中考数学总复习 第一编 教材知识梳理篇 第一章 数与式 第三节 代数式及整式运算(精讲)试题
中考数学复习讲义课件 中考考点解读 第一单元 数与式 第3讲 代数式与整式(含因式分解)
的次数是()
A.25
B.33
真题自测明确考向
体验达州中考真 题
命题点1列代数式及求值(10年6考,其中2014年2考)
1.(2020·达州)如图,正方体的每条棱上放置相同
数目的小球,设每条棱上的小球数为m,下列代数
式表示正A方体上小球总数,则表达错误的是()
A.12(m-1)
B.4m+8(m
-2)
C.12(m-2)+8
D.12m-16
(ab)n=______(n是整数)
b+c b-c
同底数幂相 am·an=a_m_+__n__(m,n都
乘
am是-整n数)
同底数幂相 am÷an=a_m_n____(m,n都
除
是a整nb数n )
(am)n=______(m,n都
平方差公式:(a+b)(a-b)=_________
完单全项平式方把公系式数:、(a同±底b)2数=幂__分__别__相__乘__,__对_于只在一 乘 个单项式里含有的字母,则连同它的指数
2
5.(2016·达州)如图,将一张等边三角形纸片沿中
位线剪成4个小三角形,称为第一次操作;然后,
将其中的一个三角形按同样方式再剪成4个小三角
形,共得到7个小三角形,称为第二次操作;再将
其中一个三角形按同样方式再剪成4个小三角形,
共得到10个小三B角形,称为第三次操作;….根据
以上操作,若要得到100个小三角形,则需要操作
乘法 平方差公式:(a+b)(a-b)=_________
先把这个多项式的每一项除以这个单项式,再把所
得的单商项相加.如(am+bm)÷m=_______.
式 把系数与同底数幂分别相除作为商的
最新中考数学总复习第一部分数与代数 第一章 数与式 第3讲 代数式、整式与因式分解
数学
8.计算: (1)3x2·5x2= 15x4 ; (2)3a(5a-2b)= 15a2-6ab ; (3)(3x+1)(x+2)= 3x2+7x+2 ; (4)10ab3÷(-5ab)= -2b2 ; (5)(6ab+5a)÷a= 6b+5 .
返回
数学
9.乘法公式 (1)平方差公式:(a+b)(a-b)= a2-b2 . (2)完全平方公式:(a±b)2= a2±2ab+b2 .
返回
数学
11ቤተ መጻሕፍቲ ባይዱ分解因式: (1)a3b-ab= ab(a+1)(a-1) ; (2)3ax2+6axy+3ay2= 3a(x+y)2 .
返回
数学
课堂精讲
考点1 代数式与代数式求值
1.(2021温州)某地居民生活用水收费标准:每月用水量不超过
17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区
返回
数学
课前预习
1.(2021 广州模拟)单项式-3πa2b的系数是
4
-3π
4
,次数是
3
.
2.(2021 汕尾模拟改编)下列说法错误的是( B )
A.3xy 的系数是 3 C.-ab3 的次数是 4
B.2xy2 的次数是2
3
3
D.5x2-2xy-1 是二次三项式
返回
数学
3.(2021 广州)下列运算正确的是( C )
某用户上月用水量为20立方米,则应缴水费为( D )
A.20a元
B.(20a+24)元
C.(17a+3.6)元
中考数学总复习 第一章 数与式 第3课 整式及其运算课件
题型精析
题型一 幂的运算
要点回顾:幂的运算法则:am·an=am+n(m,n 均为整数,a≠0);(am)n
=amn(m,n 均为整数,a≠0);(ab)m=ambm(m 为整数,a≠0,b≠0);am÷an
=am-n(m,n 均为整数,a≠0) .
【例 1】 (2015·潜江)计算(-2a2b)3 的结果是( )
A. 0
B. 1
C. 2
D. 3
【错误原型】 A 或 B 或 C
【错因分析】 幂的运算法则不熟练,张冠李戴.
【正确解答】 D
【解决方案】 熟记幂的运算法则.
易错易混点 2:乘法公式 【例题 2】 下列计算对吗?并说明理由. (1)(-a+b)(a-b)=a2-b2. (2)(3a+2b)2=9a2+4b2. 【错误原型】 乘法公式记忆混乱.
数是__1___.
3.利用平方差公式计算:899×901+1=_8_1_0_0_0_0_. 4.计算:-15-2+( 5)0=___2_6_. 5.化简:m3÷m2=__m__;(a-3)2=___a_2-__6_a_+__9___.
