Non-commutative Euclidean structures in compact spaces
线代名词中英文对照
《线性代数》英文专业词汇序号英文中文1LinearAlgebra线性代数2determinant行列式3row行4column列5element元素6diagonal对角线7principaldiagona主对角线8auxiliarydiagonal次对角线9transposeddeterminant转置行列式10triangulardeterminants三角行列式11thenumberofinversions逆序数12evenpermutation奇排列13oddpermutation偶排列14parity奇偶性15interchange互换16absolutevalue绝对值17identity恒等式18n-orderdeterminantsn阶行列式19evaluationofdeterminant行列式的求值20Laplace’sexpansiontheorem拉普拉斯展开定理21cofactor余子式22Algebracofactor代数余子式23theVandermondedeterminant范德蒙行列式24bordereddeterminant加边行列式25reductionoftheorderofadeterminant降阶法26methodofRecursionrelation递推法27induction归纳法28Cramer′s rule克莱姆法则29matrix矩阵30rectangular矩形的31thezeromatrix零矩阵32theidentitymatrix单位矩阵33symmetric对称的序号英文中文34skew-symmetric反对称的35commutativelaw交换律36squareMatrix方阵37amatrixoforder m×n矩阵m×n38thedeterminantofmatrixA方阵A的行列式39operationsonMatrices矩阵的运算40atransposedmatrix转置矩阵41aninversematrix逆矩阵42anconjugatematrix共轭矩阵43andiagonalmatrix对角矩阵44anadjointmatrix伴随矩阵45singularmatrix奇异矩阵46nonsingularmatrix非奇异矩阵47elementarytransformations初等变换48vectors向量49components分量50linearlycombination线性组合51spaceofarithmeticalvectors向量空间52subspace子空间53dimension维54basis基55canonicalbasis规范基56coordinates坐标57decomposition分解58transformationmatrix过渡矩阵59linearlyindependent线性无关60linearlydependent线性相关61theminorofthe k thorderk阶子式62rankofaMatrix矩阵的秩63rowvectors行向量64columnvectors列向量65themaximallinearlyindependentsubsystem最大线性无关组66Euclideanspace欧几里德空间67Unitaryspace酉空间序号英文中文68systemsoflinearequations线性方程组69eliminationmethod消元法70homogenous齐次的71nonhomogenous非齐次的72equivalent等价的73component-wise分式74necessaryandsufficientcondition充要条件75incompatiable无解的76uniquesolution唯一解77thematrixofthecoefficients系数矩阵78augmentedmatrix增广矩阵79generalsolution通解80particularsolution特解81trivialsolution零解82nontrivialsolution非零解83thefundamentalsystemofsolutions基础解系84eigenvalue特征值85eigenvector特征向量86characteristicpolynomial特征多项式87characteristicequation特征方程88scalarproduct内积89normedvector单位向量90orthogonal正交的91orthogonalization正交化92theGram-Schmidtprocess正交化过程93reducingamatrixtothediagonalform对角化矩阵94orthonormalbasis标准正交基95orthogonaltransformation正交变换96lineartransformation线性变换97quadraticforms二次型98canonicalform标准型99thecanonicalformofaquadraticform二次型的标准型100themethodofseparatingperfectsquares配完全平方法101thesecond-ordercurve二次曲线102coordinatetransformation坐标变换。
新整理数学专业的英语词汇(初等和高等)
有关与数学的英语单词数学中常用符号+: plusX: multiply-: subtract÷: divideV~: square root |...|: absolute value=: is equal to =/=: is not equal to>: is greater than <: is less than//: is parallel to _|_: is perpendicular to>=: is greater than or equal to (或no less than) <=: is less than or equal to (或no more than)数学中常用单词术语acute angle 锐角adjacent angle 邻角addition 加altitude 高area 面积arithmetic mean 算术平均值(总和除以总数)arithmetic progression 等差数列(等差级数)at 总计(乘法)average 平均值base 底be contained in 位于...上bisect 平分center 圆心chord 弦circle 圆形circumference 圆周长clockwise 顺时针方向combination 组合common divisor 公约数,公因子common factor 公因子composite number 合数(可被除1及本身以外其它的数整除)cone 圆锥(体积=1/3*pi*r*r*h)congruent 全等的consecutive integer 连续的整数coordinate 坐标的cost 成本counterclockwise 逆时针方向cube1.立方数2.立方体(体积=a*a*a 表面积=6*a*a)cylinder 圆柱体decimal 小数decimal point 小数点decreased 减少decrease to 减少到decrease by 减少了degree 角度define 1.定义2.化简denominator 分母denote 代表,表示distance 距离distinct 不同的dividend 1. 被除数2.红利divided evenly 被除数divisible 可整除的division 1.除2.部分divisor 除数equation 方程equilateral triangle 等边三角形even number 偶数expression 表达exterior angle 外角face (立体图形的)某一面fraction 1.分数2.比例have left 剩余height 高hexagon 六边形hypotenuse 斜边improper fraction 假分数increase 增加increase by 增加了increase to 增加到integer 整数interest rate 利率in terms of... 用...表达interior angle 内角intersect 相交irrational 无理数isosceles triangle 等腰三角形least common multiple 最小公倍数least possible value 最小可能的值leg 直角三角形的股length 长list price 标价margin 利润mark up 涨价mark down 降价maximum 最大值median, medium 中数(把数字按大小排列,若为奇数项,则中间那项就为中数,若为偶数项,则中间两项的算术平均值为中数。
分子生物学名词解释
[原创]分子生物学名词解释大全AAbundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。
Abundant mRNA(高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。
Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。
Acentric fragment(无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而在细胞分化中被丢失。
Active site(活性位点):蛋白质上一个底物结合的有限区域。
Allele(等位基因):在染色体上占据给定位点基因的不同形式。
Allelic exclusion(等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码的免疫球蛋白质。
Allosteric control(别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能力。
Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu家族相关。
Alu family (Alu家族):人类基因组中一系列分散的相关序列,每个约300bp长。
每个成员其两端有Alu 切割位点(名字的由来)。
α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA聚合酶,特别是聚合酶II 转录。
Amber codon (琥珀MM子):核苷酸三联体UAG,引起蛋白质合成终止的三个MM子之一。
Amber mutation (琥珀突变):指代表蛋白质中氨基酸MM子占据的位点上突变成琥珀MM子的任何DNA 改变。
Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反MM子被改变,从而能识别UAG MM子和之前的MM子。
Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2基团和tRNA 终止碱基的3¢或者2¢-OH 基团上。
Equiangular Tight Frames from Paley Tournaments
2
Gram Matrix Construction
To construct an equiangular tight frame, it is sufficient to construct an appropriate Gram matrix for the set. Lemma 1 Let G be an n × n matrix with the following properties: (i) |Gjk |2 = (n − d)/d(n − 1), and (ii) G has only one nonzero eigenvalue n/d of degeneracy d. Then an (n, d) ETF may be explicitly constructed. Proof The frame vectors are given by the columns of the d × n rank d matrix T satisfying G = T ∗ T [12]. More concretely, the frame vectors can be found by factorizing G into V ΛV ∗ , where Λ is the diagonal matrix of eigenvalues and V is the unitary matrix whose columns are the eigenvectors. Arranging Λ such that the nonzero eigenvalues of G are located in its first d entries, the φk are given by φk = n/d {Vkl }d l=1 [2]. We shall use adjacency matrices of Paley tournaments in the construction of the Gram matrix. Recall that the n × n adjacency matrix A of the Paley tournament is defined as Ajk = χ(j − k ) for any prime power n ≡ 3 mod 4. Here χ(a) is the quadratic character of Fn , which is 1 or −1 depending on whether a is or is not a nonzero square and zero if a = 0. The matrix A has zero diagonal and off-diagonal elements ±1. It is easily seen by direct calculation that A2 = J − nI , where J is the matrix of all 1s, using the fact that a∈Fn χ(a)χ(a − b) = −1 for all b = 0 [13]. Beyond this case, we also have the following lemma. Lemma 2 An n × n zero-diagonal matrix A with off-diagonal elements ±1 such that A2 = J − nI exists for all n = 2k − 1, k ∈ N. Proof Consider the recursive construction of an (n + 1) × (n + 1) conference matrix C satisfying CC T = nI : 2
(2021年整理)线性代数英文专业词汇
线性代数英文专业词汇
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线性代数英文专业词汇)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线性代数英文专业词汇的全部内容。
《线性代数》英文专业词汇。
高等数学英语词汇
高等数学英语词汇高等数学英语词汇引导语:高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的'一部分。
以下是店铺分享给大家的高等数学英语词汇,欢迎阅读!Aabelian group:阿贝尔群; absolute geometry:绝对几何; absolute value:绝对值; abstract algebra:抽象代数; addition:加法; algebra:代数; algebraicclosure:代数闭包; algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何; algebraic numbers:代数数; algorithm:算法; almost all:绝大多数; analytic function:解析函数; analytic geometry:解析几何; and:且;angle:角度; anticommutative:反交换律; antisymmetric relation:反对称关系; antisymmetry:反对称性; approximately equal:约等于; Archimedean field:阿基米德域; Archimedean group:阿基米德群; area:面积; arithmetic:算术; associative algebra:结合代数; associativity:结合律; axiom:公理; axiom of constructibility:可构造公理; axiom of empty set:空集公理;axiom of extensionality:外延公理; axiom of foundation:正则公理; axiom of pairing:对集公理; axiom of regularity:正则公理; axiom of replacement:代换公理; axiom of union:并集公理; axiom schema of separation:分离公理; axiom schema of specification:分离公理;axiomatic set theory:公理集合论; axiomatic system:公理系统;BBaire space:贝利空间; basis:基; Bézout's identity:贝祖恒等式; Bernoulli's inequality:伯努利不等式 ; Big O notation:大O符号; bilinear operator:双线性算子; binary operation:二元运算; binary predicate:二元谓词; binary relation:二元关系; Booleanalgebra:布尔代数;Boolean logic:布尔逻辑; Boolean ring:布尔环; boundary:边界; boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学; Cantor's diagonal argument:康托尔对角线方法; cardinal number:基数;cardinality:势; cardinality of the continuum:连续统的势; Cartesian coordinate system:直角坐标系; Cartesian product:笛卡尔积; category:范畴; Cauchy sequence:柯西序列; Cauchy-Schwarz inequality:柯西不等式; Ceva's Theorem:塞瓦定理; characteristic:特征;characteristic polynomial:特征多项式; circle:圆; class:类; closed:闭集; closure:封闭性或闭包; closure algebra:闭包代数; combinatorial identities:组合恒等式; commutativegroup:交换群; commutative ring:交换环; commutativity::交换律; compact:紧致的;compact set:紧致集合; compact space:紧致空间; complement:补集或补运算; completelattice:完备格; complete metric space:完备的度量空间; complete space:完备空间; complexmanifold:复流形; complex plane:复平面; congruence:同余; congruent:全等; connectedspace:连通空间; constructible universe:可构造全集; constructions of the real numbers:实数的构造; continued fraction:连分数; continuous:连续; continuum hypothesis:连续统假设;contractible space:可缩空间; convergence space:收敛空间; cosine:余弦; countable:可数;countable set:可数集; cross product:叉积; cycle space:圈空间; cyclic group:循环群;Dde Morgan's laws:德·摩根律; Dedekind completion:戴德金完备性; Dedekind cut:戴德金分割;del:微分算子; dense:稠密; densely ordered:稠密排列; derivative:导数; determinant:行列式; diffeomorphism:可微同构; difference:差; differentiablemanifold:可微流形;differential calculus:微分学; dimension:维数; directed graph:有向图; discrete space:离散空间; discriminant:判别式; distance:距离; distributivity:分配律; dividend:被除数;dividing:除; divisibility:整除; division:除法; divisor:除数; dot product:点积;Eeigenvalue:特征值; eigenvector:特征向量; element:元素; elementary algebra:初等代数;empty function:空函数; empty set:空集; empty product:空积; equal:等于; equality:等式或等于; equation:方程; equivalence relation:等价关系; Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量; Euclidean space:欧几里德空间; Euler's identity:欧拉恒等式;even number:偶数; event:事件; existential quantifier:存在量词; exponential function:指数函数; exponential identities:指数恒等式; expression:表达式; extended real number line:扩展的实数轴;Ffalse:假; field:域; finite:有限; finite field:有限域; finite set:有限集合; first-countablespace:第一可数空间; first order logic:一阶逻辑; foundations of mathematics:数学基础;function:函数; functional analysis:泛函分析; functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理; fraction:分数;Ggauge space:规格空间; general linear group:一般线性群; geometry:几何学; gradient:梯度;graph:图; graph of a relation:关系图; graph theory:图论; greatest element:最大元;group:群; group homomorphism:群同态;HHausdorff space:豪斯多夫空间; hereditarily finite set:遗传有限集合; Heron's formula:海伦公式; Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统; Hodge decomposition:霍奇分解; Hodge Laplacian:霍奇拉普拉斯算子; homeomorphism:同胚; horizontal:水平;hyperbolic function identities:双曲线函数恒等式; hypergeometric function identities:超几何函数恒等式; hyperreal number:超实数;Iidentical:同一的; identity:恒等式; identity element:单位元; identity matrix:单位矩阵;idempotent:幂等; if:若; if and only if:当且仅当; iff:当且仅当; imaginary number:虚数;inclusion:包含; index set:索引集合; indiscrete space:非离散空间; inequality:不等式或不等; inequality of arithmetic and geometric means:平均数不等式; infimum:下确界; infiniteseries:无穷级数; infinite:无穷大; infinitesimal:无穷小; infinity:无穷大; initial object:初始对象; inner angle:内角; inner product:内积; inner product space:内积空间; integer:整数; integer sequence:整数列; integral:积分; integral domain:整数环; interior:内部;interior algebra:内部代数; interior point:内点; intersection:交集; inverse element:逆元;invertible matrix:可逆矩阵; interval:区间; involution:回旋; irrational number:无理数;isolated point:孤点; isomorphism:同构;JJacobi identity:雅可比恒等式; join:并运算;K格式: Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元; Lebesgue measure:勒贝格测度; Leibniz's law:莱布尼茨律; Liealgebra:李代数; Lie group:李群; limit:极限; limit point:极限点; line:线; line segment:线段; linear:线性; linear algebra:线性代数; linear operator:线性算子; linear space:线性空间; linear transformation:线性变换; linearity:线性性; list of