基于飞思卡尔单片机的两轮车控制系统设计

合集下载

基于飞思卡尔智能车控制系统的设计

基于飞思卡尔智能车控制系统的设计

汽车工业研究·季刊2021年第1期基于飞思卡尔智能车控制系统的设计▶◀……………………………………………………………………………马岩王伟军张辉唐国坤引言在21世纪智能化的发展或将成为未来的一种大趋势,近年来,它提高了技术机构的速度和微型计算机的生产效率,在集成智能控制的条件下,传感器系统是集成智能的,集成智能的机电产品能够模仿人类的智能,具有一定的判断力和智能。

从技术上讲,它取代了人脑的一部分。

汽车的发展距今也有100多年了,从上个世纪80年代开始直到今天,在智能控制方面的应用是越来越广泛,社会发展得越来越快,汽车的智能化也越来越受人们的青睐。

所谓智能就是用一些现代控制方法实现无人驾驶或者其他的动作。

智能车辆(Intelligent Vehicle ,简称IV ),又称轮式移动机器人,也被人们称为无人驾驶汽车。

它是可以自主决定的一种机器人,也是一个自动驾驶、自动决策、自动感知于一身的高级系统。

除了一些特殊用途,还被一些西方国家的重点关注。

很多的西方国家早在几个世纪以前就已经开始研究智能汽车而且也把他们当成重点来研究,例如“智能车辆系统”(Intelligent Vehicle Highway Systems ,简称IVHS )、“智能运输系统”(Intelligent Transporta⁃tion Systems ,简称ITS )。

在智能系统开发中,会彻底地改变原有汽车的一些基本的技术。

随着科学发展的速度,特别是在计算机、信息和现代科学的研究,所以目前的智能车系统终于取得了一定的成就。

在轿车和重型汽车上主要应用于碰撞预警系统、防撞及辅助驾驶系统、智能速度适应、自动操作等主要智能车辆技术,此技术的应用在军事上更为重要。

硬件设计智能小车的设计分为五个模块:单片机最小系统、红外导航、胡须导航、驱动电源模块、电机驱动模块。

(1)驱动电源模块电源模块这里采用LM7805、5V 电压调节器。

调压器工作的前提条件,是锂电池放出7.5V 电压。

基于飞思卡尔k芯片控制下的智能汽车

基于飞思卡尔k芯片控制下的智能汽车

基于飞思卡尔k芯片控制下的智能汽车随着科技的不断发展,智能汽车已经成为人们关注的热点。

智能汽车的理念是将各种计算机技术、信息技术、通讯技术等应用于汽车制造中,从而提高汽车的运行效率、安全性和舒适性。

而基于飞思卡尔k芯片控制下的智能汽车,则是一种应用飞思卡尔k芯片技术的智能汽车,其运行效率、安全性和舒适性都有极大的提升。

一、飞思卡尔k芯片的概述:飞思卡尔k芯片是飞思卡尔半导体公司推出的一款8位单片机芯片,该芯片结构简单、体积小、功能强大。

飞思卡尔k芯片具有低功耗、高速、高精度、易于编程和调试等特点,因此被广泛应用于智能汽车领域。

二、基于飞思卡尔k芯片控制下的智能汽车的功能:1.自动驾驶:基于飞思卡尔k芯片的智能汽车配备了高精度的定位系统、激光雷达、高清摄像头和超声波传感器等多种传感器设备,它能够感受周围的环境信息,进行自主导航、避障、停车等操作,实现自动驾驶。

2.智能行车:基于飞思卡尔k芯片的智能汽车配备了智能巡航系统、自适应巡航系统、车道保持系统等智能驾驶辅助系统,它们可以对汽车的速度、方向、行驶路线等进行控制和优化,使得汽车在行驶过程中更加平稳和安全。

3.智能安全:基于飞思卡尔k芯片的智能汽车配备了多个传感器装置、高清摄像头和行人识别系统等多种安全措施,它们可以准确地感知周围环境信息,对可能出现的危险情况提前做出反应,从而保障汽车乘客的安全。

4.智能娱乐:基于飞思卡尔k芯片的智能汽车配备了多媒体中心、智能语音助手、虚拟现实系统、视频通话系统等多种智能娱乐设施,乘客可以在愉悦的氛围中轻松度过一段旅途。

三、基于飞思卡尔k芯片控制下的智能汽车的优势:1.低功耗:基于飞思卡尔k芯片控制下的智能汽车采用了高效低功耗的8位单片机芯片,使得整个系统运行更加节能,延长了电池寿命。

2.高精度:基于飞思卡尔k芯片控制下的智能汽车采用多种高精度传感器,可以实现高精度的导航、定位和行车控制,提高了汽车的行驶精度。

3.易于编程和调试:飞思卡尔k芯片具有标准的编程接口和调试工具,使得开发人员可以快速高效地进行开发、调试和测试工作。

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。

在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。

实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。

关键词:控制;自平衡;实时性近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。

新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。

但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。

因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。

全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。

在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。

小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。

1 小车控制系统总体方案小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。

同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。

基于“飞思卡尔”单片机的重力感应遥控车设计

基于“飞思卡尔”单片机的重力感应遥控车设计

郑州轻工业学院本科毕业设计(论文)题目基于“飞思卡尔”单片学生姓名机的遥控车设计屈鹏专业班级学号电气工程及其自动化09-1班540901020134院(系)电气信息工程学院指导教师曹卫锋完成时间 2013年06月 01日郑州轻工业学院电气信息工程学院本科毕业设计任务书题目 基于“飞思卡尔”单片机的遥控车设计专业电气工程及其自动化 学号 540901020134姓名 屈 鹏主要内容、基本要求、主要参考资料等:主要内容:设计要求学生制作一个能够通过遥控指挥小车前进、倒退、左转和右转的四轮小车。

本设计要求学生自主构思控制方案进行系统设计,包括无线信号采集处理、动力电机驱动、转向舵机控制以及控制算法软件开发等,完成遥控车的工程制作及调试。

基本要求:① 熟练掌握飞思卡尔单片机原理及编程②设计单片机最小系统电路③智能车动力电机驱动电路④设计转向舵机控制电路⑤完成整个智能小车系统调试主要参考资料:[1] 马忠梅等编. 单片机的C 语言应用程序设计[M].北航出版社,1998.[2] 马淑华等编.单片机原理与接口技术[M]. 北京邮电大学出版社.2005.[3] 飞思卡尔公司编. 飞思卡尔单片机数据手册,2012.完 成 期 限:2013年 1月 7 日2013.01 ~ 2013.06指导教师签名:专业负责人签名:基于“飞思卡尔”单片机的遥控车设计摘要传统遥控车是利用遥控器的摇杆来控制小车前进、后退、左转和右转,然而经常玩遥控车会导致儿童手指骨骼生长变形,大拇指上肌肉拉伤等各种问题,为解决上述问题,设计了一款新型的遥控车。