6.如果(x-6)0=1,那么 x 的取值范围是( B )
A. x=6
②整式的乘法:单项式与单项式相乘,把系数、同底数幂分别相乘作为积
的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式乘多项式:m(a+b)=_m__a_+__m_b__. 多项式乘多项式:(a+b)(c+d)=__a_c_+__a_d_+__b_c_+__b_d_. ③乘法公式 平方差公式:(a+b)(a-b)=__a_2_-__b_2_. 完全平方公式:(a±b)2=__a_2_±__2_a_b_+__b_2 . ④整式的除法:单项式与单项式相除,把系数、同底数幂分别相除,作为
中考数学复习数与式知识点总结
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
中考数学 考点系统复习 第一章 数与式 第三节 整式与因式分解
9.已知(2x-11)(3x-7)-(3x-7)(x-3)可分解因式为(3x+a)(x+b), 其中 a,b 均为整数,则 a+3b=--3311,ab=5656 .
10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化
(5)若 x2-x-1=0,则 x3-x2-x+2 021=2 2 020211.
3.计算:
(1)m2·m3=m m55;
(2)(m2)3=m m66;
(3)a7÷a4=a a3 3;
(4)(x2y)3=x x6y63y3;
(5)-4mn+3mn=--mmnn; (6)(mn-3n)-3(m2-n)=mnmn--33mm22;
B.12-1=-2 D.a6÷a3=a3(a≠0)
( D)
5.(2017·省卷第 9 题 4 分)下列计算中正确的是
A.2a·3a=6a
B.(-2a)3=-6a3
C.6a÷2a=3a
D.(-a3)2=a6
( D)
6.(2018·曲靖第 32·a=a2
B.a6÷a2=a3
第三节 整式与因式分解
1.(1)“m 的 8 倍与 n 的差”用代数式表示为 8m8m--nn; (2)“b 比 a 的 4 倍多 7”,用含 a 的代数式表示 b 为 4a4a++77,用含 b
b-7 的代数式表示 a 为 4 ; (3)已知原量为 a,增加 20%,总量为 a(1a+(1+ 20%);
20%)
(4)已知原价为 a 元,打八折为 8080%%aa 元;在原价基础上提高 m%后再 打七五折为 75%7a5(%a(1++mm%)%元); (5)购买 x 个单价为 a 元的商品和 y 个单价为 b 元的商品的总价是 (ax(+ax+bbyy))元.
中考数学总复习 第一单元 数与式 第03课时 代数式与整式课件
(a+b)2=a2+b2,(a-b)2=a2-b2.
积的 2 倍,即(a±b)2=⑦ a2±2ab+b2
.
2021/12/9
第九页,共二十八页。
课前考点过关
6.常用恒等变换
(1)a2+b2=(a+b)2-⑧ 2ab
=(a-b)2+⑨ 2ab
(2)(a-b)2=(a+b)2-⑩ 4ab
.
;
2021/12/9
2021/12/9
第十五页,共二十八页。
A
)
课堂互动探究
探究(tànjiū)二 整式的运算
例 2 判断正误:
(1)a2+a3=a5; ( × )
(2)a·a3=a3;
( × )
(3)(a2) 4=a6 ;
(
(4)a5÷a2=a3; (
(5)(3a2)3=9a6; (
×
√
×
(6)(a+b)(a-b)=a2-b2; (
(
B
)
课堂互动探究
【答案】B
【解析】
设 AB=x,则 AD=x+2,如图,延长 EI 交 DC 于点 F,
∵BE=x-a,AD=x+2,HG=x+2-a,HI=a-b,
3. 观察下列关于 x 的单项式,探究其规律:x,3x2,5x 3,7x4,9x5,11x6,……按照上述规律,第 2018 个单项式是( C )
A.2018x2018
B.4035x2017
C.4035x2018
D.4036x2018
2021/12/9
第十一页,共二十八页。
课前考点过关
4. 已知 a,b,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果是
中考数学 考点系统复习 第一章 数与式 第三节 整式与因式分解
解:(1)S 空白部分=(a-1)(b-1); (2)当 a=3,b=2 时,S 空白部分=(3-1)×(2-1)=2.