inequalities:不等式列表; list oflinear algebra topics:线性代数相关条目; locally compact space:局部紧致空间; logarithmicidentities:对数恒等式; logic:逻辑学; logical positivism:逻辑实证主义; law of cosines:余弦定理; L??wenheim-Skolem theorem:L??wenheim-Skolem 定理; lower limit topology:下限拓扑;Mmagnitude:量; manifold:流形; map:映射; mathematical symbols:数学符号; mathematicalanalysis:数学分析; mathematical proof:数学证明; mathematics:数学; matrix:矩阵;matrix multiplication:矩阵乘法; meaning:语义; measure:测度; meet:交运算; member:元素; metamathematics:元数学; metric:度量; metric space:度量空间; model:模型; modeltheory:模型论; modular arithmetic:模运算; module:模; monotonic function:单调函数;multilinear algebra:多重线性代数; multiplication:乘法; multiset:多样集;Nnaive set theory:朴素集合论; natural logarithm:自然对数; natural number:自然数; naturalscience:自然科学; negative number:负数; neighbourhood:邻域; New Foundations:新基础理论; nine point circle:九点圆; non-Euclidean geometry:非欧几里德几何; nonlinearity:非线性; non-singular matrix:非奇异矩阵; nonstandard model:非标准模型; nonstandardanalysis:非标准分析; norm:范数; normed vector space:赋范向量空间; n-tuple:n 元组或多元组; nullary:空; nullary intersection:空交集; number:数; number line:数轴;Oobject:对象; octonion:八元数; one-to-one correspondence:一一对应; open:开集; openball:开球; operation:运算; operator:算子; or:或; order topology:序拓扑; ordered field:有序域;ordered pair:有序对; ordered set:偏序集; ordinal number:序数; ordinarymathematics:一般数学; origin:原点; orthogonal matrix:正交矩阵;Pp-adic number:p进数; paracompact space:仿紧致空间; parallel postulate:平行公理;parallelepiped:平行六面体; parallelogram:平行四边形; partial order:偏序关系; partition:分割; Peano arithmetic:皮亚诺公理; Pedoe's inequality:佩多不等式; perpendicular:垂直;philosopher:哲学家; philosophy:哲学; philosophy journals:哲学类杂志; plane:平面; pluralquantification:复数量化; point:点; Point-Line-Plane postulate:点线面假设; polarcoordinates:极坐标系; polynomial:多项式; polynomial sequence:多项式列; positive-definitematrix:正定矩阵; positive-semidefinite matrix:半正定矩阵; power set:幂集; predicate:谓词; predicate logic:谓词逻辑; preorder:预序关系; prime number:素数; product:积;proof:证明; proper class:纯类; proper subset:真子集; property:性质; proposition:命题; pseudovector:伪向量; Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.; quaternion:四元数; quaternions and spatial rotation:四元数与空间旋转;question:疑问句; quotient field:商域; quotient set:商集;Rradius:半径; ratio:比; rational number:有理数; real analysis:实分析; real closed field:实闭域; real line:实数轴; real number:实数; real number line:实数线; reflexive relation:自反关系; reflexivity:自反性; reification:具体化; relation:关系; relative complement:相对补集;relatively complemented lattice:相对补格; right angle:直角; right-handed rule:右手定则;ring:环;Sscalar:标量; second-countable space:第二可数空间; self-adjoint operator:自伴随算子;sentence:判断; separable space:可分空间; sequence:数列或序列; sequence space:序列空间; series:级数; sesquilinear function:半双线性函数; set:集合; set-theoretic definitionof natural numbers:自然数的集合论定义; set theory:集合论; several complex variables:一些复变量; shape:几何形状; sign function:符号函数; singleton:单元素集合; social science:社会科学; solid geometry:立体几何; space:空间; spherical coordinates:球坐标系; squarematrix:方块矩阵; square root:平方根; strict:严格; structural recursion:结构递归;subset:子集; subsequence:子序列; subspace:子空间; subspace topology:子空间拓扑;subtraction:减法; sum:和; summation:求和; supremum:上确界; surreal number:超实数; symmetric difference:对称差; symmetric relation:对称关系; system of linearequations:线性方程组;Ttensor:张量; terminal object:终结对象; the algebra of sets:集合代数; theorem:定理; topelement:最大元; topological field:拓扑域; topological manifold:拓扑流形; topological space:拓扑空间; topology:拓扑或拓扑学; total order:全序关系; totally disconnected:完全不连贯;totally ordered set:全序集; transcendental number:超越数; transfinite recursion:超限归纳法; transitivity:传递性; transitive relation:传递关系; transpose:转置; triangleinequality:三角不等式; trigonometric identities:三角恒等式; triple product:三重积; trivialtopology:密着拓扑; true:真; truth value:真值;Uunary operation:一元运算; uncountable:不可数; uniform space:一致空间; union:并集;unique:唯一; unit interval:单位区间; unit step function:单位阶跃函数; unit vector:单位向量;universal quantification:全称量词; universal set:全集; upper bound:上界;Vvacuously true:??; Vandermonde's identity:Vandermonde 恒等式; variable:变量;vector:向量; vector calculus:向量分析; vector space:向量空间; Venn diagram:文氏图;volume:体积; von Neumann ordinal:冯·诺伊曼序数; von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论; Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论; ZF settheory:ZF 系统; zero:零; zero object:零对象;下载全文。
数学中英语专业名词
数学中英语专业名词Aabelian group:阿贝尔群;absolute geometry:绝对几何;absolute value:绝对值;abstract algebra:抽象代数;addition:加法;algebra:代数;algebraic closure:代数闭包;algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何;algebraic numbers:代数数;algorithm:算法;almost all:绝大多数;analytic function:解析函数;analytic geometry:解析几何;and:且;angle:角度;anticommutative:反交换律;antisymmetric relation:反对称关系;antisymmetry:反对称性;approximately equal:约等于;Archimedean field:阿基米德域;Archimedean group:阿基米德群;area:面积;arithmetic:算术;associative algebra:结合代数;associativity:结合律;axiom:公理;axiom of constructibility:可构造公理;axiom of empty set:空集公理;axiom of extensionality:外延公理;axiom of foundation:正则公理;axiom of pairing:对集公理;axiom of regularity:正则公理;axiom of replacement:代换公理;axiom of union:并集公理;axiom schema of separation:分离公理;axiom schema of specification:分离公理;axiomatic set theory:公理集合论;axiomatic system:公理系统;BBaire space:贝利空间;basis:基;Bézout's identity:贝祖恒等式;Bernoulli's inequality:伯努利不等式;Big O notation:大O符号;bilinear operator:双线性算子;binary operation:二元运算;binary predicate:二元谓词;binary relation:二元关系;Boolean algebra:布尔代数;Boolean logic:布尔逻辑;Boolean ring:布尔环;boundary:边界;boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学;Cantor's diagonal argument:康托尔对角线方法;cardinal number:基数;cardinality:势;cardinality of the continuum:连续统的势;Cartesian coordinate system:直角坐标系;Cartesian product:笛卡尔积;category:范畴;Cauchy sequence:柯西序列;Cauchy-Schwarz inequality:柯西不等式;Ceva's Theorem:塞瓦定理;characteristic:特征;characteristic polynomial:特征多项式;circle:圆;class:类;closed:闭集;closure:封闭性或闭包;closure algebra:闭包代数;combinatorial identities:组合恒等式;commutative group:交换群;commutative ring:交换环;commutativity::交换律;compact:紧致的;compact set:紧致集合;compact space:紧致空间;complement:补集或补运算;complete lattice:完备格;complete metric space:完备的度量空间;complete space:完备空间;complex manifold:复流形;complex plane:复平面;congruence:同余;congruent:全等;connected space:连通空间;constructible universe:可构造全集;constructions of the real numbers:实数的构造;continued fraction:连分数;continuous:连续;continuum hypothesis:连续统假设;contractible space:可缩空间;convergence space:收敛空间;cosine:余弦;countable:可数;countable set:可数集;cross product:叉积;cycle space:圈空间;cyclic group:循环群;Dde Morgan's laws:德·摩根律;Dedekind completion:戴德金完备性;Dedekind cut:戴德金分割;del:微分算子;dense:稠密;densely ordered:稠密排列;derivative:导数;determinant:行列式;diffeomorphism:可微同构;difference:差;differentiable manifold:可微流形;differential calculus:微分学;dimension:维数;directed graph:有向图;discrete space:离散空间;discriminant:判别式;distance:距离;distributivity:分配律;dividend:被除数;dividing:除;divisibility:整除;division:除法;divisor:除数;dot product:点积;Eeigenvalue:特征值;eigenvector:特征向量;element:元素;elementary algebra:初等代数;empty function:空函数;empty set:空集;empty product:空积;equal:等于;equality:等式或等于;equation:方程;equivalence relation:等价关系;Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量;Euclidean space:欧几里德空间;Euler's identity:欧拉恒等式;even number:偶数;event:事件;existential quantifier:存在量词;exponential function:指数函数;exponential identities:指数恒等式;expression:表达式;extended real number line:扩展的实数轴;Ffalse:假;field:域;finite:有限;finite field:有限域;finite set:有限集合;first-countable space:第一可数空间;first order logic:一阶逻辑;foundations of mathematics:数学基础;function:函数;functional analysis:泛函分析;functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理;fraction:分数;Ggauge space:规格空间;general linear group:一般线性群;geometry:几何学;gradient:梯度;graph:图;graph of a relation:关系图;graph theory:图论;greatest element:最大元;group:群;group homomorphism:群同态;HHausdorff space:豪斯多夫空间;hereditarily finite set:遗传有限集合;Heron's formula:海伦公式;Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统;Hodge decomposition:霍奇分解;Hodge Laplacian:霍奇拉普拉斯算子;homeomorphism:同胚;horizontal:水平;hyperbolic function identities:双曲线函数恒等式;hypergeometric function identities:超几何函数恒等式;hyperreal number:超实数;Iidentical:同一的;identity:恒等式;identity element:单位元;identity matrix:单位矩阵;idempotent:幂等;if:若;if and only if:当且仅当;iff:当且仅当;imaginary number:虚数;inclusion:包含;index set:索引集合;indiscrete space:非离散空间;inequality:不等式或不等;inequality of arithmetic and geometric means:平均数不等式;infimum:下确界;infinite series:无穷级数;infinite:无穷大;infinitesimal:无穷小;infinity:无穷大;initial object:初始对象;inner angle:内角;inner product:内积;inner product space:内积空间;integer:整数;integer sequence:整数列;integral:积分;integral domain:整数环;interior:内部;interior algebra:内部代数;interior point:内点;intersection:交集;inverse element:逆元;invertible matrix:可逆矩阵;interval:区间;involution:回旋;irrational number:无理数;isolated point:孤点;isomorphism:同构;JJacobi identity:雅可比恒等式;join:并运算;K格式:Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元;Lebesgue measure:勒贝格测度;Leibniz's law:莱布尼茨律;Lie algebra:李代数;Lie group:李群;limit:极限;limit point:极限点;line:线;line segment:线段;linear:线性;linear algebra:线性代数;linear operator:线性算子;linear space:线性空间;linear transformation:线性变换;linearity:线性性;list of inequalities:不等式列表;list of linear algebra topics:线性代数相关条目;locally compact space:局部紧致空间;logarithmic identities:对数恒等式;logic:逻辑学;logical positivism:逻辑实证主义;law of cosines:余弦定理;L??wenheim-Skolem theorem:L??wenheim-Skolem 定理;lower limit topology:下限拓扑;Mmagnitude:量;manifold:流形;map:映射;mathematical symbols:数学符号;mathematical analysis:数学分析;mathematical proof:数学证明;mathematics:数学;matrix:矩阵;matrix multiplication:矩阵乘法;meaning:语义;measure:测度;meet:交运算;member:元素;metamathematics:元数学;metric:度量;metric space:度量空间;model:模型;model theory:模型论;modular arithmetic:模运算;module:模;monotonic function:单调函数;multilinear algebra:多重线性代数;multiplication:乘法;multiset:多样集;Nnaive set theory:朴素集合论;natural logarithm:自然对数;natural number:自然数;natural science:自然科学;negative number:负数;neighbourhood:邻域;New Foundations:新基础理论;nine point circle:九点圆;non-Euclidean geometry:非欧几里德几何;nonlinearity:非线性;non-singular matrix:非奇异矩阵;nonstandard model:非标准模型;nonstandard analysis:非标准分析;norm:范数;normed vector space:赋范向量空间;n-tuple:n 元组或多元组;nullary:空;nullary intersection:空交集;number:数;number line:数轴;Oobject:对象;octonion:八元数;one-to-one correspondence:一一对应;open:开集;open ball:开球;operation:运算;operator:算子;or:或;order topology:序拓扑;ordered field:有序域;ordered pair:有序对;ordered set:偏序集;ordinal number:序数;ordinary mathematics:一般数学;origin:原点;orthogonal matrix:正交矩阵;Pp-adic number:p进数;paracompact space:仿紧致空间;parallel postulate:平行公理;parallelepiped:平行六面体;parallelogram:平行四边形;partial order:偏序关系;partition:分割;Peano arithmetic:皮亚诺公理;Pedoe's inequality:佩多不等式;perpendicular:垂直;philosopher:哲学家;philosophy:哲学;philosophy journals:哲学类杂志;plane:平面;plural quantification:复数量化;point:点;Point-Line-Plane postulate:点线面假设;polar coordinates:极坐标系;polynomial:多项式;polynomial sequence:多项式列;positive-definite matrix:正定矩阵;positive-semidefinite matrix:半正定矩阵;power set:幂集;predicate:谓词;predicate logic:谓词逻辑;preorder:预序关系;prime number:素数;product:积;proof:证明;proper class:纯类;proper subset:真子集;property:性质;proposition:命题;pseudovector:伪向量;Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.;quaternion:四元数;quaternions and spatial rotation:四元数与空间旋转;question:疑问句;quotient field:商域;quotient set:商集;Rradius:半径;ratio:比;rational number:有理数;real analysis:实分析;real closed field:实闭域;real line:实数轴;real number:实数;real number line:实数线;reflexive relation:自反关系;reflexivity:自反性;reification:具体化;relation:关系;relative complement:相对补集;relatively complemented lattice:相对补格;right angle:直角;right-handed rule:右手定则;ring:环;Sscalar:标量;second-countable space:第二可数空间;self-adjoint operator:自伴随算子;sentence:判断;separable space:可分空间;sequence:数列或序列;sequence space:序列空间;series:级数;sesquilinear function:半双线性函数;set:集合;set-theoretic definition of natural numbers:自然数的集合论定义;set theory:集合论;several complex variables:一些复变量;shape:几何形状;sign function:符号函数;singleton:单元素集合;social science:社会科学;solid geometry:立体几何;space:空间;spherical coordinates:球坐标系;square matrix:方块矩阵;square root:平方根;strict:严格;structural recursion:结构递归;subset:子集;subsequence:子序列;subspace:子空间;subspace topology:子空间拓扑;subtraction:减法;sum:和;summation:求和;supremum:上确界;surreal number:超实数;symmetric difference:对称差;symmetric relation:对称关系;system of linear equations:线性方程组;Ttensor:张量;terminal object:终结对象;the algebra of sets:集合代数;theorem:定理;top element:最大元;topological field:拓扑域;topological manifold:拓扑流形;topological space:拓扑空间;topology:拓扑或拓扑学;total order:全序关系;totally disconnected:完全不连贯;totally ordered set:全序集;transcendental number:超越数;transfinite recursion:超限归纳法;transitivity:传递性;transitive relation:传递关系;transpose:转置;triangle inequality:三角不等式;trigonometric identities:三角恒等式;triple product:三重积;trivial topology:密着拓扑;true:真;truth value:真值;Uunary operation:一元运算;uncountable:不可数;uniform space:一致空间;union:并集;unique:唯一;unit interval:单位区间;unit step function:单位阶跃函数;unit vector:单位向量;universal quantification:全称量词;universal set:全集;upper bound:上界;Vvacuously true:??;Vandermonde's identity:Vandermonde 恒等式;variable:变量;vector:向量;vector calculus:向量分析;vector space:向量空间;Venn diagram:文氏图;volume:体积;von Neumann ordinal:冯·诺伊曼序数;von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论;Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论;ZF set theory:ZF 系统;zero:零;zero object:零对象;。
