23 B.27 C.﹣27 D.﹣257.若x=3,|y|=7,则x﹣y的值是()A.﹣4 B.10 C.4或﹣10 D.﹣4或108.一个潜水员从水面潜入水下50米,然后又上升32米,此时潜水员的位置是()A.水下82米B.水下32米C.水下28米D.水下18米9.设a是最小的自然数,b是最大的负整数,c的绝对值为2,则a﹣b+c=()A.3 B.±3 C.3或﹣1 D.1或﹣310.我市某天的最高气温为8℃,最低气温为零下2℃,则计算温差列式正确的是()A.B.C.D.二.填空题11.﹣3+9=.12.若|x|=3,|y|=2,且y<x,则x+y=.13.已知|a|=8,b2=49,且b>a,则a+b=.14.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.15.设[x]表示不超x的整数中最大的整数,如:[1.99]=1,[﹣1.02]=﹣2,根据此规律计算:[﹣2.4]﹣[﹣0.6]=.三.解答题16.计算:(1)(﹣15)﹣(﹣8)+(+20).(2)2+(﹣3+1).17.已知a、b互为相反数,n的绝对值是2,m是最大的负整数,求m﹣|a+b|+n的值.18.已知abc≠0,且满足|a|=﹣a,|ac|=﹣ac,a+b>0,|a|>|c|.(1)请将a、b、c填入下列括号内:(2)去绝对值符号:|b+c|=,|a+c|=,|a﹣b|=.(3)若x=|a+c|+|b+c|﹣|a﹣b|+2,试求3x2﹣4x+2的值.19.电影《我和我的家乡》上映10天就斩获票房20.28亿元人民,口碑票房实现双丰收,据统计,10月8日,该电影在重庆的票房收入为160万元,接下来7天的票房变化情况如下表(正数表示比前一天增加的票房,负数表示比前一天减少的票房)日期9日10日11日12日13日14日15日票房变化(万元)+32﹣100+40﹣32﹣74+4(1)这7天中,票房收入最多的是10月日,票房收入最少的是10月日;(2)根据上述数据可知,这7天该电影在重庆的平均票房收入为多少万元?参考答案与试题解析一.选择题1.【解答】解:1﹣|﹣3|=1﹣3=1+(﹣3)=﹣2.故选:A.2.【解答】解:A、﹣5﹣(﹣3)=﹣5+3=﹣2,故本选项不合题意;B、+6﹣(﹣5)=6+5=11,故本选项不合题意;C、﹣7﹣|﹣7|=﹣7﹣7=﹣14,故本选项不合题意;D、+5﹣(+8)=﹣3,故本选项符合题意.故选:D.3.【解答】解:(﹣2.4)﹣(﹣4.7)﹣(+0.5)+(﹣3.5)=﹣2.4+4.7﹣0.5﹣3.5.故选:C.4.【解答】解:∵x2=9,|y|=4,∴x=±3,y=±4,∵x>y,∴x=3,y=﹣4或x=﹣3,y=﹣4,∴当x=3,y=﹣4时,x+y=﹣1;当x=﹣3,y=﹣4时,x+y=﹣7,故选:C.5.【解答】解:由题意得:m=±3,n=±5,由m﹣n>0,得到m>n,∴m=3,n=﹣5或m=﹣3,n=﹣5,则m+n=﹣2或﹣8.故选:D.6.【解答】解:25﹣(﹣2)=25+2=27(摄氏度),即冰箱冷冻室的气温比室内气温低27摄氏度.故选:B.7.【解答】解:∵||y|=7,∴y=±7,∴x﹣y=3﹣7=﹣4,x﹣y=3﹣(﹣7)=3+7=10,综上所述,x﹣y的值是﹣4或10.故选:D.8.【解答】解:根据题意,得﹣50+32=﹣18所以此时潜水员的位置是水下18米.故选:D.9.【解答】解:根据题意得:a=0,b=﹣1,∵|c|=2,∴c=2或c=﹣2,若a=0,b=﹣1,c=2,则a﹣b+c=0﹣(﹣1)+2=3,若a=0,b=﹣1,c=﹣2,则a﹣b+c=0﹣(﹣1)+(﹣2)=﹣1,即a﹣b+c=3或a﹣b+c=﹣1,故选:C.10.【解答】解:根据题意得:最高气温为8℃,表示为:+8,最低气温为零下2℃,表示为:﹣2,温差为:,故选:B.二.填空题(共5小题)11.【解答】解:﹣3+9=6,故答案为:6.12.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∴x=3,y=2或x=3,y=﹣2,∴当x=3,y=2时,x+y=5;当x=3,y=﹣2时,x+y=1,故答案为:5或1.13.【解答】解:∵|a|=8,∴a=±8,∵b2=49,∴b=±7,又∵b>a,∴a=﹣8,b=7或a=﹣8,b=﹣7,当a=﹣8,b=7时,a+b=﹣8+7=﹣1,当a=﹣8,b=﹣7时,a+b=﹣8+(﹣7)=﹣15,故答案为:﹣1或﹣15.14.【解答】解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.15.【解答】解:[﹣2.4]﹣[﹣0.6]=﹣3﹣(﹣1)=﹣3+1=﹣2,故答案为:﹣2.三.解答题(共4小题)16.【解答】解:(1)原式=﹣15+8+20=13;(2)原式=2﹣3+1==1.17.【解答】解:∵a、b互为相反数,∴a+b=0,∵n的绝对值是2,∴n=2或﹣2;∵m是最大的负整数,∴m=﹣1,当n=2时,m﹣|a+b|+n=﹣1﹣|0|+2=﹣1﹣0+2=1;当n=﹣2时,m﹣|a+b|+n=﹣1﹣|0|+2=﹣1﹣0﹣2=﹣3;∴m﹣|a+b|+n的值为1或﹣3.18.【解答】解:(1)∵|a|=﹣a,|abc≠0,∴a<0,∵|ac|=﹣ac,∴c>0,∵a+b>0,|∴b>0,如图:(2)∵b>0,c>0,∴b+c>0,∴|b+c|=b+c;∵a<0,c>0,|a|>|c|,∴a+c<0,∴|a+c|=﹣a﹣c;∵a<0,b>0,|∴a﹣b<0,|a﹣b|=b﹣a;故答案为:b+c,﹣a﹣c,b﹣a;(3)x=﹣(a+c)+(b+c)+(a﹣b)+2=﹣a﹣c+b+c+a﹣b+2=2,则3x2﹣4x+2=3×22﹣4×2+2=12﹣8+2=6.19.【解答】解:(1)10月9日票房收入:160+32=192万元,10月10日票房收入:192﹣10=182万元,10月11日票房收入:182+0=182万元,10月12日票房收入:182+40=222万元,10月13日票房收入:222﹣32=180万元,10月14日票房收入:180﹣74=106万元,10月15日票房收入:106+4=110万元,因此10月12日最多,10月14日最少1.4有理数的乘除法一.选择题1.5的倒数是()A.5 B.C.﹣5 D.﹣2.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小3.在分数,,,,,中,最简分数有()A.1个B.2个C.3个D.4个4.已知a=2×2×3×5,b=2×5×3×7,那么a,b的最大公因数是()A.12 B.30 C.210 D.1805.计算(﹣2)÷(﹣)×(﹣2)的结果是()A.﹣8 B.8 C.﹣2 D.26.计算(﹣6)÷2的结果等于()A.﹣4 B.﹣3 C.3 D.﹣127.如果a+b>0,且ab>0,那么()A.a>0,b>0B.a<0,b<0C.a、b异号且正数的绝对值较小D.a、b异号且负数的绝对值较小8.(﹣2)×=()A.﹣2 B.1 C.﹣1 D.9.下列等式或不等式中:①a+b=0;②ab<0;③|a﹣b|=|a|+|b|;④+=0(a≠0,b≠0),表示a、b异号的个数有()A.0个B.1个C.2个D.3个10.若|abc|=﹣abc,且abc≠0,则++=()A.1或﹣3 B.﹣1或﹣3 C.±1或±3 D.无法判断二.填空题11.﹣6的相反数是,﹣8的绝对值是,0.3的倒数是.12.中有个.13.将一根米长的直尺平均分成三段,则每段占全长的,每段长米.14.计算:(﹣)÷(﹣1)=.15.已知m,n都为质数,若×=,则m与n的和为.三.解答题16.列式计算:一个数与的积为﹣,求这个数.17.若|a|=7,|b|=3,且ab>0,求a+b的值.18.已知|a|=5,|b|=2,ab<0.求:(1)3a+2b的值;(2)ab的值.19.阅读后回答问题:计算(﹣)÷(﹣15)×(﹣)解:原式=﹣÷[(﹣15)×(﹣)]①=﹣÷1 ②=﹣③(1)上述的解法是否正确?答:若有错误,在哪一步?答:(填代号)错误的原因是:(2)这个计算题的正确答案应该是:.参考答案与试题解析一.选择题1.【解答】解:5的倒数是,故选:B.2.【解答】解:A、0的绝对值等于零,故A错误;B、倒数等于它本身的数是±1,故B正确;C、绝对值等于它本身的数一定是非负数,故C错误;D、0等相反数等于零,故D错误;故选:B.3.【解答】解:,,是最简分数,故选:C.4.【解答】解:∵a=2×2×3×5,b=2×5×3×7,∴a,b的最大公因数是2×3×5=30,故选:B.5.【解答】解:(﹣2)÷(﹣)×(﹣2)=(﹣2)×(﹣2)×(﹣2)=﹣8,故选:A.6.【解答】解:原式=﹣3,故选:B.7.【解答】解:∵ab>0,∴a、b同号,∵a+b>0,∴a>0,b>0,故选:A.8.【解答】解:(﹣2)×=﹣1,故选:C.9.【解答】解:下列等式或不等式中:①a+b=0,a与b互为相反数(包含a=b=0);②ab <0,a与b异号;③|a﹣b|=|a|+|b|,a与b异号或a=b=0;④+=0(a≠0,b ≠0),a与b异号,则a与b异号的个数有2个,故选:C.10.【解答】解:∵|abc|=﹣abc,且abc≠0,∴abc中负数有一个或三个,则原式=1或﹣3,故选:A.二.填空题(共5小题)11.【解答】解:﹣6的相反数是:6,﹣8的绝对值是:8,0.3的倒数是:.故答案为:6,8,.12.【解答】解:∵4÷=×5=21,∴4中有21个.故答案为:21.13.【解答】解:∵一根米长的直尺平均分成三段,∴每段占全长的,每段长:×=(米).故答案为:,.14.【解答】解:(﹣)÷(﹣1)=×=.故答案为:.15.【解答】解:∵×=,∴,∵m,n都为质数,∴m=2,n=7,∴m+n═9,故答案为:9.三.解答题(共4小题)16.【解答】解:设这个数是x,则x=﹣,解得:x=﹣2.17.【解答】解:∵|a|=7,|b|=3,且ab>0,∴a=﹣7,b=﹣3或a=7,b=3,∴当a=﹣7,b=﹣3时,a+b=﹣7+(﹣3)=﹣10,当a=7,b=3时,a+b=7+3=10.18.【解答】解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵ab<0,∴a,b异号,当a=5,b=﹣2时,3a+2b=11,当a=﹣5,b=2时,3a+2b=﹣11,综上,3a+2b=±11;(2)∵ab<0,∴a,b异号,当a=5,b=﹣2时,ab=5×(﹣2)=﹣10,当a=﹣5,b=2时,ab=﹣5×2=﹣10,综上,ab=﹣10.19.【解答】解:(1)答:不正确若有错误,在哪一步?答:①(填代号)错误的原因是:运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)原式=﹣÷(﹣15)×(﹣1.5有理数乘方一、选择题1. 下列各式中,正确的是( )A. ()-=-4422B. ->-6454C. ()2121222-=-D. ()-=2422. 下列计算中,正确的是( )A. 01022..=-B. ()--=242C. ()-=283D. ()--=+1121n (n 表示自然数)3. 下列各数中,数值相等的是( )A. 32和23B. -23与()-23C. -32与()-32D. ()[]()-⨯-=-⨯-232322 4. 下列计算错误的有( )个(1)12142⎛⎝ ⎫⎭⎪=;(2)-=5252;(3)4516252=; (4)--⎛⎝ ⎫⎭⎪=171492;(5)()-=-1111;(6)()--=0100013.. A. 1 B. 2 C. 3 D. 45.如果a 的倒数是-1,那么a 2015等于 ( )A. 1B.-1C.2015D.-20156.某种细菌在培养过程中,每半小时分裂一次,(由一个分裂成两个),若这种细菌由一个分裂成16个,那么这个过程需要经过()小时。
人教版七年级数学上册 1.3.1.2有理数的加法运算律 同步训练卷
人教版七年级数学上册1.3.1.2有理数的加法运算律同步训练卷一、选择题(共10小题,3*10=30)1.对算式(-8)+(+6)+(+18)运用加法交换律正确的是( )A.(-8)+(-18)+(+6)B.(+8)+(-6)+(+18)C.(+6)+(-18)+(+8)D.(-8)+(+18)+(+6)2.下列变形,运用运算律正确的是( )A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D .13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2)3.计算33+(-32)+7+(-8)的结果是( )A .0B .2C .-1D .54.下面的计算运用的运算律是( )-13+3.2+⎝⎛⎭⎫-23+7.8=-13+⎝⎛⎭⎫-23+3.2+7.8=-⎝⎛⎭⎫13+23+(3.2+7.8)=-1+11=10. A .加法交换律B .加法结合律C .先用加法交换律,再用加法结合律D .先用加法结合律,再用加法交换律5.下列运算中正确的是( )A .7+13+(-8)=13B .(-3.5)+4+(-3.5)=4C .334+(-334)+(-3)=-3 D .3.14+(-7)+3.14=-86. 某地一天早晨的气温是-3 ℃,到中午升高了5 ℃,下午又降低了3 ℃,到晚上又降低了5 ℃,则晚上的气温是( )A .6 ℃B .10 ℃C .-6 ℃D .-8 ℃7.对于算式⎝⎛⎭⎫-12+14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310,下列运算律运用恰当的是( ) A.⎣⎡⎦⎤⎝⎛⎭⎫-12+14+⎣⎡⎦⎤⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 B.⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+310 C.⎝⎛⎭⎫-12+⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 D.⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-25+⎣⎡⎦⎤14+⎝⎛⎭⎫+310 8.计算(-20)+379+20+⎝⎛⎭⎫-79,最简便的做法是( ) A .把一、三两个加数结合,二、四两个加数结合B .把一、二两个加数结合,三、四两个加数结合C .把一、四两个加数结合,二、三两个加数结合D .把一、二、四这三个加数先结合9.在数+6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A .-3B .-1C .3D .210.在防范新冠病毒疫情的例行体温检测中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃的记作“0”.一人在一周内的体温结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人一周中测量体温的平均值是( )A .37.1 ℃B .37.31 ℃C .36.69 ℃D .36.8 ℃二.填空题(共8小题,3*8=24)11.计算:(-32)+72+(-8)=____.12. 运用加法结合律计算:[10+(-6)]+(-7)=10+________________=________.13.检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.则收工时在A 地的____边____千米处.14.等式5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]运用了___________________________。
人教版数学七年级上册作业本答案完整版
