4.9 函数y=Asin(ωx+φ)的图象基础训练及答案
【高中数学经典】函数y=Asin(ωx+φ)的图象重难点题型(举一反三)
【高中数学】函数y=Asin (ωx+φ)的图象重难点题型【举一反三系列】【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取30,,,,222ππππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.用“五点法”作图象的关键是点的选取,其中横坐标成等差数列,公差为4T .【知识点2 函数y=Asin (ωx+φ)中有关概念】()sin()0,0y A x A ωϕω=+>>表示一个振动量时,A 叫做振幅,2T πω=叫做周期,12f T ωπ==叫做频率,x ωϕ+叫做相位,x=0时的相位ϕ称为初相.【知识点3 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换:sin()y A x ωϕ=+sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的(横坐标不变),它的值域[-A ,A],最大值是A ,最小值是-A.若A<0可先作y=-Asinx 的图象,再以x 轴为对称轴翻折.A 称为振幅. 2.周期变换:函数()sin 01y x x R ωωω=∈>≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换:函数()sin y x x R ϕ=+∈,(其中0ϕ≠)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动ϕ个单位长度而得到.(用平移法注意讲清方向:“左加右减”).一般地,函数()sin()0,0y A x A x R ωϕω=+>>∈,的图象可以看作是用下面的方法得到的:(1) 先把y=sinx 的图象上所有的点向左(ϕ>0)或右(ϕ<0)平行移动ϕ个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变);(3) 再把所得各点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍(横坐标不变).【考点1 正、余型函数作图】【例1】(2019•岳麓区校级学业考试)知函数,x∈R.(1)填写下表,用“五点法”画在一个周期内的图象.x0π2π000(2)求函数f(x)的最小正周期和单调递增区间.【分析】(1)利用三角函数求值完成表格,通过五点法作图化简函数的图象.(2)利用三角函数的周期公式以及正弦函数的单调区间的求法,求解即可.【答案】解:(1)填表和作图如下.(4分)x0π2π030﹣30(2)函数f(x)的最小正周期为,又,k∈Z,解得,所以函数f(x)的单调递增区间为,k∈Z.【点睛】本题考查三角函数的图象的画法,三角函数的值的求法,函数的单调性以及函数的周期的求法,考查计算能力.【变式1-1】(2018秋•海淀区期末)已知函数.(Ⅰ)求T的最小正周期T;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)在给定的坐标系中作出函数的简图,并直接写出函数f(x)在区间上的取值范围.【分析】(Ⅰ)利用正弦函数的周期公式即可计算得解;(Ⅱ)利用正弦函数的单调性即可求解;(Ⅲ)利用五点作图法即可画出函数f(x)在一个周期内的图象,根据正弦函数的性质即可求解.【答案】(本小题满分11分)解:(Ⅰ).……………………(2分)(Ⅱ)由,k∈Z,……………………(4分)可得:,k∈Z.所以函数f(x)的单调递增区间是:,k∈Z.……………………(6分)(Ⅲ)列对应值表如下:2x+0π2πx﹣f(x)020﹣20通过描出五个关键点,再用光滑曲线顺次连接作出函数的简图如图所示.……………………(8分)可得函数在区间上的取值范围是.……………………(11分)注:中每一个端点正确给(1分),括号正确(1分).【点睛】本题主要考查了正弦函数的图象和性质,考查了五点法作函数y=A sin(ωx+φ)的图象,考查了数形结合思想的应用,属于中档题.【变式1-2】(2018秋•香坊区校级期末)某同学用“五点法”画函数,在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxy=A sin(ωx+φ)0300(1)请将上表数据补充完整;函数f(x)的解析式为f(x)=(直接写出结果即可);(2)根据表格中的数据作出f(x)一个周期的图象;(3)求函数f(x)在区间上的最大值和最小值.【分析】(1)由题意补充完整表格,写出f(x)的解析式;(2)根据表格中的数据作出f(x)一个周期的图象即可;(3)求出函数f(x)在区间上的最大值和最小值即可.【答案】解:(1)由题意,补充完整下表是;ωx+φ0π2πxy=A sin(ωx+φ)030﹣30写出函数f(x)的解析式为f(x)=3sin(2x﹣);(2)根据表格中的数据作出f(x)一个周期的图象,如图所示;(3)函数f(x)=3sin(2x﹣),x∈[﹣,0],2x﹣∈[﹣,﹣];∴x=﹣时,f(x)在区间上取得最大值为﹣,x=﹣时,f(x)取得最小值为﹣3.【点睛】本题考查了三角函数的图象与性质的应用问题,是基础题.【变式1-3】(2019•望花区校级学业考试)函数f(x)=A sin(ωx﹣)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(Ⅰ)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;(Ⅱ)f(x)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到g(x)的图象,用“五点法”作出g(x)在[0,π]内的大致图象.【分析】(Ⅰ)根据条件求出A,ω的值,即可求函数f(x)的解析式,结合函数的单调性即可求当x∈[0,π]时f(x)的单调减区间;(Ⅱ)根据三角函数的图象平移关系求出g(x)的解析式,利用五点法进行作图即可.【答案】解:(Ⅰ)∵函数f(x)的最大值是3,∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2.(2分)所以f(x)=2sin(2x﹣)+1令+2kπ≤2x﹣≤+2kπ,k∈Z,即+kπ≤x≤+kπ,k∈Z,(4分)∵x∈[0,π],∴f(x)的单调减区间为[,].(5分)(Ⅱ)依题意得g(x)=f(x﹣)﹣1=2sin(2x﹣),列表得:x0π2x﹣﹣0πg(x)﹣020﹣2﹣(7分)描点(0,﹣),(,0),(,2),(,0),(,﹣2),(π,﹣),(8分)连线得g(x)在[0,π]内的大致图象.(10分)【点睛】本题主要考查三角函数图象和性质,根据条件求出函数的解析式以及利用五点法作图是解决本题的关键.