神经系统调控
PSD
The postsynaptic density (PSD) is a protein dense specialization attached to the postsynaptic membrane. PSDs were originally identified by electron microscopy as an electron-dense region at the membrane of a postsynaptic neuron. The PSD is in close apposition to the presynaptic active zone and ensures that receptors are in close proximity to presynaptic neurotransmitter release sites. PSDs vary in size and composition among brain regions and have been studied in great detail at glutamatergic synapses. Hundreds of proteins have been identified in the postsynaptic density including glutamate receptors, scaffold proteins, and many signaling m致ol密ec带u(lPeSsD. )是一种附着于突触后膜的蛋白质致密化。PSDs最初被电子显微
肌梭对脊髓反射通路和长环反射同路形成起重要作用
高尔基腱器 GTOs
抑制性去突触反射
joint receptor
Ruffini 型末梢 Pacinian corpuscle帕西尼体形式末梢 Ligament receptor韧带感受器 Teleneuron 神经末梢
南航矩阵论四元数
Student’s Name:Student’s ID No.:College Name:The study of QuaternionsAbstractFinding the definition of quaternions, operations of quaternions, and properties of quaternions. To discuss the problem if the set of quaternions together with the operations of quaternions is a vector space over the real number field. To discuss the problem if the set of quaternions together with the operations of quaternions is a field.IntroductionSearch the definition of quaternions, and discuss some properties of them. Then discuss the applications used by quaternions.Main ResultsAnswers of Q11.1The definition of quaternion:Quaternion is the most simple hyper-complex number. The complex is composed of a real plus the elements of I, including i^2=-1. Similarly,quaternion is composed of real number plus three elements I, J, K, and they have the following relationship: i^2=j^2=k^2=ijk=-1, $four each number is a linear combination of 1, I, J and K, that is quaternion it can be expressed as a+bi+cj+dk, where a, B, C, D is a real number.]1[1.2Operations of quaternion1)Quaternion addition:p+qWith complex numbers, vectors and matrices, the sum of two quaternion need to combine different elements together.The addition follows the commutative and associative laws of real and complex number.2) Quaternion multiplication:pqBetween two to quaternion in the number of non-commutative product usually is Glassman (Hermann Grassmann) is called the product, the product above has been briefly introduced, complete type it is:Because of quaternion multiplication can not be changed , pq is not equal to qp. Glassman product used in the description of many other algebraic function. The vector product is part of qp:3)Quaternion dot product: p · qThe dot product is called the Euclidean inner product, quaternion dot productis equivalent to a four-dimensional vector dot product. The dot product value is the corresponding element numerical value of each element in the p and q . This is between quaternion can change the product number, and returns a scalar.The dot product can use Glassman product form:This product is useful for the elements of isolated from quaternion . For example, i can come out from p extraction:4)Quaternion outer product: Outer(p,q)The Euclidean outer product is not commonly used; However, because the outerproduct and the product form of the Glassmaninner product similarity, they are always to be mentioned:5) Quaternion even product: Even(p,q)Quaternion even product is not commonly used, but it will be mentioned, because of its similar with odd product. It is a pure symmetric product; therefore, it is completely interchangeable.6) Quaternion cross product: p × q Quaternion cross product also known as odd product. It is equivalent to the cross product of vectors , and only return one vector value:7) Quaternion transposition:1-pQuaternion transposition’s definition is by 11=-p p . The same way to constructcomplex inverse structure:A quaternion itself dot multiplication is a scalar. quaternion divided by a scalar is equivalent to the scalar multiplication on the countdown, but to make every element of the quaternion is divided by a divisor.8) Quaternion division: pp1-Quaternion’s unchangeable property lead to the difference of qp1-and pq1-. This means that unless the p is a scalar, otherwise you cannot use the q/p.9) Quaternion Scalar Department:Scalar(p)10) Quaternion vector department:Vector(p)11) Quaternion Modulus: |p|12)Quaternion signal number:Sgn(p)13)Quaternion argument:Argu(p)1.3 Properties of quaternionQuaternion is shaped like a number of ai+bj+ck+d, a, b,c,d is a real number.Answers of Q22. There are two ways to the matrix representation of quaternion.]2[Just as complex numbers can be represented as matrices, so can quaternions. There are at least two ways of representing quaternions as matrices in such a way that quaternion addition and multiplication correspond to matrix addition and matrix multiplication. One is to use 2 × 2 complex matrices, and the other is to use 4 × 4 real matrices. In each case, the representation given is one of a family of linearly related representations. In the terminology ofabstract algebra, these are injective homomorphisms from H to the matrix rings M(2, C) and M(4, R), respectively.Using 2 × 2 complex matrices, the quaternion a + bi + cj + dk can be represented asThis representation has the following properties:∙Constraining any two of b, c and d to zero produces a representation of complex numbers. For example, setting c = d = 0 produces a diagonal complex matrix representation of complex numbers, and setting b = d = 0 produces a real matrix representation.∙The norm of a quaternion (the square root of the product with its conjugate, as with complex numbers) is the square root of the determinant of the corresponding matrix.[20]∙The conjugate of a quaternion corresponds to the conjugate transpose of the matrix.∙By restriction this representation yields a isomorphism between the subgroup of unit quaternions and their image SU(2). Topologically, the unit quaternions are the 3-sphere, so the underlying space of SU(2) is also a 3-sphere.The group SU(2) is important for describing spin in quantum mechanics; see Pauli matrices.Using 4 × 4 real matrices, that same quaternion can be written asIn this representation, the conjugate of a quaternion corresponds to the transpose of the matrix. The fourth power of the norm of a quaternion is the determinant of the corresponding matrix. As with the 2 × 2 complex representation above, complex numbers can again be produced by constraining the coefficients suitably; for example, as block diagonal matrices with two 2 × 2 blocks by setting c = d = 0.Answers of Q3Because the vector part of a quaternion is a vector in R3, the geometry of R3 is reflected in the algebraic structure of the quaternions. Many operations on vectors can be defined in terms of quaternions, and this makes it possible to apply quaternion techniques wherever spatial vectors arise. For instance, this is true in electrodynamics and 3D computer graphics.For the remainder of this section, i, j, and k will denote both imaginary[18] basis vectors of H and a basis for R3. Notice that replacing i by −i, j by −j, and k by −k sends a vector to its additive inverse, so the additive inverse of a vector is the same as its conjugate as a quaternion. For this reason, conjugation is sometimes called the spatial inverse.]3[Choose two imaginary quaternions p = b1i + c1j + d1k and q = b2i + c2j + d2k. Their dot product isThis is equal to the scalar parts of pq∗, qp∗, p∗q, and q∗p. (Note that the vector parts of these four products are different.) It also has the formulasThe cross product of p and q relative to the orientation determined by the ordered basis i, j, and k is(Recall that the orientation is necessary to determine the sign.) This is equal to the vector part of the product pq (as quaternions), as well as the vector part of −q∗p∗. It also has the formulaIn general, let p and q be quaternions (possibly non-imaginary), and writewhere p s and q s are the scalar parts, and and are the vector parts of p and q. Then we have the formulaThis shows that the noncommutativity of quaternion multiplication comes from the multiplication of pure imaginary quaternions. It also shows that two quaternions commute if and only if their vector parts are collinear.For further elaboration on modeling three-dimensional vectors using quaternions, see quaternions and spatial rotation. A possible visualisation was introduced by Andrew J. Hanson.Answers of Q41)Application of quaternions in the attitude of a rigid body simulation With symmetric gyroscope as an example, discusses the existing application and the quaternions in the attitude of a rigid body simulation problem in. That attitude with quaternions description has a solution quickly, won't appear singular advantages, but implied quaternions equation constraint is differential forms, which lead to a strict limit on the simulation time step, which limits its application in a certain extent. Finally discusses the implementation of attitude description uniqueness problem with quaternions, and put forward the concept of "standard" quaternions.]4[2)Application of unit quaternions in aerial photo-grammetry solution Research on unit quaternions method in aerial application of aerial triangulation in each step of the algorithm, and the stability and applicability is evaluated.The first describes the method of unit quaternions tectonic rotation matrix based on relative orientation, establishing model and based on the number of units quaternions settlement method for the model is constructed based on the beam method; regional network unit quaternions rientation and bundle block adjustment test, and with the traditional Euler angle to construct the rotation matrix based schemes are compared. The test results show that, in the relative orientation test, if take P-H algorithm, which requires only minimal control points to ensure that all test data can obtain the correct solution. While in the bundle adjustment method, method of unit quaternions than the traditional method based onthe number of stability is poor, the number of image scale and control points are more sensitive, causing part of the test data can not be correct convergence.]5[Conclusion and AcknowledgementThrough the research of learning, I learned the basic concepts of quaternions and some operational properties. At the same time also learned about the quaternions in many different areas of application.References[2]See Hazewinkel et al. (2004), p. 12.[3]Conway, John Horton; Smith, Derek Alan (2003). On quaternions and octonions: their geometry, arithmetic, and symmetry. p. 9. ISBN 1-56881-134-9.[4]Girard, P. R. The quaternion group and modern physics (1984) Eur. J. Phys. vol 5,。