命题点 2:整式的概念及运算(2021 年考查 6 次,2020 年考查 8 次,2019
年考查 5 次,2018 年考查 4 次,2017 年考查 9 次)
πr2 5.(2017·铜仁第 3 题 4 分)单项式 2 的系数是
子来表示
( C)
A.CnH2n+1
B.CnH2n C.CnH2n+2
D.CnHn+3
命题点 1:代数式求值(2019 年考查 1 次,2018 年考查 1 次,2017 年考 查 1 次) 1.(2018·贵阳第 1 题 3 分)当 x=-1 时,代数式 3x+1 的值是( B ) A.-1 B.-2 C.4 D.-4
( D)
8.(2021·毕节第 6 题 3 分)下列运算中正确的是
A.(3-π)0=-1 B. 9=±3
C.3-1=-3
D.(-a3)2=a6
( D)
9.(2021·贵阳第 8 题 3 分)如图,已知数轴上 A,B 两点表示的数分别
是 a,b,则计算|b|-|a|正确的是
( C)
A.b-a B.a-b C.a+b D.-a-b
( A)
12.(2020·黔西南州第 12 题 3 分)若 7axb2 与-a3by 的和为单项式,则 yx =_8_8__. 13.(2020·贵阳第 11 题 3 分)化简 x(x-1)+x 的结果是_x_2x2__.
14.(2021·贵阳第 17(2)题 6 分)小红在计算 a(1+a)-(a-1)2时,解答 过程如下:
10.(2020·毕节第 6 题 3 分)已知 a≠0,下列运算中正确的是 ( B ) A.3a+2a2=5a3 B.6a3÷2a2=3a C.(3a2)2=6a6 D.3a3÷2a2=5a5
中考数学总复习第一部分数与代数第1单元数与式第3课时整式课件新人教版PPT
它们的次数分别是:2和1.
3
2.[2017 南平模拟]下列各整式中,次数为 3 的单 项式是( A )
A. xy2 B. xy3
C. x y2 D. x y3
3.[变式]写出一个含字母 a,b ,次数为5,项数是 3,并
且含有常数项的多项式a2b3 a 3
.
点悟: 单项式是表示省略了乘法符号的乘法运算,多 项式是单项式之间的加减运算.
2
1.[教材原题]下列整式中哪些是单项式?哪些是多
项式?是单项式指出系数,是多项式的指出次数.
1 a2b,m4n2 ,x2 y2 1,32t3,2x y.
2
7
解:单项式是 1 a2b,m4n2 ,32t 3 ,
2
7
它们的系数分别是: 1,1,32, 27
多项式是 x2 y2 1,2 x y.
内 各项的符号
与原来的符号相反.
整式 几个整式相加减,如果有括号就先 去括号
,
加减 然后再 合并同类项
.
5
4.[教材原题]化简: (5a 3b) 3(a2 2b) .
解:原式 5a 3b 3a2 6b 3a2 5a 3b .
5.[2017 玉林中考]若 4a2b2n1 与 amb3 是同类项, 则mn 3 .
15
【考点 5】乘法公式
平方差公式 (a b)(a b) a 2 b2 .
完全平方公式 (a b)2 a 2 2ab b2 .
16
14.[教材原题]运用乘法公式计算: (x 2y 3)(x 2y 3) .
解:原式 x2 (2 y 3)2
x2 4 y2 12 y 9
4
【考点2】整式的加减
同类项
所含 字母 相同,并且 相同字母 也相同的项,叫做同类项.