【考点2 图象变换与解析式】【例2】(2019秋•芜湖期末)给出下列8种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象上所有点的横坐标不变,纵坐标缩短到原来的;④图象上所有点的横坐标不变,纵坐标伸长到原来的2倍;⑤图象向右平移个单位;⑥图象向左平移个单位;⑦图象向右平移个单位;⑧图象向左平移个单位.请选择上述变换方法中的部分变换方法并按照一定顺序排列将函数y=sin x的图象变换到函数的图象,要求写出每一种变换后得到的函数解析式.(只需给出一种方法即可).【分析】利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:将函数y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;再把所得图象的横坐标变为原来的2倍,可得y=sin(x+)的图象;再把所得图象的纵坐标变为原来的倍,可得y=sin(x+)的图象.即按照⑥②③的顺序进行.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.【变式2-1】说明由函数y=sin x的图象经过怎样的变换就能得到下列函数的图象:(1)y=sin(x+);(2)y=sin(2x﹣);(4)y=5sin(3x﹣);(3)y=sin(x+).【分析】由条件根据函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)把y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;(2)把y=sin x的图象向右平移个单位,可得y=sin(x﹣)的图象;再把所得图象的横坐标变为原来的倍,纵坐标不变,可得y=sin(2x﹣)的图象;(4)把y=sin x的图象向右平移个单位,可得y=sin(x﹣)的图象;再把所得图象的横坐标变为原来的倍,纵坐标不变,可得y=sin(3x﹣)的图象;再把所得图象的纵坐标变为原来的5倍,横坐标不变,可得y=5sin(3x﹣)的图象;(3)把y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;再把所得图象的横坐标变为原来的3倍,纵坐标不变,可得y=sin(x+)的图象;再把所得图象的纵坐标变为原来的倍,横坐标不变,可得y=sin(x+)的图象;【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于中档题.【变式2-2】y=sin(﹣2x+)经过怎样变换得到y=sin2x的图象.【分析】首先,化简函数y=﹣sin(2x﹣),然后,结合图象平移进行求解即可.【答案】解:∵y=sin(﹣2x+)=﹣sin(2x﹣),先将该函数图象关于x轴对称,得到函数y=sin(2x﹣),然后,再将所得函数图象向左平移个单位,得到函数y=sin2x的图象,即为所求.【点睛】本题重点考查了三角函数图象平移变换,三角函数诱导公式等知识,属于中档题.解题关键是熟练应用平移变换.【变式2-3】请说明由函数y=cos(x+)图象经过怎样的变换可得到y=cos x的图象.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:把函数y=cos(x+)图象的每一点的横坐标变为原来的一半,可得函数y=cos(x+)的图象;再把所得图象向右平移个单位,可得到y=cos x的图象.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.【考点3 由图象求解析式】【例3】(2019春•静宁县校级期末)已知函数的部分图象如图所示,(1)求f(x)的解析式;(2)求f(x)的单调增区间和对称中心坐标;【分析】(1)根据图象求出A,ω和φ,即可求函数f(x)的解析式;(2)根据正弦函数即可得到结论.【答案】解:(1)由题设图象知,A=2,周期T=2(﹣)=π,∴ω==2.∵点(,2)在函数图象上,∴2sin(2×+φ)=2,即sin(+φ)=1.又∵0<φ<,从而+φ=,即φ=.故函数f(x)的解析式为f(x)=2sin(2x).(2)由(1)可知f(x)=2sin(2x).令2x≤,可得:≤x≤∴f(x)的单调增区间[,],k∈Z;令2x=kπ,可得x=,∴f(x)的对称中心坐标为(,0).【点睛】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.【变式3-1】(2019春•秦州区校级期末)已知函数y=A sin(ωx+φ)(A>0,ω>0,0<φ<)的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间[﹣,﹣]上的最大值和最小值,并指出取得最值时的x的值.【分析】(1)由函数图象观察可知A,可求函数的周期,由周期公式可得ω,由点(,2)在函数图象上,结合范围φ的范围,即可求得φ的值,即可求解.(2)由已知可求2x+∈[﹣,0],利用正弦函数的图象与性质即可求解.【答案】解:(1)由函数图象可知,函数的最大值为2,最小值为﹣2,可得A=2,又=﹣(﹣),所以T=π,可得:=π,可得:ω=2,所以函数的解析式为y=2sin(2x+φ),因为函数的图象经过点(,2),所以2sin(+φ)=2,可得:sin(+φ)=1,又因为0<φ<,所以φ=,所以函数的解析式为y=2sin(2x+),其振幅是2,初相是.(2)因为:[﹣,﹣],所以:2x+∈[﹣,0],于是,当2x+=0,即x=﹣时,函数取得最大值0;当2x+=﹣,即x=﹣时,函数取得最小值﹣2.【点睛】本题主要考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想,熟练掌握公式是解本题的关键,属于中档题.【变式3-2】(2019春•湛江期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若x∈[﹣,],求函数f(x)的值域.【分析】(Ⅰ)由函数f(x)的一段图象求得A、T、ω和φ的值即可;(Ⅱ)由x∈[﹣,]求得2x+的取值范围,再利用正弦函数求得f(x)的最大和最小值即可.【答案】解:(Ⅰ)由函数f(x)=A sin(ωx+φ)的一段图象知,A=2,=﹣(﹣)=,∴T==π,解得ω=2,又x=﹣时,2sin(﹣×2+φ)=2,﹣+φ=,解得φ=;∴函数f(x)的解析式为f(x)=2sin(2x+);(Ⅱ)x∈[﹣,]时,2x+∈[0,],令2x+=,解得x=﹣,此时f(x)取得最大值为2;令2x+=,解得x=,此时f(x)取得最小值为﹣;∴函数f(x)的值域为[﹣,2].【点睛】本题考查了函数f(x)=A sin(ωx+φ)的图象和性质的应用问题,是基础题.