数学词汇
附4.GOGO的数学词汇mapimagefixed pointcomposite functionone to one / injectiveonto / surjectivebijectiveinverse functionreciprocaldenominatorsymmetric with respect to the y axis / the origin / the line y=xabscissax/y interceptordinateanalytic geometryparabolahyperbolaconic sections 二次曲线系coefficientspoint-slope formuladirectrix 准线 vertex focuslatus rectum 过焦点平行于准线的弦radius, centertangent linedegenerate 退化major axis / minor axiseccentricity e=c/adifference 差branch 支asymptotes 渐近线focal axispolynomial equationsquadratic polynomial 二次多项式quadratic formuladiscriminant判别式division algorithm / remainder theorem quotientfundamental theorem of algebra multiplicity 重根conjugate radical 共轭根the complex conjugate 共轭复数‘monic (an=1)the rational roots theoremlogarithm 对数GRE用log x表示lnx trigonometry 三角几何complementary 互余cos = complementary sinetangent / cotangent / secant / cosecant terminal side 终边quadrant 象限arbitrary angle 钝角trig function 三角函数periodicity 周期性periodequidistant 等距sequence 序列convergent / divergent(minus) infinitymonotonic 单调bounded 有界the sandwich (or squeeze) theorem approach A from above (右逼近A) continuous functionThe Intermediate Value Theorem 中值定理derivative 导数secant line 割线tangent line 切线normal line 法线differential 微分的linear appropriationimplicit differentiation 隐函数求导concave up (convex) f’’>0concave down (concave) f’’<0inflection point 拐点local minimum / absolute minimum critical point / stationary point (f’=0)nth-derivative test fn>0 极小,反之极大adjacent sides 毗连的边relate rates dy/dt= r dx/dtindefinite integration 不定积分intersect 曲线相交rectangular (or Cartesian) coordinates polar coordinatescardioids 心形线r=2a(1+cos(sita)) solids of revolution 旋转体infinite series 无穷极数harmonic seriesp-seriesalternation seriespower seriesthe radius of convergencethe interval of convergencearccosine functionarcsine functiondomainadjoint 伴随阵determinantexpected valueprobability density functionderivativeinflection pointrankeigenvalueeigenvetoreigenspacesubsetpolyhedron 多面体vertices / vertexinverse of the matrixorthogonal 正交height 多项式系数绝对值和+最高次tracepolynomialidempotent 幂等A2=Anilpotent 幂零scalar 数量阵fixed pointthe qth roots of unitycoset 陪集dot/scalar product 点积projAB B在A的投影cross producttriple scalar product (A*B)•Cmagnitude 模parametric equation 参数方程symmetric equation (直线)对称式generator, elements cracking p111arbitrarylevel curve of height 等高线contour curve 轮廓线(被平面截的截面)hyperboloid 双曲面circular poraboloidcylindrical coordinatesspherical coordinatespartial derivativedirectional derivativesgradientsaddle point cracking p131 Hessian matrixline integralThe Fundamental Theorem of Calculus for Line Integral 势场内线积分只与起止点有关gradient field My=Nx conservative 值与路值无关Green Theorem cracking p152ordinary/partial differential equation (ODE/PDE)homogeneous of degree n n阶齐次exact differentialintegrating function 积分因子inconsistent (线性方程组)无解commutative 交换的invertible 可逆的associative 传递性coefficient matrixaugmented matrix 增广矩阵Gaussian Eliminationechelon formparameter 参数nullspacelinear combinationspan 几个向量的所有线性组合trivial combination即linearly independent basis a minimal spanning set for avector spacedimension 基中向量数normal vector 法向量column space / row spaceLaplace expansions 即按某行/列展开adjugate matrix 共轭矩阵Cramer’s Rule克莱莫法则scalar 数乘linear operation=linear transformation kernel / nullity / range / rankRank plus Nullity TheoremCayley-HamiltonTheorem p(A)=0 divisibility, factor, multipleprime number, compositegreatest common divisor (gcd)least common multiple (lcm)the congruence equation ax=b(mod n)the Euclidean Algorithm 欧氏算法cracking p222congruence 余数binary operation on S S*S S associate :a•(b•c)=(a•b)•c semigroup条件identity 单位元semigroup+identity=monoidmonoid+inverse=groupabelian groupgeneral/special linear groupSn symmetric group对称群(阶为n!)S3为最小的6阶非阿贝尔对称群alternating group 置换群(同上)polygon 多边形equilateral triangle 等边三角形isosceles triangle 等腰三角形Dn nth dihedral group :order(Dn)=2n additive group of integers modulo n multiplicative group of integers modulo p cyclic groupKlein four-group, or viergruppeproper subgroupnontrivial subgroupgenerators 生成元finitely generatedisomorphism 同构homomorphism 同态monomorphism 单同态epimorphism 满同态endomorphism 自同态automorphism 自同构direct product (a, b) cracking p237 direct sum 同上if abelian elementary divisors/ invariant factors cracking p238normal subgruoup 正规子群inner automorphism induced by aunity 环乘法单位元unit 存在乘法逆的非零元素ring with unity 幺环commutative ringsubringcharacteristicring of integersr ing of integers modulo n (Zn, +, •)ring of Gaussian integers Z(i)ring of polynomials in x over R R[x] ring of real-valued functions on R RR 交换幺环evaluation (or substitution) homomorphism at a cracking p249Frobenius endomorphism f(a)=app is a prime numberbinomial theorem 二项式定理integral domain 整环left/right zero divisor 零因子cancellation law a!=0, ac=ab, them c=bdivision ring 无零因子的环field= commutative division ring又,有限整环是域strictly-skew field= noncommutative division ring体real quatenion 四元素体Boolean ring 该环中元素idempotentsubset > supersetuniversal setcomplement of B relative to A A-Bunion / intersectionsymmetric difference (A-B)U(B-A) Cartesian product 笛卡尔积open / closed intervalcardinality (cardinal number) 元素数countably infinitealgebraic numbers cracking p267power set of Alevels of infinitycardinal number of continuum transcendental numberscombination, permutationbinomial coefficientpigeonhole principle 抽屉原理probabilityBoolean algebra (or algebra) of sets on S: E 指the power set of S 的子集probability measure on E cracking p274 distribution functionvariance, standard deviationthe normal distribution 正态分布standard normal distributionbinomial distribution 二项分布imaginary unit iprinciple argument 幅角主值sample space (S), outcomes (S中元素), events(E中元素,S的子集)independent独立, mutually exclusive相斥Bernoulli trialspolar form, exponential formprincipal logarithmprincipal value of zwhyperbolic function 双曲函数Laplace equation / harmonic uxx+uyy=0 entire function 在复平面内解析disk of convergencepunctured open disk cracking p312 singularity, isolated singularitypole of order nsimple pole (n=1) double pole (n=2) essential singularityannulus 环面singular (or principal ) part / analytic part residueHausdorff spaceindiscrete / trivial topologyinterior, exterior, boundary, limit point, closureinterior+boundary=closurelower-limit topology B=[a,b) connectedcovering, open coveringcompactnessnorm of a point cracking p290 Euclidean metric 欧氏度量square metricopen map != continuous 一来一去,方向反homeomorphism = continuous + open map upper bound, bounded abovelub=suremum (sup)glb=infimum (inf)complete space = no holesLebesgue measurable setssingletonLebesgue measurable function Lebsegue integrablestep function cracking p296 index of a group 子群中元素的最小公共阶tangent 相切loop 循环inradius 内径trajectory 轨迹centroid 重心clusterpartial fraction expansionsufficient / necessary condition。
高等数学专业英语词汇
Aabelian group:阿贝尔群; absolute geometry:绝对几何; absolute value:绝对值; abstract algebra:抽象代数; addition:加法; algebra:代数; algebraic closure:代数闭包; algebraic geometry:代数几何; algebraic geometry and analytic geometry:代数几何和解析几何; algebraic numbers:代数数;algorithm:算法; almost all:绝大多数; analytic function:解析函数; analytic geometry:解析几何; and:且; angle:角度; anticommutative:反交换律;antisymmetric relation:反对称关系; antisymmetry:反对称性; approximately equal:约等于; Archimedean field:阿基米德域; Archimedean group:阿基米德群; area:面积; arithmetic:算术; associative algebra:结合代数;associativity:结合律; axiom:公理; axiom of constructibility:可构造公理;axiom of empty set:空集公理; axiom of extensionality:外延公理; axiom of foundation:正则公理; axiom of pairing:对集公理; axiom of regularity:正则公理; axiom of replacement:代换公理; axiom of union:并集公理; axiom schema of separation:分离公理; axiom schema of specification:分离公理;axiomatic set theory:公理集合论; axiomatic system:公理系统;BBaire space:贝利空间; basis:基; Bézout's identity:贝祖恒等式; Bernoulli's inequality:伯努利不等式; Big O notation:大O符号; bilinear operator:双线性算子; binary operation:二元运算; binary predicate:二元谓词; binary relation:二元关系; Boolean algebra:布尔代数; Boolean logic:布尔逻辑;Boolean ring:布尔环; boundary:边界; boundary point:边界点; bounded lattice:有界格;Ccalculus:微积分学; Cantor's diagonal argument:康托尔对角线方法; cardinal number:基数; cardinality:势; cardinality of the continuum:连续统的势;Cartesian coordinate system:直角坐标系; Cartesian product:笛卡尔积;category:范畴; Cauchy sequence:柯西序列; Cauchy-Schwarz inequality:柯西不等式; Ceva's Theorem:塞瓦定理; characteristic:特征; characteristic polynomial:特征多项式; circle:圆; class:类; closed:闭集; closure:封闭性或闭包; closure algebra:闭包代数; combinatorial identities:组合恒等式;commutative group:交换群; commutative ring:交换环; commutativity::交换律; compact:紧致的; compact set:紧致集合; compact space:紧致空间;complement:补集或补运算; complete lattice:完备格; complete metric space:完备的度量空间; complete space:完备空间; complex manifold:复流形; complex plane:复平面; congruence:同余; congruent:全等; connected space:连通空间; constructible universe:可构造全集; constructions of the real numbers:实数的构造; continued fraction:连分数; continuous:连续;continuum hypothesis:连续统假设; contractible space:可缩空间;convergence space:收敛空间; cosine:余弦; countable:可数; countable set:可数集; cross product:叉积; cycle space:圈空间; cyclic group:循环群;Dde Morgan's laws:德·摩根律; Dedekind completion:戴德金完备性; Dedekind cut:戴德金分割; del:微分算子; dense:稠密; densely ordered:稠密排列;derivative:导数; determinant:行列式; diffeomorphism:可微同构;difference:差; differentiable manifold:可微流形; differential calculus:微分学; dimension:维数; directed graph:有向图; discrete space:离散空间;discriminant:判别式; distance:距离; distributivity:分配律; dividend:被除数; dividing:除; divisibility:整除; division:除法; divisor:除数; dot product:点积;Eeigenvalue:特征值; eigenvector:特征向量; element:元素; elementary algebra:初等代数; empty function:空函数; empty set:空集; empty product:空积; equal:等于; equality:等式或等于; equation:方程;equivalence relation:等价关系; Euclidean geometry:欧几里德几何; Euclidean metric:欧几里德度量; Euclidean space:欧几里德空间; Euler's identity:欧拉恒等式; even number:偶数; event:事件; existential quantifier:存在量词;exponential function:指数函数; exponential identities:指数恒等式;expression:表达式; extended real number line:扩展的实数轴;Ffalse:假; field:域; finite:有限; finite field:有限域; finite set:有限集合;first-countable space:第一可数空间; first order logic:一阶逻辑; foundations of mathematics:数学基础; function:函数; functional analysis:泛函分析;functional predicate:函数谓词; fundamental theorem of algebra:代数基本定理; fraction:分数;Ggauge space:规格空间; general linear group:一般线性群; geometry:几何学;gradient:梯度; graph:图; graph of a relation:关系图; graph theory:图论;greatest element:最大元; group:群; group homomorphism:群同态;HHausdorff space:豪斯多夫空间; hereditarily finite set:遗传有限集合; Heron's formula:海伦公式; Hilbert space:希尔伯特空间; Hilbert's axioms:希尔伯特公理系统; Hodge decomposition:霍奇分解; Hodge Laplacian:霍奇拉普拉斯算子;homeomorphism:同胚; horizontal:水平; hyperbolic function identities:双曲线函数恒等式; hypergeometric function identities:超几何函数恒等式; hyperreal number:超实数;Iidentical:同一的; identity:恒等式; identity element:单位元; identity matrix:单位矩阵; idempotent:幂等; if:若; if and only if:当且仅当; iff:当且仅当; imaginary number:虚数; inclusion:包含; index set:索引集合;indiscrete space:非离散空间; inequality:不等式或不等; inequality ofarithmetic and geometric means:平均数不等式; infimum:下确界; infinite series:无穷级数; infinite:无穷大; infinitesimal:无穷小; infinity:无穷大;initial object:初始对象; inner angle:内角; inner product:内积; inner product space:内积空间; integer:整数; integer sequence:整数列; integral:积分; integral domain:整数环; interior:内部; interior algebra:内部代数;interior point:内点; intersection:交集; inverse element:逆元; invertible matrix:可逆矩阵; interval:区间; involution:回旋; irrational number:无理数; isolated point:孤点; isomorphism:同构;JJacobi identity:雅可比恒等式; join:并运算;KKuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元; Lebesgue measure:勒贝格测度; Leibniz's law:莱布尼茨律; Lie algebra:李代数; Lie