中考数学总复习第一单元数与式第03课时代数式与整式课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
做更好的自己
情景展示导入
有一个女孩子,总觉得自己不讨别人喜欢,因此有一点自卑。一 天,她在商店里看到一支漂亮的发夹,当她戴起它的时候,店里的顾 客都说漂亮,于是她非常高兴地买下发夹,并兴高采烈地去学校。 接着奇妙的事发生了,许多平日不太跟她打招呼的同学,纷纷来跟 她接近,一些同学还约她一起去玩,原本内向的她,似乎一下子变得 开朗、活泼了许多。但放学回家后,她才发现自己头上根本什么也 没有戴,原来她付钱后把发夹落在了商店里。
面的活动,发现他人和社会对自己的 需要 ;通过积极合作,与他
人共同完成任务……我们就可以更好地激发自己的 潜能 。
快乐预习感知
名人故事 林肯与政敌
林肯,美国历史上著名的总统,他奇特的相貌常常被他的政敌所 讥笑。有一天,他的一位政敌遇到他,开口骂道:“你长得太丑陋了, 简直让人不堪入目。”林肯微笑着对他说:“先生,你应该感到荣幸, 你将因为骂一位伟大的人物而被人们所认识。”
②有乐观的心态
③发扬优点
④全面
1
2
3
4
5
6
7
8
轻松尝试应用
5.完善自我要努力做到( A )
①提高自我控制能力 ②发扬优点,克服缺点
④学会用发展的眼光看待自己
A.①②③④ B.①②④
C.①③④
(部编版)2020年中考数学第一部分考点研究复习第一章数与式第3课时代数式与整式含因式分解真题
第一章 数与式第3课时 代数式与整式(含因式分解) 江苏近4年中考真题精选(2013~2016)命题点1 代数式及其求值(2016年淮安7题,2015年4次,2014年9次,2013年6次)1. (2016淮安7题3分)已知a -b =2,则代数式2a -2b -3的值是( )A. 1B. 2C. 3D. 72. (2013苏州9题3分)已知x -1x=3,则4-12x 2+32x 的值为( ) A. 1 B. 32 C. 52 D. 723. (2014盐城9题3分)“x 的2倍与5的和”用代数式表示为________.4. (2013苏州15题3分)按照下图所示的操作步骤,若输入x 的值为2,则输出的值为________.第4题图5. (2015连云港11题3分)已知m +n =mn ,则(m -1)(n -1)=________.6. (2014连云港12题3分)若ab =3,a -2b =5,则a 2b -2ab 2的值是________.7. (2014盐城16题3分)已知x (x +3)=1,则代数式2x 2+6x -5的值为________.8. (2014泰州14题3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式b a +a b 的值等于________.9. (2013淮安18题3分)观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3,…,则第2013个单项式是________.10. (2014南通18题3分)已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于________. 命题点2 整式的运算(2016年14次,2015年13次,2014年15次,2013年15次)11. (2016盐城2题3分)计算(-x 2y )2的结果是( )A. x 4y 2B. -x 4y 2C. x 2y 2D. -x 2y 212. (2016南京3题2分)下列计算中,结果是a 6的是( )A. a 2+a 4B. a 2·a 3C. a 12÷a 2D. (a 2)313. (2015镇江15题3分)计算-3(x -2y )+4(x -2y)的结果是( )A. x -2yB. x +2yC. -x -2yD. -x +2y14. (2014扬州2题3分)若 ×3xy =3x 2y ,则 内应填的单项式是( )A. xyB. 3xyC. xD. 3x15. (2016徐州2题3分)下列运算中,正确的是( )A. x3+x3=x6B. x3·x9=x27C. (x2)3=x5D. x÷x2=x-116. (2014连云港10题3分)计算:(2x+1)(x-3)=________.17. (2016无锡19(2)题4分)计算:(a-b)2-a(a-2b).18. (2014南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.19. (2014盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(2016年9次,2015年8次,2014年5次,2013年5次)20. (2015盐城10题3分)分解因式:a2-2a=________________.21. (2016盐城9题3分)分解因式:a2-ab=_______________.22. (2016淮安10题3分)分解因式:m2-4=______________.23. (2013苏州12题3分)因式分解:a2+2a+1=_________________.24. (2015宿迁11题3分)因式分解:x3-4x=_______________.25. (2014南通12题3分)因式分解:a3b-ab=_______________.26. (2016常州11题2分)分解因式:x3-2x2+x=________.27. (2013扬州10题3分)因式分解a3-4ab2=________.28. (2016南京9题2分)分解因式2a(b+c)-3(b+c)的结果是__________.29. (2015南京10题3分)分解因式(a-b)(a-4b)+ab的结果是____________.