参考答案第一章 有理数1.1正数和负数(1)1.(1)-60(2)逆时针旋转45ʎ2.D3.6,+212,+8.5;-21,-30%4.D5.B,C,D地区农业总产值增加了,A,E地区农业总产值减少了,F地区农业总产值没有变化6.A(7,0),C(15,-3),D(0,-12)1.1正数和负数(2)1.23,+14,0.78;-178,-0.75,-12.200,0,-503.-0.5秒4.上,95.星期一低于警戒水位3c m,星期二恰为警戒水位,星期四超过警戒水位12c m6.(1)负数(2)正数,A1.2有理数1.2.1有理数1.0,负整数,负分数2.有理3.略4.(1)+2,+3(答案不唯一)(2)-2,-3(答案不唯一)(3)0(4)-13(答案不唯一)5.整数:{4,0,-6,208,-37}分数:-23,3.5,97,-20%,-4.6负分数:-23,-20%,-4.6有理数:4,-23,3.5,0,97,-6,-20%,208,-4.6,-376.答案不唯一.如-4,-3,2,1,12,0.6数学作业本七年级上义务教育教材1.2.2 数轴1.(1)负,正 (2)左,42.D3.略4.-3,-1,1,2.5和45.点A 表示的数是-2,点B 表示的数是+1,点C 表示的数是+56.(1)(2)C 地位于A 地西面,且两地相距4k m1.2.3 相反数1.左右两侧;-4,42.(1)-6 (2)0.5 (3)-34 (4)163.(1)C (2)A4.(1)23 (2)-3 (3)9.6 (4)-1945.③④6.(1)略 (2)距离相等7.略1.2.4 绝对值1.(1)65,3.78,0,-4.9 (2)ʃ2,2 2.(1)<,> (2)>,< 3.C 4.(1)数轴表示略,-1<0<134<|-2|<3.2 (2)-2,-1,0,1,25.(1)20 (2)16 (3)169(4)3 6.(1)-67>-78 (2)-+12<-(-1)1.3 有理数的加减法1.3.1 有理数的加法(1)1.(1)0 (2)-30 (3)10 (4)-1 2.(1)+,-或-,+ (2)- (3)+ (4)-,-3.(1)-6 (2)-1 (3)-37 (4)-123244.(-36)+(+160)=124(元)5.(1)(-7)+(-1)等 (2)0+(-8) (3)(-9)+1等 6.-1或91.3.1 有理数的加法(2)1.加法交换律,加法结合律 2.C 3.(1)-3 (2)2 (3)-12(4)-84.550+(-260)+150=440(元) 5.(1)3.84 (2)-34考答参案6.(1)16,120,142 (2)14082420*7.原式=(-2020-2019+4040-1)+-56-23-12=-21.3.2 有理数的减法(1)1.(1)3,3 (2)+,-8 (3)10,20 (4)2.4,-3.2 2.-6,8,-73.(1)-3 (2)-34 (3)6.79 (4)-91314 4.A 5.(1)3 (2)0.1 6.矿井下A 处最高,B 处最低,A 处与B 处相差92.2m*7.(1)7 (2)-61.3.2 有理数的减法(2)1.-10+2-3 2.(1)3 (2)4 (3)2 3.(1)0 (2)-11.2 4.(+11)+(+7)+(-21)+(+3)=(11+7+3)+(-21)=0,该班这个月收支平衡,没有结余5.(1)-9 (2)16.能.例如:(+1)+(-2)+(+3)+(-4)+(+5)+(-6)+(+7)+(+8)+(-9)+(-10)=1-2+3-4+5-6+7+8-9-10=-7(答案不唯一)*7.表示数a 的点与表示数b 的点,表示数b 的点与表示数-3的点1.4 有理数的乘除法1.4.1 有理数的乘法(1)1.(1)< (2)> (3)= (4)< 2.C 3.C 4.(1)2020 (2)-5 (3)-0.35 (4)05.(1)-23 (2)23(3)-7 (4)16.如4与-2,4+(-2)=2,4ˑ(-2)=-8.归纳:这两个数一个为正数,一个为负数,且正数的绝对值大于负数的绝对值1.4.1 有理数的乘法(2)1.(1)> (2)< (3)=2.(1)乘法交换律 (2)乘法分配律 (3)乘法交换律与乘法结合律3.(1)1200 (2)-180 (3)-10 4.(1)173 (2)-1 (3)-79125.(1)12.5 (2)-136.0义务教育教材数学作业本七年级上1.4.2有理数的除法(1)1.(1)< (2)< (3)> (4)=2.(1)5(2)-9(3)-15(4)343.(1)-12(2)-30(3)176(4)14.(1)-3(2)43(3)-13(4)235.(1)12(2)-1506.(1)抽取-3,-5,最大的乘积是15(2)抽取-5,+3,最小的商是-531.4.2有理数的除法(2)1.C2.标下划线略(1)-49(2)-723.(1)-17(2)-104.(1)-539(2)0.545.(1)-7(2)-126.6.5小时*7.①3ˑ(10+4-6);②(10-4)ˑ3-(-6);③4-(-6)ː3ˑ101.5有理数的乘方1.5.1乘方(1)1.(1)4,5(2)-6,3,-2162.D3.(1)18(2)-125(3)0.0001(4)2594.(1)32768(2)-7776(3)2541.1681(4)731.16165.14平方米,18平方米,128平方米6.(1)3的正整数次幂的个位数字只有3,9,7,1四种情形(2)11.5.1乘方(2)1.A2.3或-3,-23.正确答案为(1)-45(2)-2344.(1)4(2)-9(3)-607(4)15495.-436.a m㊃a n=a m+n7.461.5.2科学记数法1.5.3近似数1.(1)6.371ˑ107(2)8.64ˑ104(3)2.8ˑ1072.(1)200000(2)7080000(3)-20040000考答参案3.(1)3.14 (2)0.003 (3)0.017 (4)4104.(1)十 (2)85.5.6ˑ1056.70ˑ60ˑ24ˑ365=3.6792ˑ107(次),3.6792ˑ107<1亿复习题1.(1)-2.5 (2)23,23,-32(3)3ˑ1082.正整数:{4}负整数:{-100}正有理数:{4,0.01}负有理数:{-3.5,-314,-100,-2.15}3.数轴略,-3<0<112<|-2.5|<-(-4)4.(1)-75(2)-16 (3)-20 (4)5185.(-1)2,|-1|,-1-1,-(-1)6.百分,37.495,37.505 7.C 8.(1)25 (2)-609.(1)-712(2)当b 为0时,0做除数没有意义,屏幕上显示: 该操作无法进行 10.当a =1时,值为3;当a =-1时,值为-1 11.猜想略,3025第二章 整式的加减2.1 整式(1)1.4a 2.πr 2-a 23.(1)24x y (2)-13a (3)0.85m 元 4.(1)12a -b 2 (2)(40-2x )页 5.(1)10m +n (2)(500+8a -6b )米6.答案不唯一.例如:(1)买5支单价为a 元/支的铅笔的费用 (2)长为5㊁宽为a 的长方形的面积2.1 整式(2)1.(1)②③④,①⑤⑥ (2)3,-3,-12.第一行:-2;5;-116π.第二行:5;8;4;2;4.第三行:3x 2,-2;4a 4,-4a 2b 2,b 4义务教育教材数学作业本七年级上3.D4.05.(1)2a-400,12a+245(2)1539人6.(1)4039x2020(2)40804002.2整式的加减(1)1.(1)0(2)32a2(3)-1.5x32.C3.B4.(1)-2x2(2)-12a(3)0(4)-x2y5.(1)2a2-8a+5(2)26.3πa2.2整式的加减(2)1.(1)-x(2)92a2.A3.(1)2a2+3a b+b2(2)404.(1)23a b,4(2)x-2,-2.55.-5x y,-136.增加了(0.5a+2)吨2.2整式的加减(3)1.(1)a-b(2)2-6x(3)-x2+3x(4)-6x2+32.(1)错误,-3a-3b(2)错误,3x+24(3)正确(4)错误,2b-3a+13.B4.(1)2a-2(2)2(3)7(4)8x-55.(1)-2a+5b(2)-152x-46.(1)10(a+2)+a=11a+20(2)由题意可得,新的两位数是10a+a+2=11a+2,它与原两位数的和是11a+20+11a+2=22(a+1),故新的两位数与原两位数的和能被22整除2.2整式的加减(4)1.(1)+ (2)-2.4a+63.(1)2y(2)-12a+4b(3)4a2-b24.0.568ˑ60%a+0.288ˑ40%a-0.538a=0.3408a+0.1152a-0.538a= -0.082a<0,能节省电费5.94x+94y6.(120000+2000a)元*7.602.2整式的加减(5)1.(1)80%x(2)-y2.5x-6考答参案3.(1)4x -3,-1 (2)12a 2b -6a b 2,-6 4.12y +5,2y -6,52y -15.(1)(4x 2+14x )米(2)当x =7时,2(x 2+5x +x 2+4x )=4x 2+18x =196+126=322(米)6.20复习题1.(1)B (2)C (3)D 2.(1)12x 3y +3x 2y -7(答案不唯一) (2)2a +4.5b (3)-183.(1)-2x 2y -6 (2)-10x 2y (3)2x -6 4.-x +212,4125.(1)15a -15 (2)3285台6.-7a 2+397.13,16,3n +1*8.设原来两位数的十位数字为a ,个位数字为b ,则原来两位数为10a +b ,交换后新的两位数为10b +a .因为(10a +b )-(10b +a )=10a +b -10b -a =9a -9b=9(a -b ),所以这个结果一定能被9整除第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程(1)1.C 2.A 3.2(x +x +25)=3104.(1)2a +1=6 (2)12x +3=5 (3)-13a =10 (4)50%x -6=-35.设这种药品的原价为a 元,则(1-10%)a =14.56.(1)乐乐一共能写出6个等式,分别是3x +2=8,12x -3=8,x 2+2=8,3x +2=12x -3,3x +2=x 2+2,12x -3=x 2+2 (2)3个3.1.1 一元一次方程(2)1.2y =4(答案不唯一) 2.(1)2,解 (2)② 3.(1)不是 (2)是4.填表略,x =8 5.设经过x 小时后,水池中还剩下11吨水,则20-1.5x =116.(1)2(x +6)=5x (2)x =43.1.2 等式的性质(1)1.(1)8 (2)-1 2.(1)3,减x (2)2,乘以-2 3.B 4.C数学作业本七年级上义务教育教材5.C6.加2y ,x 有可能是0*7.不能从等式(2a -1)x =3a +5中得到x =3a +52a -1,理由:2a -1的值可能为0;能从x =3a +52a -1中得到(2a -1)x =3a +5,理由:在等式两边同时乘以(2a -1)3.1.2 等式的性质(2)1.(1)-1 (2)-3 (3)-2 2.C 3.加6,除以3,133 4.①③④5.(1)x =6 (2)x =-12 (3)x =2 (4)x =126.设这个班有x 名学生,则4x +35=215,解得x =453.2 解一元一次方程(一) 合并同类项与移项(1)1.(1)-2x =8 (2)5y =5,12.1.5x m 2,1.8x m 2,第一天修剪的面积+第二天修剪的面积+第三天修剪的面积=50m 2,x +1.5x +1.8x =503.2x +2ˑ1.2x =6604.(1)x =5 (2)t =2 (3)x =-8 (4)y =105.设硝酸钾㊁硫黄㊁木炭的质量分别是15x k g ,2x k g ,3x k g,则15x +2x +3x =400,解得x =20.因此硝酸钾需要300k g ,硫黄需要40k g ,木炭需要60k g6.设乒乓球拍的单价为x 元,则x +1.5x +4x =130,解得x =20.因此篮球㊁羽毛球拍和乒乓球拍的单价分别是80元㊁30元㊁20元3.2 解一元一次方程(一) 合并同类项与移项(2)1.C 2.20 3.32,-64,128 4.(1)x =-5 (2)x =-1725.设3月份的利润是x 万元,则x +2x +3x =42,解得x =76.(1)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=215,解得x =43.这五个数分别是41,43,45,31,55(2)设十字框中间的那个数为x ,则x -2+x +x +2+x -12+x +12=305,解得x =61,而61位于第一列,故这五个数的和不能为3053.2 解一元一次方程(一) 合并同类项与移项(3)1.C 2.D 3.4x ,3x +2,4x =3x +24.(1)y =-2 (2)x =1 (3)x =2 (4)x =-35.设有x 个小朋友,则5x +8=6x ,解得x =8.因此有8个小朋友,48颗巧克力考答参案6.如果每人做6个,那么比计划多8个.这个手工小组有10名同学3.2 解一元一次方程(一) 合并同类项与移项(4)1.A 2.D 3.3x =x +5.4,解得x =2.74.(1)5x -8=2x +4,解得x =4 (2)13y +9=2y -6,解得y =95.设甲所带的钱是7x 元,乙所带的钱是6x 元,则7x -50=6x -30,解得x =20.甲所带的钱是140元,乙所带的钱是120元6.设乙书架上原来有x 本书,则52x -90=x +90,解得x =120.甲书架上原来有300本,乙书架上原来有120本*7.(a -c )x =d -b ,因为a ʂc ,即a -c ʂ0,所以x =d -ba -c3.3 解一元一次方程(二) 去括号与去分母(1)1.A 2.去括号,移项,合并同类项,系数化为13.x =85 4.(1)x =-52(2)x =0 (3)y =-12 (4)x =6.55.设甲商品的进货单价是x 元,则4(x +1)+3[2(3-x )-1]=17,解得x =1,所以甲商品的零售单价为2元,乙商品的零售单价为3元3.3 解一元一次方程(二) 去括号与去分母(2)1.D 2.(1)32 (2)93.设抽调的人数为x 人,则32+x =2(28-x ),解得x =84.(1)x =43 (2)x =14(3)y =65.设乙每小时走x 千米,则3(x +1)+3x =21,解得x =3,即甲每小时走4千米,乙每小时走3千米6.设船从开始掉头航行到追上救生艇的时间为x 秒,则(5+3)x =(5-3)ˑ10ˑ60+3ˑ(10ˑ60+x ),解得x =6003.3 解一元一次方程(二) 去括号与去分母(3)1.12,去分母,等式的性质2 2.-2 3.B 4.(1)x =-7 (2)x =-355.30千克6.设5月1日接待游客x 万人次,则x +53(x +x -6)+x -6=176,解得x =36数学作业本七年级上义务教育教材3.3 解一元一次方程(二) 去括号与去分母(4)1.D 2.133.略4.(1)x =-9 (2)x =05.(1)x =-2 (2)y =166.设火车的长度为x 米,则1000+x 60=1000-x 40,解得x =200.1000+20060=20,所以火车的长度为200米,过桥的速度为20米/秒3.4 实际问题与一元一次方程(1)1.30-x ,150x =100(30-x ) 2.200x =2ˑ50(60-x )3.D4.设挖土的有x 人,则5x =3(48-x ),解得x =18.安排18人挖土,30人运土5.设x 名工人生产桌面,则30(55-x )=4ˑ20x ,解得x =15.分配15名工人生产桌面,40名工人生产桌脚6.设第二天安排x 人制作小花,则18(25+x )=16(25+50-x )ˑ2,解得x =39.第二天安排39人制作小花,11人制作花篮3.4 实际问题与一元一次方程(2)1.B 2.B 3.90 4.5天5.设先整理的人员有x 人,则x 60+2(x +15)60=1,解得x =106.设经过x 小时后,其中一支的长度为另一支的一半,则21-16x=1-18x ,解得x =4.83.4 实际问题与一元一次方程(3)1.450,50x 2.130 3.30千克4.设进价为x 元,则x (1+45%)ˑ80%-x =270,解得x =1687.55.盈利8元6.设顾客在元旦当天累计购物x 元,则300+0.8(x -300)=200+0.85(x -200),解得x =6003.4 实际问题与一元一次方程(4)1.20分,8 2.3x +(8-x -1)=17 3.C4.(1)设成人票售出x 张,则8x +5(1000-x )=6920,解得x =640(2)设成人票售出x 张,则8x +5(1000-x )=7290,解得x =22903.因为票数考答参案不可能为分数,所以所得票款不可能是7290元5.设(1)班有x 人,因为(1)班的人数大于10人,但不到40人,所以(2)班人数在41~80人范围内,则10x +9(85-x )=85ˑ8+120,解得x =35.(1)班有35人,(2)班有50人6.(1)负一场得1分 (2)设胜m 场,总积分=3m +4-m =4+2m(3)设一个队胜了x 场,则3x =2(4-x ),解得x =85.因为x 的值是整数,所以x =85不合实际,由此判定该队的胜场总积分不能等于它的负场总积分的2倍3.4 实际问题与一元一次方程(5)1.14,10+2(x -3) 2.100+0.8ˑ10x =10x 3.设该中学需要x 件仪器时两种方案的费用相同,则10x =5x +120,解得x =244.(1)60+0.2(x -200),0.25x(2)列方程:60+0.2(x -200)=0.25x ,解得x =400.所以当x =400时,两处收费相等(3)当300<x <350时,去图书馆复印更省钱5.设第一次寄物品x 千克.当x ɤ10时,则3(24-x )+5=50,解得x =9.两次所寄的物品的质量分别为9千克与15千克;当x >10时,则2x -20+3(24-x )+5=50,解得x =7(舍去)复习题1.(1)A (2)D2.(1)103a (2)1 (3)33.(1)x =-43 (2)y =-17 (3)t =-516(4)x =1 4.85.766.数学竞赛有46名学生获奖,演讲比赛有30名学生获奖7.设‘汉语成语大词典“的标价为x 元,则50%x +60%(80-x )=45,解得x =30,80-x =50.‘汉语成语大词典“的标价为30元,‘中华上下五千年“的标价为50元8.(1)x +1,x +7,x +8(2)x +x +1+x +7+x +8=416,解得x =100(3)列方程:x +x +1+x +7+x +8=3096,解得x =770.因为770是表中第110行的最后一个数,所以框住的4个数之和不可能为3096义务教育教材数学作业本七年级上第四章 几何图形初步4.1几何图形4.1.1立体图形与平面图形(1)1.形状,大小2.①②,③④3.① 棱柱 ② 圆柱 ③ 球 ④ 圆锥 ⑤ 棱锥4.圆㊁三角形㊁正方形等5.