group:李群; limit:极限; limit point:极限点;line:线; line segment:线段; linear:线性; linear algebra:线性代数; linear operator:线性算子; linear space:线性空间; linear transformation:线性变换;linearity:线性性; list of inequalities:不等式列表; list of linear algebra topics:线性代数相关条目; locally compact space:局部紧致空间; logarithmic identities:对数恒等式; logic:逻辑学; logical positivism:逻辑实证主义; law of cosines:余弦定理; L??wenheim-Skolem theorem:L??wenheim-Skolem 定理;lower limit topology:下限拓扑;Mmagnitude:量; manifold:流形; map:映射; mathematical symbols:数学符号; mathematical analysis:数学分析; mathematical proof:数学证明;mathematics:数学; matrix:矩阵; matrix multiplication:矩阵乘法;meaning:语义; measure:测度; meet:交运算; member:元素;metamathematics:元数学; metric:度量; metric space:度量空间; model:模型; model theory:模型论; modular arithmetic:模运算; module:模;monotonic function:单调函数; multilinear algebra:多重线性代数;multiplication:乘法; multiset:多样集;Nnaive set theory:朴素集合论; natural logarithm:自然对数; natural number:自然数; natural science:自然科学; negative number:负数; neighbourhood:邻域; New Foundations:新基础理论; nine point circle:九点圆; non-Euclidean geometry:非欧几里德几何; nonlinearity:非线性; non-singular matrix:非奇异矩阵; nonstandard model:非标准模型; nonstandard analysis:非标准分析;norm:范数; normed vector space:赋范向量空间; n-tuple:n 元组或多元组;nullary:空; nullary intersection:空交集; number:数; number line:数轴;Oobject:对象; octonion:八元数; one-to-one correspondence:一一对应;open:开集; open ball:开球; operation:运算; operator:算子; or:或;order topology:序拓扑; ordered field:有序域; ordered pair:有序对; ordered set:偏序集; ordinal number:序数; ordinary mathematics:一般数学; origin:原点; orthogonal matrix:正交矩阵;Pp-adic number:p进数; paracompact space:仿紧致空间; parallel postulate:平行公理; parallelepiped:平行六面体; parallelogram:平行四边形; partial order:偏序关系; partition:分割; Peano arithmetic:皮亚诺公理; Pedoe's inequality:佩多不等式; perpendicular:垂直; philosopher:哲学家;philosophy:哲学; philosophy journals:哲学类杂志; plane:平面; plural quantification:复数量化; point:点; Point-Line-Plane postulate:点线面假设;polar coordinates:极坐标系; polynomial:多项式; polynomial sequence:多项式列; positive-definite matrix:正定矩阵; positive-semidefinite matrix:半正定矩阵; power set:幂集; predicate:谓词; predicate logic:谓词逻辑;preorder:预序关系; prime number:素数; product:积; proof:证明; proper class:纯类; proper subset:真子集; property:性质; proposition:命题;pseudovector:伪向量; Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.; quaternion:四元数; quaternions and spatial rotation:四元数与空间旋转; question:疑问句; quotient field:商域; quotient set:商集;Rradius:半径; ratio:比; rational number:有理数; real analysis:实分析; real closed field:实闭域; real line:实数轴; real number:实数; real number line:实数线; reflexive relation:自反关系; reflexivity:自反性; reification:具体化;relation:关系; relative complement:相对补集; relatively complemented lattice:相对补格; right angle:直角; right-handed rule:右手定则; ring:环;Sscalar:标量; second-countable space:第二可数空间; self-adjoint operator:自伴随算子; sentence:判断; separable space:可分空间; sequence:数列或序列; sequence space:序列空间; series:级数; sesquilinear function:半双线性函数; set:集合; set-theoretic definition of natural numbers:自然数的集合论定义; set theory:集合论; several complex variables:一些复变量; shape:几何形状; sign function:符号函数; singleton:单元素集合; social science:社会科学;solid geometry:立体几何; space:空间; spherical coordinates:球坐标系;square matrix:方块矩阵; square root:平方根; strict:严格; structural recursion:结构递归; subset:子集; subsequence:子序列; subspace:子空间;subspace topology:子空间拓扑; subtraction:减法; sum:和; summation:求和; supremum:上确界; surreal number:超实数; symmetric difference:对称差; symmetric relation:对称关系; system of linear equations:线性方程组;Ttensor:张量; terminal object:终结对象; the algebra of sets:集合代数;theorem:定理; top element:最大元; topological field:拓扑域; topological manifold:拓扑流形; topological space:拓扑空间; topology:拓扑或拓扑学;total order:全序关系; totally disconnected:完全不连贯; totally ordered set:全序集; transcendental number:超越数; transfinite recursion:超限归纳法;transitivity:传递性; transitive relation:传递关系; transpose:转置; triangle inequality:三角不等式; trigonometric identities:三角恒等式; triple product:三重积; trivial topology:密着拓扑; true:真; truth value:真值;Uunary operation:一元运算; uncountable:不可数; uniform space:一致空间;union:并集; unique:唯一; unit interval:单位区间; unit step function:单位阶跃函数; unit vector:单位向量; universal quantification:全称量词; universal set:全集; upper bound:上界;Vvacuously true:??; Vandermonde's identity:Vandermonde 恒等式;variable:变量; vector:向量; vector calculus:向量分析; vector space:向量空间; Venn diagram:文氏图; volume:体积; von Neumann ordinal:冯·诺伊曼序数; von Neumann universe:冯·诺伊曼全集; vulgar fraction:分数;ZZermelo set theory:策梅罗集合论; Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论; ZF set theory:ZF 系统; zero:零; zero object:零对象;。
数学专业英语词汇
数学专业英语词汇Aabelian group:阿贝尔群;absolute geometry:绝对几何;absolute value:绝对值;abstract algebra:抽象代数;addition:加法;algebra:代数;algebraic closure:代数闭包;algebraic geometry:代数几何;algebraic geometry and analytic geometry:代数几何和解析几何;algebraic numbers:代数数;algorithm:算法;almost all:绝大多数;analytic function:解析函数;analytic geometry:解析几何;and:且;angle:角度;anticommutative:反交换律;antisymmetric relation:反对称关系;antisymmetry:反对称性;approximately equal:约等于;Archimedean field:阿基米德域;Archimedean group:阿基米德群;area:面积;arithmetic:算术;associative algebra:结合代数;associativity:结合律;axiom:公理;axiom of constructibility:可构造公理;axiom of empty set:空集公理;axiom of extensionality:外延公理;axiom of foundation:正则公理;axiom of pairing:对集公理;axiom of regularity:正则公理;axiom of replacement:代换公理;axiom of union:并集公理;axiom schema of separation:分离公理;axiom schema of specification:分离公理;axiomatic set theory:公理集合论;axiomatic system:公理系统;BBaire space:贝利空间;basis:基;Bézout's identity:贝祖恒等式;Bernoulli's inequality:伯努利不等式;Big O notation:大O符号;bilinear operator:双线性算子;binary operation:二元运算;binary predicate:二元谓词;binary relation:二元关系;Boolean algebra:布尔代数;Boolean logic:布尔逻辑;Boolean ring:布尔环;boundary:边界;boundary point:边界点;bounded lattice:有界格;Ccalculus:微积分学;Cantor's diagonal argument:康托尔对角线方法;cardinal number:基数;cardinality:势;cardinality of the continuum:连续统的势;Cartesian coordinate system:直角坐标系;Cartesian product:笛卡尔积;category:范畴;Cauchy sequence:柯西序列;Cauchy-Schwarz inequality:柯西不等式;Ceva's Theorem:塞瓦定理;characteristic:特征;characteristic polynomial:特征多项式;circle:圆;class:类;closed:闭集;closure:封闭性或闭包;closure algebra:闭包代数;combinatorial identities:组合恒等式;commutative group:交换群;commutative ring:交换环;commutativity::交换律;compact:紧致的;compact set:紧致集合;compact space:紧致空间;complement:补集或补运算;complete lattice:完备格;complete metric space:完备的度量空间;complete space:完备空间;complex manifold:复流形;complex plane:复平面;congruence:同余;congruent:全等;connected space:连通空间;constructible universe:可构造全集;constructions of the real numbers:实数的构造;continued fraction:连分数;continuous:连续;continuum hypothesis:连续统假设;contractible space:可缩空间;convergence space:收敛空间;cosine:余弦;countable:可数;countable set:可数集;cross product:叉积;cycle space:圈空间;cyclic group:循环群;Dde Morgan's laws:德·摩根律;Dedekind completion:戴德金完备性;Dedekind cut:戴德金分割;del:微分算子;dense:稠密;densely ordered:稠密排列;derivative:导数;determinant:行列式;diffeomorphism:可微同构;difference:差;differentiablemanifold:可微流形;differential calculus:微分学;dimension:维数;directed graph:有向图;discrete space:离散空间;discriminant:判别式;distance:距离;distributivity:分配律;dividend:被除数;dividing:除;divisibility:整除;division:除法;divisor:除数;dot product:点积;Eeigenvalue:特征值;eigenvector:特征向量;element:元素;elementary algebra:初等代数;empty function:空函数;empty set:空集;empty product:空积;equal:等于;equality:等式或等于;equation:方程;equivalence relation:等价关系;Euclidean geometry:欧几里德几何;Euclidean metric:欧几里德度量;Euclidean space:欧几里德空间;Euler's identity:欧拉恒等式;even number:偶数;event:事件;existential quantifier:存在量词;exponential function:指数函数;exponential identities:指数恒等式;expression:表达式;extended real number line:扩展的实数轴;Ffalse:假;field:域;finite:有限;finite field:有限域;finite set:有限集合;first-countable space:第一可数空间;first order logic:一阶逻辑;foundations of mathematics:数学基础;function:函数;functional analysis:泛函分析;functional predicate:函数谓词;fundamental theorem of algebra:代数基本定理;fraction:分数;Ggauge space:规格空间;general linear group:一般线性群;geometry:几何学;gradient:梯度;graph:图;graph of a relation:关系图;graph theory:图论;greatest element:最大元;group:群;group homomorphism:群同态;HHausdorff space:豪斯多夫空间;hereditarily finite set:遗传有限集合;Heron's formula:海伦公式;Hilbert space:希尔伯特空间;Hilbert's axioms:希尔伯特公理系统;Hodge decomposition:霍奇分解;Hodge Laplacian:霍奇拉普拉斯算子;homeomorphism:同胚;horizontal:水平;hyperbolic function identities:双曲线函数恒等式;hypergeometric function identities:超几何函数恒等式;hyperreal number:超实数;Iidentical:同一的;identity:恒等式;identity element:单位元;identity matrix:单位矩阵;idempotent:幂等;if:若;if and only if:当且仅当;iff:当且仅当;imaginary number:虚数;inclusion:包含;index set:索引集合;indiscrete space:非离散空间;inequality:不等式或不等;inequality of arithmetic and geometric means:平均数不等式;infimum:下确界;infinite series:无穷级数;infinite:无穷大;infinitesimal:无穷小;infinity:无穷大;initial object:初始对象;inner angle:内角;inner product:内积;inner product space:内积空间;integer:整数;integer sequence:整数列;integral:积分;integral domain:整数环;interior:内部;interior algebra:内部代数;interior point:内点;intersection:交集;inverse element:逆元;invertible matrix:可逆矩阵;interval:区间;involution:回旋;irrational number:无理数;isolated point:孤点;isomorphism:同构;JJacobi identity:雅可比恒等式;join:并运算;K格式:Kuratowski closure axioms:Kuratowski 闭包公理;Lleast element:最小元;Lebesgue measure:勒贝格测度;Leibniz's law:莱布尼茨律;Lie algebra:李代数;Lie group:李群;limit:极限;limit point:极限点;line:线;line segment:线段;linear:线性;linear algebra:线性代数;linear operator:线性算子;linear space:线性空间;linear transformation:线性变换;linearity:线性性;list of inequalities:不等式列表;list of linear algebra topics:线性代数相关条目;locally compact space:局部紧致空间;logarithmic identities:对数恒等式;logic:逻辑学;logical positivism:逻辑实证主义;law of cosines:余弦定理;L??wenheim-Skolem theorem:L??wenheim-Skolem 定理;lower limit topology:下限拓扑;Mmagnitude:量;manifold:流形;map:映射;mathematical symbols:数学符号;mathematical analysis:数学分析;mathematical proof:数学证明;mathematics:数学;matrix:矩阵;matrix multiplication:矩阵乘法;meaning:语义;measure:测度;meet:交运算;member:元素;metamathematics:元数学;metric:度量;metric space:度量空间;model:模型;model theory:模型论;modular arithmetic:模运算;module:模;monotonic function:单调函数;multilinear algebra:多重线性代数;multiplication:乘法;multiset:多样集;Nnaive set theory:朴素集合论;natural logarithm:自然对数;natural number:自然数;natural science:自然科学;negative number:负数;neighbourhood:邻域;New Foundations:新基础理论;nine point circle:九点圆;non-Euclidean geometry:非欧几里德几何;nonlinearity:非线性;non-singular matrix:非奇异矩阵;nonstandard model:非标准模型;nonstandard analysis:非标准分析;norm:范数;normed vector space:赋范向量空间;n-tuple:n 元组或多元组;nullary:空;nullary intersection:空交集;number:数;number line:数轴;Oobject:对象;octonion:八元数;one-to-one correspondence:一一对应;open:开集;open ball:开球;operation:运算;operator:算子;or:或;order topology:序拓扑;ordered field:有序域;ordered pair:有序对;ordered set:偏序集;ordinal number:序数;ordinary mathematics:一般数学;origin:原点;orthogonal matrix:正交矩阵;Pp-adic number:p进数;paracompact space:仿紧致空间;parallel postulate:平行公理;parallelepiped:平行六面体;parallelogram:平行四边形;partial order:偏序关系;partition:分割;Peano arithmetic:皮亚诺公理;Pedoe's inequality:佩多不等式;perpendicular:垂直;philosopher:哲学家;philosophy:哲学;philosophy journals:哲学类杂志;plane:平面;plural quantification:复数量化;point:点;Point-Line-Plane postulate:点线面假设;polar coordinates:极坐标系;polynomial:多项式;polynomial sequence:多项式列;positive-definite matrix:正定矩阵;positive-semidefinite matrix:半正定矩阵;power set:幂集;predicate:谓词;predicate logic:谓词逻辑;preorder:预序关系;prime number:素数;product:积;proof:证明;proper class:纯类;proper subset:真子集;property:性质;proposition:命题;pseudovector:伪向量;Pythagorean theorem:勾股定理;QQ.E.D.:Q.E.D.;quaternion:四元数;quaternions and spatial rotation:四元数与空间旋转;question:疑问句;quotient field:商域;quotient set:商集;Rradius:半径;ratio:比;rational number:有理数;real analysis:实分析;real closed field:实闭域;real line:实数轴;real number:实数;real number line:实数线;reflexive relation:自反关系;reflexivity:自反性;reification:具体化;relation:关系;relative complement:相对补集;relatively complemented lattice:相对补格;right angle:直角;right-handed rule:右手定则;ring:环;Sscalar:标量;second-countable space:第二可数空间;self-adjoint operator:自伴随算子;sentence:判断;separable space:可分空间;sequence:数列或序列;sequence space:序列空间;series:级数;sesquilinear function:半双线性函数;set:集合;set-theoretic definition of natural numbers:自然数的集合论定义;set theory:集合论;several complex variables:一些复变量;shape:几何形状;sign function:符号函数;singleton:单元素集合;social science:社会科学;solid geometry:立体几何;space:空间;spherical coordinates:球坐标系;square matrix:方块矩阵;square root:平方根;strict:严格;structural recursion:结构递归;subset:子集;subsequence:子序列;subspace:子空间;subspace topology:子空间拓扑;subtraction:减法;sum:和;summation:求和;supremum:上确界;surreal number:超实数;symmetric difference:对称差;symmetric relation:对称关系;system of linear equations:线性方程组;Ttensor:张量;terminal object:终结对象;the algebra of sets:集合代数;theorem:定理;top element:最大元;topological field:拓扑域;topological manifold:拓扑流形;topological space:拓扑空间;topology:拓扑或拓扑学;total order:全序关系;totally disconnected:完全不连贯;totally ordered set:全序集;transcendental number:超越数;transfinite recursion:超限归纳法;transitivity:传递性;transitive relation:传递关系;transpose:转置;triangle inequality:三角不等式;trigonometric identities:三角恒等式;triple product:三重积;trivial topology:密着拓扑;true:真;truth value:真值;Uunary operation:一元运算;uncountable:不可数;uniform space:一致空间;union:并集;unique:唯一;unit interval:单位区间;unit step function:单位阶跃函数;unit vector:单位向量;universal quantification:全称量词;universal set:全集;upper bound:上界;Vvacuously true:??;Vandermonde's identity:Vandermonde 恒等式;variable:变量;vector:向量;vector calculus:向量分析;vector space:向量空间;Venn diagram:文氏图;volume:体积;von Neumann ordinal:冯·诺伊曼序数;von Neumann universe:冯·诺伊曼全集;vulgar fraction:分数;ZZermelo set theory:策梅罗集合论;Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论;ZF set theory:ZF 系统;zero:零;zero object:零对象;。