答案1. A 【解析】∵a -b =2,∴2a -2b -3=2(a -b )-3=2×2-3=1.2. D 【解析】∵x -1x =3,∴x 2-1=3x ,∴x 2-3x =1,∴原式=4-12(x 2-3x )=4-12=72. 3. 2x +5 【解析】根据题中表述可得该式为2x +5.4. 20 【解析】由题图可知,运算程序为(x +3)2-5;当x =2时,(x +3)2-5=(2+3)2-5=25-5=20. 5. 1 【解析】∵(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1,∵mn =m +n ,∴原式=1.6. 15 【解析】∵ab =3,a -2b =5,∴a 2b -2ab 2=ab (a -2b )=3×5=15. 7. -3 【解析】∵x (x +3)=1,∴2x 2+6x -5=2x (x +3)-5=2×1-5=2-5=-3. 8. -3 【解析】∵a 2+3ab +b 2=0,∴a 2+b 2=-3ab ,∴原式=22a b ab =-3ab ab =-3. 9. 4025x 3【解析】系数依次为1,3,5,7,9,11,…,2n -1;x 的指数依次是1,2,3,1,2,3,…,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为3,故可得第2013个单项式是4025x 3. 10. 4 【解析】∵m -n 2=1,即n 2=m -1≥0,得m ≥1,∴原式=m 2+2m -2+4m -1=m 2+6m +9-12=(m +3)2-12,则代数式m 2+2n 2+4m -1的最小值等于(1+3)2-12=4. 11. A 【解析】(-x 2y )2=(-x 2)2·y 2=x 4y 2. 12. D 【解析】13. A 【解析】-3(x-2y)+4(x-2y)=x-2y.14. C 【解析】根据题意得:3x2y÷3xy=x.15. D 【解析】16. 2x2-5x-3 【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.17. 解:原式=a2-2ab+b2-a2+2ab=b2.18. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=x2y(2xy-2)÷x2y=2xy-2.19. 解:原式=a2+4ab+4b2+b2-a2=4ab+5b2,当a=-1,b=2时,原式=4×(-1)×2+5×22=12.20.a(a-2) 【解析】提取公因式a,即a2-2a=a(a-2).21. a(a-b)【解析】提取公因式a,即a2-ab=a(a-b).22. (m-2)(m+2) 【解析】原式=(m-2)(m+2).23. (a+1)2【解析】a2+2a+1=(a+1)2.24. x(x+2)(x-2) 【解析】本题考查了多项式的因式分解,x3-4x=x(x2-4)=x(x+2)(x-2),故填x(x +2)(x-2).25. ab(a+1)(a-1) 【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).26. x(x-1)2【解析】主要考查了提取公因式法以及公式法分解因式.原式=x(x2-2x+1)=x(x-1)2.27. a(a+2b)(a-2b) 【解析】a3-4ab2=a(a2-4b2)=a(a+2b)·(a-2b).28. (b+c)(2a-3) 【解析】提取公因式(b+c)得,原式=(b+c)·(2a-3).29. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式得a2-4ab+4b2=(a-2b)2.。
中考命题研究贵阳2022中考数学 第一章 数与式 第3节 代数式及整式运算
第三节 代数式及整式运算年份 题型 题号 考查点 考查内容 分值 总分 2022 解答 16 代数式求值 先化简,再求值 8 8 2022 填空 11 代数式求值整体代入4 4 2022 未考 2022 解答 16 代数式求值先化简,再求值 8 8 2011未考命题规律纵观贵阳市5年中考,代数式求值及整式运算属重点考查内容,题型大多为解答题,分值都为8分,其中填空题考查1次,分值4分.命题预测预计2022年贵阳市中考求代数式的值仍为主要考查内容,8分左右.,贵阳五年中考真题及模拟)代数式求值(3次)1.(2022贵阳16题8分)先化简,再求值:(x +1)(x -1)+x 2(1-x)+x 3,其中x =2.2.(2022贵阳16题8分)先化简,再求值:2b 2+(a +b)(a -b)-(a -b)2,其中a =-3,b =12.3.(2022贵阳11题4分)若m+n=0,则2m+2n+1=________.4.(2022贵阳适应性考试)化简求值:(x+1)2+(x+1)(x2-1)-x3,其中x=2 3.5.(2022贵阳模拟)已知代数式x2-2x-1的值等于4,则代数式3x2-6x-2的值( ) A.11 B.12 C.13 D.15,中考考点清单)代数式的相关概念1.