本设计的遥控器采用STC单片机为控制核心,采用三轴加速度计的重力感应信号作为遥控车的控制信息,NRF2401无线传输模块作为无线发射单元将控制信息发送给小车,遥控车采用“飞思卡尔”公司的MC9S12XS128单片机为控制核心,采用NRF2401无线传输模块接收遥控器的控制信息,采用三路PWM控制小车的直流电机驱动和舵机驱动,分别实现小车的前进、后退和转向。

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。

本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。

系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。

整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。

通过蓝牙,还可以控制小车前进,后退,左右转。

关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravityaccelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG forcontrolling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable statequickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。

基于飞思卡尔单片机的智能车设计

基于飞思卡尔单片机的智能车设计

中文题目:基于飞思卡尔单片机的智能车设计外文题目:FREESCALE MCU-BASED DESIGN OF INTELLIGENT VEHICLE毕业设计(论文)共71页(其中:外文文献及译文5页)图纸共1 张完成日期2013年6月答辩日期2013年6月摘要本设计主要讨论了基于Freescale公司的MC9S12XS128芯片制作的自主巡线智能车的设计方案和原理。

本文将从机械结构设计,硬件电路设计和软件算法设计等几个方面全面介绍智能车的制作及调试过程。

根据第八届“飞思卡尔”杯全国大学生智能汽车竞赛的技术要求,赛车以检测通以20KHZ、100mA的导线的电磁场为基础,通过单片机采集到的磁感应电压信号,实现对赛车的转向控制,进而识别赛道达到路径寻迹的目的。

本设计针对控制要求对智能车模型的机械结构进行设计和调整,同时对智能车运行中产生侧滑的原因进行分析,并对智能车的质量和重心位置进行优化调整。

在硬件方面,系统由控制核心(MCU)模块、电源管理模块、路径识别模块、电机驱动模块、舵机控制模块、速度检测模块以及LCD显示模块等组成。

在软件方面,主要编写了主程序、转速检测程序、电机和舵机驱动程序等相关程序。

本设计在原有智能车系统的基础上,对硬件电路进行了改进,提高了路径检测的前瞻性与抗干扰性。

结果表明,智能车在速度、稳定性和可靠性上都达到良好的状态。

关键词:智能车控制;电磁传感器;路径识别;软件设计AbstractThis design focuses MC9S12XS128 based on Freescale's chip production line inspection autonomous intelligent vehicle design and principles. This article from the mechanical design, hardware design and software algorithm design and other aspects of comprehensive introduction smart car production and debugging process.According to the eighth "Freescale" Cup National Undergraduate Smart Car Competition technical requirements, in order to detect the car pass by 20KHZ, 100mA wire EMF-based microcontroller collected through magnetic induction voltage signal, steering control of the car, thus identify the track reaches the path tracing purposes. The design requirements for the control of the smart car model design and the mechanical structure adjustment, while the smart car running analyze the causes of skidding, and the quality and smart car adjustments to optimize the center of gravity position. In terms of hardware, the system controlled by the core (MCU) modules, power management module, the path identification module, the motor drive module, servo control module, the speed detection module and LCD display modules and other components. On the software side, the main compiled main program, speed detection procedures, motors and servo drivers and other related procedures.The design of the original smart car system, based on the hardware circuit has been improved to improve the prospective path detection and interference. The results show that the smart car in terms of speed, stability and reliability have reached a good state.Key words: Intelligent car control; The electromagnetic sensor; Software Design; Path recognition目录0前言.......................................... 错误!未定义书签。

毕业设计(论文)--基于单片机的两轮自平衡车控制系统设计

毕业设计(论文)--基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。

本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。

系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。

整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。

通过蓝牙,还可以控制小车前进,后退,左右转。

关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波PID算法Design of Control System of Two-WheelSelf-Balance Vehicle based on MicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG for controlling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable state quickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around.Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion; Complementary filter; PID algorithm1 绪论 (1)1.1自平衡小车的研究背景 (1)1.2 自平衡小车研究意义 (1)1.3 论文的主要内容 (2)2 课题任务与关键技术 (2)2.1 主要任务 (2)2.2关键技术 (2)2.2.1 系统设计 (2)2.2.2 数学建模 (2)2.2.3姿态检测 (3)2.2.4 控制算法 (3)3 系统原理分析 (3)3.1 控制系统任务分解 (3)3.2 控制原理 (4)3.3 数学模型 (5)4 系统硬件设计 (6)4.1 STC12C5A60S2单片机介绍 (7)4.2 电源管理模块 (8)4.3 车身姿态感应模块 (9)4.3.1 加速度计 (10)4.3.2 陀螺仪 (12)4.4 电机驱动模块 (14)4.5 速度检测模块 (16)5 系统软件设计 (16)5.1 软件系统总体结构 (17)5.2 单片机的硬件资源配置 (18)5.2.1定时/计数器设置 (18)5.2.2 PWM输出设置 (20)5.2.3 串行通信设置 (23)5.2.4 中断的开放与禁止 (26)5.3 MPU6050资源配置 (27)5.3.1 普通IO口模拟IIC通讯 (28)5.3.2 MPU6050资源配置 (32)5.4 系统控制算法设计 (34)5.4.1 PID算法 (34)5.4.2 互补滤波算法 (35)5.4.3 角度控制与速度控制 (35)5.4.4 输出控制算法 (36)6 总结与展望 (37)6.1 总结 (37)6.2 展望 (37)参考文献 (38)1 绪论1.1自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。

基于飞思卡尔单片机的两轮车控制系统设计

基于飞思卡尔单片机的两轮车控制系统设计

基于飞思卡尔单片机的两轮车控制系统设计
1.前言
本文以飞思卡尔的小车模型为对象,设计了以飞思卡尔单片机
MC9S12XS128 为核心,自主循迹的两轮车自平衡控制系统。

实验证明该方案在摄像头导航的两轮车系统中具有准确、快速、稳定的自主寻迹效果。

2.系统设计与原理
本系统以飞思卡尔公司生产的MC9S12XS128 单片机为控制核心,主要由电源管理模块、路径检测模块、车速检测块、加速度检测模块、角速度检测模块、直流电机驱动模块、液晶显示模块、串口调试等功能模块构成。

在电源管理模块为系统提供稳定电源的基础上,单片机把加速度和角速度检测模块获得的小车姿态信息、路径信息检测模块获得的小车前进方向信息、车速检测模块返回的车速信息通过PID 算法控制直流电机驱动模块,以使得小车在保持直立的前提下快速地行驶。