【变式3-3】(2019春•小店区校级期中)已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)若函数,求函数y=g(x)的最小正周期及单调递增区间.【分析】(1)根据三角函数的图象求出A,ω和φ的值即可求函数f(x)的解析式;(2)利用三角函数的平移变换可求g(x)的解析式,找出ω的值代入周期公式即可求出函数的最小正周期,根据正弦函数的单调递增区间即可得到f(x)的递增区间;【答案】解:(1)由图象知函数的周期T=2(﹣)=π,即ω===2,则f(x)=A sin(2x+φ),∵0<φ<,∴由五点对应法知2×+φ=π,解得φ=,即f(x)=A sin(2x+),∵f(0)=A sin=A=1,∴A=2,即函数f(x)的解析式f(x)=2sin(2x+);(2)∵=2sin[2(x﹣)+]=2sin(2x﹣),∴函数f(x)的最小正周期为T==π;由﹣+2kπ≤2x﹣≤+2kπ,k∈Z,解得:﹣+kπ≤x≤+kπ,k∈Z,则f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z;【点睛】本题主要考查三角函数的图象和性质,根据图象求出A,ω和φ的值是解决本题的关键,综合考查三角函数的性质,属于中档题.【考点4 函数y=Asin(ωx+φ)性质的应用】【例4】(2018秋•温州期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的图象两相邻对称轴之间的距离是,若将f(x)的图象先向右平移个单位,所得函数g(x)为奇函数,函数g(x)的最大值为2.(1)求f(x)的解析式;(2)求f(x)的单调增区间;(3)若,求f(x)的值域.【分析】(1)由周期求得ω,由函数g(x)为奇函数求得φ和b的值,从而得到函数f(x)的解析式.(2)令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间.(3)由已知可求2x+∈[,π],利用正弦函数的性质可求sin(2x+)∈[0,1],即可得解.【答案】(本题满分为10分)解:(1)∵=2×,∴ω=2,∴f(x)=A sin(2x+φ).又g(x)=A sin[2(x﹣)+φ]为奇函数,且0<φ<π,则φ=,A=2,故f(x)=2sin(2x+)…3分(2)令2kπ﹣≤2x+≤2kπ+,k∈z,求得﹣+kπ≤x≤+kπ,(k∈Z),故函数的增区间为[﹣+kπ,+kπ](k∈Z)…6分(3)∵,∴2x+∈[,π],∴sin(2x+)∈[0,1],∴f(x)=2sin(2x+)∈[0,2],可得若,f(x)的值域为:[0,2].…10分【点睛】本题主要考查由函数y=A sin(ωx+∅)的部分图象求解析式,正弦函数的单调性,考查了转化思想和数形结合思想的应用,属于中档题.(2019春•杨浦区校级期中)已知函数【变式4-1】的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2).(1)求函数f(x)的解析式;(2)将函数y=f(x)的图象向左平移a(a∈(0,2π))个单位后,得到的函数y=g(x)是奇函数,求a的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)由题意根据函数y=A sin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得a的值.【答案】解:(1)∵函数的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2),∴A=2,且•=2π,∴ω=.∴2cosφ=1,∴cosφ=,∴φ=(舍去,不满足图象),或φ=﹣,∴f(x)=2cos(x﹣).(2)将函数y=f(x)的图象向左平移a(a∈(0,2π))个单位后,得到的函数y=g(x)=2cos(x+﹣)的图象,由于g(x)是奇函数,∴﹣=,∴a=.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=A sin(ωx+φ)的图象变换规律,属于中档题.【变式4-2】(2018秋•遂宁期末)如图,函数的图象与y 轴交于点(0,1),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求θ和ω的值;(2)求函数f(x)的单调递增区间与对称轴方程.【分析】(1)由特殊点的坐标求出φ的值,由周期求出ω,可得函数的解析式.(2)利用余弦函数的单调性和它的图象的对称性,求得函数f(x)的单调递增区间与对称轴方程.【答案】解:(1)∵函数的图象与y轴交于点(0,1),将x=0,y=1代入函数y=2cos(ωx+θ)得,因为,所以.又因为|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.可知函数周期为T=π,由ω>0,所以.因此.(2)由,得,所以函数的单调递增区间为.由,得.所以函数f(x)图象的对称轴方程为.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由特殊点的坐标求出φ的值,由周期求出ω,余弦函数的单调性和它的图象的对称性,属于基础题.【变式4-3】(2019秋•大庆期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y 轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2).(1)求f(x)的解析式及x0的值;(2)求f(x)的增区间;(3)若x∈[﹣π,π],求f(x)的值域.【分析】(1)利用函数图象确定函数的振幅,周期,利用f(0)=1求出φ,求出f(x)的解析式,y 轴右侧的第一个最高点即可求出x0的值;(2)通过正弦函数的单调增区间,直接求函数f(x)的增区间;(3)通过x∈[﹣π,π],求出x+的范围,然后利用正弦函数的值域求f(x)的值域.【答案】解:由图象以及题意可知A=2,,T=4π,ω==,函数f(x)=2sin(x+φ),因为f(0)=1=2sinφ,|φ|<,所以φ=.∴f(x)=2sin(x+).由图象f(x0)=2sin(x0+)=2,所以x0+=k∈Z,因为在y轴右侧的第一个最高点的坐标分别为(x0,0),所以x0=.(2)由,k∈Z,得,k∈Z,所以函数的单调增区间为.(3)∵x∈[﹣π,π],∴x+,∴≤sin(x+)≤1.2sin(x+)≤2.所以函数的值域为:[].【点睛】本题是中档题,考查函数解析式的求法,阿足协还是的单调增区间的求法,函数的值域的求法,考查计算能力.【考点5 数形结合思想】【例5】(2019秋•顺庆区校级期末)五点法作函数的图象时,所填的部分数据如下:x﹣ωx+φ﹣0πy﹣1131﹣1(1)根据表格提供数据求函数f(x)的解析式;(2)当时,方程f(x)=m恰有两个不同的解,求实数m的取值范围.