④,⑤,①②⑥,⑦,③6.略4.1.1立体图形与平面图形(2)1.圆,长方形,长方形2.球或正方体(写出一种即可)3.B4.左图是从正面或左面看立体图形得到的,右图是从上面看立体图形得到的5.D6.丁,甲,丙,乙4.1.1立体图形与平面图形(3)1.① 五棱柱 ② 圆柱 ③ 圆锥2.B3.B4.B5.6.4.1.2点㊁线㊁面㊁体1.①②③,④⑤⑥2.面,线,点3.① 乙,② 甲,③ 丙4.点动成线,线动成面,面动成体5.9,16,96.4.2直线㊁射线㊁线段(1)1.2,两点确定一条直线2.C考答参案3.4.(1)A ,C ;B ,D (2)b ;a (3)a ;b5.5,2,射线A D ㊁射线A B ,1,直线B D (A B ,A D 均可)6.(1) (2) (3)(4)4.2 直线㊁射线㊁线段(2)1.B 2.略 3.C D =1 4.①②④ 5.略6.①当点C 在线段A B 上时,AM =3c m ;②当点C 在线段A B 的延长线上时,AM =7c m4.2 直线㊁射线㊁线段(3)1.D 2.①A ②A ③A ④B 3.D 4.6c m 5.9c m6.(1)(2)因为A D =A C =8,所以A D =8;同理,B E =B C =6.因此D E =A D +B E -A B =8+6-12=24.3 角4.3.1 角1.公共端点,射线,绕着它的端点旋转2.(1)60,160,10,15,36 (2)>3.B4.以点B 为顶点的角有3个,分别为øA B D ,øA B C ,øD B C ;可用一个字母表示的角有2个,分别为øA ,øC5.B6.略义务教育教材数学作业本七年级上4.3.2角的比较与运算(1)1.A2.(1)A O D,C O D,A O B,B O C(2)63.D4.105ʎ5.图略,øA O C=75ʎ或15ʎ6.60ʎ4.3.2角的比较与运算(2)1.(1)12ʎ31'48ᵡ(2)56.42ʎ2.363.(1)69ʎ38'37ᵡ(2)40ʎ35'(3)71ʎ39'(4)21ʎ32'36ᵡ4.66ʎ30'5.22.56.由折叠得,F G平分øB F E,所以øG F E=12øB F E.因为F H平分øE F C,所以øE F H=12øE F C.因为øB F C是平角,所以øB F E+øE F C=180ʎ.所以øG F E+øE F H=90ʎ.所以øG F H=90ʎ4.3.3余角和补角(1)1.36ʎ,126ʎ2.(1)等角的补角相等(2)同角的余角相等3.øA C E,øB C F;øA C F,øB C E4.(1)A (2)B5.65ʎ6.48ʎ4.3.3余角和补角(2)1.略2.北偏西15ʎ,南偏东55ʎ3.B4.略5.邮局,商店,学校6.略4.4课题学习设计制作长方体形状的包装纸盒略复习题1.略2.51ʎ30'3.4.44.A5.C6.A7.øB C D,øA C D8.6c m 9.28ʎ10.1条㊁4条或6条11.(1)因为O F平分øA O C,所以øC O F=12øA O C=12ˑ30ʎ=15ʎ.因为øB O C=øA O B-øA O C=90ʎ-30ʎ=60ʎ,O E平分øB O C,所以øE O C=12øB O C=30ʎ.所以øE O F=øC O F+øE O C=45ʎ(2)因为O F平分øA O C,所以øC O F=12øA O C.同理øE O C=12øB O C,考答参案所以øE O F =øC O F +øE O C =12øA O C +12øB O C =12øA O B =12α(3)23α总复习题1.ʃ32.按原价的九折出售或降价10%3.2,两点确定一条直线4.23 5.ø1>ø2>ø3 6.1.5ˑ1087.C 8.D 9.B 10.(1)1823(2)-10 (3)-9 (4)-8311.(1)x =12(2)x =212.6x 2-92x -1,3213.小李的图画得不对,正确的画法略14.M P +MN =M P +M Q +Q N =M P +M Q +P Q =M Q +M Q =2M Q =2ˑ6=12(c m )15.(1)øA O C =øB O D ,同角的补角相等 (2)50ʎ16.(1)ȵ |a |=|c |,且由图知a ,c 异号, ʑa +c =0.又ȵ |a +c |+|b |=2, ʑ |b |=2. ȵ b 为负数, ʑ b =-2(2)a >-b >b >c17.设每台投影仪的进价为x 元,则(x +35%x )ˑ0.9-50-x =208,解得x =120018.(1)设旅游团中有x 名成人,则60x +60ˑ0.5(12-x )=600,解得x =8,12-x =4.旅游团中有8名成人,4名未成年人(2)按方案①购买门票,所需费用为60ˑ0.6ˑ12=432(元);按方案②购买门票,所需费用为60ˑ0.5ˑ16=480(元).因为432元<480元,所以小李采用方案①买票更省钱19.(1)øA O C =100ʎ或60ʎ (2)øM O N =40ʎ20.(1)m =25 (2)n =4或n =-4 (3)两个方程的解分别为-2和221.7或122.(1)义务教育教材数学作业本七年级上(2)在圆内画直线条数把圆最多分成的份数探索规律121+1241+1+2371+1+2+34111+1+2+3+45161+1+2+3+4+56221+1+2+3+4+5+6(3)n2+n+22(或1+1+2+3+ +n)期末综合练习1.C2.B3.C4.D5.A6.C7.B8.D9.C 10.C11.-1312.x+1=0(答案不唯一)13.18ʎ55'14.两点之间,线段最短15.0.716.-2017.-1或-518.3.5c m 19.如-p+2020,-5352p等(答案不唯一)20.-101021.(1)9(2)322.原式=x2-x+1,其中x=-1,求值为323.(1)略(2)50ʎ24.(1)360元(2)若在甲㊁乙商场购买,则付款额为450元;若在丙商场购买,则付款额为435元,故李先生选择丙商场购买最实惠25.(1)20,1.5t+9(2)当0ɤt<6时,t=3.6s;当6<tɤ18时,t=907s(3)3s,4.2s,12s,967s。
新课标-最新人教版七年级数学上学期:1.3有理数的加法练习题(一)-经典试题
1.2.3有理数的加法练习题(一)当堂训练1.(+5)+(+9)的符号是___________,(-7)+(-2)的符号是___________。
2.(+5)+(-9)的符号是___________,(-5)+(+9)的符号是___________。
3.(+5)+(-5)=_____,(+3)+0=________,0+(-3)=______。
4.(1)(+7)+(+4)=_____,(2)(-6)+(-8)=________,(3)(-0.6)+(-1.5)=______。
(4)(+331)+(+432)=_________。
5.计算(-2013)+(+2014)=( ) A 、-4017 B 、4017 C 、-1 D 、16.如果a+b=0,那么a ,b 两个有理数一定是 ( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数7.两数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么( )A 、这两个加数的符号都是负数B 、这两个加数的符号不能相同C 、这两个加数的符号都是正的D 、这两个加数的符号不能确定8.有理数a ,b 在数轴上的位置如图所示,则a+b 的值( )A 大于0B 小于0C 小于aD 大于b9.计算下列各题:(1)(-4.25)+(+383) (2)(-9)+(-3) (3)(+53)+(-127)(4)(-0.9)+(-1.5)10.已知a=3,b=2.求a+b的值。
11.已知a,b为有理数,并且a+b的值为正数,那么,a、b都为正数,这种说法对吗?举例说明。
课后练习一、判断题(1)两个数相加,如果和比每个数都小,那么这两个数同为负数.()(2)如果两个加数的和为正数,那么一定有一个加数为0.()(3)正数加负数,和为负数.()(4)两个有理数的和为负数时,这两个有理数都是负数.()(5)两个有理数的和,一定大于任何一个加数.()二、填空题1、+8与-12的和取___号,+4与-3的和取___号。
【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
人教版数学七年级上册 第一章 1.1---1.3练习题带答案
1.1正数和负数一.选择题1.珠穆朗玛峰高于海平面8844.43m,海拔高度为+8844.43m,吐鲁番盆地低于海平面155m,海拔高度为()A.+155m B.﹣155m C.±155m D.m2.在数0.25,,6,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个3.如果+20表示增加20,那么﹣6表示()A.增加14B.增加6C.减少6D.减少264.人体正常体温平均为36.5℃,如果某温度高于36.5℃,那么高出的部分记为正;如果温度低于36.5℃,那么低于的部分记为负.国庆假期间琪琪同学在家测的体温为39.2℃应记为()A.﹣3.7℃B.+3.7℃C.﹣2.7℃D.+2.7℃5.下列各数﹣3,﹣,0,2,中,负数的个数是()A.1B.2C.3D.46.我国在数的发展史上有辉煌的成就,早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果盈利100元记为+100元,那么﹣90元表示()A.亏损90元B.盈利90元C.亏损10元D.盈利10元7.如图,从家到电影院的路线图,规定每次只能向上或向右走,那么小丽从家到电影院一共有()不同的走法.A.6种B.8种C.10种D.15种8.若气温为零上20℃记作+20℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上17℃D.零下17℃9.如图,在生产图纸上通常用Φ50来表示直径在(50﹣0.4)mm到(50+0.3)mm之间的产品都是合格产品,则下列直径不合格的是()A.49.8mm B.50mm C.50.2mm D.50.4mm10.如图李强从家(一街二巷)到校(四街四巷)的路线图中,规定每次五巷只能向上或向右走,从家到校一共有()不同的走法.A.6种B.8种C.10种D.15种二.填空题11.如果向东走6米记作+6米,那么向西走10米记作.12.如果水位升高3m时,水位变化记作+3m,那么水位下降4m时,水位变化记作:m.13.有10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,﹣4,2.5,3,﹣0.5,1.5,3,﹣1,0,﹣2.5,则这10筐苹果一共千克.14.在﹣|﹣5|,﹣(﹣3),﹣(﹣3)2,(﹣5)2中,负数有个.15.某水文观测站的记录员将高于平均水位 1.5m的水位记了下+1.5m,那么﹣0.8m表示.三.解答题16.写出两个负数,使它们的差为﹣3,并写出具体算式.17.某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如下:与标准的偏差(单位:千克)﹣2﹣10+1+2+3袋数5103156(1)求这30袋大米一共多少千克?(2)这30袋大米总计超过标准多少千克或不足多少千克?18.上午8点整汽车从甲地山发,以每小时20千米的速度在东西走向的道路上连续行驶,全部行程依次如下所示:(掉头时间忽略不计,规定向东为正,单位:千米)+5,﹣4,+3,﹣6,﹣2,+10,﹣3,﹣7(1)这辆汽车最后一次行驶结束后距离甲地多远?(2)这辆汽车共行驶多少千米?(3)这辆汽车每次经过甲地时分别是几点几分?(直接写出答案)19.某个体商人小王购进一批货物进行销售,卖出货物时的价格(售价)与购进货物价格(进价)有一定的差距(高于进价用正数表示,低于进价用负数表示),情况如下表:+5.5+3.50﹣1.5﹣3﹣1售价与进价之差(元)货物件数6851029(1)如果不考虑其它的因素,问小王卖出这批货物是盈还是亏了?(2)如果考虑每件货物的其它成本为0.8元,小王是盈还是亏了?盈、亏的数目是多少?参考答案与试题解析一.选择题1.【解答】解:海平面的海拔高度为0米,珠穆朗玛峰高于海平面8844.43米,其海拔高度记作+8844.43米,那么吐鲁番盆地低于海平面155米,则其海拔高度记作﹣155米,故选:B.2.【解答】解:0.25,6,100是正数,故选:C.3.【解答】解:如果+20表示增加20,那么﹣6表示减少6,故选:C.4.【解答】解:由题意得,39.2﹣36.5=2.7(℃),答:国庆假期间琪琪同学在家测的体温应记为2.7℃.故选:D.5.【解答】解:﹣3,﹣,0,2,中,负数有﹣3,﹣,共2个.故选:B.6.【解答】解:把盈利100元记为+100元,那么﹣90元表示亏损90元,故选:A.7.【解答】解:标数如下:一共有10条不同的路线.故选:C.8.【解答】解:若气温为零上20℃记作+20℃,则﹣3℃表示气温为零下3℃.故选:B.9.【解答】解:由题意得:合格范围为:50﹣0.4=49.6到50+0.3=50.3,而50.4>50.3,故直径为50.4mm的轴为不合格产品.故选:D.10.【解答】解:把向上记为1,向右记为2,李强从家(一街二巷)到校(四街四巷)有多少不同的走法,实际就是2个1,3个2组成多少个不同的五位数,因为11222,12122,12212,12221,21122,21212,21221,22121,22112,22211,所以从家到校一共有10种不同的走法.故选:C.二.填空题(共5小题)11.【解答】解:向西走10米记作﹣10米,故答案为:﹣10米.12.【解答】解:如果水位升高3m时,水位变化记作+3m,那么水位下降4m时,水位变化记作:﹣4m,故答案为:﹣4.13.【解答】解:2﹣4﹣2.5+3﹣0.5+1.5+3﹣1+0﹣2.5=2+3+1.5+3+0﹣4﹣2.5﹣0.5﹣1﹣2.5=9.5﹣10.5=﹣1(千克),30×10﹣1=300﹣1=299(千克).答:这10筐苹果一共299千克.故答案为:299.14.【解答】解:﹣|﹣5|=﹣5是负数,﹣(﹣3)=3是正数,﹣(﹣3)2=﹣9是负数,(﹣5)2=25是正数.负数有﹣|﹣5|,﹣(﹣3)2两个,故答案为:2.15.【解答】解:“正”和“负”相对,高于平均水位1.5m的水位记了下+1.5m,那么﹣0.8m 表示低于平均水位0.8m.故答案为:低于平均水位0.8m.三.解答题(共4小题)16.【解答】解:由题意得﹣4﹣(﹣1)=﹣3.17.【解答】解:(1)(﹣2)×5+(﹣1)×10+1×1+2×5+3×6=9(千克),30×50+9=1509(千克),答:这30袋大米一共1509千克;(2)(﹣2)×5+(﹣1)×10+1×1+2×5+3×6=9(千克),∵9>0,∴这30袋大米总计超过标准9千克》18.【解答】解:(1)5+(﹣4)+3+(﹣6)+(﹣2)+10+(﹣3)+(﹣7)=﹣4,答:这辆汽车最后一次行驶结束后距离甲地4km;(2)|+5|+|﹣4|+|+3|+|﹣6|+|﹣2|+|+10|+|﹣3|+|﹣7|=5+4+3+6+2+10+3+7=40(km),答:这辆汽车共行驶40千米;(3)(5+4+3+4)÷20=0.8(小时)=48(分),故这辆汽车第一次经过甲地时是8点48分;(2+2+4)÷20=0.6(小时)=24(分),故这辆汽车第二次经过甲地时是9点12分;(6+3+3)÷20=0.6(小时)=36(分),故这辆汽车第三次经过甲地时是9点48分.19.【解答】解:(1)5.5×6+3.5×8+0×5+(﹣1.5)×10+(﹣3)×2+(﹣1)×9=311.2有理数一.选择题1.﹣的绝对值是()A.﹣20B.20C.D.﹣2.下列各数:﹣2,+2.3,5,0,,﹣0.7,,其中负分数有()A.1个B.2个C.3个D.4个3.下列说法正确的是()A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数4.﹣20的相反数是()A.﹣B.20C.D.﹣205.若|m|=﹣m,则m的值是()A.负数B.0C.非负数D.非正数6.若a=﹣a,则a是()A.非负数B.零C.非正数D.正数7.下列四个数中,是分数的是()A.B.πC.34D.﹣208.已知有理数a,b,c满足a<0<b<c,则代数式的最小值为()A.c B.C.D.9.3≤m≤5,化简|m﹣5|+|2m﹣6|的结果是()A.m﹣1B.1﹣m C.3m﹣11D.11﹣3m10.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=11,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.11二.填空题11.﹣的绝对值是.12.如果a与3互为相反数,则|a﹣5|=.13.化简:(1)﹣|﹣2|=;(2)=.14.若△表示最大的负整数,☆表示最小的正整数,♦表示绝对值最小的有理数,则(△+♦)÷☆的值为.15.在①+(+3)与﹣(﹣3);②﹣(+3)与+(﹣3);③+(+3)与﹣(+3);④+(﹣3)与﹣(﹣3)中,互为相反数的是.求x,y的取值;(2)当x﹣y<0,求2x+y的值.17.将下列数按要求分类,并将答案填入相应的括号内:3,,0,﹣9%,﹣6,0.8.负有理数{…};整数{…};正分数{…}.18.如图,有理数a、b、c在数轴上的位置大致如图:(1)去绝对值符号:①|a|=;②|b﹣a|=;③=;④|c|=.(2)根据题意,化简:|a+b|+|b﹣a|+|b﹣c﹣a|﹣|c|.19.