代数式:用运算符号(加、减、乘、除、乘方、开方)把________或表示________连接而成的式子叫做代数式.2.代数式的值:用________代替代数式里的字母,按照代数式里的运算关系,计算后所得的________叫做代数式的值.3.代数式的分类:代数式⎩⎪⎨⎪⎧有理式⎩⎪⎨⎪⎧整式⎩⎪⎨⎪⎧ 多项式无理式【温馨提示】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言和、差、积、商、乘以、除以等在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a ;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.整式的相关概念 单项式概念 由数与字母的①________组成的代数式叫做单项式(单独的一个数或一个②________也是单项式).系数 单项式中的③________因数叫做这个单项式的系数. 次数 单项式中的所有字母的④________叫做这个单项式的次数.多项式概念 几个单项式的⑤________叫做多项式. 项 多项式中的每个单项式叫做多项式的项.次数 一个多项式中,⑥________的项的次数叫做这个多项式的次数.整式 单项式与⑦________统称为整式.同类项所含字母⑧________并且相同字母的指数也⑨________的项叫做同类项.所有的常数项都是⑩________项.整式的运算类别 法则整式加减 (1)去括号;(2)合并①________.幂的 运算同底数幂相乘 a m ·a n=②________(m、n 都是整数) 幂的乘方 (a m )n=③________(m、n 都是整数) 积的乘方 (ab)n=④________(n 是整数) 同底数幂相除 a m÷a n=⑤________(a≠0,m 、n 都是整数)整式的 乘法单项式乘以多项式 m(a +b)=⑥________ 多项式乘以多项式(a +b)(m +n)=⑦________乘法 公式平方差公式 (a +b)(a -b)=⑧________ 完全平方公式(a±b)2=⑨________【温馨提示】(1)在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为0;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式).合并同类项的关键:正确判断同类项;(2)同底数幂的除法与同底数幂的乘法互为逆运算,可用同底数幂的乘法检验同底数幂的除法是否正确;(3)遇到幂的乘方时,需要注意:当括号内有“-”号时,(-a m )n=⎩⎪⎨⎪⎧-a mn(n 为奇数),a mn (n 为偶数).【方法点拨】求代数式值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析已知代数式与欲求代数式之间结构的异同,从整体上把握解题思路,寻求解题的方法.,中考重难点突破)列代数式【例1】(1)(2022玉溪中考)某进口香蕉的单价是每千克a 元,小红用m 元买了10千克的这种香蕉,则应找回________元,若a =5,m =100,则应找回________元.(2)(2022宁波中考)把四张形状大小完全相同的小长方形卡片[如图(1)]不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部[如图(2)].盒子底面未被卡片覆盖的部分用阴影表示,则图(2)中两块阴影部分周长和为( )A .4m cmB .4n cmC .2(m +n)cmD .4(m -n)cm【解析】由图形观察可知:第一个阴影水平长度与第二个阴影竖直高和为n cm ,第一个阴影竖直高与第二个水平长度和也为n cm ,因此可以求出阴影部分周长.【学生解答】【点拨】(1)列代数式关键是明白题目中给定的数或数量关系;(2)对于给定图形要善于观察,找出图中隐藏的相关信息.1.(2022原创预测)为庆祝抗战胜利70周年,贵阳市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%B .a ·10%C .a(1-10%)D .a(1+10%)2.(2022长春中考)为落实“阳光体育”工程,某校计划购买m 个篮球和n 个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为________元.代数式求值【例2】(2022淄博中考)当x =1时,代数式12ax 3-3bx +4的值是7,则当x =-1时,这个代数式的值是( )A .7B .3C .1D .-7【解析】当x =1时,12ax 3-3bx +4=12a -3b +4=7,解得12a -3b =3,当x =-1时,12ax 3-3bx +4=-12a +3b+4=?【学生解答】【点拨】视“12a -3b”为整体.3.(2022齐齐哈尔中考)已知x 2-2x =5,则代数式2x 2-4x -1的值为________.4.若a 是一元二次方程-2x 2+3x +8=9的根,则代数式9a -6a 2+2=________.整式的概念及运算【例3】(1)(2022贵阳实验二中模拟)若x 3ym -4与xn +1y 5是同类项,则m 2+n 2=________.(2)(2022贵阳十九中模拟)下列计算正确的是( )A .a 2+a 2=2a 4B .(-a 2b)3=-a 6b 3C .a 2·a 3=a 6D .a 8÷a 2=a 4(3)(2022衡阳中考)先化简,再求值:(a +b)(a -b)+b(a +2b)-b 2,其中a =1,b =-2. 【学生解答】5.(2022常德中考)下列等式恒成立的是( )A.(a+b)2=a2+b2B.(ab)2=a2b2C.a4+a2=a5D.a2+a2=a46.(2022遵义中考)若a+b=22,ab=2,则a2+b2的值为( ) A.6 B.4 C.3 2 D.2。