【分析】(1)由表中的最大值和最小值可得A的值,通过=T,可求ω.根据对称中点坐标可知B=1,图象过(﹣)带入求解φ,可得函数f(x)的解析式.(2)当时,求解内层的范围,结合三角函数的图象,数形结合法,f(x)=m恰有两个不同的解,转化为f(x)与y=m图象有两个交点的问题求解即可求实数m的取值范围.【答案】解:由表中的最大值为3,最小值为﹣1,可得A=,由=T,则T=2π.∴,∵y=2sin(ωx+φ)的最大值是2,故得B=3﹣2=1.此时函数f(x)=2sin(x+φ)+1.∵图象过(﹣)带入可得:﹣1=2sin(+φ)+1,可得:φ=﹣,(k∈Z).解得:φ=,∵φ,∴φ=﹣.故得函数f(x)的解析式为f(x)=2sin(x﹣)+1(2)当时,则x﹣∈[0,],令u=x﹣,u∈[0,],则y=2sin u+1的图象与与y=m图象有两个交点.从图象可以看出:当x=时,函数f()=,y=2sin u+1的图象与与y=m图象有两个交点.那么:.∴实数m的取值范围是[,3)【点睛】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.【变式5-1】(2019春•城关区校级期末)已知函数f(x)=A sin(ωx+φ),x∈R(其中)的图象如图所示.(1)求函数f(x)的解析式及其对称方程;(2)当时,方程f(x)=2a﹣3有两个不等的实根x1,x2,求实数a的取值范围,并求此时x1+x2的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式,再根据正弦函数的图象的对称性,求出它的对称方程.(2)根据题意,当时,y=f(x)的图象与直线y=2a﹣3有两个不同的交点,可得,从而求得x1+x2的值.【答案】解:(1)由图知,.由,即,故,所以.又,所以,故.令则,所以f(x)的对称轴方程为.(2)∵,∴f(x)=2sin(2x+)∈[﹣1,2].所以方程f(x)=2a﹣3有两个不等实根时,y=f(x)的图象与直线y=2a﹣3有两个不同的交点.∵,当时,f(x1)=f(x2),所以,故.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,正弦函数的定义域和值域,正弦函数的图象的对称性,属于基础题.【变式5-2】(2019秋•香坊区校级月考)如图是函数的部分图象.(1)求函数f(x)表达式;(2)若函数f(x)满足方程,求在[0,2π]内的所有实数根之和.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)由题意利用正弦函数的图象的对称性,求得结论.【答案】解:(1)根据函数的部分图象,可得A=1,•=﹣,求得ω=2.再根据五点法作图,可得2+φ=π,∴φ=,∴f(x)=sin(2x+).(2)满足方程,在[0,2π]内,2x+∈[,],共有4个根,设这4个根为x1,x2,x3,x4,且x1<x2<x3<x4,则根据正弦函数的图象的对称性可得2x1++2x4+=2 x2++2 x3+=,故x1+x4=x2+x3=,∴在[0,2π]内所有实数根之和为x1+x2+x3+x4=.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象的对称性,属于基础题.【变式5-3】(2019春•郴州期末)如图为函数f(x)=sin(ωx+φ)(A>0,ω>0,|φ|<)的图象.(Ⅰ)求函数f(x)=A sin(ωx+φ)的解析式;(Ⅱ)若x∈[0,]时,函数y=[f(x)]2﹣2f(x)﹣m有零点,求实数m的取值范围.【分析】(Ⅰ)根据图象得到f(x)的周期,零点和最小值,从而得到f(x)的解析式;(Ⅱ)根据x的范围,得到f(x)的范围,再由函数y=[f(x)]2﹣2f(x)﹣m有零点,可得方程m=[f (x)]2﹣2f(x)有实根,解出[f(x)]2﹣2f(x)的范围即可得m的范围.【答案】解:(Ⅰ)由图象可知,,∴,ω=2,∵,k∈Z,及|φ|<,∴φ=,而f(0)=,A>0,∴A=,∴;(Ⅱ)∵x∈[0,],∴,∴f(x)∈,又函数y=[f(x)]2﹣2f(x)﹣m有零点,∴方程m=[f(x)]2﹣2f(x)有实根,∵f(x)∈,∴[f(x)﹣1]2﹣1∈[﹣1,3],因此,实数m的取值范围为[﹣1,3].【点睛】本题考查了利用函数f(x)=sin(ωx+φ)的部分图象求解析式和函数的零点,考查了数形结合思想和方程思想,属中档题.。
高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版
高一数学(必修一)《第五章 函数y=Asin (ωx φ)》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.已知函数()2sin(2)16f x x a π=+++,且当[0,]2x π∈时()f x 的最小值为2.(1)求a 的值;(2)先将函数()y f x =的图像上点的纵坐标不变,横坐标缩小为原来的12,再将所得的图像向右平移12π个单位,得到函数()y g x =的图像,求方程()4g x =在区间[0,]2π上所有根之和.2.写出将sin y x =的图像变换后得到2sin 24y x π⎛⎫=- ⎪⎝⎭的图像的过程,并在同一个直角坐标平面内画出每一步变换对应的函数一个周期的图像(保留痕迹). 3.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =sin x 的图象通过相应的平移与伸缩变换得到函数f (x )的图象,写出变换过程. 4.用“五点法”画出函数2sin y x =在区间[]0,2π上的图象. 5.已知函数()()sin f x A x ωϕ=+(0A >,0>ω与2πϕ<),在同一个周期内,当4x π=时,则y 取最大值1,当712x π=时,则y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象 (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和. 6.已知函数()2cos 44f x x ππ⎛⎫=-⎪⎝⎭. (1)求函数()f x 图象的对称轴;(2)将函数()f x 图象上所有的点向左平移1个单位长度,得到函数()g x 的图象,若函数()y g x k =+在()2,4-上有两个零点,求实数k 的取值范围.7.