微分流形课程基本内容
微分流形课程基本内容一、流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射。
要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类。
要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念。
二、正则性、奇异性及其应用:正则点和正则值,临界点和临界值,Sard定理,Morse引理,Thom横截性定理。
要求了解映射度的概念,并能运用正则值的概念验证某些空间是流形。
三、光滑向量场和可积性定理:光滑向量场及其奇点的定义,Lie括号,积分曲线和动力系统,Euler-Poincare公式,Frobenius可积性定理。
四、 Lie群和Lie 群作用初步:Lie群和Lie代数的定义和基本例子,单参数子群,指数映射,Lie群在流形上的作用,基本向量场,齐性空间等。
要求能够验证一些常见的矩阵群为Lie群并计算它们的Lie代数,并对一些低维Lie群的流形结构较为熟悉。
要求能将一些常见流形写成齐性流形。
五、微分形式和积分:微分形式和外积的定义和性质,外微分,内积,Lie 导数,Cartan公式,de Rham上同调,Poincare对偶,Laplace算子,Hodge理论初步,定向和微分形式的积分,带边流形和Stokes定理。
要求掌握单位分解的技巧,要求了解外微分和Stokes定理的古典形式。
要求能够计算常见流形和二维流形的上同调环。
六、 Riemann 几何初步:Riemann度量,Levi-Civita联络,Christoffel符号,Rieman曲率,截曲率,常截曲率流形的模型。
要求能够从给定的Riemann度量计算Riemann曲率。
要求对向量丛的概念和张量运算较为熟悉。
微分流形课程预备知识最基本要求:多元微积分,线性代数,常微分方程。
需要用到:点集拓扑学,抽象代数,复变函数论,曲线曲面的微分几何。
微分流形相关课程和后续课程微分流形参考书目∙第一节,微分流形概念的引入:Riemann在哥廷根大学讲演的英译本可见M.Spivak, A Comprehensive Introduction to Differential Geometry, Vol. II.,Publish or Perish, Berkeley, 1979.∙第二节,关于Morse理论,可参看J. Milnor, Morse theory.∙第三节,引进tangent space和1-form时采用了代数几何中的做法,可参看R. Hartshorne, Algebraic geometry.其中用到局部化等代数方法,可参看M.Atiyah and I.G.Mcdonald, Commutative Algebra.∙第四节、第五节,可参看Brocker and Janich, Introduction to differential topology.关于Frobenius integrablity theorem, 可参看F. Warner, Foundations of differentiable manifolds and Lie groups.∙第六节、第七节,可参看F. Warner, Foundations of differentiable manifolds and Lie groups.∙第八节,可参看微分流形的知识为进一步学习现代数学和物理提供了准备知识。
AP数学简介几常用词汇翻译3篇
AP数学简介几常用词汇翻译第一篇:AP数学常用词汇翻译(1-1000)1. Algebra 代数2. Arithmetic 算数3. Area 面积4. Axis 轴5. Binary 二进制6. Calculus 微积分7. Cartesian coordinate system 笛卡尔坐标系8. Chord 弦9. Circle 圆10. Coefficient 系数11. Congruent 同余的12. Constant 常数13. Cosine 余弦14. Curve 曲线15. Degree 度数16. Delta 变化量17. Derivative 导数18. Diameter 直径19. Differentiation 微分20. Dimension 维数21. Direct variation 直接变化22. Discriminant 判别式23. Domain 域24. Equation 方程25. Exponential function 指数函数26. Factor 因数27. Function 函数28. Geometric mean 几何平均数29. Graph 图像30. Harmonic mean 调和平均数31. Hyperbola 双曲线32. Hypotenuse 斜边33. Imaginary number 虚数34. Inequality 不等式35. Inverse function 反函数36. Irrational number 无理数37. Isosceles triangle 等腰三角形38. Limit 极限39. Linearity 线性40. Logarithm 对数41. Matrix 矩阵42. Mean 平均数43. Median 中位数44. Mode 众数45. Multiplication 乘法46. Negative number 负数47. Nonlinear 非线性48. Normal distribution 正态分布49. Notation 表示法50. Number 数量51. Obtuse triangle 钝角三角形52. Octagon 八边形53. Operation 运算54. Parabola 抛物线55. Percent 百分数56. Perimeter 周长57. Perpendicular 垂直58. Pi 圆周率59. Plane 平面60. Point 点61. Polygon 多边形62. Positive number 正数63. Power 幂64. Probability 概率65. Product 积66. Pythagorean theorem 勾股定理67. Quadratic equation 二次方程68. Quadrilateral 四边形69. Quotient 商70. Radical 根式71. Radius 半径72. Ratio 比率73. Real number 实数74. Reciprocal 倒数75. Rectangle 矩形76. Regression analysis 回归分析77. Right angle 直角78. Round 四舍五入79. Segment 线段80. Series 级数81. Similarity 相似82. Sine 正弦83. Slope 斜率84. Sphere 球85. Square 正方形86. Standard deviation 标准差87. Subtraction 减法88. Surface area 表面积89. Tangent 正切90. Term 项91. Trapezoid 梯形92. Triangle 三角形93. Trigonometry 三角函数94. Unit 单位95. Variable 变量96. Vector 向量97. Vertex 顶点98. Volume 体积99. X-axis X轴100. Y-axis Y轴第二篇:AP数学常用词汇翻译(1001-2000)1001. Absolute value 绝对值1002. Addition 加法1003. Adjacent 相邻1004. Algebraic expression 代数式1005. Algorithm 算法1006. Angle 角1007. Annulus 圆环1008. Apex 顶点1009. Apparent root 表根1010. Area formula 面积公式1011. Argument 论证1012. Arithmetic mean 算术平均数1013. Base 底数1014. Binomial expansion 二项式定理1015. Boundary 边界1016. Cartesian plane 笛卡尔平面1017. Central angle 圆心角1018. Centre of rotation 旋转中心1019. Centre of symmetry 对称中心1020. Chord of a circle 圆弦1021. Circle theorems 圆的定理1022. Circumference of a circle 圆周长1023. Circular sector 圆扇形1024. Class limits 组界限1025. Combination 组合1026. Common denominator 公共分母1027. Commutative property 交换律1028. Compound interest 复合利息1029. Cone 圆锥体1030. Congruence 同构1031. Constant function 常函数1032. Converse 反命题1033. Convex 凸的1034. Coordinate 轴坐标系1035. Corollary 推论1036. Cosine rule 余弦定理1037. Cotangent rule 余切定理1038. Covariance 协方差1039. Cross product 叉积1040. Cylinder 圆柱体1041. Decimal approximation 十进制近似值1042. Deductive reasoning 演绎推理1043. Degree of freedom 自由度1044. De Morgan's laws 德摩根定律1045. Denominator 分母1046. Dependent variable 取决变量1047. Derivative function 导函数1048. Descending order 降序排列1049. Determinant 行列式1050. Diagonal 对角线1051. Differential equation 微分方程1052. Differentiation rule 微分法则1053. Discriminant function 判别函数1054. Distribution of data 数据分布1055. Dividend 被除数1056. Division 除法1057. Domain and range 定义域和值域1058. Dot product 点积1059. Edge 边1060. Eigenvalue 特征值1061. Eigenvector 特征向量1062. Elementary matrix 初等矩阵1063. Ellipse 椭圆1064. Emphasis 加重1065. Empty set 空集1066. End behaviour of a function 函数的极限行为1067. Endpoint 端点1068. Equation of a line 直线方程1069. Equivalent statement 等价陈述1070. Equivalence relation 等价关系1071. Euclidean algorithm 欧几里得算法1072. Euclidean geometry 欧几里得几何1073. Euler's formula 欧拉公式1074. Event 事件1075. Exponential function graph 指数函数图形1076. Extraneous solution 外来解1077. Factorial 阶乘1078. Factorial notation 阶乘表示法1079. Factorization 分解1080. First derivative 第一导数1081. Five-number summary 五数概括1082. Formula 公式1083. Fraction 分数1084. Frequency distribution 频率分布1085. Fundamental theorem of calculus 微积分基本定理1086. Geometric distribution 几何分布1087. Geometric sequence 等比数列1088. Gradient 梯度1089. Greatest common divisor 最大公约数1090. Harmonic mean formula 调和平均数公式1091. Hausdorff dimension 哈斯多夫维度1092. Height 高度1093. Heronian mean 全等平均数1094. Hessian matrix 黑塞矩阵1095. Histogram 柱状图1096. Homogeneous equation 齐次方程1097. Hypothesis 假设1098. Imaginary part 虚部1099. Implication 蕴含1100. Improper integral 不定积分第三篇:AP数学常用词汇翻译(2001-3000)2001. Improper fraction 带分数2002. Inclusive events 包含事件2003. Independent events 独立事件2004. Inductive reasoning 归纳推理2005. Inequality equation 不等式方程2006. Infinite series 无穷级数2007. Inflection point 拐点2008. Initial point 初始点2009. Inner product 内积2010. Inradius 内切圆半径2011. Integral 意义下的积分2012. Integral domain 整环2013. Integration by parts 分部积分法2014. Intercepts 截距2015. Interior angle 内角2016. International System of Units 国际单位制2017. Inverse matrix 逆矩阵2018. Inverse tangent 反正切2019. Irrational cube roots 无理数立方根2020. Irrational logarithm 无理数对数2021. Irrationality proof 无理性证明2022. Isomorphism 同构性2023. Iteration 迭代2024. Joint probability 共同概率2025. Kernel 核2026. L'Hopital's rule 洛必达法则2027. Law of Cosines 余弦定理2028. Law of Sines 正弦定理2029. Least common multiple 最小公倍数2030. Least squares method 最小二乘法2031. Legendre polynomial 勒让德多项式2032. Length 长度2033. Limit points 极限点2034. Locus 轨迹2035. Logarithmic derivative 对数导数2036. Logical equivalence 逻辑等价2037. Maclaurin series 麦克劳林级数2038. Markov chain 马尔可夫链2039. Matrix algebra 矩阵代数2040. Mean deviation 平均偏差2041. Mean value theorem 平均值定理2042. Measure theory 测度论2043. Median of a set 中位数2044. Menelaus' theorem 梅涅劳斯定理2045. Midpoint formula 中点公式2046. Modular arithmetic 模运算2047. Monotone increasing 递增的2048. Multiple 我说的,在魏志国这边指质因数2049. Multiplication table 乘法表2050. Multiplicity 重数2051. Natural exponential function 自然指数函数2052. Natural logarithm 自然对数2053. Negative correlation 负相关2054. Nesting 嵌套2055. Neumann series 诺伊曼级数2056. Newton's law 牛顿法则2057. Nonnegative 不为负的2058. Not-a-number 非数2059. Null set 空集合2060. Octal 八进制2061. Odd function 奇函数2062. Optimum 最优值2063. Orbit 轨道2064. Ordinal number 序数2065. Ordinary differential equation 常微分方程2066. Orthogonal matrix 正交矩阵2067. Oscillation 振荡2068. Parallel 平行2069. Parentheses 括号2070. Parity 奇偶性2071. Partial derivative 偏导数2072. Pascal's triangle 帕斯卡三角形2073. Percentage error 百分数误差2074. Permutation 排列2075. Phase plane 相平面2076. Pi function 圆周率函数2077. Pick's theorem 拉格朗日插值法2078. Piecewise defined function 分段函数2079. Polar coordinates 极坐标2080. Polynomial 多项式2081. Power rule 幂次法则2082. Precision 精度2083. Principle of inclusion-exclusion 容斥原理2084. Probability distribution 概率分布2085. Product of matrices 矩阵乘积2086. Progression 序列2087. Proof 证明2088. Proper fraction 分数2089. Proportion 比例2090. Pyramidal frustum 棱锥台2091. Pythagorean triple 勾股三元组2092. Quicker calculation 快速计算2093. Quotient rule 商法则2094. Radical equation 根式方程2095. Rank 等级2096. Rate of change 变化率2097. Rational equation 有理方程2098. Rationalize 分母有理化2099. Ray 射线2100. Real part 实部2101. Recurrence relation 循环关系2102. Reflexive 对称的2103. Regression line 回归线2104. Regular polygon 正多边形2105. Relative frequency 相对频率2106. Remainder theorem 余数定理2107. Riemann hypothesis 黎曼猜想2108. Right prism 正棱柱2109. Ring 环2110. Rolle's theorem 罗尔定理2111. Root 平方根2112. Rotation 旋转2113. Sample space 样本空间2114. Scalar multiplication 标量乘积2115. Scalar product 数乘积2116. Secant rule 割线定理2117. Segment addition postulate 线段加法公理2118. Sequence 数列2119. Series expansion 级数展开2120. Set theory 集合论2121. Shear transformation 剪切变换2122. Significance level 显著水平2123. Similar triangles 相似三角形2124. Simple interest 单利2125. Simplification 简化2126. Sine rule 正弦定理2127. Singular matrix 奇异矩阵2128. Skew symmetry 斜对称性2129. Slope-intercept form 斜率截距式2130. Sphere packing problem 球体填充问题2131. Splines 样条曲线2132. Square root 平方根2133. Standard deviation formula 标准差公式2134. Statistical independence 统计独立性2135. Step function 阶梯函数2136. Stereographic projection 立体投影2137. Stewart's theorem 斯图尔特定理2138. Stochastic process 随机过程2139. Subscript 下标2140. Successive differentiation 连续微分2141. Sum of matrices 矩阵的和2142. Surface integrals 曲面积分2143. Symbolic logic 符号逻辑2144. Symmetric matrix 对称矩阵2145. System of equations 方程组2146. Tangent line 切线2147. Terminating decimal 小数2148. Tetrahedron 四面体2149. Three-dimensional space 三维空间2150. Topology 拓扑学2151. Trace of a matrix 矩阵迹2152. Transformation 变换2153. Transitive 传递性2154. Trigonometric function graph 三角函数图形2155. Trigonometric identities 三角恒等式2156. Trigonometric substitution 三角代换2157. Trigonometry formula 三角函数公式2158. Triple scalar product 三重积2159. Two-dimensional space 二维空间2160. Uniform distribution 均匀。
chapter-6-non-verbal-communication-非言语
(3)身势学(kinesics)——研究人们的面 部表情(facial expression)、身体动作(body movements)、手势(gestures)等。
(4)体触学(haptics)——研究身体接触所 传达的信息。
d. Regulating
Nonverbal behaviors can help control verbal interactions by regulating them, such as turn-taking signals (hand raised) in conversations
e. Contradicting 黄淮学院外语系
A handshake --- welcome / goodbye
What does this gesture mean?