中考数学总复习 第一部分 教材同步复习 第一章 数与式 第3讲 代数式、整式与因式分解课件
123/9/2021
7.计算:①a2·a3=___a_5____; ②(a2)3=___a6____; ③x6÷x3=___x3_____; ④(m2n)3=__m_6_n_3 ___; ⑤(-2m2)3=_-__8_m_6__; ⑥10a6÷5a2=__2_a_4 ____; ⑦(a+1)(a-1)= __a_2-__1___;
182/9/2021
知识点三 整式的运算
• 1.整式的加减运算
名称
合并同类项
添(去)括 号法则
整式加减的 运算法则
定义与性质 定义:把多项式中的同类项合并成一项,叫做合并同类项. 性质:合并同类项后,所得项的系数是合并前各同类项的系数的和, 且字母连同它的⑬___指_数____不变 括号前是“-”号,添(去)括号时,括号里的各项都⑭_改__变_____ 符号;括号前是“+”号,添(去)括号时,括号里的各项都不改变 符号
举例 a3·a2=a3+2=a5 a5÷a3=a5-3=a2 (a3)4=a3×4=a12
120/9/2021
名称 积的乘方
商的乘方
法则
积的乘方等于各因式乘方的积.(ab)n= ⑲__a_n_·__bn__
商的bn乘方等于各因式乘方的商.(ba)n=⑳ ___a_n___
举例 (ab)2=a2·b2=a2b2
152/9/2021
知识点二 整式的相关概念
由数或字母的②___积_____组成的代数式叫做单项式 概念
(单独的一个数或一个③__字_母_____也是单项式)
单项式中的④__数__字____因数
系数
单项式
叫做这个单项式的系数
单项式中所有字母的⑤
次数 __指__数_的__和____叫做这个单项
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节代数式及整式运算,怀化七年中考命题规律)年份题型题号考查点考查内容分值总分2016选择3乘法公式完全平方公式、平方差公式442015选择2幂的运算性质以选择题形式考查同底数幂积的乘方、幂的乘方的性质442013选择1代数式求值直接用代入法求代数式的值332012填空1代数式求值代数式应先化简,再代入求值332011选择3幂的运算性质同底数幂相乘,幂的乘方,合并同类项332010选择3代数式求值可以直接代入求值,也可以先利用公式再求值33命题规律纵观怀化七年中考,代数式求值及整式运算属必考内容,题型一般以选择题、填空题形式出现,七年中有六年涉及到此内容,只有一年没涉及到此内容,此内容属于高频考点.命题预测预计2017年怀化中考求代数式的值及整式运算仍有涉及,故应对考点进行适当训练,做到考试中应对自如.,怀化七年中考真题及模拟)列代数式1.(2015怀化三模)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n 是大于0的整数)个图形需要黑色棋子的个数是__n(n +2)__.代数式求值(3次)2.(2013怀化中考)已知m =1,n =0,则代数式m +n 的值为( B )A .-1B .1C .-2D .23.(2010怀化中考)若x =1,y =12,则x 2+4xy +4y 2的值是( B )A .2B .4C .32D .124.(2012怀化中考)当x =1,y =15时,3x(2x +y)-2x(x -y)=__5__.整式的运算(3次)5.(2016怀化中考)下列计算正确的是( C ) A .(x +y)2=x 2+y 2B .(x -y)2=x 2-2xy -y 2C .(x +1)(x -1)=x 2-1D .(x -1)2=x 2-16.(2015怀化中考)下列计算正确的是( D ) A .x 2+x 3=x 5 B .(x 3)3=x 6 C .x ·x 2=x 2 D .x(2x)2=4x 37.(2011怀化中考)下列运算正确的是( D ) A .a ·a 3=a 3 B .(ab)3=ab 3 C .a 3+a 3=a 6 D .(a 3)2=a 68.(2015通道模拟)已知⎩⎨⎧x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解.求(a +1)(a -1)+7的值.解:a =3,值为9.,中考考点清单)代数式和整式的有关概念1.代数式:用运算符号(加、减、乘、除、乘方、开方)把__数__或表示__数的字母__连接而成的式子叫做代数式.2.代数式的值:用__数值__代替代数式里的字母,按照代数式里的运算关系,计算后所得的__结果__叫做代数式的值.3.代数式的分类:代数式⎩⎪⎨⎪⎧有理式⎩⎪⎨⎪⎧整式⎩⎪⎨⎪⎧ 单项式 多项式分式 无理式【温馨提示】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式.(2)列代数式的关键是正确分析数量关系,掌握文字语言和、差、积、商、乘以、除以等在数学语言中的含义.