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,则火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地 球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式: 0lnkm v m ω=,被称为齐奥尔科夫斯基公式,其中ω为发动机的喷射速度,0m 和k m 分别是火箭的初始质量和发动机熄火(推进剂用完 )时的质量.0km m 被称为火箭的质量比.(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.(参考数据:ln20.69≈,无理数e 2.71828=)二、单选题8.为了得到函数3sin 2y x =的图象,只要将函数3sin(21)y x =-的图象( ) A .向左平移1个单位长度 B .向左平移12个单位长度C .向右平移1个单位长度D .向右平移12个单位长度9.函数sin3y x =的图象可以由函数cos3y x =的图象( ) A .向右平移6π个单位得到 B .向左平移6π个单位得到 C .向右平移3π个单位得到 D .向左平移3π个单位得到 10.要得到函数()2cos 23f x x π⎛⎫=- ⎪⎝⎭的图像,只需将cos2y x =的图像( )A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移23π个单位长度 D .向右平移23π个单位长度 11.为了得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需把函数3sin y x =图像上所有点( )A .向左平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12B .向左平行移动3π个单位长度,再把所得各点的横坐标伸长到原来的2倍 C .向左平行移动6π个单位长度,再把所得各点的横坐标缩短到原来的12D .向右平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12 12.要得到函数π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,需( )A .将函数3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)B .将函数π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)C .将函数3sin 2y x =图像上所有点向左平移π5个单位长度D .将函数3sin 2y x =图像上所有点向左平移π10个单位长度13.为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度三、填空题14.将函数()f x 的图象向左平移π6个单位长度后得到()()sin y g x A x ωϕ==+(0A >,0>ω与π2ϕ≤)的图象如图,则()f x 的解析式为_____.15.彝族图案作为人类社会发展的一种物质文化,有着灿烂历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化,如图1,漆器图案中出现的“阿基米德螺线”,该曲线是由一动点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动所形成的轨迹.这些螺线均匀分布,将其简化抽象为图2,若2OA =,则AOB ∠所对应的弧长为______.参考答案与解析1.(1)2a =;(2)3π. 【分析】(1)由于当[0,]2x π∈时()f x 的最小值为2,所以min ()112f x a =-++=,从而可求出a 的值;(2)由图像变化可得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=,从而可求出x 的值【详解】(1)()2sin(2)16f x x a π=+++,∵[0,]2x π∈,∴72[,]666x πππ+∈∴min ()112f x a =-++=,∴2a =;(2)依题意得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=∴4266x k πππ-=+(k Z ∈)或54266x k πππ-=+(k Z ∈) ∴212k x ππ=+或24k x =+ππ,解得12x π=或4x π= ∴所有根的和为1243πππ+=.【点睛】此题考查三角函数的图像和性质,考查三角函数的图像的变换,考查转化能力和计算能力,属于基础题2.答案见解析.图像见解析【分析】由三角函数图像中的相位变换、周期变换、振幅变换叙述变换过程,然后作出图像变换的过程即可.【详解】先将sin y x =的图像上各点向右平移4π个单位得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像再将函数sin 4y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持纵坐标不变,横坐标缩短到原来的一半,得到函数sin 24y x π⎛⎫=- ⎪⎝⎭的图像.再将函数sin 24y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持横坐标不变,纵坐标扩大到原来的2倍,得到函数2sin 24y x π⎛⎫=- ⎪⎝⎭的图像.3.(1)f (x )=sin (2)6x π+ ;(2) 答案见解析.【分析】(1)由图像可得A =1,51264Tππ-=结合2T πω=可求出ω的值,然后将点(,1)6π代入解析式可求出ϕ的值,从而可求出函数f (x )的解析式; (2)利用三角函数图像变换规律求解【详解】(1)由图像知A =1.f (x )的最小正周期T =4×5()126ππ-=π,故ω=2Tπ=2 将点(,1)6π代入f (x )的解析式得sin ()3πϕ+=1又|φ|<2π,∴φ=6π.故函数f (x )的解析式为f (x )=sin (2)6x π+.(2)变换过程如下:y =sin x 图像上的所有点的横坐标缩小为原来的一半,纵坐标不变,得到y =sin 2x 的图像,再把y =sin 2x 的图像,向左平移12π个单位y =sin (2)6x π+的图像. 4.答案见解析【分析】利用五点作图法,列表、描点、连线可作出函数sin y x =在区间[]0,2π上的图象. 【详解】解:按五个关键点列表如下:描点并将它们用光滑的曲线连接起来,如图所示.5.(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可. (1)设()()sin f x A x ωϕ=+的最小正周期为T 由题意可知,1A =,1721243T πππ=-=即223T ππω== ∴3ω=,即()()sin 3f x x φ=+∵3sin 14πϕ⎛⎫+= ⎪⎝⎭∴3242k ππϕπ+=+ k Z ∈ 又2πϕ<,∴4πϕ=-∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期故所有实数根之和为1119112662ππππ++=. 