液晶显示模块可以实时地显示系统相关参数,串口调试模块把接收到单片机的数据送往上位机,方便相关参数及波形的实时观察和调试。

系统框图如图1 所示。

3.系统硬件设计
3.1 主控制器模块
本系统的主控制器是飞思卡尔公司生产的16 位MC9S12XS128 单片机,它负责对智能车所采集到的信号进行处理并向各个功能模块发送控制信号。

MC9S12XS128 单片机最高总线频率可达40MHz,片内资源包括8KRAM、8K。

基于MC9S12XS128的双轮平衡车控制系统设计毕业设计

基于MC9S12XS128的双轮平衡车控制系统设计毕业设计

基于MC9S12XS128的双轮平衡车控制系统设计[摘要]本文主要介绍了双轮平衡车的控制系统设计方案。

采用MC9S12XS128作为核心控制器,在此基础上增加了各种接口电路板组成整个硬件系统,包括单片机最小系统,直流驱动电机控制模块,电源管理模块,测速编码模块,人机交互等模块。

软件调试部分依次对应硬件各模块进行程序设计,包括A/D模块,PWM模块,ECT模块,PID控制算法,人机交互控制等。

完成车模的制作和软件设计后对整个控制系统进行调试,先阐述了调试的策略,再分别就现有调试工具条件下的软件和硬件调试进行了分析,对相应的调试方法做了基本的介绍。

最后根据调试情况对整个系统做了修改,基本达到设计要求。

[关键词]双轮平衡车;MC9S12XS128;模块设计;调试策略Based On MC9S12XS128 of the Two-wheeled BalancingVehicle Control System DesignElectrical Engineering and Automation Specialty CHEN MingAbstract: This article mainly introduces the balance of the Two-wheeled balancing vehicle control system design scheme. The MC9S12XS128 as core controller, on the basis of interface circuit board of increasing the hardware system, including single chip minimize system, dc motor control module, power management module, code modules speed, man-machine interaction module. Software debugging session in the corresponding module design program, including A/D module, PWM module, ECT module, PID control algorithm, the man-machine interactive control, etc. Accomplish the production and the software design draw after the whole control system for debugging, first expounds the commissioning of the strategy, second,different debugging tools under the conditions of existing software and hardware debugging are analyzed, the corresponding debugging method basic introduction. According to the situation of the whole system debugging have modified, basic to meet the design requirements.Key words: the Two-wheeled balancing vehicle; MC9S12XS128; MODULAR DESIGN ; Debugging strategy目录1 引言 (1)1.1 双轮自平衡小车的研究意义 (1)1.2 双轮自平衡小车的发展历程和现状 (1)1.2.1国外的研究成果 (2)1.2.2国内的研究成果 (2)1.3 本课题的研究内容和关键问题 (2)2 双轮平衡小车系统的总体概述 (3)2.1 系统组成 (3)2.2 系统各模块的主要功能 (3)2.3 系统的主要特点 (4)3 双轮平衡小车硬件电路设计 (4)3.1 整体电路设计 (4)3.2 单片机最小系统 (5)3.3 直流驱动电机控制电路 (6)3.4 电源模块电路设计 (6)3.5 测速编码电路设计 (7)3.5.1 陀螺仪电路 (8)3.5.2 编码器电路 (8)3.6 人机交互接口电路设计 (9)3.6.1CAN总线与LIN总线设计 (9)3.6.2通信接口设计 (10)3.6.3人机交互电路设计 (10)4 双轮平衡小车软件设计 (11)4.1 软件模块功能与框架 (11)4.1 A/D模块 (12)4.1.1A/D转换原理 (12)4.1.2A/D转换模块功能结构 (12)4.1.3A/D转换模块的编程步骤 (13)4.2 PWM模块 (13)4.2.1PWM的主要特点 (13)4.2.2PWM应用及初始化 (14)4.3 ECT模块 (14)4.4 PID控制算法 (15)4.4.1PID控制原理 (15)4.4.2 PID参数的整定 (16)4.5 人机交互 (16)4.5.1 LCD液晶显示 (16)4.5.2 矩阵键盘按键识别 (17)4.5.3 串口与上位机的通讯 (17)5 双轮平衡小车的系统调试 (18)5.1 调试策略 (18)5.1.1硬件调试 (18)5.1.2软件调试 (18)5.1.3综合调试 (18)5.2 串口调试 (18)5.2 监控调试 (20)5.3 无线调试 (21)5.3.1无限遥控开关 (21)5.3.2无线通信模块 (21)6 结论 (23)参考文献 (24)附录1:单片机最小系统原理图 (25)附录2:单片机最小系统电路图 (26)附录3:单片机最小系统PCB图 (26)致谢 (27)1 引言本章简要的介绍了两轮自平衡小车的起源与发展、研究意义以及国内外的研究现状,并依此提出了本论文研究的主要内容。

基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计

作者签名:
日期:



学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意 学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文 被查阅和借阅。本人授权湖南大学可以将本学位论文的全部或部分内容编 入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇 编本学位论文。 本学位论文属于 1 、保密□,在 ______ 年解密后适用本授权书。
Supervisor Associate professor ZHU Hao, Senior engineer WANG Bin May, 2014
工程硕士学位论文
湖 南 大 学 学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所 取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任 何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡 献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的 法律后果由本人承担。
√。 2、不保密□
(请在以上相应方框内打“√”)
作者签名: 导师签名:
日期: 日期:
年 年
月 月
日 日
I
基于飞思卡尔单片机的智能车及其调试系统设计


本文以飞思卡尔智能车竞赛为背景, 使用飞思卡尔公司提供的的 16 位单片机 MC9S12XS128 为核心控制器,以 CMOS 摄像头 OV7620 为核心传感器,并在 竞赛规定的统一车模平台上,构建完整的智能车系统及其调试系统。智能车通过 摄像头采集跑道图像信息送入单片机,在单片机中对输入的原始图像信息进行处 理,提取出赛道的特征信息,据此使用 PID 算法对转向和速度进行闭环控制。调 试系统 Bootloader 可以方便地对智能车程序进行代码更新。 本文智能车系统设计包括车体机械结构改装、智能车硬件和软件系统设计、 调试系统设计,具体研究内容如下: ( 1 )车体机械结构设计主要包括前轮的调节、 PCB 板的形状和布局、 车 身底盘的改装、图像传感器、舵机以及编码器的安装等; ( 2) 硬件电路设计部分主要包括: 1 ) 以低压差稳压芯片为核心的稳压电路, 可为系统的各个模块提供了稳定、可靠的工作电源,为智能车的稳定工作提供强 有力的保证; 2 )采用数字摄像头 OV7620 采集赛道信息,通过跟踪中线算法获 得黑线位置的数据; 3 )速度采集采用欧姆龙编码器作为测速传感器,用以完成 对速度的实时监测和反馈控制; 4 )用大功率半桥驱动芯片 BTN7971 搭建的 H 桥电机驱动电路,驱动电机稳定快速的运行; 5 )其它调试模块接口电路; ( 3 )软件系统设计完成了包括图像采集及滤波算法设计、 搜索黑线算法设计 以及舵机和电机的 PID 算法设计; ( 4 )调试系统设计使用 Visual C# 开发上位机软件,通过串口将 Code Warrior 编译生成的 S19 文件传输给下位机,下位机 Bootloader 在接收文件流的同时,解 析 S19 文件内容,并将机器码写入 Flash ,从而完成单片机的串口引导加载程序。 关键词:智能车;摄像头识别; PID ; Bootloader