有理数a,b,c在数轴上的位置如图所示,且|a|>|b|.(1)填空:ac0;a+b0.化简代数式:|a﹣c|﹣|a﹣b|+|b|+|2a|.参考答案与试题解析一.选择题1.【解答】解:根据题意得,|﹣|=.故选:C.2.【解答】解:﹣2,+2.3,5,0,,﹣0.7,,其中负分数有,﹣0.7,一共2个.故选:B.3.【解答】解:A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数和负整数0和零,故此选项错误.故选:C.4.【解答】解:﹣20的相反数是﹣(﹣20)=20,故选:B.5.【解答】解:∵|m|=﹣m>0,∴m的值是非正数.故选:D.6.【解答】解:若a=﹣a,则a是负数或0,即a是非正数.故选:C.7.【解答】解:A、是分数,故本选项符合题意;B、π不是有理数,所以不是分数,故本选项不合题意;C、34是整数,不是分数,故本选项不合题意;D、﹣20是整数,不是分数,故本选项不合题意;故选:A.8.【解答】解:∵a<0<b<c,∴<<,∵=|x﹣|+|x﹣|+|x﹣|,∴表示为在数轴上,数x对应的点到三个数、、对应的点的距离之和,如图,当x=时,数x对应的点到三个数、、对应的点的距离之和最小,最小值为﹣=c,即代数式的最小值为c.故选:A.9.【解答】解:由3≤m≤5,得m﹣5≤0,2m﹣6≥0,∴|m﹣5|+|2m﹣6|=﹣(m﹣5)+2m﹣6=﹣m+5+2m﹣6=m﹣1.故选:A.10.【解答】解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.二.填空题(共5小题)11.【解答】解:.故答案为:.12.【解答】解:∵a与3互为相反数.∴a=﹣3,∴|a﹣5|=|﹣3﹣5|=|﹣8|=8.故答案为8.13.【解答】解:(1)﹣|﹣2|=﹣2;(2)=.故答案为:﹣2;.14.【解答】解:根据题意得:(△+♦)÷☆=(﹣1+0)÷1=﹣1.故答案为:﹣1.15.【解答】解:①+(+3)=3,﹣(﹣3)=3;:故+(+3)与﹣(﹣3)不是相反数;②﹣(+3)=﹣3,+(﹣3)=﹣3,故﹣(+3)与+(﹣3)不是相反数;③+(+3)=3,﹣(+3)=﹣3,故+(+3)与﹣(+3)是相反数;④+(﹣3)=﹣3,﹣(﹣3)=3,故+(﹣3)与﹣(﹣3)是相反数,互为相反数的是③④,故答案为:③④.三.解答题(共4小题)16.【解答】解:(1)∵|x|+4=12,|y|+3=5,∴|x|=8,|y|=2,∴x=±8;y=±2;(2)∵x﹣y<0,∴x=﹣8,y=2或x=﹣8,y=﹣2,当x=﹣8,y=2时,2x+y=2×(﹣8)+2=﹣14;当x=﹣8,y=﹣2时,2x+y=2×(﹣8)+(﹣2)=﹣18;即2x+y的值为﹣14或﹣18.17.【解答】解:负有理数{﹣9%,﹣6…};整数{3,0,﹣6…};正分数{,0.8…}.故答案为:﹣9%,﹣6;3,0,﹣6;,0.8.18.【解答】解:(1)由题意可得:a<0<b<b﹣c,∴c<0,b﹣a>0,ab<0,∴|a|=﹣a,|b﹣a|=b﹣a,=﹣1,|c|=﹣c,故答案为:﹣a,b﹣a,﹣1,﹣c;(2)|a+b|+|b﹣a|+|b﹣c﹣a|﹣|c|=﹣a﹣b+b﹣a+b﹣c﹣a+c=b﹣a.19.【解答】解:(1)由数轴可知:c<a<0<b,∴ac>0,∵|a|>|b|1.3有理数的加减法一.选择题1.气温由﹣2℃上升了3℃时的气温是()A.﹣1℃B.1℃C.5℃D.﹣5℃2.计算﹣1﹣(﹣4)的结果为()A.﹣3B.3C.﹣5D.53.小刚同学做“伴你学习新课程”单元过关练习题时,遇到了这样一道题:“计算:|(﹣2)+☆|﹣(﹣6)”,其中“☆”是被污损看不清的一个数,他翻开后面的答案知该题计算的结果是11,则“☆”表示的数是()A.7B.7或﹣3C.﹣7或3D.﹣34.若x=3,|y|=7,则x﹣y的值是()A.﹣4B.10C.4或﹣10D.﹣4或105.一个潜水员从水面潜入水下50米,然后又上升32米,此时潜水员的位置是()A.水下82米B.水下32米C.水下28米D.水下18米6.设a是最小的自然数,b是最大的负整数,c的绝对值为2,则a﹣b+c=()A.3B.±3C.3或﹣1D.1或﹣37.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b ﹣a<0.乙:a+b>0.丙:a<|b|.丁:ab>|ab|,其中结论正确的是()A.甲、乙B.甲、丙C.丙、丁D.乙、丁8.一个物体作左右方向的运动,我们规定向右为正.如果物体先向左运动2米,再向右运动7米,那么可以表示两次运动最后结果的算式是()A.2+(﹣7)=﹣5B.2﹣7=2C.﹣2+7=5D.﹣2+7=﹣9 9.如果a+b>0,那么下列结论正确的是()A.a<0,b<0B.a>0,b>0C.a,b中至少有一个为负数D.a,b中至少有一个为正数10.若两个非零有理数a,b满足|a|=a,|b|=﹣b,且a+b<0,则a,b取值符合题意的是()A.a=﹣2,b=﹣3B.a=2,b=﹣3C.a=3,b=﹣2D.a=﹣3,b=2二.填空题11.我市本月某天的最高气温是9℃,最低气温﹣2℃,这天的温差是℃.12.若|a|=2,|b|=6,且a,b同为正,则a+b=.13.已知|x|=5,|y|=3,且x>y,则3x﹣y的值为.14.小煜家冰箱的液晶屏上显示冷藏室的温度为5℃,冷冻室的温度为﹣16℃,则小煜家冰箱冷藏室比冷冻室温度高℃.15.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若取前3格子中的任意两个数记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|★﹣☆|得到,其结果为,若a、b为前16格子中的任意两个数,且a≥b,则所有的|a﹣b|的和为.9★☆x﹣62……三.解答题16.若a、b、c是有理数,|a|=2,|b|=6,|c|=3,且a、b异号,b、c同号,求a﹣b+c的值.17.光明中学七(1)班学生的平均身高是160cm.(1)下表给出了该班6名学生的身高情况(单位:cm).试完成下表:姓名小明小彬小丽小亮小颖小刚身高159154165身高与平均﹣1+20+3身高的差值(2)这6名学生中谁最高?谁最矮?(3)最高与最矮的学生身高相差多少?18.已知A,B,C,D四点表示的数分别为a,b,c,d,且|c|<|b|<|a|<|d|,请化简:|a﹣c|﹣|﹣a﹣b|+|d﹣c|.19.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如表(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km参考答案与试题解析一.选择题1.【解答】解:根据题意得:﹣2+3=1,则气温由﹣2℃上升了3℃时的气温是1℃,故选:B.2.【解答】解:原式=﹣1+4=3,故选:B.3.【解答】解:设“☆”表示的数是x,则|x﹣2|+6=11x﹣2=±5解得:x=﹣3或x=7故选:B.4.【解答】解:∵||y|=7,∴y=±7,∵x=3,∴x﹣y=3﹣7=﹣4,x﹣y=3﹣(﹣7)=3+7=10,综上所述,x﹣y的值是﹣4或10.故选:D.5.【解答】解:根据题意,得﹣50+32=﹣18所以此时潜水员的位置是水下18米.故选:D.6.【解答】解:根据题意得:a=0,b=﹣1,∵|c|=2,∴c=2或c=﹣2,若a=0,b=﹣1,c=2,则a﹣b+c=0﹣(﹣1)+2=3,若a=0,b=﹣1,c=﹣2,则a﹣b+c=0﹣(﹣1)+(﹣2)=﹣1,即a﹣b+c=3或a﹣b+c=﹣1,故选:C.7.【解答】解:根据图示,可得b<﹣2,0<a<2,∵b<a,∴b﹣a<0;∵b<﹣2,0<a<2,∴a+b<0;∵b<﹣2,0<a<2,∴|b|>2,∴a<|b|;∵b<0,a>0,∴ab<0,∴ab<|ab|,∴正确的是:甲、丙.故选:B.8.【解答】解:由题意可知:(﹣2)+(+7)=﹣2+7=5,故选:C.9.【解答】解:如果a+b>0,那么a,b至少有一个为正数,故选:D.10.【解答】解:∵|a|=a,|b|=﹣b,a+b<0,∴a>0,b<0,且|a|<|b|,在四个选项中只有B选项符合,故选:B.二.填空题(共5小题)11.【解答】解:9﹣(﹣2)=11(℃)答:这天的温差是11℃.故答案为:11.12.【解答】解:∵|a|=2,|b|=6,a与b同为正数,∴a=2,b=6,∴a+b=2+6=8.故答案为:8.13.【解答】解:∵|x|=5,|y|=3,∴x=±5,y=±3;∵x>y,∴x=5,y=±3.当x=5,y=﹣3时,3x﹣y=18;当x=5,y=3时,3x﹣y=12.故3x﹣y的值为18或12.故答案为:18或12.14.【解答】解:5﹣(﹣16)=21(℃).故小煜家冰箱冷藏室比冷冻室温度高21℃.故答案为:21.15.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴9+★+☆=★+☆+x,解得x=9,★+☆+x=☆+x﹣6,∴★=﹣6,所以,数据从左到右依次为9、﹣6、☆、9、﹣6、☆、…,第9个数与第三个数相同,即☆=2,所以,每3个数“9、﹣6、2”为一个循环组依次循环,|9﹣★|+|9﹣☆|+|★﹣☆|=|9+6|+|9﹣2|+|﹣6﹣2|=30;由于是三个数重复出现,那么前16个格子中,这三个数中,9出现了6次,﹣6和2都出现了5次.故代入式子可得:[(|9+6|×5+|9﹣2|×5)×6+(|﹣6﹣2|×5+|9+6|×6)×5+(|2﹣9|×6+|2+6|×5)×5]=860.故答案为:30,860.三.解答题(共4小题)16.【解答】解:由题意得:a=±2,b=±6,c=±3,∵a、b异号,b、c同号∴a=2,b=﹣6,c=﹣3或a=﹣2,b=6,c=3,①∴当a=2时,b=﹣6,c=﹣3,∴a﹣b+c=2﹣(﹣6)+(﹣3)=5;②又∵当a=﹣2时,b=6,c=3∴a﹣b+c=﹣2﹣6+3=﹣5.综上:a﹣b+c的值为5或﹣5.17.【解答】解:(1)小彬的身高为:160+2=162(cm);小丽的身高为:160+0=160(cm);小颖的身高为:160+3=163(cm);小亮的身高与平均身高的差值为:154﹣160=﹣6;小刚的身高与平均身高的差值为:165﹣160=+5;故答案为:162;160;﹣6;163;+5;(2)由表格中的数据得:小刚最高,小亮最矮;(3)165﹣154=11(厘米).则最高与最矮的学生身高相差11厘米.18.【解答】解:∵a<b<0<c<d且|c|<|b|<|a|<|d|,∴a﹣c<0,﹣a﹣b>0,d﹣c>0,∴|a﹣c|﹣|﹣a﹣b|+|d﹣c|=c﹣a+a+b+d﹣c=b+d.19.【解答】解:(1)5+2﹣4﹣3+10=+10(km),因此,接送完第5批客人后,该驾驶员在公司的南方,距离公司10千米,答:接送完第5批客人后,该驾驶员在公司的南方,距离公司10千米。
七年级上册数学课本答案人教版【五篇】
导语:多阅读和积累,可以使学⽣增长知识,使学⽣在学习中做到举⼀反三。
以下是⽆忧考整理的七年级上册数学课本答案⼈教版【五篇】,希望对⼤家有帮助。
习题1.1答案1.解:根据正数、负数的定义可知,正数有:5,o.56,12/5,+2,负数有:-5/7,-3,-25.8,-0.0001.-600.2.解:(1)0.08m表⽰⽔⾯⾼于标准⽔位0.08m;-0.2m表⽰⽔⾯低于标准⽔位0.2m.(2)⽔⾯低于标准⽔位0.1m,记作-0.1m;⾼于标准⽔位0.23m,记作+0.23m(或0.23m).3.解:不对.O既不是正数,也不是负数.4.解:表⽰向前移动5m.这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置.5.解:这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m).以平均值为标准,七次测量的数据⽤正数、负数表⽰分别为:-0.6m,+0.6m.+0.8m,-0.9m,Om,-0.4m.⼗0.5rn6.解:氢原⼦中的原⼦核所带电荷可以⽤+1表⽰,氢原⼦中的电⼦所带电荷以⽤-1表⽰.7.解:由题意得7-4-4=-1(℃).8.解:中国、意⼤利服务出⼝额增长了;美国、德国、英国、⽇本服务出⽇额减少了;意⼤利增长率;⽇本增长率最低.习题1.2答案1.解:正数:{15,0.15,22/5,+20,…);负数:{-3/8,-30,-12.8,-60,…}.点拨:依据正负数的概念进⾏准确分类做到不重不漏.2.解:如图1-2-20所⽰.3.解:当沿数轴正⽅向移动4个单位长时,点B表⽰的数是1;当沿数轴反⽅向移动4个单位长时,点B表⽰的数是-7.4.解:各数的相反数分别为4,-2,1.5,0,-1/3,9/4.在数轴上表⽰如图1-2-21所⽰.5.解:⼁-125⼁=125,⼁+23⼁=23,⼁-3.5⼁=3.5,⼁0⼁=0,⼁2/3⼁=2/3,⼁-3/2⼁=3/2,⼁-0.05⼁=0.05.-125的绝对值,0的绝对值最⼩.6.解:-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3.7.解:各城市某年⼀⽉份的平均⽓温(℃)按从⾼到低的顺序排列为13.1,3.8,2.4,-4.6,-19.4.8.解:因为l+5l=5,⼁-3.5⼁=3.5,⼁+0.7⼁=0.7,⼁-2.5⼁=2.5,⼁-0.6⼁=0.6,所以从左向右数,第五个排球的质量最接近标准.9.解:-9.6%最⼩.增幅是负数说明⼈均⽔资源占有量在下降.10.解:表⽰数1的点与表⽰-2和4的点的距离相等,都是3.11.解:(1)有,如-0.1,-0.12,-0.57,…;有,如-0.15,-0.42,-0.48,….(2)有,-2;-1,0,1.(3)没有.(4)如-101,-102,-102.5.12.解:不⼀定,x还可能是-2;x=0;x=0.习题1.3答案1.(1)-4;(2)8;(3)-12;(4)-3;(5)-3.6;(6)-1/5;(7)1/15;(8)-41/3.2.(1)3;(2)0;(3)1.9;(4)-1/5.3.(1)-16;(2)0;(3)16;(4)0;(5)-6;(6)6;(7)-31;(8)102;(9)-10.8;(10)0.2.4.(1)1;(2)1/5;(3)1/6;(4)-5/6;(5)-1/2;(6)3/4;(7)-8/3;(8)-8.5.(1)3.1;(2)3/4;(3)8;(4)0.1;(5)-63/4;(6)0.6.解:两处⾼度相差:8844.43-(-415)=9259.43(m).7.解:半夜的⽓温为-7+11-9=-5(℃).8.解:132-12.5-10.5+127-87+136.5+98=383.5(元).答:⼀周总的盈亏情况是盈利383.5元.9.解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg).答:这8筐⽩菜⼀共194.5kg.10.解:各天的温差如下:星期⼀:10-2=8(℃),星期⼆:12-1=11(℃),星期三:11-0=11(℃),星期四:9-(-1)=10(℃),星期五:7-(-4)=11(℃),星期六:5-(-5)=10(℃),星期⽇:7-(-5)=12(℃).答:星期⽇的温差,星期⼀的温差最⼩.11.(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)712.解:(-2)+(-2)=-4,(-2)+(-2)+(-2)=-6,(-2)+(-2)+(-2)+(-2)=-8,(-2)+(-2)+(-2)+(-2)+(-2)=-10,(-2)×2=4,(-2)×3=-6,(-2)×4=8,(-2)×5=-10.法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积.13.解:第⼀天:0.3-(-0.2)=0.5(元);第⼆天:0.2-(-0.1)=0.3(元);第三天:0-(-0.13)=0.13(元).平均值:(0.5+0.3+0.13)÷3=0.31(元).习题1.4答案1.解:(1)(-8)×(-7)=56;(2)12X(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5X0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.2.解:(1)1/4×(-8/9)=-2/9;(2)(-5/6)×(-3/10)=1/4;(3)-34/15×25=-170/3;(4)(-0.3)×(-10/7)=3/7.3.解:(1)-1/15;(2)-9/5;(3)-4;(4)100/17;(5)4/17;(6)-5/27.4.解:(1)-91÷13=-7;(2)-56÷(-14)=4;(3)16÷(-3)=-16/3;(4)(-48)÷(-16)=3;(5)4/5÷(-1)=-4/5;(6)-0.25÷3/8=-2/3.5.解:-5,-1/5,-4,6,5,1/5,-6,4.6.解:(1)(-21)/7=-3;(2)3/(-36)=-1/12;(3)(-54)/(-8)=27/4;(4)(-6)/(-0.3)=20.7.解:(1)-2×3×(-4)=2×3×4=24;(2)-6×(-5)×(-7)=-6×5×7=-210;(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5;(4)0.1÷(-0.001)÷(-1)=1/10×1000×1=100;(5)(-3/4)×(-11/2)÷(-21/4)=-3/4×3/2×4/9=-1/2;(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28;(7)(7)×(-56)×0÷(-13)=0;(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11.8.