6.(1)14x k =+ k ∈Z (2)()2,0-.【分析】(1)求出()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,解方程442x k ππππ+=+,k ∈Z 即得解;(2)求出()2cos 4g x x π=,即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,再利用数形结合分析求解. (1)解:因为()2cos 44f x x ππ⎛⎫=- ⎪⎝⎭,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.令442x k ππππ+=+,k ∈Z ,解得14x k =+ k ∈Z 所以函数()f x 图象的对称轴为直线14x k =+ k ∈Z . (2)解:依题意,将函数()f x 的图象向左平移1个单位长度后,得到的图象对应函数的解析式为()()2sin 12cos 444g x x x πππ⎡⎤=++=⎢⎥⎣⎦.函数()y g x k=+在()2,4-上有两个零点即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,如图所示所以02k <-<,即20k -<< 所以实数k 的取值范围为()2,0-. 7.(1)2.8千米/秒(2)该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒,理由见解析【分析】(1)明确0k m m ω、、各个量的值,代入即可;(2)求出最大理想速度max v ,利用放缩法比较max 2ln10v =与7.9的大小即可. (1)2ω=,0160m =和40k m =0lnk m v m ω∴=21602ln 2ln 42ln 24ln 2 2.7640=⨯===≈ ∴该单级火箭的最大理想速度为2.76千米/秒.(2)10km M ≤ 2ω= 0max ln km v m ω∴=2ln10= 7.97.97128e22>>=7.97.9ln ln128ln1002ln10e ∴=>>=max v ∴2ln107.9=<.∴该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒.8.B【分析】根据已知条件,结合平移“左加右减”准则,即可求解.【详解】解:()13sin 213sin 22y x x ⎛⎫=-- ⎪⎝=⎭∴把函数13sin 22x y ⎛⎫- ⎝=⎪⎭的图形向左平移12个单位可得到函数3sin 2y x =.故选:B . 9.A【分析】化简函数sin 3cos[3()]6y x x π==-,结合三角函数的图象变换,即可求解.【详解】由于函数3sin 3cos(3)cos(3)cos[3()]226y x x x x πππ==+=-=- 故把函数cos3y x =的图象向右平移6π个单位,即可得到cos3sin 36y x x π⎛⎫=-= ⎪⎝⎭的图象.故选:A. 10.B【分析】直接由三角函数图象的平移变换求解即可. 【详解】将cos2y x =的图像向右平移3π个单位长度可得2cos2cos 233y x x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭. 故选:B. 11.A【分析】利用三角函数图象变换规律求解即可【详解】将3sin y x =向左平移3π长度单位,得到3sin 3y x π⎛⎫=+ ⎪⎝⎭,再把所得的各点的横坐标缩短到原来的12,可得3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:A 12.D【分析】根据三角函数的图像变换逐项判断即可.【详解】解:对于A ,将3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于B ,将π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 210y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于C ,将3sin 2y x =图像上所有点向左平移π5个单位长度后,得到2π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于D ,将3sin 2y x =图像上所有点向左平移π10个单位长度后,得到π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,正确.故选:D. 13.C【分析】化简2cos 2y x x =+,再根据三角函数图象平移的方法求解即可【详解】12cos 22cos 222cos 223y x x x x x π⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭,因为2cos 23y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到2cos 22cos263ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦y x x故选:C14.()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭【分析】由图像可知,函数的最值、最小正周期,可得,A ω的值,代入点5,212π⎛⎫⎪⎝⎭,进而解得ϕ的值,根据函数的图像变换规律,可得答案.【详解】由题图可知()max 2A g x ==,函数()g x 的最小正周期为45πππ3123T ⎛⎫=+= ⎪⎝⎭,所以2π2T ω==,所以()()2sin 2g x x ϕ=+.又5π5π2sin 2126g ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5ππ2π62k ϕ+=+(k ∈Z ),解得π2π3k ϕ=-(k ∈Z ). 因为π2ϕ≤,所以π3ϕ=-,所以()π2sin 23g x x ⎛⎫=- ⎪⎝⎭.将函数()g x 的图象向右平移π6个单位长度后可得到函数()f x 的图象故()ππ2π2sin 22sin 2633f x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭15.4π9【分析】根据题意得到圆心角2π9AOB α=∠=,结合弧长公式,即可求解.第 11 页 共 11 页 【详解】由题意,可知圆心角2π9AOB α=∠=,半径2r OA == 所以AOB ∠所对应的弧长为2π4π299l r α==⨯=. 故答案为:4π9.。