基于单片机的两轮平衡车设计

基于单片机的两轮平衡车设计

2016年第8淛y信息疼甲文章编号=1009 -2552 (2016)08 -0025 -04 DOI:10.13274/ki.hdzj.2016. 08. 007基于单片机的两轮平衡车设计孙传开,罗飞(华南理工大学自动化科学与工程学院,广州510640)摘要:采用单片机MC9S12XS128作为控制器,结合陀螺仪ENC-03、三轴加速度计MMA7260 芯片,设计一个运行稳定、体积小、可匀速运动的两轮自平衡车。

通过介绍平衡车的平衡原理、系统架构以及软硬件设计,阐明两轮自平衡车的设计要点。

最后,通过系统理论分析以及实验 测试表明了这种设计方式的合理性和应用的可行性。

关键词:单片机;两轮自平衡;加速度计;陀螺仪;飞思卡尔中图分类号:TP368. 1文献标识码:AD e s ig n o f tw o-w h e e l c a r s y s te m b a s e d o n m ic r o c o n tr o lle rS U N C h u a n-k a i,L U O F e i(School of Automation Science and Engineering,South China University of Technology,Guangzhou510640,China) Abstract :This article mainly discusses design ol a small two-wheel sell-balancing car which can run stably in uniform motion,with microcontroller MC9S12XS128 as the controller and integrating an ENC-03 gyroscope as well as three-axis accelerometer MMA7260 chip.By introducing the balance principle of two-wheeled car control system,the overall structure of instrument and hardware as well as software design,it explains the design point of two-wheeled car control system.Finally,through the theoretical analysis and experimental tests it shows the feasibility and rationality of this design approach.Key words:microcontroller;two-wheeled car system;accelerometer;gyroscope;freescale0引言从交通工具到机器人研究,两轮车一直都广受 人们的关注,它不但可以大幅减少硬件成本而且对 空间以及能源的占用量也很少,具有很高的使用价 值和很大的应用前景。

基于单片机的两轮自动平衡小车系统的设计

基于单片机的两轮自动平衡小车系统的设计

第30卷第12期2020年12月长春大学学报JOURNAL OF CHANGCHUN UNIVERSITYVol.30No.12Dec.2020基于单片机的两轮自动平衡小车系统的设计杜丽敏,王岩(长春大学电子信息工程学院,长春130022)摘要:通过对倒立摆模型的受力分析,使两轮小车保持自平衡运行状态。

硬件上采用STM32F103ZET6单片机为核心控制器,利用MPU6050检测小车的速度和加速度,选择L298N驱动两个两相直流电机,采用霍尔测速码盘获得电机的转速,通过电磁检测电路实现电磁轨迹跟踪。

软件上采用PI和PD构成串级控制算法,MPU6050采集到的小车姿态数据经卡尔曼滤波进行数据处理。

最终实现了平衡车的稳定控制,完成了小车直立和行走功能。

关键词:两轮自动平衡小车;STM32F103ZET6;MPU6050;串级控制器;卡尔曼滤波中图分类号:TP273文献标志码:A文章编号:1009-3907(2020)12-0019-06两轮自动平衡车凭借其运动灵活、体积小巧、经济环保等优点逐渐被人们喜欢,并且在人们的生产生活中起着越来越重要的作用。

两轮自动平衡小车采用倒立摆工作原理,使小车保持平衡状态,其系统具有非线性、强耦合、不稳定等特点⑴。

因此,两轮自平衡车不仅在市场中有很大的价值和前景,在验证或校验控制算法和控制理论上更有一个很好的实验平台[2]。

文献[3-4]设计了基于LQR的最优控制器,该控制算法具有较快的动态响应速度,对于干扰具有良好的鲁棒性;文献[5]针对和LQR两种控制方法进行了对比分析,证明了前者在欠驱动系统的控制中具有一定的参考价值;文献[6]针对两轮平衡小车给出了硬件设计方案,以及基于PID的控制算法,实验中验证了设计方案的可行性。

本文主要研究了PID控制算法在两轮自动平衡小车中的应用。

首先,构建以STM32F103ZET6单片机为核心的两轮直立小车控制系统;其次,对两轮自动平衡小车进行了数学建模,验证了PD控制算法可以使小车保持直立稳定状态,进而基于PID设计了串级控制算法;最后将所设计的控制算法应用在了实物中,实现了小车的直立和行走功能。

基于飞思卡尔单片机的智能汽车设计

基于飞思卡尔单片机的智能汽车设计

基于飞思卡尔单片机的智能汽车设计摘要本智能车系统设计以 MC9S12DG128B 微控制器为核心,通过一个CMOS 摄像头检测模型车的运动位置和运动方向,使用LM1881视频分离芯片对图像进行处理,用光电传感器检测模型车的速度并使用PID 控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。