解:(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13;(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7;(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3;(4)-⼁-2/3⼁-⼁-1/2×2/3⼁-⼁1/3-1/4⼁-⼁-3⼁=-2/3-1/3-1/12-3=-49/12.9.解:(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.80;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.点拨:本题考查⽤计算器进⾏混合运算,要注意计算器的按键顺序与⽅法和计算结果的精确度.10.(1)7500(2)-140(3)200(4)-12011.解:450+20×60-12×120=210(m).答:这时直升机所在⾼度是210m.12.(1)<,<(2)<,<(3)>,>(4)=,=点拨:有理数相乘(除)的法则中明确指出先要确定积的符号,即两数相乘(或相除)同号得正,异号得负.13.解:2,1,-2,-1.⼀个⾮0有理数不⼀定⼩于它的2倍,因为⼀个负数⽐它的2倍⼤.14.解:(-2+3)a.15.解:-2,-2,2.(1)(2)均成⽴,从它们可以总结出:分⼦、分母以及分数这三者的符号,改变其中两个,分教的值不变.习题1.5答案1.解:(1)-27;(2)16;(3)2.89;(4)-64/27;(5)8;(6)36.点拨:本题要根据乘⽅的意义来计算,还应注意乘⽅的符号法则,乘⽅的计算可转化为乘法的计算,计算时应先确定幂的符号.2.解:(1)429981696;(2)112550881;(3)360.944128;(4)-95443,993.3.解:(1)(-1)^100×5+(-2)⁴÷4=1×5+16÷4=5+4=9;(2)(-3)³-3×(-1/3)⁴=-27-3×1/81=-27-1/27=-271/27;(3)7/6×(1/6-1/3)×3/14÷3/5=7/6×(-1/6)×3/14×5/3=-5/72;(4)(-10)³+[(-4)²-(1-3²)×2]=-1000+(16+8×2)=-1000+32=-968;(5)-2³÷4/9×(-2/3)²=-8×9/4×4/9=-8;(6)4+(-2)³×5-(-0.28)÷4=4-8×5-(-0.07)=4-40+0.07=-35.93.4.解:(1)235000000=2.35×10⁸;(2)188520000=1.8852×10⁸;(3)701000000000=7.01×10^11;(4)-38000000=-3.8×10⁷.点拨:科学记数法是⼀种特定的记数⽅法,应明⽩其中包含的基本原理及其结构特征,即要掌握形如a×10^n的结构特征:1≤⼁a⼁<10,n为正整数.5.解:3×10⁷=30000000;1.3×10³=1300;8.05X10^6=8050000;2.004×10⁵=200400;-1.96×10⁴=-19600.6.解:(1)0.00356≈0.0036;(2)566.1235≈566;(3)3.8963≈3.90;(4)0.0571≈0.057.7.解:平⽅等于9的数是±3,⽴⽅等于27的数是3.8.解:体积为a.a.b=a²b,表⾯积为2.a.a+4.a.b=2a²+4ab.当a=2cm,b=5cm时,体积为a²b=2²×5=20(cm³);表⾯积为2a²+4ab=2×2²+4×2×5=48(cm²).9.解:340m/s=1224km/h=1.224×10³km/h.因为1.1×10⁵krn/h>l.224×10³kn/h,所以地球绕太阳公转的速度⽐声⾳在空⽓中的传播速度⼤.点拨:⽐较⽤科学记数法表⽰的两个正数,先看10的指数的⼤⼩,10的指数⼤的那个数就⼤;若10的指数相同,则⽐较前⾯的数a,a⼤的则⼤.10.解:8.64×10⁴×365=31536000=3.1536×10⁷(s).11.解:(1)0.1²=0.01;1²=1;10²=100;100²=10000.观察发现:底数的⼩数点向左(右)移动⼀位时,平⽅数⼩数点对应向左(右)移动两位.(2)0.1³-0.001;1³=1;10³=1000;100³=1000000.观察发现:底数的⼩数点向左(右)移动⼀位时,⽴⽅数⼩数点对应向左(右)移动三位.(3)0.1⁴=0.0001;1⁴—1;10⁴=10000;100⁴=100000000.观察发现:底数的⼩数点向左(右)移动⼀位时,四次⽅数⼩数点对应向左(右)移动四位.12.解:(-2)²=4;2²=4;(-2)³=-8,2³=8.当a<0时,a²>0,-a²<0.故a²≠-a²;a³<0,-a³>0,故a³≠-a³,所以当a<0时,(1)(2)成⽴,(3)(4)不成⽴,。
人教版 七年级数学上册 (1.3.1 有理数的加法) 达标训练习题(附答案解析)
达标训练基础·巩固·达标1.判断:(1)(-4)+(-5)=-9;(2)5+(-6)=-11;(3)(-7)+10=3;(4)(-2)+(+2)=4;(5)两个数的和一定大于每一个加数;(6)互为相反数的两个数的和等于0;(7)若两个数的和为正数,则这两个数都是正数.思路解析:对于判断题要全面分析,特别是从反面去思考,能不能举出反例.答案:(1)√ (2)× (3)√ (4)× (5)× (6)√ (7)×2.某小店一周的收支情况如下(收入为正,支出为负,单位:元):+141.8,-27.64,-5,+84,-16.8,-31.09,+125.7.收支相抵后,合计收入(或支出)多少元?思路解析:根据题意都可转化为有理数的加法来解决.解:(+141.28)+(-27.64)+(-5)+(+84)+(-16.8)+(-31.09)+(+125.7)=270.45(元)3.某潜水员先潜入水下61米,然后又上升32米,这时潜水员在什么位置?思路解析:以水平面为标准,水下深度用负数表示,水上深度用正数表示.用正、负数表示题目中的数,若列式得到的结果为负,表示是水下;反之,则是水上的.解:设水下深度用负数表示.-61+32=-29(米)答:这时潜水员在水下29米处.4.有4箱水果,以每箱15千克为标准,超过的部分记为正,不足的记为负.这4箱水果的记录分别为+3,-4,+2,+3.求这4箱水果的总重量.思路解析:法一:先将所有的记录求和,得到这4箱水果的总质量与标准质量的差额.再求总标准质量与差额的和,即得实际总质量.法二:先求出每箱水果的实际质量,再求和即得实际总质量.解法一:+3+(-4)+(+2)+(+3)=4(千克),15×4+4=64(千克).解法二:这4箱水果的实际质量分别为18,11,17,18.总质量为18+11+17+18=64(千克)答:这4箱水果总重64千克.5.计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131). 思路解析:运用有理数加法的运算律简化运算.解:(1)(+17)+(-32)+(-16)+(+24)+(-1)=(+17)+(+24)+(-32)+(-16)+(-1)(使用加法交换律)=(+17)+(+24)+(-32)+(-16)+(-1)(使用加法结合律)=(+41)+(-49)(正数与正数、负数与负数各自相加)=-8.(2)(+653)+(-532)+(+452)+(-131)=(+653)+(+452)+(-532)+(-131)(加法交换律) =[(+653)+(+452)]+[(-532)+(-131)](加法结合律,把分母相同的数结合在一起) =(+11)+(-7)=4.(异号两数相加,关键是要判断出两数的绝对值哪一个大).综合·应用·创新6.有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克): 97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?思路解析:把每袋小麦超过标准质量的克数用正数表示,不足的用负数表示,求这10袋小麦与标准质量差值的和,即可得出这10袋小麦总计是超过或不足标准质量多少千克,最后再与10袋小麦的标准质量相加,就是这10袋小麦的总质量.解:这10袋小麦与标准质量的差值如下(单位:千克):思路解析:把每袋小麦超过标准质量的克数用正数表示,不足的用负数表示,求这10袋小麦与标准质量差值的和,即可得出这10袋小麦总计是超过或不足标准质量多少千克,最后再与10袋小麦的标准质量相加,就是这10袋小麦的总质量.解:这10袋小麦与标准质量的差值如下(单位:千克):7,5,-4,6,4,3,-3,-2,8,1;(差值不是简单相减,而是用实际质量减去标准质量,结果可正可负)这10袋小麦与标准质量差值的和为:7+5+(-4)+6+4+3+(-3)+(-2)+8+1=(-4)+4+5+(-3)+(-2)+7+6+3+8+1=25(千克),90×10+25=925(千克)(这里用到了加法的交换律,是为了简化运算)答:这10袋小麦的总质量是925千克,总计超过标准质量25千克.7.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87. 思路解析:注意到数字都在90左、右波动,可将之两两组合,或取整数90的20倍,再将零数求和. 解法一:原式=2(91+89)+(87+93)+(94+86)+3(88+92)+(90+90)+(87+91+86+95)=90×16+4×90-1=1 799.解法二:原式=90×20+(-2)+5+2+(-1)+(-4)+1+0+(-2)+2+0+(-4)+2+(-3)+(-1)+1+3+(-2)+4+1+(-3)=1 800-1=1 799.。
人教版数学七年级上册 第1章 1.2---1.3测试题含答案
1.2有理数一.选择题1.下列化简错误的是()A.﹣(﹣2)=2B.﹣(+3)=﹣3C.+(﹣4)=﹣4D.﹣|5|=52.如图,数轴上A,B两点所表示的数互为相反数,则下列说法正确的是()A.原点O在点B的右侧B.原点O在点A的左侧C.原点O与线段AB的中点重合D.原点O的位置不确定3.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.ab>0C.|a|<|b|D.﹣a>b4.﹣的相反数是()A.2020B.﹣2020C.D.﹣5.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b6.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣19687.﹣2019的绝对值和相反数分别为()A.2019,﹣2019B.﹣2019,2019C.2019,2019D.﹣2019,﹣20198.若|x|=9,则x的值是()A.9B.﹣9C.±9D.09.下列分数中,不能化成有限小数的是()A.B.C.D.10.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5二.填空题11.若|x﹣2|=3,则x=.12.表示a、b两数的点在数轴上的位置如图,则|a﹣1|+|1+b|=.13.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.14.a是最大的负整数,b是绝对值最小的数,则a+b=.15.已知,化简:|a+2b|﹣|c﹣a|+|﹣b﹣a|=.三.解答题16.已知|a﹣1|=2,求﹣3+|1+a|值.17.已知有理数a,b,c在数轴上的对应点分别为A,B,C.点A,B,C在数轴上的位置如图所示.若O是BC中点,A是OC中点,AC=2.(1)求a,b,c的值;(2)求线段AB的长度.18.我们在《有理数》这一章中学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|,数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(1)①数轴上表示数3的点与表示数1的点的距离可记作.②数轴上表示数a的点与表示数2的点的距离可记作.③数轴上表示数a的点与表示数﹣3的点的距离可记作.(2)数轴上与表示数﹣2的点的距离为5的点有个,它表示的数为.(3)拓展:①当数a取值为时,数轴上表示数a的点与表示数﹣1的点的距离最小.②当整数a取值为时,式子|a+1|+|a﹣2|有最小值为.③当a取值范围为时,式子|a+1|+|a﹣2|有最小值.19.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案与试题解析一.选择题1.【解答】解:∵﹣(﹣2)=2,∴选项A不符合题意;∵﹣(+3)=﹣3,∴选项B不符合题意;∵+(﹣4)=﹣4,∴选项C不符合题意;∵﹣|5|=﹣5,∴选项D符合题意.故选:D.2.【解答】解:∵互为相反数的两数到原点的距离相等,所以原点到A、B的距离相等,若线段AB的中点为O,则OA=OB,所以原点O在点B的左侧,原点O在点A的右侧,原点O与线段AB的中点重合,原点O的位置不确定.故选:C.3.【解答】解:由图可知a<﹣1<0<b<1,则ab<0,|a|>|b|,﹣a>b.故选:D.4.【解答】解:﹣的相反数是:.故选:C.5.【解答】解:由数轴可得:a<0<b,|a|>|b|∴|a+b|=﹣a﹣b故选:D.6.【解答】解:设P0所表示的数是a,则a﹣1+2﹣3+4﹣…﹣99+100=2019,即:a+(﹣1+2)+(﹣3+4)+…+(﹣99+100)=2019.a+50=2019,解得:a=1969.点P0表示的数是1969.故选:A.7.【解答】解:|﹣2019|=2019,﹣2019的相反数是2019.故选:C.8.【解答】解:∵|x|=9,∴x的值是±9.故选:C.9.【解答】解:A、=0.875,能化成有限小数,不符合题意;B、=0.25,能化成有限小数,不符合题意;C、=1.08,能化成有限小数,不符合题意;D、=0.41,不能化成有限小数,符合题意;故选:D.10.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.二.填空题(共5小题)11.【解答】解:当x﹣2>0时,x﹣2=3,解得,x=5;当x﹣2<0时,x﹣2=﹣3,解得,x=﹣1.故x=5或﹣1.12.【解答】解:由数轴可知:a<1,b<﹣1,所以a﹣1<0,1+b<0,故|a﹣1|+|1+b|=1﹣a﹣1﹣b=﹣a﹣b.13.【解答】解:整数包括正整数,0,负整数,所以整数有24,+17,0,﹣12四个;负分数包括负的小数和负的分数,所以负分数有﹣3.14,﹣7,﹣0.01三个;非负数包括0和正数,非负数包括24,17,,0四个.故应填4,3,4.14.【解答】解:∵a是最大的负整数,∴a=﹣1,b是绝对值最小的数,∴b=0,∴a+b=﹣1.故答案为:﹣1.15.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0;∵=﹣1,∴|b|=﹣b,∴b≤0;∵|c|=c,∴c≥0,∴|a+2b|﹣|c﹣a|+|﹣b﹣a|=﹣(a+2b)﹣(c﹣a)+(﹣b﹣a)=﹣a﹣2b﹣c+a﹣b﹣a=﹣a﹣3b﹣c.故答案为:﹣a﹣3b﹣c.三.解答题(共4小题)16.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3.17.【解答】解:(1)∵AC=2,A是OC中点∴OA=AC=2OC=2AC=4∵O是BC中点∴OB=OC=4∴a=2,b=﹣4,c=4(2)AB=OA+OB=2+4=6∴线段AB的长度为6.18.【解答】解(1)由题意可得,①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;故答案为:|3﹣1|;②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|;故答案为:|a﹣2|;③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|;故答案为:|a+3|;(2)根据绝对值的含义可知数轴上与表示数﹣2的点的距离为5的点有2个,表示的数为﹣7 或3;故答案为:2;﹣7或3;(3)①由两点间的距离最小为0,可知数轴上表示数a的点与表示数﹣1的点的距离最小.则a=﹣1;故答案为:﹣1;②∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和,则符合题意的整数a有﹣1,0,1,2;|a+1|+|a﹣2|的最小值为3;故答案为:﹣1,0,1,2;3;③∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和∴﹣1≤a≤2时,|a+1|+|a﹣2|有最小值;故答案为:﹣1≤a≤2.19.【解答】解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a ﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);+n(d﹣b).1.3有理数的加减法一.