(word版)高中数学三角函数y=Asin(ωx+φ)图像变换练习题
三角函数y =Asin(ωx +φ)图像练习题一、单选题1. 函数f(x)=2sin(ωx +φ)(ω>0,−π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A. 2,−π3 B. 2,−π6 C. 4,−π6 D. 4,π32. 为了得到函数y =sin (2x +π3)的图象,只需要把函数y =sinx 的图象上( )A. 各点的横坐标缩短到原来的12,再向左平移π3个单位长度 B. 各点的横坐标缩短到原来的12,再向左平移π6个单位长度 C. 各点的横坐标伸长到原来的2倍,再向左平移π3个单位长度 D. 各点的横坐标伸长到原来的2倍,再向左平移π6个单位长度3. 要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象( )A. 向左平移π3个单位长度 B. 向右平移π3个单位长度 C. 向左平移13个单位长度D. 向右平移13个单位长度4. 要得到函数y =3sin (2x +π4)的图象,只需将y =3sin2x 的图象( )A. 向左平移π8个单位 B. 向右平移π8个单位 C. 向左平移π4个单位D. 向右平移π4个单位5. 已知函数f(x)=Msin(ωx +φ)(M >0,ω>0,|φ|<π2)在半个周期内的图象如图所示,则函数f(x)的解析式为( )A. f(x)=2sin(x +π6) B. f(x)=2sin(2x −π6)C. f(x)=2sin(x−π6)D. f(x)=2sin(2x+π6)6.为得到函数y=cos(x+π3)的图象,只需将函数y=sinx的图象()A. 向左平移π6个单位长度 B. 向右平移π6个单位长度C. 向左平移5π6个单位长度 D. 向右平移5π6个单位长度7.函数y=Asin(ωx+φ)在一个周期上的图象如图所示,则函数的解析式是()A. y=2sin(x2−23π)B. y=2sin(x2+43π)C. y=2sin(x2+23π)D. y=2sin(x2−π3)8.设ω>0,函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,则ω的最小值是().A. 23B. 43C. 32D. 39.如图所示,函数f(x)=Asin(2x+φ)(其中A>0,|φ|<π2)的图象过点(0,√3),则f(x)的图象的一个对称中心是()A. (−π3,0)B. (−π6,0)C. (π6,0)D. (π4,0)10.将函数y=sinωx(ω>0)的图象向左平移π6个单位长度,平移后的图象如图所示,则平移后的图象所对应的函数解析式为()A. y=sin(x+π6)B. y=sin(x−π6)C. y=sin(2x+π3)D. y=sin(2x−π3)11.将函数f(x)=sin(x+φ)图象上所有点的横坐标变为原来的1ω(ω>1)(纵坐标不变),得函数g(x)的图象.若g(π6)=1,g(2π3)=0,且函数g(x)在(π6,π2)上具有单调性,则ω的值为()A. 2B. 3C. 5D. 712.设函数的最小正周期为π,则下列说法正确的是()A. 函数f(x)的图象关于直线x=π3对称B. 函数f(x)的图象关于点(π12,0)对称C. 函数f(x)在(−5π12,π12)上单调递减D. 将函数f(x)的图象向右平移5π12个单位,得到的新函数是偶函数13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π2),其图象相邻的最高点之间的距离为π,将函数y=f(x)的图象向左平移π12个单位长度后得到函数g(x)的图象,且g(x)为奇函数,则()A. f(x)的图象关于点(π6,0)对称 B. f(x)的图象关于点(−π6,0)对称C. f(x)在(−π6,π3)上单调递增 D. f(x)在(−2π3,−π6)上单调递增14.已知曲线C1:y=cosx,C2:y=sin(2x+2π3),则下面结论正确的是()A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C215.已知曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)经过点(−π12,1),则()A. 函数y=g(x)的最小正周期T=π2B. 函数y=g(x)在[11π12,17π12]上单调递增C. 曲线y=g(x)关于直线x=π6对称D. 曲线y=g(x)关于点(2π3,0)对称16.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象如图所示,则函数y=f(x)的解析式为()A. y=32sin(2x+π6)B. y=32sin(2x−π6)C. y=32sin(2x+π3)D. y=32sin(2x−π3)二、多选题17.已知函数f(x)=sin(2x+π3),将其图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)为奇函数,则φ的值可以为()A. π12B. π6C. π3D. 2π318.为了得到函数y=cos(2x+π4)的图象,只要把函数y=cosx图象上所有的点()A. 向左平移π4个单位长度,再将横坐标变为原来的2倍B. 向左平移π4个单位长度,再将横坐标变为原来的12倍C. 横坐标变为原来的12倍,再向左平移π8个单位长度 D. 横坐标变为原来的12倍,再向左平移π4个单位长度19. 已知函数f(x)=2cos 2ωx +√3sin2ωx −1(ω>0)的最小正周期为π,则下列说法正确的有( )A. ω=2B. 函数f(x)在[0,π6]上为增函数C. 直线x =π3是函数y =f(x)图象的一条对称轴 D. 点(512π,0)是函数y =f(x)图象的一个对称中心20. 将函数f(x)的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是( )A. f(x)的最小正周期为π,最大值为2B. f(x)的图象关于点(π6,0)中心对称 C. f(x)的图象关于直线x =π6对称 D. f(x)在区间[π6,π3]上单调递减第II 卷(非选择题)三、解答题21. 已知函数f(x)=4cos xsin (x +π6)−1.(1)求f(x)的最小正周期;(2)求f(x)在区间[−π6,π4]上的最大值和最小值.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,−π2<φ<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若x∈[−53,53],求函数f(x)的值域.23.