为了提高智能车的行驶速度和可靠性,采用了自制的电路板,在性能和重量上有了更大的优势,对比了各种方案的优缺点。

实验结果表明,系统设计方案可行关键词:MC9S12DG128,CMOS 摄像头,PIDThe Research of Small and Medium-sized Electric Machines in Fuan CityAuthor:Yao fangTutor:Ma shuhuaAbstractFujian Fuan City industry of electric motor and electrical equipment is the one of the most representative phenomenon of industry cluster in Fujian Province mechanical industry. Its output value of small and medium-sized electric machines accounts for 20% of the whole province’s electrical equipment indu stry. The output amount of small and medium-sized electric machines from this region takes up 1/3 of that of the whole nation. Fuan electric motor and electrical equipment industry plays a significant role in the development of local national economy, being considered to be the main growth point of local economy and called "the Chinese electric motor and electrical equipment city ".This paper launched a research on small and medium- sized electric machines in Fuan city from two angles. The first one inferred the situation of Fuan electric machine industrial cluster as well as the analysis of the temporary existed problems, and then propose a few of suggestions on the part of local government. The second part focus on the improvement of the competitiveness of Fuan electric machine enterprises, through the application of Michael Porter's Five Forces Model into the local industry of electric machine, consequently carried out some strategies local enterprises should take.Key Words: small and medium-sized electric machines, Five Forces Model, industrial cluster目录1 绪论 (1)1.1智能车竞赛背景介绍 (1)1.2智能车系统设计思路及方案分析 (2)1.3系统整体设计结构图 (3)2 机械结构的调整与设计 (4)2.1机械安装结构调整 (4)2.2舵机安装方式的调整 (4)2.3摄像头的安装 (5)2.4测速码盘的安装 (5)2.5前轮倾角的调整 (6)2.6地盘高度的调整 (7)2.7齿轮传动机构及后轮差速的调整 (7)3 硬件电路的设计与实现 (8)3.1硬件电路设计方案 (8)3.2硬件电路的实现 (8)3.2.1 以S12为核心的单片机最小系统 (8)3.2.2 主板 (13)3.2.3 电机驱动电路 (18)3.2.4 摄像头 (23)3.2.5 速度传感器 (24)3.2.6 加速度传感器 (24)3.2.7 去抖动电路 (25)4 软件系统设计与实现 (28)4.1软件系统结构方案选择 (28)4.2软件主流程 (28)4.3端口分配 (29)4.4底层驱动程序设计 (30)4.4.1 时钟模块 (30)4.4.2 PWM模块 (31)4.4.3 外部中断模块 (31)4.4.4 ECT模块 (32)4.4.5 AD模块 (32)4.4.6 串口模块 (33)4.4.7 普通IO模块 (33)4.4.8 实时中断 (34)4.5图像信息处理及道路识别程序设计 (34)4.5.1 赛道提取算法 (35)4.5.2 有一定抗干扰和抗反光能力的黑线提取算法 (37)4.5.3 道路识别算法 (39)4.6起跑线识别程序设计 (40)4.7车体控制程序设计 (41)4.7.1 舵机控制算法 (42)4.7.2 速度控制算法 (43)结论 (44)致谢 (45)参考资料 (46)附录 (47)附录A (47)1 绪论1.1 智能车竞赛背景介绍全国大学生飞思卡尔杯智能车竞赛是教育部主办的面向全国大学生的五大赛事之一(另外四个:数学建模、电子设计、机械设计、结构设计)。

基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计

基于飞思卡尔单片机的智能车及其调试系统设计基于飞思卡尔单片机的智能车及其调试系统设计摘要:本文介绍了一种基于飞思卡尔单片机的智能车设计方案,并详细阐述了其调试系统的设计和实现过程。

通过对传感器、驱动器和控制算法的整合与优化,实现了智能车对环境的感知、路径规划和自主导航功能。

调试系统包括软件调试和硬件调试两个方面,通过实验验证了系统的可行性和稳定性。

实验结果表明,该智能车具备了较高的精确性和响应速度,能够在复杂的环境中实现准确导航。

关键词:飞思卡尔单片机;智能车;调试系统;感知;路径规划;自主导航1.引言智能车作为人工智能领域的一个重要应用方向,在交通运输、环境监测等许多领域有着广泛的应用价值。

随着单片机技术的不断发展和普及,基于飞思卡尔单片机的智能车设计方案逐渐成为研究的热点。

本文旨在利用飞思卡尔单片机开发一种具备感知、控制和规划等功能的智能车,并设计相应的调试系统来验证其工作状态和性能。

2.智能车硬件设计智能车的核心是以飞思卡尔单片机为主控制器的控制系统。

该系统由多个模块组成:传感器模块、驱动器模块、通信模块和电源管理模块。

传感器模块用于感知环境,包括超声波传感器、红外传感器等。

驱动器模块用于控制车轮的转动,实现车辆的前进、后退和转向功能。

通信模块用于与外部设备进行数据交互,电源管理模块用于管理车辆的电力供应和充放电管理。

3.智能车软件设计智能车的软件系统主要包括感知模块、控制模块和规划模块。

感知模块利用传感器获取环境信息,并将其转化为数字信号。

控制模块根据感知模块的数据进行判断和决策,控制车辆的运动。

规划模块根据车辆当前位置和目标位置,采用路径规划算法计算最优路径,并通过控制模块实现车辆的导航功能。

4.智能车调试系统设计智能车的调试系统包括软件调试和硬件调试两个方面。

软件调试主要涉及程序的编写、调试和验证,通过仿真、调试和测试等手段,确保软件系统的正确性和稳定性。

硬件调试主要涉及电路连接、传感器的调试和驱动器的测试,通过检查电路连通性、校准感知模块和测试驱动器的工作状况来验证硬件系统的可靠性和性能。

基于飞思卡尔MC9S12XE系列单片机的汽车电子车身控制器硬件自动化设计

基于飞思卡尔MC9S12XE系列单片机的汽车电子车身控制器硬件自动化设计

要 求 填 写 输 入 输 出信 息表 ,就 可 以 自动 生 成 满 足功 能 的 电路 原 理 图。根据 汽 车 电子 行 业 的特 点 ,将 自动 化 硬 件 设 计 向 更 为 专 业 化 的 方 向进 一 步 尝试 , 目标 是 能创 建 一 个 能 够 满 足 各 种 实际 负 载和 功 能 需 求 , 并且 在 成 本 上较 为优 化 的 专 业性 平 台 型 软件 。 关键 词 : 单 片机 ; 汽 车 电子 ; 自动化 设 计 ;硬 件 设 计 中图 分 类 号 : T P 3 1 1 文献 标 志码 :A
Mi c r o c o mp u t e r A p p l i c a t i o n s V o 1 . 2 9 . N o . 1 1 . 2 0 1 3
文章编号 :1 0 0 7 . 7 5 7 X( 2 0 1 3 ) 1 1 - 0 0 4 9 - 0 2
开 发应 用
微 型 电脑 应 用
2 0 1 3 年第 2 9 卷第 1 1 期
基 于 飞思 卡 尔 MC 9 S 1 2 X E系 列 单 片机 的汽 车 电子 车 身 控 制 器 硬 件 自动 化 设 计
刘继阳 路 林 吉
摘 要 : 旨在 介 绍 一 种 汽 车 电子行 业 的硬 件 自动化 设 计 软 件 ,主 要 用 于 汽 车 车 身控 制 系统 。使 用 者 只 要 明确 系统 需 求 ,按 照
” i

I _
… _ … 一_
环境 ,电路硬什 的 自动化 设计只能针对某 一 行业或者应用 ,
并 大 部 分针 对 的 足 局 部 电路 拓 扑 。 本 文 的 土 要 电子的 自动化硬什设计软什 , 在产 品的系

基于飞思卡尔单片机的智能汽车设计

基于飞思卡尔单片机的智能汽车设计

基于飞思卡尔单片机的智能汽车设计————————————————————————————————作者:————————————————————————————————日期:基于飞思卡尔单片机的智能汽车设计摘要本智能车系统设计以 MC9S12DG128B 微控制器为核心,通过一个CMOS 摄像头检测模型车的运动位置和运动方向,使用LM1881视频分离芯片对图像进行处理,用光电传感器检测模型车的速度并使用PID 控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。