(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.单项式概念由数与字母的①__积__组成的代数式叫做单项式(单独的一个数或一个②__字母__也是单项式).系数单项式中的③__数字__因数叫做这个单项式的系数.次数 单项式中的所有字母的④__指数的和__叫做这个单项式的次数.多项式概念几个单项式的⑤__和__叫做多项式.项多项式中的每个单项式叫做多项式的项.次数一个多项式中,⑥__最高次__的项的次数叫做这个多项式的次数.整式 单项式与⑦__多项式__统称为整式.同类项所含字母⑧__相同__并且相同字母的指数也⑨__分别相同__的项叫做同类项.所有的常数项都是⑩__同类__项.类别 法则整式加减(1)去括号;(2)合并①__同类项__.幂的运算同底数幂相乘 a m ·a n =②__a m +n__(m 、n 都是整数)幂的乘方 (a m )n =③__a mn__(m 、n 都是整数)积的乘方 (ab)n =④__a n b n__(n 是整数)同底数幂相除 a m ÷a n =⑤__a m -n__(a≠0,m 、n 都是整数) 整式的乘法单项式乘以多项式 m(a +b)=⑥__am +bm__ 多项式乘以多项式 (a +b)(m +n)=⑦__am +an +bm +bn__乘法公式平方差公式 (a +b)(a -b)=⑧__a 2-b 2__完全平方公式 (a±b)2=⑨__a 2±2ab +b 2__【易错警示】(1)在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为0;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式).合并同类项的关键:正确判断同类项.(2)同底数幂的除法与同底数幂的乘法互为逆运算,可用同底数幂的乘法检验同底数幂的除法是否正确.(3)遇到幂的乘方时,需要注意:当括号内有“-”号时,(-a m )n=⎩⎪⎨⎪⎧-a mn,n 为奇数,a mn ,n 为偶数.【方法技巧】求代数式值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析已知代数式与欲求代数式之间结构的异同,从整体上把握解题思路,寻求解题的方法.,中考重难点突破)列代数式【例1】(1)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为________.(用含n的式子表示)(2)把四张形状大小完全相同的小长方形卡片[如图(1)]不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部[如图(2)].盒子底面未被卡片覆盖的部分用阴影表示,则图(2)中两块阴影部分周长和为( )A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm【解析】由图形观察可知:第一个阴影水平长度与第二个阴影竖直高和为n cm,第一个阴影竖直高与第二个阴影水平长度和也为n cm,因此可以求出阴影部分周长.【学生解答】(1)3n+1;50;(2)B【点拨】(1)列代数式关键是明白题目中给定的数或数量关系.(2)对于给定图形要善于观察,找出图中隐藏的相关信息.1.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( C)A.2ab B.(a+b)2C.(a-b)2D.a2-b2代数式求值【例2】(2016扬州中考)若a2-3b=6,则6b-2a2+2 016=________.【解析】把6b-2a2+2 016变形为2(3b-a2)+2 016,把a2-3b=6化为3b-a2=-6后代入求值.【学生解答】2 004【点拨】求代数式的值时,常采用以下两种方法:①应用整体代入求值;②把已知的式子化为一个字母用另外的字母表示,代入所求代数式,进行化简求值.2.(2016湖州中考)当x=1时,代数式4-3x的值是( A)A.1 B.2 C.3 D.43.已知x2-2x=5,则代数式2x2-4x-1的值为__9__.4.若a是一元二次方程-2x2+3x+8=18的根,则代数式9a-6a2+2=__32__.整式的概念及运算【例3】(1)若x3y m-4与x n+1y5是同类项,则m2+n2=________.(2)下列计算正确的是( )A.a2+a2=2a4B.(-a2b)3=-a6b3C.a2·a3=a6D.a8÷a2=a4(3)先化简,再求值:(a+b)(a-b)+b(a+2b)-b2,其中a=1,b=-2.【学生解答】解:(1)85;(2)B;(3)原式=a2-b2+ab+2b2-b2=a2+ab;当a=1,b=-2时,原式=12+1×(-2)=1-2=-1.5.(2016常德中考)若-x 3y a与x by 是同类项,则a +b 的值为( C ) A .2 B .3 C .4 D .5 6.(2016娄底中考)下列运算正确的是( C ) A .a 2·a 3=a 6 B .5a -2a =3a 2 C .(a 3)4=a 12 D .(x +y)2=x 2+y 27.(2016毕节中考)下列运算正确的是( D ) A .-2(a +b)=-2a +2b B .(a 2)3=a 5C .a 3+4a =14a 3D .3a 2·2a 3=6a 58.(2016南充中考)如果x 2+mx +1=(x +n)2,且m>0,则n 的值是__1__.。