French gesture for 'I don't believe you'
Guess what this Iranian gesture means?
No. 1 for me/ Good luck / screw you(滚蛋)
Classification of nonverbal messages
Most classifications divide nonverbal messages into two comprehensive categories:
Those that are primarily produced by the body (appearance, movements, facial expressions, eye contact, touch, smell, and paralanguage);
非孟德尔遗传
线粒体基因组
1981年,Anderson完成了人线粒体基因组全序列的测定
双链16569bp,其中一条为重连,一条为轻连。基因编码物各不相同
2种rRNA;22种tRNA;13种蛋白质
基因中不含非编码序列,多数情况下,几乎不含终止密码,mRNA在特定区域加PolyA
转录与翻译均在线粒体中进行
DNA不与组蛋白结合
图 F2代混合家系分析
(二)基因效应的分析
非孟德尔现象 并非所有的非孟德尔现象都是核外基因的效应,但核外基因的效应必然表现出非孟德尔现象
正反交结果不同 精子含线粒体极少,卵子含线粒体很多,表现出母系遗传的特征。但正反交结果不同不一定是核外基因的效应,例如母体效应、伴性遗传
F2代混合家系分析
第十章 非孟德尔遗传 (Non-Mendelian Inheritance)
第一节 母 体 效 应 (Maternal Effect)
又称为母体影响,是一种由母体的基因型决定后代表型的现象 椎实螺外壳旋转方向的遗传 麦粉蛾眼色的遗传
一、椎实螺外壳旋转方向的遗传
03
01
02
椎实螺杂交试验结果的解释
椎实螺遗传机制
二、麦粉蛾眼色的遗传
01
野生型(AA/Aa)幼虫 复眼棕褐色 皮肤有色
02
突变型(aa) 幼虫 复眼红色 皮肤无色
03
图
04
麦粉蛾眼色的遗传
麦粉蛾色素是由犬尿氨酸衍生的犬尿素形成
01
杂合体(Aa)雌蛾的卵母细胞在减数分裂完成前合成并积累了犬尿素,其形成的A或a卵细胞都有足量的犬尿素,甚至存在于aa受精卵发育成的幼虫中,所以复眼棕褐色
核移植后代的分析
基因组印迹
印迹基因广泛分布在基因组中,人类基因组约有100-200个印迹基因。目前研究教为深入的是小鼠印迹基因
线粒体基因非编码区 -回复
线粒体基因非编码区-回复线粒体基因非编码区(Mitochondrial Non-Coding Regions)引言:线粒体是细胞中的重要器官,主要负责细胞产能、调控新陈代谢以及细胞死亡等功能。
线粒体基因组由一系列基因构成,其中包括编码蛋白质的基因以及许多非编码区。
虽然非编码区不编码蛋白质,但它们在线粒体的功能和调控中起着重要作用。
本文将一步一步解析线粒体基因非编码区的结构、功能以及与疾病相关性。
第一部分:线粒体基因非编码区的结构(Structure of Mitochondrial Non-Coding Regions)1. 前导序列(Promoter Sequences):线粒体基因组的前导序列负责启动线粒体基因的转录和表达。
这些序列通常位于线粒体基因的5'端,通过与转录因子结合来调控基因的表达水平。
2. 控制区(Control Region):控制区也被称为D-loop区域,是线粒体非编码区中最大的片段。
它位于线粒体基因组的3'端,其功能是调控线粒体DNA复制和转录。
控制区甚至可以影响到整个线粒体基因组的复制和表达。
3. 转移RNA变体(tRNA Variants):转移RNA是线粒体基因组中的另一种非编码RNA。
线粒体tRNA 起到将氨基酸转运到蛋白质合成机器上的作用。
线粒体基因组中存在一些变异的tRNA序列,它们可能导致线粒体蛋白质的合成失调,从而影响线粒体的正常功能。
第二部分:线粒体基因非编码区的功能(Function of Mitochondrial Non-Coding Regions)1. 调控基因表达:前导序列和控制区通过与转录因子结合来调控线粒体基因的转录和表达。
这些调控序列可以影响线粒体基因组中各个基因的表达水平,从而调控线粒体功能和代谢过程。
2. 保持线粒体基因组的完整性:控制区和转移RNA变体与维持线粒体基因组的完整性密切相关。
控制区的复制和转录能力决定了线粒体基因组的稳定性和完整性,而变异的tRNA序列可能导致线粒体基因组的修复能力下降,从而增加线粒体基因组的突变率。
细胞生物学进展名词解释
细胞生物学进展名词解释英文缩写中文Cryopreservation 冻存cryoprotective agent低温保护剂subculture 传代培养passagesubcultivation ratioArchaebacteria 古细菌Eubacteria 真细菌Eucaryotes 真核细胞Procaryotes原核生物Metazoa (Metazoan)后生生物Homo sapiens人类Mus musculus 小鼠Xanopus leavis被子植物Drosophila malanogaster 果蝇Caenorhabditis elegans 秀丽新小杆线虫vertical gene transfer VGT 纵向基因转移horizontal gene transferHGT横向基因转移Morphogenesis 形态发生Carcinogenesis 癌病变tumorogenesis 癌发生Generic name 属名Genus属cytotoxicity 细胞毒性genomic islands 基因组岛genomic imprinting 基因组印迹Pseudogenes 假性基因Genotoxicity 基因毒性Epigenetic inheritance后成遗传、基因外遗传Reverse genetics 反向遗传学Housekeeping genes 管家基因luxury genes奢侈基因Orthologous genes (orthologs)正源基因Paralogous genes (paralogs)旁源基因alleles等位基因第一章第二章第三章-1Short interspersed elements SINE 短散在元件short tandem repeatsSTR 短串联重复variable number tandem repeat VNTR 可变数目的串联重复Long interspersed elementsLINE 长散在元件Open reading frameORF 开放阅读框single-nucleotide polymorphismSNP单核苷酸多态性Coding sequence CDS 编码区loss of heterozygosity LOH 杂合缺失double-strand breaks DSB DNA 双链断裂non-homologous end-joiningNHEJ非同源末端连接ataxia-telangiectasia, mutated ATMGenetic recombination 遗传重组Homologous recombination 同源重组C-value C-value paradoxCDCV hypothesis CDRV hypothesisX-chromosome inactivation X-失活Barr body 性染色体第三章-2第三章-3第三章-4-1exon junction complex EJC 外显子交接复合体pioneering translation先驱翻译premature termination codons PTC 早熟终止密码子nonsense-mediated mRNA decayNMD无义介导的mRNA 降解Cajal bodyprocessing bodies P-body 加工小体RNAi RNA interfe RNA 干扰siRNAsmall interfe 小干扰RNAmiRNAshRNAshort hairpin 小发卡RNAprotein domains 蛋白结构域modules or modular protein domains模块或模块蛋白结构域protein motifs 基序dysmetabolic iron overload syndrome DIOS铁过载综合征Kisspeptin 系统cancer dormancy癌蛰伏primary cilium 原纤毛Loss of heterozygosity杂合丢失第七章-2第四章-2第五章第六章第四章-1Hayflick limit (Hayflick limitation) Hayflick界限chromothripsis染色体碎接the immortal strand hypothesis DNA永生化链假说第九章oncogene addiction癌基因成瘾性解释细胞冻存是细胞保存的主要方法之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -t h /9907136v 2 18 J a n 2000Non-commutative Euclidean structures incompact spacesB.-D.D¨o rfel Institut f¨u r Physik,Humboldt-Universit¨a t zu Berlin Invalidenstraße 110,D-10115Berlin,Germany January 14,2000Abstract Based on results for real deformation parameter q we introduce a compact non-commutative structure covariant under the quantum group SO q (3)for q being a root of unity.To match the algebra of the q -deformed operators with necesarry conjugation properties it is helpful to define a module over the algebra generated by the powers of q .In a representation where X 2is diagonal we show how P 2can be calculated.To manifest some typical properties an example of a one-dimensional q -deformed Heisenberg algebra is also considered and compared with non-compact case.PACS Classification:11.10Lm,11.25Mj Keyword(s):non-commutative geometry,quantum group,root of unity1IntroductionIn paper [1]it was shown,how the q -deformation of the well-known group SO (3)to quantum group SO q (3)can be used to define a non-commutative quantum space as a comodule of the quantum group.It is very natural to exploit the R matrix as the main tool.Its decomposition into projectors generates a non-commutative (three-dimensional)Euclidean space of coordinates.In all papers known to us the non-commutative structure has been defined for real q only.The value of q becomes important when we demand hermiticity for coordinates (and later on for momenta).For general complex q the R matrix looses its hermiticity which requires a new definition of conjugation for the coordinate operators.On the other hand their are at least two reasons why one should investigate the case of complex q .First,real q implies always a non-compact coordinate space,while for a compact space we have to admit complex values of q.In context with the fact,that non-commutative geometry[2]is considered to be the result of some deep dynamical principle which may be found e.g.in string theory the case of compactified dimensions is of special interest. We start here the consideration of an example with only compactified coordinates.The more interesting case with compact and non-compact dimensions(which seems to require different q)is due to further work.Second,we know the quantum group SO q(3)for generic q and especially the case q being a root of unity,where it demonstrates some pecularities[3,4].It is therefore interesting how a non-commutative quantum space can be constructed in that special case.This will be the main aim of our paper.As we have already mentioned,the key point is the definition of a conjugation for coordinates and momenta,which are later required to be self-adjoint with respect to that conjugation.Different conjugations result in different spaces and hence different physics. The conjugation we will propose below is of course equivalent to ordinary conjugation for real q.We know two ways which are both consistent with SO q(3).The choice thatfits best with our problem is the one,where q is left untouched during conjugation.Thus if ¯X is the conjugate of an operator X,the conjugate of qX is q¯X.This choice has been used already before,e.g.in[3].To do this in a mathematical correct way we define a right module over the algebra generated by all powers of q with the additional condition for some power to equal−1(see next Chapter).The other way,one mayfind i.e.in[4], seems to work better in case if one deals with non-hermitean operators having only real eigenvalues,which will not be the case here.At thefirst moment our definition looks rather unnatural but in Chap.2we shall describe how it works and mention the consequences.The most important one of them is that self-adjoint operators will have(instead of real ones)eigenvalues which are real functions of the parameter q.But this is just what we need,because the scaling oper-ator and its commutation properties force coordinates and momenta to have eigenvalues proportional to powers of q.The paper is organized as follows.In Chap.2we recall the basic formulae for the quantum space of SO q(3)and state the modifications for our q.In Chap.3we consider a one-dimensional example of a q-deformed Heisenberg algebra and demonstrate how it works for q being a root of unity.It is rather helpful to compare our results with earlier ones for real q with the same example.In our main Chap.4the non-commutative space covariant under SO q(3)is considered and matrix elements of coordinates and momenta are calculated.The results are presented explicitly and do not contain any divergencies which usually occur if one simply replaces q in formulae derived earlier for real q only.2Euclidean phase space for q being a root of unityFirst we have to recall some basic formulae of the non-commutative space from paper[1] which do not depend on the nature of q.The R matrix of SO q(3)is decomposed likeˆR=P5−1q6P1(2.1)We shall not give the projectors P i here,because we need only P3.The non-commutative Euclidean space is defined by:P3XX=0(2.2) In the common basis(2.2)looks like:X3X+=q2X+X3X3X−=q−2X−X3(2.3)X−X+=X+X−+λX3X3hereλ=q−11+q4ǫF ABǫF DC(2.5) where its indices are moved according to formulae likeǫABC=g CDǫAB D(2.6)ǫ+−3=q,ǫ−+3=−q,ǫ333=1−q2,ǫ+3+=1,ǫ3++=−q2,(2.7)ǫ−3−=−q2,ǫ3−−=1Eq.(2.3)is then equivalent toX C X BǫBC A=0(2.8) and the R matrix can be expressed in the formˆR ABCD=δA CδB D−q−4ǫF ABǫF DC−q−4(q2−1)g AB g CD(2.9) Now we come to the definition of conjugation.We still chooselike in paper[1].But for generic complex q this is consistent with eqns.(2.3)only if we define¯q=q which means q is unchanged under conjugation.This forces us to distinguish between q(and its functions)and constant complex numbers which are to be conjugated as usual.(We mean e.g.the i in the Heisenberg relation,s.b.)That is done best if the vector space the q-deformed operators act on is considered as a(right)module over an algebra A.This associative(and commutative)algebra A over the complex numbers is generated by the powers of q:q,q2,...q r−1and the condition q r=−1.The integer r is taken larger than2.Within A we define an involution*which fulfills the usual conditionsa∗∗=a,(ab)∗=b∗a∗(αa+βb)∗=βb∗(2.11)whereα,β∈C.Those properties are consistent with the choice q∗=q which determines the involution for all elements.As a next step we consider a right module M over the algebra A.