为了提高智能车的行驶速度和可靠性,采用了自制的电路板,在性能和重量上有了更大的优势,对比了各种方案的优缺点.实验结果表明,系统设计方案可行关键词:MC9S12DG128,CMOS 摄像头,PIDThe Research of Small and Medium—sized Electric Machines in FuanCityAuthor:Yao fangTutor:Ma shuhuaAbstractFujian Fuan City industry of electric motor and electrical equipment is the one of the most representative phenomenon of industry cluster in Fujian Province mechanical industry. Its output value of small and medium-sized electric machines accounts for 20% of the whole province’s electrical equipment industry。

The output amount of small and medium—sized electric machines from this region takes up 1/3 of that of the whole nation. Fuan electric motor and electrical equipment industry plays a significant role in the development of local national economy, being considered to be the main growth point of local economy and called ”the Chinese electric motor and electrical equipment city ”。

毕业设计任务书-(基于单片机的两轮平衡车控制系统设计)

毕业设计任务书-(基于单片机的两轮平衡车控制系统设计)

任务书填写要求
1.毕业设计任务书由指导教师根据各课题的具体情况填写,经学生所在学院的负责人审查、负责人签字后生效。

此任务书应在毕业设计开始前一周内填好并发给学生;
2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴;
3.任务书内填写的内容,必须和学生毕业设计完成的情况相一致,若有变更,应当经过所在专业及学院领导审批后方可重新填写;
4.任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。

学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字;
5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。

如“2004年3月15日”或“2004-03-15”。

毕业设计任务书
毕业设计任务书。

基于飞思卡尔单片机的智能车控制系统设计

基于飞思卡尔单片机的智能车控制系统设计

毕业设计(论文)基于飞思卡尔单片机的智能车控制系统设计系别自动化工程系专业自动化班级5060418姓名王皓明指导教师赵一丁2010年6月16日基于飞思卡尔单片机的智能车控制系统设计摘要本文以第四届全国大学生智能车竞赛为背景,介绍了智能赛车控制系统的软硬件结构和开发流程。

该比赛采用组委会规定的标准车模,以Freescale半导体公司生产的16位单片机MC9S12DG128为核心控制器,在CodeWarrior 4.7开发环境中进行软件开发,要求赛车在未知道路上完成快速寻线。

本智能车采用双排光电传感器对赛道进行检测,工作电压能与最小系统工作电压相同,可共用一个电源模块。

通过光电传感器提取获得黑线位置,用PID方式对舵机进行反馈控制。

同时通过速度传感器获取当前速度,实现速度闭环控制,根据赛道类型预判信息和当前速度信息对速度进行合理控制。

整个硬件系统包括车模机械结构调整、稳压电源设计、核心控制电路板设计、后轮电机驱动模块设计和上位机通信设计等等。

经过查看各种相关资料,对硬件进行了大量的优化,如针对对各种稳压芯片的测试,确定最优电源电路;测试各种测速方式,最终选用光电管作为测速模块;并在智能车调试过程中不断改进机械结构,使小车运行更加稳定、迅速。

软件系统包括程序初始化、数据采集和车体控制的算法。

为了提高智能赛车的行驶速度和可靠性,经过多次机械结构调整及电路板设计,并经过不断试验,最终确定了现有的系统机械结构和各项控制的PID参数。

关键词:MC9S12DG128 ,智能车,双排光电传感器,PIDIntelligent vehicle control system design based on freescale MCUAuthor :Wang HaomingTutor :ZhaoYidingAbstractBased on the 4th China university of intelligent car race for background, introduces the hardware and software of the control system of intelligent car structure and development process. The game using the standards prescribed by the organizing committee to Freescale semiconductor company models, the production 16-bit single chip MC9S12DG128 for core controller, in CodeWarrior 4.7 development environment in software development and requirement on the road on unknown quick line.This intelligent vehicle using double row of photoelectric sensor, voltage can work with minimal systems can share the same voltage, a power supply module. Through the intelligent vehicle, with black extracted on the way to the PID feedback control. And through the velocity sensor for current velocity, realize speed closed-loop control circuit, according to the type of information and the speed of anticipation to speed control information. The hardware system including mechanical models ,structure adjustment, manostat design, the core control circuit design, rear motor driver module design and computer communication design etc. After check all relevant information on the hardware, the large amounts of optimization, such as all kinds of pressure in the test chip and the optimum power supply circuit, Testing various ways, finally chooses phototube module as a type of cell, And in the intelligent vehicle commissioning process improvement, the mechanical structure is more stable operation, quick. Software system including the initial procedure, the data acquisition and control algorithm. In order to improve the speed of intelligent cars and reliability, and after many mechanical structure adjustment and circuit design, and finally determined through continuous test, the existing system of the mechanical structure and PID control parameters.Key words:MC9S12DG128, intelligent vehicle, double row photoelectric sensor, PID目录1 绪论 (1)1.1智能车的背景及意义 (1)1.2智能车竞赛的研究现状 (2)1.2.1 国外智能车竞赛现状 (2)1.2.2 国内智能车竞赛现状 (3)1.3本文的概况及结构安排 (7)2 智能车方案设计 (8)2.1智能车设计的基本要求 (8)2.2智能车的双排传感器循迹策略方案设计 (8)2.2.1 双排传感器的优势 (8)2.2.2 传感器阵列布局 (9)2.2.3 直道识别方式控制策略 (9)2.2.4 直线稳定控制策略 (13)2.2.5 弯道控制策略 (13)2.2.6 实测结果和现象分析 (14)2.3车模参数 (15)3 硬件设计 (18)3.1智能车整体结构 (18)3.2MC9SDG128B的最小系统及接口设计 (19)3.3电源管理及分布 (20)3.4光电传感器布局 (21)3.4.1 赛道识别传感器模块 (21)3.4.2 测速模块 (22)3.5电机驱动模块 (23)3.6舵机驱动模块 (24)3.7拨码开关模块 (25)4 机械结构调整 (27)4.1一些重要参数对赛车的影响 (27)4.2车模底盘参数调整 (28)4.3重心位置对汽车性能的影响 (30)4.4汽车侧滑的处理 (31)4.5底盘离地间隙 (32)4.6齿轮传动间距调整 (32)4.7后轮差速机构调整 (32)5 智能车软件开发环境及软件设计 (34)5.1智能车软件开发环境 (34)5.1.1 软件调试软件Code Warrior (34)5.1.2 无线调试模块 (36)5.2软件设计 (37)5.2.1 初始化模块 (37)5.2.2 智能车系统的控制策略的设计及实现 (41)5.2.3 PID参数的整合 (45)结论 (48)致谢 (50)参考文献 (51)附录 (52)附录A:智能车硬件连接图 (52)附录B:智能车最终实物图 (53)附录C:PID CONTROLLER (54)1 绪论1.1 智能车的背景及意义智能车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械、车辆运动学等多个学科;主要由路径识别、角度控制及车速控制等功能模块组成。