选择题1.某城市在冬季某一天的最低气温为﹣13℃,最高气温为3℃.则这一天最高气温与最低气温的差是()A.3℃B.﹣13℃C.16℃D.﹣16℃2.已知a<b,|a|=4,|b|=6,则a﹣b的值是()A.﹣2B.﹣10C.2或10D.﹣2或﹣10 3.M、N两地的高度差记为M﹣N,例如:M地比N地低2米,记为M﹣N=﹣2(米).现要测量A、B两地的高度差,借助了已经设立的D、E、F、G、H共五个观测地,测量出两地的高度差,测量结果如下表:(单位:米)两地的高度差D﹣A E﹣D F﹣E G﹣F H﹣G B﹣H测量结果 3.3﹣4.2﹣0.5 2.7 3.9﹣5.6则A﹣B的值为()A.0.4B.﹣0.4C.6.8D.﹣6.84.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.1个B.2个C.3个D.4个5.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7B.﹣3或﹣7C.﹣3 或7D.3或﹣76.把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是()A.B.C.D.7.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24B.14C.24或14D.以上都不对8.下列运算正确的是()A.=+(6+2)=+8B.=+(6+5)=+11C.=﹣(3﹣2)=﹣1D.=﹣(10﹣8)=﹣29.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大10.已知|x|=5,|y|=2,且x>y,则x﹣y的值等于()A.7或﹣7B.7或3C.3或﹣3D.﹣7或﹣3二.填空题11.a、b、c、d为互不相等的有理数,且c=2,|a﹣c|=|b﹣c|=|d﹣b|=1,则a+b+c+d=.12.从冰箱冷冻室里取出温度为﹣10℃的冰块,放在杯中,过一段时间后,该冰块的温度升高到﹣4℃,其温度升高了℃.13.已知|x|=4,|y|=5,且x,y均为负数,则x+y=.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例即4+3=7;则上图中m+n+p=.15.数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为.三.解答题16.若|m|=7,n2=36,且n>m,求m+n的值.17.若|x|=5,|y|=2,且|x﹣y|=y﹣x;求2x+3y的值.18.“新春超市”在去年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元,问“新春超市”去年总的盈亏情况如何?19.列式计算.(1)求2的相反数与﹣1的绝对值的和.(2)已知﹣11与一个数的差为11,求这个数.参考答案与试题解析一.选择题1.【解答】解:3﹣(﹣13),=16(℃).故选:C.2.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a<b,∴a=4时,b=6,a﹣b=4﹣6=﹣2,a=﹣4时,b=6,a﹣b=﹣4﹣6=﹣10,综上所述,a﹣b的值是﹣2,﹣10.故选:D.3.【解答】解:B﹣A=(D﹣A)+(E﹣D)+(F﹣E)+(G﹣F)+(B﹣G)=3.3﹣4.2﹣0.5+2.7+3.9﹣5.6=0.4(米).A比B地高0.4米,故选:A.4.【解答】解:①减去一个数,等于加上这个数的相反数,说法正确;②两个互为相反数的数和为0,说法正确;③两数相减,差一定小于被减数,说法错误,如1﹣(﹣2)=1+2=3,3>1;④如果两个数的绝对值相等,则这两个数相等或互为相反数,所以这两个数的和或差等于零,故④说法正确.所以正确的说法有①②④.故选:C.5.【解答】解:∵|a|=5,|b|=2,且b<a∴a=5,b=±2,∴a+b=7或3,故选:A.6.【解答】解:验证四个选项:A、行:2+(﹣2)+3=3,列:1﹣2+4=3,行=列,不符合题意;B、行:﹣2+2+4=4,列:1+3+2=6,行≠列,符合题意;C、行:﹣2+2+4=4,列:3+2﹣1=4,行=列,不符合题意;D、行:1﹣1+2=2,列:3﹣1+0=2,行=列,不符合题意.故选:B.7.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.8.【解答】解:A、=﹣(6+2)=﹣8,故不符合题意;B、=﹣(6+5)=﹣11,故不符合题意;C、=﹣(3﹣2)=﹣1;故符合题意;D、=10+8=18,故不符合题意,故选:C.9.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.10.【解答】解:∵|x|=5,|y|=2,且x>y,∴x=5,y=2或x=5,y=﹣2,则x﹣y=3或7,故选:B.二.填空题(共5小题)11.【解答】解:∵a、b、c、d为互不相等的四个有理数,且c=2,|a﹣c|=|b﹣c|=1,∴a=3,b=1或a=1,b=3,当b=1时,∵|d﹣b|=1,∴d=2或0,又∵c=2,a、b、c、d为互不相等的有理数,∴d=0;当b=3时,∵|d﹣b|=1,∴d=4或2,又∵c=2,a、b、c、d为互不相等的有理数,∴d=4,当a=3,b=1,d=0时,a+b+c+d=3+1+2+0=6;当a=1,b=3,d=4时,a+b+c+d=1+3+2+4=10.∴a+b+c+d=6或10.故答案为:6或10.12.【解答】解:由题意可得:﹣4﹣(﹣10)=6(℃).故答案为:6.13.【解答】解:∵|x|=4,|y|=5,且x,y均为负数,∴x=﹣4,y=﹣5,∴x+y=﹣9.故答案为:﹣9.14.【解答】解:由题意可得:n=8﹣1=7,8+m=﹣1,解得:m=﹣9,故p=n﹣1=6,故m+n+p=7﹣9+6=4.故答案为:4.15.【解答】解:有理数的减法运算法则:减去一个数,等于加上这个数的相反数.∴有理数的减法运算法则可以用数学符号语言表述为:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b)三.解答题(共4小题)16.【解答】解:∵|m|=7,∴m=±7,∵n2=36,∴n=±6,∵n>m,∴①当m=﹣7时,n=﹣6,m+n=﹣7﹣6=﹣13;②当m=﹣7时,n=6,m+n=﹣7+6=﹣1.∴m+n=﹣13或﹣1.17.【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵|x﹣y|=y﹣x,∴x﹣y≤0,∴x=﹣5,y=±2,2x+3y=﹣10+6=﹣4,或2x+3y=﹣10﹣6=﹣16,综上所述,2x+3y的值为﹣4或﹣16.18.【解答】解:20×3+(﹣15)×3+17×4+(﹣23)×2=60﹣45+68﹣46=37(万元。
人教版七年级数学上册1.3有理数的加减法 练习题
人教版七年级数学上册:1.3有理数的加减法测试题(一)一、选择题1.计算(-3)+5的结果等于()A.2B.-2C.8D.-82.比-2小1的数是()A.-1B.-3C.1D.33.计算(-20)+17的结果是()A.-3B.3C.-2017D.20174.比-1小2015的数是()A.-2014B.2016C.-2016D.20145.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.A.1个B.2个C.3个D.4个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个7.算式-3-5不能读作()A.-3与-5的差B.-3与5的差C.3的相反数与5的差D.-3减去58.一个数减去2等于-3,则这个数是()A.-5B.-1C.1D.59.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是()A.19,7,14B.11,20,19C.14,7,19D.7,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是()A.3,8,9,10B.10,7,3,12C.9,7,4,11D.9,6,5,1111.与-3的差为0的数是()A.3B.-3C.-D.二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于-3.5且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)5.6+4.4+(-8.1)(2)(-7)+(-4)+(+9)+(-5)(3)+(-)+(4)5(5)(-9)+15(6)(-18)+(+53)+(-53.6)+(+18)+(-100)人教版七年级数学上册:1.3有理数的加减法测试题答案和解析【答案】1.A2.B3.A4.C5.B6.A7.A 8.B 9.C 10.C 11.B12.713.855514.415.-316.-117.518.解:(1)5.6+4.4+(-8.1)=10-8.1=1.9;(2)(-7)+(-4)+(+9)+(-5)=-7-4+9-5=-16+9=-7;(3)+(-)+=(-)+(--)+=0-1+=-;(4)5=(5+4)+(-5-)=10-6=4;(5)(-9)+15=(-9-15)+[(15-3)-22.5]=-25+[12.5-22.5]=-25-10=-35;(6)(-18)+(+53)+(-53.6)+(+18)+(-100)=(-18+18)+(+53-53.6)+(-100)=0+0-100=-100.【解析】1. 解:(-3)+5=5-3=2.故选:A.依据有理数的加法法则计算即可.本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. 解:-2-1=-3,故选:B.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是列出算式.3. 解:原式=-(20-17)=-3,故选A原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.4. 解:根据题意得:-1-2015=-2016,故选C根据题意列出算式,利用有理数的减法法则计算即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5. 解:①互为相反数的两个数相加和为0,所以两个有理数的和可能等于零,说法正确;②一个数同0相加,仍得这个数,所以两个有理数的和可能等于其中一个加数,说法正确;③两个有理数的和为正数时,可能这两个数都是正数;可能一正一负;还可能一个是正数,一个是0;所以原说法错误;④两个有理数的和为负数时,这两个数不能都是正数,所以原说法错误;故选B.有理数的加法法则:同号两数相加,取相同的符号,并把它们的绝对值相加;绝对值不等的异号两数相加,取绝对值较大的数的符号作为结果的符号,再用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0;一个数同0相加,仍得这个数.根据这个法则进行解答即可.本题考查了有理数的加法法则,是基础知识要熟练掌握.6. 解:①2-(-2)=2+2=4,故本小题错误;②(-3)-(+3)=-3-3=-6,故本小题错误;③(-3)-|-3|=-3-3=-6,故本小题错误;④0-(-1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选A.根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.7. 解:-3-5不能读作:-3与-5的差.故选A.根据有理数的减法运算的读法解答.本题考查了有理数的减法,是基础题,熟记并理解有理数的减法与加法的意义是解题的关键.8. 解:由题意,得:-3+2=-1,∴这个数是-1,故选B.根据加法是减法的逆运算,将两数相加即可.本题主要考查有理数的减法,解决此题时,可以运用其逆运算计算.9. 解:如图,设①、②、③三处对应的数依次是x,y,z,则,解得.故选C.设①、②、③三处对应的数依次是x、y和z,根据每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,列方程组求解.本题考查的是有理数的加法,解题关键是能够根据题意列出三元一次方程组,并且能熟练运用消元法解方程组,难度一般.10. 解:设a、b、c、d为这4个数,且a>b>c>d,则有,解得:a=11,b=9,c=7,d=4.故选C.设出4个数,按照题意列出方程组,即可得出结论.本题考查的有理数的加法,解题的关键是按大小顺序设出4个数,联立方程组得出结论.11. 解:根据题意得:0+(-3)=-3,则与-3的差为0的数是-3,故选B.根据差与减数之和确定出被减数即可.此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.12. 解:原式=+(8-1)=7,故答案为:7原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.13. 解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n-1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n-1)n]=+{(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+[(n-1)•n•(n+1)-(n-2)•(n-1)•n]}=+[(n-1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为 8555.根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.14. 解:大于-3.5且小于4的整数是-3、-2、-1、0、1、2、3、4,∴大于-3.5且小于4的整数的和为:-3-2-1+0+1+2+3+4=4.故答案为4.先找出符合条件的整数,然后把它们相加即可.此题考查了有理数的加法,解题时正确写出符合条件的整数是关键.15. 解:原式=-(9-6)=-3,故答案为:-3.根据有理数的加法,可得答案.本题考查了有理数的加法,熟记有理数的加法是解题关键.16. 解:比1小2的数是1-2=1+(-2)=-1.关键是理解题中“小”的意思,根据法则,列式计算.本题主要考查了有理数的减法的应用.17. 解:7+(-2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.18.(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.。
人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。
初中数学人教版七年级上学期 第一章 1.3有理数的加减法