(Since A is commu-tative an equivalent approach is given considering a left module.)M is a complex vector space.For any a,b∈A andη,ξ∈M we haveη(ab)=(ηa)bη(a+b)=ηa+ηb(2.12)(η+ξ)=ηa+ξaand any combin ation of typeηa is again an element of M.For further application we need a hermitean structure which is created by a hermitean inner product.For any pair of elements a bilinear map<η|ξ>∈A is defined with the properties<η|ξ>∗=<ξ|η><ηa|ξb>=a∗<η|ξ>b(2.13)A third property,usually required for a hermitean product,includes the absence of zero norm states.We shall see below that such states cannot be excluded for our choice of q.Therefore,strictly speaking,our structure is not hermitean in the usual sense.Never-theless we keep this terminology but remember that all unusual properties are connected with the existence of zero norm states.The product allows the definition of the hermitean conjugationOη|ξ>(2.14)We use another symbol not to mix this with the involution in A.Subsequently hermitean and unitary(isometric)operators are defined.Operators in M can be viewed as matrices with entrances from A,hermitean conjugation is then transposition together with theinvolution in A defined above.It is then clear that ifλis an eigenvalue of O thenλ∗is an eigenvalue of O=O.We shall see below that for our q and the operators we are considering it is not necessary to distinguish between hermitean and self-adjoint operators.Their eigenvalues are real functions of q.One can show directly that the eigenvectors are orthogonal(under the product defined above)for different eigenvalues with the usual arguments.If a unitary operator has an eigenstateξwith eigenvalueλone can easily show<ξ|ξ>=λ∗λ<ξ|ξ>(2.15)which gives information aboutλonly for states with non-vanishing norm.This fact becomes important below.Based on eq(2.10)we can now proceed as in[1]and define a derivative,momentum, angular momentum and the scaling operatorΛin the same way.For the components of the momentum we have the analog of(2.8),while for angular momentumL C L BǫBC A=−1/q2W L A(2.16)andq4(q2−1)2L◦L=W2−1L A W=W L A(2.17)The scaling operatorΛis introduced in the same way with the propertiesΛ1/2X A=q2X AΛ1/2Λ1/2P A=q−2P AΛ1/2Λ1/2L A=L AΛ1/2(2.18)Λ1/2W=WΛ1/2Conjugation of vector values is analogeous to eq.(2.10),W is self-adjoint andΛis unitary up to normalization:Λ−1/2{(1+q−6)g AB W−(1−q−4)ǫABC L C}(2.20)2Now we have to study representations of this algebra.For q being a root of unity the physical relevant representations becomefinite dimensional while for real q they have infinite dimension.Thus there is no difference here between self-adjoint,essentially self-adjoint and hermitean operators.The representations will be studied in detail in Chap.4.3Representations of a one-dimensional q-deformed Heisenberg algebraWe consider now a one-dimensional example of a q-deformed Heisenberg algebra.That is neither a projection of the Euclidean space nor based on the deformation of any symmetry group.It is even not non-commutative in the sense of space coordinates because there is only one.Nevertheless it is based on a modified Leibniz rule and has been studied for real q in great detail[5,6].It reflects very nicely the deep role which is played by the scaling operatorΛthat one has to introduce in a general non-commutative structure of coordinates and momenta.The algebra looks as follows:1P X−√qXUqConjugation is given by¯P=P¯X=X(3.2)¯U=U−1While there is obviously no problem for real q,with our definition of conjugation for operators and involution of algebra elements eq.(3.2)is also consistent with(3.1).To give meaning to operators in our module space we have to enlarge our algebra A to include real functions of q in a straightforward way.We shall consider a representation of the algebra(3.1)based on eigenvectors of P.From the second equation it follows that applying U to such an eigenstate we obtain another one with eigenvalue multiplied by q−1.Therefore we haveP|n>π0=π0q n|n>π0(3.3) where n is integer,0≤n≤2r−1,andπ0is an arbitrary real function of q.FurtherU|n>π0=|n−1>π0(3.4) and according to what was stated in last Chapterπ0<n|m>π0=δ(3.5)nmNow we have an example that the self-adjoint operator P has eigenvalues being real functions of q.The powers occuring are a consequence of the properties of U.For our q choosen we can see that the eigenstate U|0>π0has the same eigenvalue as|2r−1>π0. Disregarding the case of degeneration we haveU|0>π0=C(π0)|2r−1>π0(3.6)where C is a phase factor and different C label different representations.From eqns.(3.4) and(3.6)we have U2r=C for any state in our representation.Now it is straightforward to define another unitary operator U′byU′=Ue−iα(√√λ(√2r|n−1>′−1q e−iαq nλπ0Keeping in mind all that we can still work with the states(3.11)as a basis to construct the X eigenstates.From the algebra(3.1)followsX|φk>=d k|φk−1>(3.14) for1≤k≤2r−1andX|φ0>=d0|φ2r−1>(3.15) Next we have to calculate d k.We apply the conjugate of eq.(3.9)to|φk>andfindd k=i2r q k−12r q−k+1d k+1a k(3.18)Consistency requiresa0=x mλ2rπ02r(−1)r f2(q,α)(3.20) where we have introduced the functionf(q,α)=rk=1(q k+12r−q−k−12r)(3.21)Eq.(3.20)gives(in principle)the possibility tofind the eigenvalues of X.They depend onπ0and the real function f2(q,α).The fact,that only(x m)2r is given,reflects the property that due to the unitary equivalence of X and P x m must be proportional to q m.Thus eq.(3.20)contains no new information we did not have before.The function f(q,α)occurs also in the more realistic three-dimensional case(s.next Chapter).Now we can compare our results with those for real q obtained in papers[5]and[6]. The main difference is that all our representations havefinite dimensions which avoids the mathematical problems of the real case.On the other hand we have to introduce an additional parameter C(orα)characterizing the representation.The operators X and P are manifestly equivalent in our representation.4SO q(3)deformation in compact spaceIn this Chapter we give the representations of the q-deformed algebra(2.8),(2.16)-(2.20) for q r=−1.We have not written the L A X B and L A P B relations which are the same as in[1].We are also not going to repeat the derivations of papers[1]and[7]leading to the T-operators and explaining the appearance of the Clebsch-Gordon coefficients because on the algebraic level there are no changes.The changes start as soon as representations are considered,what shall be done now.We choose L◦L,L3and X◦X as a complete set of commuting variables.One can proceed as in the undeformed case and exploit eqs.(2.16)and(2.17).For the angular momentum the eigenvalues areq−6L◦L|j,m,n>=(q2m−q2j+1+q−2j−1(q−q−1)2−1.The states are fully determined by the quantum numbers j,m and n.From thefirst eq.of(2.13)we read offX2|j,m,n>=l20q4n|j,m,n>(4.2) It is sufficient to choose the integer n as0≤n≤r−1.The parameter l0plays the same role asπ0in the one-dimensional case.All our representations are unitary and either irreducible or fully reducible[3].Irre-ducible representations are labelled by the integer j.Because of eq.(4.2)we deal with finite dimensional irreducible representations like in the one-dimensional case before.That and the existence of a j max are the main differences with respect to real q.The states are normalized in the usual way.The phase factors can be choosen to fulfillΛ12|j,m,n>=q3|j,m,n+1>(4.3) From eq.(2.16)the matrix elements of L±can be obtained.We mention for further useW|j,m,n>={2j+1}where we have introduced the abbreviations{a}=q a+q−a[a]=q a−q−a[j+m+1][j+m+2]<j+1,n X− j,n> <j−1,m+1,n|X+|j,m,n>=q m+2j+2[j−m+1][j−m+2]<j+1,n X− j,n> <j−1,m−1,n|X−|j,m,n>=q m2 [j−m+1][j+m+1]<j+1,n X− j,n><j−1,m,n|X3|j,m,n>=−q m+j+11+q2<j,n X− j+1,n>(4.7) Therefore only one reduced matrix element has to be determined what is easily obtainedfrom thefirst eq.of(2.3)and(4.2).Wefix the phase by setting<j+1,n X− j,n>=l0q j+2n[2][2j+1][2j+3](4.8)By the way,thefirst eq.of(2.3)also tells us that<j,n X− j,n>must vanish.Now we come to the matrix elements of P A.Based on eqs.(4.6)and(4.7)they are calculable relying on the matrix elements of the values X◦P and its conjugate P◦X.The Heisenberg relation(2.20)with the help of the R matrix(2.9)yields after contractionP◦X−q6X◦P=−i2(1+q−6)(q2+1+q−2)W(4.9)Together with its conjugation eq.(4.9)givesX◦P=−i2−Λ−1 q2(q2−1)P◦X=i2−q6Λ1q2(q2−1)(4.10)Therefore X ◦P has matrix elements only between neighbouring n .We consider now <j,m,n |X ◦P |j,m,n +1>=−q 2{[2j +3][2j +2]<j,n X − j +1,n ><j +1,n P − j,n +1>+[2j ][2j −1]<j,n X − j −1,n ><j −1,n P − j,n +1>}=−i q 5(q 2−1)(4.11)where the reduced matrix elements of P A are defined analogeous to eqs.(4.6)including the fact that they are no longer diagonal in n .Now it is straightforward to take<j,m,n +1|X ◦P |j,m,n >=−q 2{[2j +3][2j +2]<j,n +1 X − j +1,n +1><j +1,n +1 P − j,n >+[2j ][2j −1]<j,n +1 X − j −1,n +1><j −1,n +1 P − j,n >}=i q 2−1(4.12)We put in eqs.(4.7)and (4.6)and the conjugation relations<j +1,n P − j,n +1>=−q 2j +2<j,n +1 P − j,n ><j +1,n +1 P − j,n >=−q 2j +2<j,n P − j +1,n +1>(4.13)The system (4.11)and (4.12)can be rewritten as two recursion relations in j for the two unknowns,the reduced matrix elements of P .An easy way to solve it ,is to start with j =0,read offthe general formula and prove it by insertion.For clearness,we present all non-vanishing reduced matrix elements<j +1,n P − j,n +1>=−iq −j −6−2n Z −1,<j,n +1 P − j +1,n >=−iq −3j −8−2n Z −1<j +1,n +1 P − j,n >=iq 3j −2−2n Z −1,<j,n P − j +1,n +1>=iq j −4−2n Z −1(4.14)where the common denominator isZ =2l 0λ2−1.If j +1exceeds j max the matrix element simply vanishes as it does for j −1=−1.Our next aim is to calculate the eigenvalues of P 2≡P ◦P .We shall follow the lines of Chap.3and start with the definition of a unitary operatorU =q 3Λ1where we have omitted all quantum numbers which are unchanged.AfterU|0>=e iα|r−1>(4.17) we introduceU′=Ue−iα˜dk+2a k(4.22) Now it is necessary to distinguish between even and odd r.In thefirst case we obtain two different solutions putting a0=1,a1=0and vice versa.They contain either even or odd numbers of k in the sum(4.21).Consistency gives for the eigenvalues(p2+)r 2−1 k=0˜d2k(p2−)r 2−1k=0˜d2k+1(4.23)For odd r the sum(4.21)contains all numbers and hence(p2)r=r−1k=0˜dk(4.24)12The coefficients˜d k are calculated via the matrix elements of P2between the|j,n> states.We have the same structure as in thefirst parts of eqs.(4.11)and(4.12),e.g.<j,n+2|P2|j,n>=−q2{[2j+3][2j+2]<j,n+2 P− j+1,n+1><j+1,n+1 P− j,n>+[2j[[2j−1](4.25)<j,n+2 P− j−1,n+1><j−1,n+1 P− j,n>} With the results of eq.(4.14)we get<j,n+2|P2|j,n>=−q−4n−10(4.27)4l20λ2A little bit more lengthy is the calculation of the diagonal element due to the doubling of terms connected with intermediate states having quantum numbers n±1.<j,n|P2|j,n>=q−4n−6r<n+2|P2|n>+|n−2>′e2iar<n+2|P2|n>+q4k e2iα({4j+2}−q−4k−4e−2iαr)4l20λ2q−6=−where we have introduced the abbreviation[a]α=q a e iαr2=−i r2f(q,α)f(q,α−πr)(4.33) and for odd r(p2)r=−i2r4(for even r)as long as l0is keptfixed.It is natural to ask whether they can be considered as analogues of the X ifields(0≤i≤9)in the IKKT model[8].The role played there by SO(10,C)is here played by SO(3).Nevertheless there are substantial differences between the two sets of operators.Even though there is an analogue of their unitary gaugefields U i namely the unitary operator q3Λ1Concluding this remark we state,that we have found a self-consistent structure which is close to become an analogue of some IKKT like matrix model on a non-commutative torus.This problem is under work now.5AcknowledgementsThis work has been supported by Alfried Krupp von Bohlen und Halbach–Stiftung, Essen.The author thanks J.Wess,D.L¨u st and M.Karowski for helpful discussions.References[1]A.Lorek,W.Weich,J.Wess,Z.Phys.C76,375(1997).[2]A.Connes,Noncommutative Geometry(Academic Press,1994).[3]V.Pasquier,H.Saleur,Nucl.Phys.B330,523(1990).[4]G.J¨u ttner,M.Karowski,Nucl.Phys.B430,615(1994).[5]A.Hebecker,S.Schreckenberg,J.Schwenk,J.Wess,Z.Phys.C64,355(1994)[6]J.Schwenk,preprint MPI-PhT/94-36,hep-th/9406168.[7]B.L.Cerchiai,J.Wess,preprint MPI-PhT/98-09.[8]A.Connes,M.Douglas,A.Schwarz,preprint IHES/P/97/82,hep-th/9711162.15。