基于飞思卡尔单片机控制的两轮平衡小车研制

基于飞思卡尔单片机控制的两轮平衡小车研制

图5-3 小车底板有限元分析(位移)
图5-4 小车底板有限元分析(应力) 图4-1 爆炸视图 图2-2 不同阻尼力下的单摆运动
5.力学分析 5.1 联轴器的力学分析
如图2-2,如果没有阻尼力,单摆会在垂 直位置左右摆动。阻尼力会使得单摆最终停止 在垂直位置。阻尼力过小(欠阻尼)会使得单 摆在平衡位置附件来回震荡。阻尼力过大(过 阻尼)会使得单摆到达平衡位置时间加长。那 么就一定存在这样的一个阻尼系数。它能够让 单摆在最短的时间之内,恢复到平衡位置。 3.结构方案设计 在方案设计过程中,首先对小车轮子的安 装方向进行了选择,以确保能够与之前确定的 一级平面倒立摆数学模型进行吻合。然后结合 实际生产中的两轮自平衡小车产品,对整车机 械零件和各种模块安装位置进行了方案设计和 结构简化。 3.1 两轮位置关系的选择
相比无源相控阵雷达具有更大的优势,代表今 后雷达探测技术的发展方向。 3.相控阵技术在机载火控雷达中的作用 由于相控阵技术相对于传统的机械扫描天 线,具有许多得天独厚的优势。因此,将相控 阵技术应用于机载火控雷达,必将使现有机载 雷达的探测性能得到极大的提升。下面从几个 主要方面对此加以说明: 3.1 相控阵技术对提高机载火控雷达作用 距离的意义 相控阵技术应用于机载火控雷达后,将显 著提高战机的探测距离。对于现代空战中,先 敌发现就等于先敌击落,因此战机发现敌机的 距离越远越好。为了提高雷达的作用距离,就 需要增加其信号功率与天线口径。将传统机械 扫描天线用相控阵天线代替后,在现有的空间 尺寸上,可以实现天线直径和天线增益的双重 提高。此外利用相控阵技术,其每个辐射单元 能够发射的电磁波的能量都得到极大提高。在 保证散热及部件工作条件限制的情况下,雷达 的发射功率有了显著提升,其探测距离也就更 远。 3.2 相控阵技术对提高多目标跟踪能力的 作用 相控阵技术对提高战机多目标的跟踪能力 也有十分明显的作用。由于可以通过电子计算 机控制移相器来改变每个辐射单元发射的电磁 波的频率和相位,因此与传统机械扫描方式相 比,它能够实现在大空域范围内的连续快速无 惯性的扫描。这就保证了雷达在跟踪目标时的 连续性和稳定性,确保目标始终在雷达视线范 围之内。同时,相控阵技术在对多个威胁目标 进行探测跟踪时,还能根据目标的威胁等级自 动为其分配不同的扫描波形、扫描频率及波束 驻留时间,从而大大提高了战机对多目标的跟 踪定位能力。 3.3 相控阵天线对提高机载火控雷达生存 的偏移量。通过多次采集平均可以获得更加稳 定准确的参数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-10-基于飞思卡尔单片机的两轮车控制系统设计Study of Two-wheeled Car System Based on Freescale Microcontroll er 西南科技大学信息工程学院 王 悦 杨文超 陈晓琴 赵思蕊 武 丽WANG Yue,YANG Wen-chao,CHEN Xiao-qin,ZH AO Si-rui,WU Li (South west universityo f science and technology,Mianyang 621010,China)【摘要】本文设计了一种基于飞思卡尔单片机的两轮车控制系统。

该系统以飞思卡尔单片机为核心,采用加速度传感器和陀螺仪来检测小车当前姿态,结合互补滤波算法控制小车的平衡;然后由摄像头检测路况信息,控制小车的行驶方向;最后采用PID算法通过直流电机驱动电路在固定的周期内交替地控制小车的平衡和行驶方向,使小车按预设轨道行进。

【关键词】飞思卡尔;单片机;两轮;平衡;摄像头Abstract:This article designs a two-wheeled car control system based on Freescale microcontr oller.Thi s system takes Freescale mic r ocontroller as core,use s the acceleration sensor and gyroscope to detect the car’s current posture,combines with the complementary fi lter algorithm to control the car's balance.Then,this system uses camera to detect the path information to control the direction of the car.Finally,the car's speed and direction are controlled by a DC motor drive module through the PID algorithm take place by turn in an alternately fi xed cycle,to make sure the car can travel along any default routes.Keywords:Freescale;microcontroller;two-wheeled;balance;camera1.前言本文以飞思卡尔的小车模型为对象,设计了以飞思卡尔单片机MC9S12XS128为核心,自主循迹的两轮车自平衡控制系统。

实验证明该方案在摄像头导航的两轮车系统中具有准确、快速、稳定的自主寻迹效果。

2.系统设计与原理本系统以飞思卡尔公司生产的MC9S12XS128单片机为控制核心,主要由电源管理模块、路径检测模块、车速检测模块、加速度检测模块、角速度检测模块、直流电机驱动模块、液晶显示模块、串口调试等功能模块构成。

在电源管理模块为系统提供稳定电源的基础上,单片机把加速度和角速度检测模块获得的小车姿态信息、路径信息检测模块获得的小车前进方向信息、车速检测模块返回的车速信息通过PID算法控制直流电机驱动模块,以使得小车在保持直立的前提下快速地行驶。

液晶显示模块可以实时地显示系统相关参数,串口调试模块把接收到单片机的数据送往上位机,方便相关参数及波形的实时观察和调试。

系统框图如图1所示。

3.系统硬件设计3.1 主控制器模块本系统的主控制器是飞思卡尔公司生产的16位MC9S12XS128单片机,它负责对智能车所采集到的信号进行处理并向各个功能模块发送控制信号。

MC9S12XS128单片机最高总线频率可达40MHz,片内资源包括8K RAM、8K EEPROM和128K Flash,拥有4路8位或2路16位脉宽调制模块(PWM)、2个8路10位A/D转换器和带有16位计数器的8通道定时器、UART、PIT、I2C、FTM等外部接口模块。

3.2 电源管理模块可靠的电源是系统稳定运行的前提。

本系统采用额定电压7.2V 、额定容量2000mAh的镍镉电池作为动力源。

为减小电源纹波,获得更稳定的供电电压,本系统选用串联线性稳压芯片LM2940搭建5V稳压电路,并分别向主控制器模块、路径信息检测模块、车速检测模块、加速度检测模块、角速度检测模块、液晶显示模块和串口调试模块供电,再经过AMS1117稳压到3.3V,向无线传输模块供电。