初中数学人教版七年级上学期第一章 1.3有理数的加减法一、单选题(共10题;共20分)1. ( 2分) 计算的结果是()A. 6B. 12C. -12D. -32. ( 2分) 已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为()A. 10℃B. -10℃C. 20℃D. -20℃3. ( 2分) 北京某天早晨气温是,中午上升了,半夜又下降了,则半夜气温()A. B. C. D.4. ( 2分) |1﹣2|+3的相反数是()A. 4B. 2C. ﹣4D. ﹣25. ( 2分) 如图,A、B两点在数轴上表示的数是a、b,下列式子成立的是()A. B. C. D.6. ( 2分) 如图,数轴上点对应的有理数是,若,则有理数在数轴上对应的点可能是()A. B. C. D.7. ( 2分) 若|m|=5,|n|=7,m+n<0,则m﹣n的值是( )A. ﹣12或﹣2B. ﹣2或12C. 12或2D. 2或﹣128. ( 2分) 在1、2、3、…99、100这100个数中,任意加上“+”或“-”,相加后的结果一定是()A. 奇数B. 偶数C. 0D. 不确定9. ( 2分) 计算:1+( 2)+3+( 4)+…+2017+( 2018)的结果是( )A. 0B. 1C. 1009D. 101010. ( 2分) 有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A. ∣a∣-1B. ∣a∣C. 一aD. a+1二、填空题(共6题;共6分)11. ( 1分) 某楼梯的截面如图,其中,若在楼梯上铺设地毯,至少需要________米.12. ( 1分) 如图,数轴上点A、B所表示的两个数的和是________.13. ( 1分) 计算:(﹣7)﹣(+5)+(+13)=________.14. ( 1分) 绝对值大于1而小于3.5的所有整数的和为________.15. ( 1分) 计算1+4+9+16+25+…的前29项的和是________.16. ( 1分) 已知|a|=2,|b|=3,|c|=4,且a>b>c,则a+b+c=________.三、计算题(共3题;共15分)17. ( 5分) 13+(+7)-(-20)-(-40)-(+6)18. ( 5分) 求+5的相反数与-3的绝对值的和;19. ( 5分)四、解答题(共4题;共30分)20. ( 5分) 老师在黑板上抄了一道计算题,小亮没有抄完就下课了,被值日生擦去了一个符号,仅剩下如下部分:“27-18口(-7)-32”,请利用计算说明,要使此题计算结果是-30小亮在口里应填“+”号还是“-”号.21. ( 5分) 一天早晨的气温是-7℃,中午上升了11℃,半夜又下降9℃,半夜的气温是多少摄氏度?22. ( 10分) 一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3 ,−9.5 ,+7.1 ,−14 ,−6.2 ,+13 ,−6.8 ,−8.5(1)问地在地何处,相距多少千米?(2)若汽车行驶每千米耗油升,那么这一天共耗油多少升?23. ( 10分) 小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?答案解析部分一、单选题1.【答案】B【考点】有理数的减法【解析】【解答】解:9-(-3)=9+3=12.故答案为:B.【分析】由题意根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算即可得出答案.2.【答案】B【考点】有理数的减法【解析】【解答】解:℃.故答案为:B.【分析】用冷藏室的温度减去冷冻室的温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.3.【答案】D【考点】有理数的加减混合运算【解析】【解答】依题意,可知半夜气温为℃,故答案为:D.【分析】根据题意,气温上升为正,下降为负,直接列式计算即可.4.【答案】C【考点】绝对值及有理数的绝对值,有理数的加减混合运算【解析】【解答】解:|1﹣2|+3=2﹣1+3=4.∵4的相反数为﹣4,∴|1﹣2|+3的相反数是﹣4.故答案为:C.【分析】根据绝对值和相反数的定义以及有理数的加减法法则计算即可.5.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:A、∵a>0,b<0∴ab<0,故A不符合题意;B、∵|a|<|b|∴a+b<0,故B不符合题意;C、∵a>1,b<0∴a-1>0,b-1<0∴(a-1)(b-1)<0,故C不符合题意;∵a>0,-1<b<0∴a+1>0,b+1>0∴(a+1)(b+1)>0,故D符合题意;故答案为:D.【分析】观察数轴可知a>0,b<0,利用有理数的乘法运算法则,可对A作出判断;由|a|<|b|,利用有理数的加法法则可对B作出判断;再由a>1,b<0,可确定出a-1,b-1的符号,可对C作出判断;然后确定出a+1,b+1的符号,可对D作出判断。
人教版2020年七年级数学上册1.3《有理数的加减法》课后练习 学生版
人教版2020年七年级数学上册1.3《有理数的加减法》课后练习一、选择题1.绝对值小于5的所有整数的和为A. 0B.C. 10D. 202.定义新运算:对任意有理数a、b,都有,例如,,那么的值是A. B. C. D.3.下面结论正确的有两个有理数相加,和一定大于每一个加数一个正数与一个负数相加得正数.两个负数和的绝对值一定等于它们绝对值的和两个正数相加,和为正数.两个负数相加,绝对值相减正数加负数,其和一定等于0.A. 0个B. 1个C. 2个D. 3个4.计算:的结果是A. B. 2 C. 8 D.5.计算的结果等于A. 2B.C. 8D.6.计算的结果等于A. 6B.C. 12D.7.比1小2的数是A. B. C. D. 08.下列结论不正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,且,则9.计算的结果等于A. B. C. 3 D. 710.某地一天的最高气温是,最低气温是,则该地这天的温差是A. B. C. D.二、填空题11.已知,,,那么 ______ .12.已知,,,,化简 ______ .13.已知,,则的值是______.14.已知,,且,则的值等于______ .15.计算: ______ ; ______ .16.计算: ______ .17.观察下面的几个算式:,,,,根据你所发现的规律,请你直接写出下面式子的结果:______.18.大于且不大于4的整数的和是______ .19.已知,,且,则的值为______ .20.甲地的气温是,乙地的气温比甲地高,则乙地的气温是______三、解答题21.计算.(3).(4)计算:.22.一个数a减去与2的和,所得的差是6,求a的值.23.某自行车厂一周计划生产1400辆自行车,平均每天生产自行车200辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入下表是某周的自行车生产情况超计划生产量为正、不足计划生产量为负,单位:辆:星期一二三四五六日增减根据记录可知前三天共生产自行车______ 辆;产量最多的一天比产量最少的一天多生产______ 辆;若该厂实行按生产的自行车数量的多少计工资,即计件工资制如果每生产一辆自行车可得人民币60元,那么该厂工人这一周的工资总额是多少元?。
1.3有理数的加减法知识点分类练习(附答案)2021-2022学年七年级数学人教版上册
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》知识点分类练习(附答案)一.有理数的加法1.计算(﹣3)+(﹣9)结果是()A.﹣6B.﹣12C.6D.122.计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣43.计算(﹣5)+2的结果是()A.﹣7B.3C.﹣3D.74.20+(﹣20)的结果是()A.﹣40B.0C.20D.405.比﹣2大5的数是()A.﹣7B.﹣3C.3D.76.计算:18+(﹣17)+7+(﹣8).二.有理数的减法7.计算1﹣2,结果正确的是()A.3B.1C.﹣1D.﹣38.计算3﹣(﹣2)的结果等于()A.﹣6B.6C.﹣5D.59.计算2﹣|﹣3|的结果是()A.﹣5B.﹣1C.1D.510.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.311.计算﹣(﹣)的结果等于()A.B.﹣C.D.﹣12.比﹣2小3的数是()A.5B.1C.﹣1D.﹣513.下列说法正确的是()A.减去一个数,等于加上这个数的相反数B.被减数的绝对值大于减数的绝对值,其差必为正数C.零减去一个有理数,差一定是负数D.两个数的差必小于零三.有理数的加减混合运算14.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.﹣6﹣3=﹣9C.6﹣3=3D.﹣6+3=﹣3 15.我市2021年的最高气温为33℃,最低气温为零下27℃,则计算2021年温差列式正确的是()A.(+33)﹣(﹣27)B.(+33)+(+27)C.(+33)+(﹣27)D.(+33)﹣(+27)16.珠穆朗玛峰海拔高8848米,塔里木盆地海拔高﹣153米,求珠穆朗玛峰比塔里木盆地高多少米,列式正确的是()A.8848+153B.8848+(﹣153)C.8848﹣153D.8848﹣(+153)17.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 18.若数轴上点A、B表示的数分别为5和﹣5,则AB之间的距离可以表示为()A.5+(﹣5)B.5﹣(﹣5)C.(﹣5)+5D.(﹣5)﹣5 19.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.20.计算:(﹣3)+1﹣5﹣(﹣8).21.计算:﹣2+(﹣3)﹣(﹣5).22.计算:(1)12﹣(﹣18)+(﹣7)﹣6.(2)(﹣0.5)+3+2.75+(﹣5).23.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,求a﹣b﹣c+d的值.24.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?25.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日柚子销售超过或不足计+3﹣5﹣2+11﹣7+13+5划量情况(单位:千克)(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?26.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?参考答案一.有理数的加法1.解:(﹣3)+(﹣9)=﹣12.故选:B.2.解:3+(﹣1)=2.故选:A.3.解:原式=﹣(5﹣2)=﹣3.故选:C.4.解:20+(﹣20)=0.故选:B.5.解:比﹣2大5的数是:﹣2+5=3.故选:C.6.解:18+(﹣17)+7+(﹣8)=1+7+(﹣8)=8+(﹣8)=0.二.有理数的减法7.解:1﹣2=1+(﹣2)=﹣1,故选:C.8.解:3﹣(﹣2)=3+2=5,故选:D.9.解:原式=2﹣3=﹣1,故A、C、D错误,故选:B.10.解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.11.解:﹣(﹣)===.故选:A.12.解:﹣2﹣3=﹣5,故选:D.13.解:A.减去一个数,等于加上这个数的相反数,故符合题意;B.被减数的绝对值大于减数的绝对值,若被减数为负数时,其差为负数,故不符合题意;C.零减去一个负有理数,差为正数,故不符合题意;D.较大的数减去较小的数,差大于零,故不符合题意,故选:A.三.有理数的加减混合运算14.解:由题意可知:﹣6+3=﹣3,故选:D.15.解:把0℃以上记作正数,把0℃以下记作负数,则:最高温度为+33℃,最低温度为﹣27℃,∴温差=(+33)﹣(﹣27),故选:A.16.解:8848﹣(﹣153)=8848+153,故选:A.17.解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.18.解:∵数轴上点A、B表示的数分别为5和﹣5,∴AB之间的距离可以表示为:5﹣(﹣5).故选:B.19.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.20.解:(﹣3)+1﹣5﹣(﹣8)=﹣2﹣5+8=﹣7+8=1.21.解:原式=﹣2﹣3+5=﹣5+5=0.22.解:(1)12﹣(﹣18)+(﹣7)﹣6=30﹣7﹣6=17.(2)(﹣0.5)+3+2.75+(﹣5)=[﹣0.5+(﹣5)]+(3+2.75)=(﹣6)+6=0.23.解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,∴a=1,b=﹣1,c=0,d=±4,则当a=1,b=﹣1,c=0,d=﹣4时,a﹣b﹣c+d=1+1﹣0﹣4=﹣2;当a=1,b=﹣1,c=0,d=4时,a﹣b﹣c+d=1+1﹣0+4=6.故a﹣b﹣c+d的值为﹣2或6.24.解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.25.解:(1)13﹣(﹣7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.(2)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(3)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.26.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。
人教版数学七年级上册 第1章 1.1--1.3测试题含答案
人教版数学七年级上册第1章 1.1--1.3测试题1.1正数和负数一.选择题(共10小题)1.在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数的个数是()A.1B.2C.3D.42.如果向左走3米记作+3米,那么向右走了5米可以记作()米.A.+3B.﹣3C.+5D.﹣53.用﹣a表示的数一定是()A.负数B.正数或负数C.0或负数D.以上全不对4.把向东运动记作“+”,向西运动记作“﹣”,下列说法正确的是()A.﹣3米表示向东运动了3米B.+3米表示向西运动了3米C.向西运动3米表示向东运动﹣3米D.向西运动3米,也可记作向西运动﹣3米5.下列不是具有相反意义的量是()A.前进5米和后退5米B.收入30元和支出10元C.超过5克和不足2克D.向东走10米和向北走10米6.如果把向东走4km记作+4km,那么﹣2km表示的实际意义是()A.向东走2km B.向西走2km C.向南走2km D.向北走2km 7.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京10月11日9时,纽约的时间是()A.10月10日6时B.10月10日20时C.10月11日20时D.10月11日22时8.若收入60元记作+60元,则﹣20元表示()A.收入20元B.收入40元C.支出20元D.支出40元9.低于正常水位0.16米记为﹣0.16,高于正常水位0.02米记作()A.+0.02B.﹣0.02C.+0.18D.﹣0.1410.一种糖果,包装袋上写着:净重180克±6克,这表明这袋糖果的重量x的范围是()A.x≤186克B.x≥174克C.174≤x≤186克D.x=180克二.填空题(共5小题)11.如果盈利350元记作+350元,那么亏损80元记作元.12.若海平面以上1045米,记作+1045米,则海平面以下155米,记作.13.如果增加50%记作+50%,那么减少20%记作%.14.如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作.15.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.三.解答题(共4小题)16.中秋节期间,子涵和妈妈一块去商场购买月饼,妈妈买了一盒某品牌月饼共计8枚.回家后子涵很仔细地看了看标签和有关说明:子涵把8枚月饼的质量(重量)称重后统计列表如表(单位:克):枚数(个)12345678重量(克)565554.856.255.355.354.754.3(1)子涵为了简化运算,选取一个恰当的基准质量,这个基准质量是克.(2)依据这个基准质量,子涵把超出的部分记为正,不足的部分记为负,列出表(不完整)枚数(个)12345678重量(克)+1.2+0.3+0.3请补全表格,并计算这8枚月饼的平均质量.(3)当子涵看到说明书上标记的总质量为440±2克时,子涵断定妈妈买的月饼在总质量上是合格的.你知道为什么吗?17.有10筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数111313(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.5元,则出售这10筐白菜可卖多少元?18.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):星期一二三四五六日+5﹣2﹣4+13﹣9+16﹣8增减产量/个(1)根据记录的数据可知,小王星期五生产口罩个.(2)根据表格记录的数据,求出小王本周实际生产口罩数量.(3)若该厂实行每周计件工资制,每生产一个口罩可得0.6元,若超额完成周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量.则少生产一个扣0.2元,求小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量.则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,请直接写出小王这一周的工资总额是多少元.19.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置:(填:是或否);(2)守门员离开球门的位置最远是米;(3)守门员一共走的路程为米;(4)若守门员练习用时45秒,则守门员的速度为米/秒.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数有﹣1,﹣2,﹣3,﹣1,一共4个.故选:D.2.【解答】解:∵“正”和“负”相对,向左走3米记作+3米,∴向右走5米记作﹣5米.故选:D.3.【解答】解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.4.【解答】解:A、﹣3米表示向西走了3米,故A错误;B、+3米表示向东运动了3米,故B错误;C、向西运动3米表示向东运动﹣3米,故C正确;D、向西运动5米,也可记作向东运动﹣3米,故D错误.故选:C.5.【解答】解:A、前进5米和后退5米是具有相反意义的量,故本选项不符合题意;B、收入30元和支出10元是具有相反意义的量,故本选项不符合题意;C、超过5克和不足2克是具有相反意义的量,故本选项不符合题意;D、向东走10米和向北走10米不是具有相反意义的量,故本选项符合题意.故选:D.6.【解答】解:向东走4km记作+4km,那么﹣2km表示向西走2km,故选:B.7.【解答】解:纽约时间是:10月11日9时﹣13小时=10月10日20时.故选:B.8.【解答】解:根据题意,收入60元记作+60元,则﹣20元表示支出20元.故选:C.9.【解答】解:低于正常水位0.16米记作﹣0.16,高于正常水位0.02米记作+0.02;故选:A.10.