直流电机驱动模块则直接由电池供电。

系统电源管理模块框图如图2示。

3.3 路径信息检测模块由COMS摄像头和硬件二值化电路组成的路径信息检测模块通过检测跑道两边2.5cm宽的黑线来拟合赛道中心以实现路径信息检测。

COMS摄像头是按固定分辨率以隔行扫描的方式采集图像上的点,并将这些点的灰度值通过图像传感芯片转换成模拟电压信号,然后采用二值化电路把此信号转换成数字信号,通过单片机I/O口采集获得赛道信息。

硬件二值化检测电路如图3所示。

硬件二值化电路的工作原理是通过图像传感芯片获得的模拟信号经R1、R2限流后输出到三极管Q1,使三极管Q1始终处于不饱和放大状态。

R3上的电流大小随此模拟信号的变化而成反比变化,从R3采样出来的电压信号即为通过图像传感芯片获得模拟信号的镜像信号,最后通过比较器输出表征赛道信息的数字信号。

3.4 车速及运动方向检测模块为了实现系统的闭环控制,在车模运行过程中需要实时监控其速度。

本系统在左右电机上各安装一个500线两相光电编码器。

在固定周期内,利用单片机内部计数器测量由编码器返回的脉冲信号个数以获得车模的运动速度大小;由于编码器A、B 两相相位差为90°,可通过比较A、B两相信号先后顺序来判断电机的正反转,便可知道小车的运动方向。

3.5 加速度检测模块加速度计可以测量由地球引力作用或者物体运动所产生的加速度。

本系统选用MMA7260作为加速度检测器件,MMA7260是一款低成本单芯片三轴高灵敏度加速度传感器,可以同时输出三个方向上的加速度模拟信号,具有功耗低、工作范围宽等特点,并且具有4种不同的高灵敏度选择模式以适应不同的加速度的测量要求。

通过软件设置让加速度传感器采用800mV/g的工作模式,使MMA7260各轴信号输出灵敏度为800mv/g,这时信号不需要进行放大,可以直接送到单片机进行A/D转换。

同时由于MMA7260采用了开关电容滤波图1 系统框图图2 系统电源管理模块框图图3 硬件二值化电路图图4 电机驱动电路图5 主程序流程图图6 中断函数流程图器,会有时钟噪声产生,所以需要在传感器输出端采用RC滤波电路,以改善信号的质量。

加速度传感器在受外界振动时易带来测量误差,并且测量误差的大小和传感器在车模上安装的高度成正比。

为减小由于安装高度带来的测量误差,加速度传感器在小车上应尽可能安装得低一些,但是依然不能彻底消除由于小车振动带来的误差,因此需要角速度传感器的辅助来获得车模直立平衡控制所需要的倾角信息。

3.6 角速度检测模块本系统选用陀螺仪ENC-03来测量物体在旋转时的角速度。

陀螺仪的输出信号是相对灵敏轴的角速度,通过角速率对时间积分可得到围绕灵敏轴旋转过的角度值,即小车的倾斜角度。

因为陀螺仪易受温度和震动等因素的影响而产生微小的漂移和偏差,经积分后形成累计误差,最终导致电路饱和,无法得到准确的角度信号。

因此,本系统采用互补滤波算法把加速度传感器获得的角度信号与陀螺仪输出经积分后的角度进行融合,最后得到较准确的车模倾角信息。

3.7 直流电机驱动模块车速控制单元采用脉宽调制技术(PWM),加上PID算法实现闭环控制。

系统利用单片机输出PWM信号通过隔离芯片LM244来控制直流电机驱动芯片BTS7960,通过改变PWM波的占空比调节电机的转速,加上PID算法对电机转速进行闭环控制。

直流电机驱动芯片BTS7960是大电流、半桥、低通态电阻的集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。

P沟道高边开关省去了电荷泵的需求从而减小了EMI。

集成驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和欠压、过压、过温、过电流及短路保护的功能。

采用BTS7960搭建的电机驱动电路如图4所示。

3.8 串口调试模块调试模块用于建立良好的人机交互界面,便于对系统相关波形及参数的观察和调试。

本系统的调试模块采用RS-232串口通信,其最远传输距离可达到50英尺,最高传输速率是20Kbps。

能做到双向传输,全双工通信。

因为RS-232上传输的数字量采用负逻辑,只与地对称,所以与单片机连接时需要加入电平转换芯片MAX232。

4.系统软件设计系统软件使用C语言编写而成,采用模块化设计思想,以主程序为核心,设计了单片机初始化模块、平衡控制模块、速度控制模块、转向模块、串口发送模块、液晶显示等模块。

4.1 系统主函数系统进入工作状态时主函数首先进行系统初始化、发送系统相关参数到上位机、液晶显示、读取小车倾角参数等功能。

初始化工作结束后便等待各个中断函数的执行。

主程序流程图如图6所示。

4.2 中断函数系统中断函数利用主函数设置和通过传感器检测到的各项参数来控制小车的平衡、速度和转向。

程序进入总中断后,首先通过加速度传感器和陀螺仪检测小车的倾角信息,以控制小车的平衡;在保证小车平衡的前提下给定小车前进速度,然后通过路径信息检测模块获得小车转向所需要的信息。

这样一来,在固定周期内循环控制小车的平衡、速度和转向,最终使得小车稳定并且快速地在跑道上行驶。

中断函数流程图如图7所示。

4.3 互补滤波算法陀螺仪的动态响应较好,可以检测瞬态角度变化,但由于其本身存在累计漂移误差,不适合长时间单独工作;加速度计的静态性能较好,能够准确地检测静态角度,但受动态加速度影响较大,不适合测量动态变化角度。

因此本文采用互补滤波算法将陀螺仪和加速度计测量到的角度信息进行融合,得到准确的车模倾角信息。

互补滤波算法公式为:θ_n e w=α_g y r o*(θ_o l d+ω_gyro)+β_acc*θ_acc上式中θ_new是第n次滤波后的角度值,θ_old是第n次滤波前的角度值,α_gyro是陀螺仪滤波权重系数,在本系统中取值为0.97,β_acc是加速度计滤波权重系数,在本系统中取值为0.03,ω_gyro是第n次陀螺仪采样测量的角速度值,θ_acc时第n次加速度计采样测量的角度值。

其中陀螺仪滤波权重系数和加速度计滤波权重系数纯在如下关系:α_gyro+β_acc=14.4 小车平衡控制算法本系统在小车平衡控制上采用了PD算法,小车平衡控制算法公式为:ν_temp=P*θ_new+D*ν_gyro上式中ν_temp是控制小车平衡的电机控制变量,θ_new是当前小车倾斜角度,ν_gyro是当前小车的角速度。

相关文档
最新文档