【解答】解:∵糖果净重180克±6克,∴糖果最重为180+6=186(克),最轻为180﹣6=174(克),∴糖果的重量x的范围是174≤x≤186克,故选:C.二.填空题(共5小题)11.【解答】解:∵盈利350元记作+350元,∴亏损80元记作﹣80元.故答案为:﹣80.12.【解答】解:若海平面以上1045米,记作+1045米,则海平面以下155米,记作﹣155米.故答案为:﹣155米.13.【解答】解:根据正数和负数的定义可知:减少20%记作﹣20%,故答案为:﹣20.14.【解答】解:“正”和“负”相对,所以如果顺时针方向旋转21°,记作+21°,那么逆时针旋转15°,应记作﹣15°.故答案为:﹣15°.15.【解答】解:一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作﹣4m,故答案为﹣4.三.解答题(共4小题)16.【解答】解:(1)根据(2)中第4个重量记作+1.2,第5个重量记作+0.3,所以这个基准质量为,56.2﹣1.2=55(克).故答案为:55;(2)根根(1)中基准质量为55克,所以第1个重量记作56﹣55=1,第2个重量记作55﹣55=0,第3个重量记作54.8﹣55=﹣0.2,第7个重量记作54.7﹣55=﹣0.3,第8个重量记作54.3﹣55=﹣0.7,这八枚月饼的平均质量为:[1+0+(﹣0.2)+1.2+0.3+0.3+(﹣0.3)+(﹣0.7)]÷8=0.2,55+0.2=55.2(克),故答案为:1,0,﹣0.2,﹣0.3,﹣0.7;(3)这八枚月饼的总质量为:55.2×8=441.6(克),因为说明书上标记的总质量为440±2克,即总质量在438克到442克之间为合格,所以可以判定总质量式合格的.17.【解答】解:(1)从表格可知,最重的超出2.5kg,最轻的不足3kg,∴2.5﹣(﹣3)=5.5kg;答:10筐白菜中,最重的一筐比最轻的一筐重5.5千克;(2)﹣3+3×(﹣2)+0+1×2+2.5×2=﹣2kg,∴总重量不足2kg;答:与标准重量比较,10筐白菜总计不足2千克;(2)(25×10﹣2)×2.5=620(元),∴出售这10筐白菜可卖620元.答:出售这10筐白菜可卖620元.18.【解答】解:(1)小王星期五生产口罩数量为:300﹣9=291(个),故答案为:291;(2)+5﹣2﹣4+13﹣9+16﹣8=11(个),则本周实际生产的数量为:2100+11=2111(个)答:小王本周实际生产口罩数量为2111个;(3)一周超额完成的数量为:+5﹣2﹣4+13﹣9+16﹣8=11(个),所以,2100×0.6+11×(0.6+0.15)=1260+11×0.75=1260+8.25=1268.25(元),答:小王这一周的工资总额是1268.25元;(4)第一天:300×0.6+5×(0.6+0.15)=183.75(元);第二天:(300﹣2)×0.6﹣2×0.2=178.4(元);第三天:(300﹣4)×0.6﹣4×0.2=176.8(元);第四天:300×0.6+13×(0.6+0.15)=189.75(元);第五天:(300﹣9)×0.6﹣9×0.2=172.8(元);第六天:300×0.6+16×(0.6+0.15)=192(元);第七天:(300﹣8)×0.6﹣8×0.2=173.6(元);共183.75+178.4+176.8+189.75+172.8+192+173.6=1267.1(元).答:小王这一周的工资总额是1267.1元.19.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10=0(米),故回到了原来的位置,故答案为:是;(2)离开球门的位置分别是5米,2米,12米,4米,2米,10米,0米,∴离开球门的位置最远是12米,故答案为:12;(3)总路程=|5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=54(米)1.2有理数一.选择题(共10小题)1.下列各数:﹣3,,0,π,0.25,,其中有理数的个数为()A.3B.4C.5D.62.在,﹣2,+3.5,0,﹣0.7,5,﹣中,分数有()A.1个B.2个C.3个D.4个3.是真分数,是假分数,a是()A.1B.6C.7D.54.在﹣6,0,﹣3,﹣4这四个数中,最小的数是()A.﹣6B.0C.﹣3D.﹣45.某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2015,则电子昆虫的初始位置K0所表示的数是()A.2065B.﹣1965C.1965D.﹣20656.数轴上,到2的距离等于4个单位长度的点所表示的数是()A.﹣2B.6C.﹣6或6D.﹣2或67.在0和0,和﹣,和3这三对数中,互为相反数的有()A.3对B.2对C.1对D.0对8.下列四个数轴的画法中,规范的是()A.B.C.D.9.数轴上点A表示的数为2019,点B表示的数为2020,那么点A和点B之间的距离为()A.1B.2019C.2020D.403910.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②﹣a+b;③ab;④;⑤;⑥a3×b3;⑦b3﹣a3.A.4个B.5个C.6个D.7个二.填空题(共5小题)11.在框里填上“>”、“<”或“=”.;;0.7.12.比较、、﹣|﹣1|的大小关系,再按从大到小的顺序用“>”连起来为.13.比较大小:(填“<”、“=”或“>”).14.真分数一定小于假分数.(判断对错)15.﹣2或﹣12的相反数是.三.解答题(共4小题)16.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.17.把下列各数在数轴上表示出来,并用“<”号连接起来.﹣3的相反数,﹣0.5,+(﹣2),﹣(﹣1.5),﹣|﹣4|.18.把下列各数分别填在表示它所在的集合里:﹣5,﹣,2020,﹣(﹣4),,﹣|﹣13|,3.14159,﹣0.36,0.(1)负数集合{…};(2)整数集合{…};(3)分数集合{…}.19.把下列各数填在相应的集合中:15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π,.正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在﹣3,,0,π,0.25,中,其中有理数有﹣3,,0,0.25,,有理数的个数为5.故选:C.2.【解答】解:在,﹣2,+3.5,0,﹣0.7,5,﹣中,分数有,+3.5,﹣0.7,﹣,一共4个.故选:D.3.【解答】解:是真分数,是假分数,则6≤a<7,即a=6.故选:B.4.【解答】解:∵﹣6<﹣4<﹣3<0,∴最小的数是﹣6.故选:A.5.【解答】解:设K0在数轴上所表示的数为a,由题意得,K1=a﹣1,K2=a+1,K3=a﹣2,K4=a+2…k100=a+50,因此a+50=2015,解得a=1965,故选:C.6.【解答】解:2+4=6,2﹣4=﹣2,故选:D.7.【解答】解:互为相反数的是:0和0,和﹣,共有2对.故选:B.8.【解答】解:数轴是规定了原点、正方向、单位长度的直线,选项A的数轴单位长度不一致,因此选项A不正确;选项B的数轴无原点,因此选项B不正确;选项C符合数轴的意义,正确;选项D的数轴没有正方向,因此选项D不正确;故选:C.9.【解答】解:2020﹣2019=1,∴点A和点B之间的距离是1.故选:A.10.【解答】解:由点M、N在数轴上的位置可得,a<0,b>0,且|a|>|b|,因此,a+b<0,﹣a+b>0,ab<0,<0,>0,a3×b3<0,b3﹣a3>0,故结果为负数的有①③④⑥,故选:A.二.填空题(共5小题)11.【解答】解:∵,,,∴;∵,,∴;∵,0.7=,∴.故答案为:>;>;<.12.【解答】解:∵,,﹣|﹣1|=﹣1,∴,故答案为:.13.【解答】解:∵,,,∴.故答案为:>.14.【解答】解:根据真分数与假分数的意义可知,真分数<1,假分数≥1,所以两个分数相比较,真分数一定小于假分数.故答案为:正确.15.【解答】解:﹣2的相反数是2,﹣12的相反数是12,故答案为:2或12.三.解答题(共4小题)16.【解答】解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).17.【解答】解:在数轴上表示出来为:用“<”号把它们连接起来为:.18.【解答】解:﹣(﹣4)=4;﹣|﹣13|=﹣13;所以,(1)负数集合:{﹣5,﹣,﹣|﹣13|,﹣0.36…};(2)整数集合:{﹣5,﹣(﹣4),2020,﹣|﹣13|,0…};(3)分数集合:{﹣,,3.14159,﹣0.36…};故答案为:﹣5,﹣,﹣|﹣13|,﹣0.36;﹣5,﹣(﹣4),2020,﹣|﹣13|,0;﹣,,3.14159,﹣0.36.19.【解答】解:正数集合{15,0.81,,171,3.14,π,…};负分数集合{﹣,﹣3.1…};非负整数集合{15,171,0…};3.14,…}.1.3有理数的加减一.选择题1.有理数a,b,c的位置如图所示,则下列各式:①ab<0②b﹣a+c>0③=1④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确的有()个.A.1B.2C.3D.42.下列说法中,不正确的是()①符号不同的两个数互为相反数②所有有理数都能用数轴上的点表示③绝对值等于它本身的数是正数④两数相加和一定大于任何一个加数⑤有理数可分为正数和负数A.①②③⑤B.③④C.①③④⑤D.①④⑤3.已知a<0<b<c,化简|a﹣b|+|b﹣c|的结果是()A.c﹣a B.c﹣b C.a﹣c D.2c4.计算(﹣13)﹣(﹣8)的结果是()A.21B.﹣21C.5D.﹣55.将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是()A.﹣2+5﹣7﹣9B.﹣2﹣5+7+9C.﹣2﹣5﹣7﹣9D.﹣2﹣5+7﹣9 6.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b ﹣a<0.乙:a+b>0.丙:a<|b|.丁:ab>|ab|,其中结论正确的是()A.甲、乙B.甲、丙C.丙、丁D.乙、丁7.气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃8.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.|a|=a B.|a|>|b|C.a﹣b<0D.a+b<09.计算(﹣)+(+)+(﹣﹣﹣)+(+++)+…+(+…+)的值()A.54B.27C.D.0二.填空题10.计算:0﹣(﹣6)=.11.我市某天上午的气温为﹣2℃,中午上升了7℃,下午下降了2℃,到了夜间又下降了8℃,则夜间的气温为.12.已知a是绝对值最小的负整数,b是最小正整数的相反数,c是绝对值最小的有理数,则c﹣b+a=.13.计算:﹣(﹣4)+|﹣5|﹣7=.14.计算1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+…+2019﹣2020=.三.解答题15.计算题(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(3);(4).16.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.17.水位第一天上升了8cm,第二天下降了7cm,第三天又下降了9cm,第四天上升了3cm,问第四天河水水位与刚开始时的水位相比是升高还是降低了?若升高,升高多少厘米?若降低,降低多少厘米?18.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.参考答案一.选择题1.解:由图可知a<0<b<c.①∵a<0<b<c,∴ab<0,故本小题正确;②∵a<0<b<c,∴b﹣a+c>0,故本小题正确;③∵a<0<b<c,∴,,,∴=1,故本小题正确;④∵a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)+(c﹣b)=b﹣a﹣c﹣a+c﹣b=﹣2a,故本小题正确.∴正确的有①②③④共4个.故选:D.2.解:①只有符号不同的两个数互为相反数,错误;②所有有理数都能用数轴上的点表示,正确;③绝对值等于它本身的数是非负数,错误;④两数相加和不一定大于任何一个加数,错误⑤有理数可分为正数、0和负数,错误;故选:C.3.解:∵a<0<b<c,∴a﹣b<0,b﹣c<0,∴|a﹣b|+|b﹣c|=﹣(a﹣b)﹣(b﹣c)=﹣a+b﹣b+c=c﹣a.故选:A.4.解:原式=﹣13+8=﹣5,故选:D.5.解:﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D.6.解:根据图示,可得b<﹣2,0<a<2,∵b<a,∴b﹣a<0;∵b<﹣2,0<a<2,∴a+b<0;∵b<﹣2,0<a<2,∴|b|>2,∴a<|b|;∵b<0,a>0,∴ab<0,∴ab<|ab|,∴正确的是:甲、丙.故选:B.7.解:根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.8.解:由题意得:b<a<0,且|a|<|b|,∴|a|=﹣a,a﹣b>0,a+b<0,故选:D.9.解:原式=﹣+1+(﹣)++…+=﹣+1﹣+2﹣+3﹣+…+[)×=﹣+1﹣+2﹣+3﹣+4…﹣+27=+++…+=27×=.故选:C.二.填空题10.解:原式=0+6=6.故答案为:6.11.解:﹣2+7﹣2﹣8=﹣5(℃)答:夜间的气温为﹣5℃.故答案为:﹣5℃.12.解:根据题意得:a=﹣1,b=﹣1,c=0,则c﹣b+a=0+1﹣1=0,故答案为:013.解:﹣(﹣4)+|﹣5|﹣7=4+5﹣7=2,故答案为:2.14.解:1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+…+2019﹣2020=(1﹣2)+(3﹣4)+(5﹣6)+…+(2019﹣2020)=(﹣1)+(﹣1)+(﹣1)+(﹣1)+…+(﹣1)=(﹣1)×=(﹣1)×1010=﹣1010故答案为:﹣1010三.解答题15.解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=(﹣20)+(﹣14)+18+(﹣13)=[(﹣20)+(﹣14)+(﹣13)]+18=(﹣47)+18=﹣29;(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=(﹣7)+2=﹣5;(3)=﹣﹣+=﹣=﹣;(4)=[(﹣3)+(16)]+[12.5﹣(﹣2.5)]=13+15=28.16.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.17.解:根据题意得:+8﹣7﹣9+3=11﹣16=﹣5,则第四天河水水位与刚开始时的水位相比是降低了,降低了5cm.18.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.。
人教版七年级数学上册1.3有理数的加法 (共20张PPT)
有理数加法法则: 1.同号两数相加,取相同符号,并 把绝对值相加. 2.绝对值不相等的异号两数相加取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值,互为相反数的两 个数相加得0. 3.一个数同0相加,仍得这个数.
例1 计算:
(1)(3) (9) (2)(4.7) 3.9 解: (1) (3) (9) (3 9) 12 (2)(4.7) 3.9 (4.7 3.9) 0.8
例2 足球循环赛中,红队胜黄队4:1, 黄队胜蓝队1:0,蓝队胜红队1:0,计算各 队的净胜球数. 解:每个队的进球总数记为正数,失球 总数记为负数,这两数的和为这队的净胜球 数. 红队共进4球,失2球,所以红队的净 胜球数为:(4) (2) (4 2) 2 黄队共进 2 球,失 4 球,净胜球数为 (2) (4) = 2. 蓝队共进 1 球,失 1 球,净胜球数为 (1) (1) = 0 .
再计算总计超过多少千克:
905.4 90 10 5.4
例4 10袋小麦称后记录如图所示(单位:kg).10袋小 麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总 计超过多少千克或不足多少千克?
91
91
91.5
89
91.2
解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克 数记作负数.10袋小麦对应的数分别为 1,1, , , 1.5 1,1.2 1.3, 1.3, 1.2, 1.8,1.1. 1 1 1.5 (1) 1.2 1.3 (1.3) (1.2) 1.8 1.1
5 (5) 0
⑤
从算式①②可以看出:符号相同的两个数相加, 结果的符号不变,绝对值 相加. 从算式③④可以看出:符号相反的两个数相加, 结果的符号与绝对值 较大的加数的符号相同,并用 较大的绝对值 减去较小的绝对值. 从算式⑤可以看出:互为相反数的两个数相加, 结果为 0 . 从算式⑥可以看出:一个数同0相加,仍 得 这个数. 如果物体第1s向右(向左)运动5m,第2s 原地不动,2s后物体从起点向右(或向左)运动 了5m. 写成算式就是: 50 5 (或 (5) 0 5) ⑥