已知函数f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3).(Ⅰ)求f(π2)的值.(Ⅱ)求函数f(x)在区间[−π12,5π12]上的最大值和最小值.24.已知函数y=12sin (2x+π6),x∈R.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的简图;(3)该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到⋅25.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图像如图所示:(1)求函数f(x)的解析式;(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图像,求函数y=g(x)在区间[0,π4]上的最大值及函数取最大值时相应的x 值.26.已知函数f(x)=cos2x+sin(2x−π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[0,π]时,求函数f(x)的单调递增区间.27.已知函数f(x)=2cos(x−π3)+2sin(3π2−x).(1)求函数f(x)的单调递减区间;(2)求函数f(x)的最大值,并求f(x)取得最大值时的x的取值集合;(3)若f(x)=65,求cos(2x−π3)的值.28.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的部分图像如图所示.(I)求f(x)的解析式;(II)在△ABC中,角A、B、C的对边分别为a,b,c,a=1,c=2,f(A)=1,求b的值.29.已知函数f(x)=√3sinxcosx+sin2x−12.(1)求f(x)的单调递增区间;(2)若A∈(π12,π3),f(A)=13,求cos(2A−5π6)的值.30.已知函数f(x)=4sinxcos(x+π3)+√3.(1)求函数f(x)的最小正周期及单调增区间;(2)求函数f(x)在区间[−π4,π6]上的值域和取得最大值时相应的x的值.答案和解析1.【答案】A本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.结合图象由周期求出ω,由特殊点的坐标求出φ的值.【解答】解:由题意可知T=2×(11π12−5π12)=π,∴ω=2,x=5π12时,函数取得最大值2,可得:2sin(2×5π12+φ)=2,,即,又∵−π2<φ<π2,所以φ=−π3.故选A.2.【答案】B本题考查了函数y=Asin(ωx+φ)的图象的伸缩平移,属于基础题.根据函数图象伸缩平移变换法则即可得到答案.【解答】解:y=sinx图象上各点的横坐标缩短到原来的12,得到y=sin2x的图象,再向左平移π6个单位长度得到y=sin[2(x+π6)]=sin(2x+π3)的图象,故选B.3.【答案】A【分析】本题主要考查函数y=Asin(ωx+φ)的图象的平移变换,辅助角公式,属于基础题.由辅助角公式,根据函数y=Asin(ωx+φ)的图象的平移变换可得答案.【解答】解:y =sinx +cosx,则要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象向左平移π3个单位长度. 故选A .4.【答案】A本题考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.由y =3sin (2x +π4)=3sin [2(x +π8)],根据左加右减的平移原理,即可得到结果. 【解答】解:y =3sin (2x +π4)=3sin [2(x +π8)],因此将函数y =3sin2x 的图象向左平移π8个单位,即可得到函数y =3sin (2x +π4)的图象. 故选A .5.【答案】A【分析】本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,属于基础题. 由函数的最值求出A ,由周期求出ω,由五点法作图求出φ的值.【解答】解:由图象知M =2. 设函数f(x)的最小正周期为T , 则14T =π3−(−π6)=π2,可知T =2π,ω=2πT=1,将(π3,2)代入f(x)的解析式得sin(π3+φ)=1, 又|φ|<π2,可得φ=π6,故函数f(x)的解析式为f(x)=2sin(x +π6). 故选A .6.【答案】C本题考查了函数y =Asin(ωx +φ)的图象与性质、函数图象的变换的相关知识,属于基础题.根据函数y=Asin(ωx+φ)的图象变换的规则可得结论.【解答】解:故选C.7.【答案】C本题考查三角函数y=Asin(ωx+φ)的图象和性质,涉及诱导公式应用,属于基础题.依题意,根据图象求得A=2,ω=12,根据五点作图法得进而求得结果.【解答】解:由图知A=2,T2=8π3−2π3=2π=πω,ω=12,y=2sin(12x+φ),根据五点作图法知,代入得,,所以,k∈Z,故选C.8.【答案】C本题考查函数y=Asin(ωx+φ)的图象和性质,属于基础题.函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,可判断出4π3是此函数周期的整数倍,由此能求出ω的表达式,判断出它的最小值.【解答】解:由函数的图象向右平移4π3个单位长度后与原图象重合,得4π3是此函数周期的整数倍.又ω>0,∴2πω⋅k=4π3(k∈Z,且k>0),∴ω=3k2(k∈Z,且k>0),∴ωmin=32.故选C.9.【答案】B【解答】解:由函数图象可知A=2,由于图象过点(0,√3),可得2sinφ=√3,即sinφ=√32,由于|φ|<π2,解得φ=π3,即有f(x)=2sin(2x+π3).由2x+π3=kπ,k∈Z,解得x=kπ2−π6,k∈Z,故f(x)的图象的对称中心是(kπ2−π6,0),k∈Z,当k=0时,f(x)的图象的一个对称中心是(−π6,0).故选B.10.【答案】C本题考查三角函数图像的平移变换,函数的解析式,属于基础题.由三角函数图像的平移得为,代入点,得,得ω=2,从而得解析式.【解答】解:函数y=sinωx(ω>0)的图象向左平移π6个单位长度,则平移后的图象所对应的函数解析式为,代入点,得,,k∈Z,当k=0时,ω=2,即解析式为y=sin(2x+π3).故选C.11.【答案】B本题考查函数y=Asin(ωx+φ)的图象与性质,属于中档题.根据题意得出,得出ω=2n−1(n∈N∗),由函数g(x)在(π6,π2)上具有单调性,得出π2−π6⩽T2=πω,即可求出结果.【解答】解:由题意得,g(x)=sin(ωx+φ),最小正周期T=2πω,若g(π6)=1,g(2π3)=0,,∴ω=2n−1(n∈N∗),∵函数g(x)在(π6,π2)上具有单调性,∴π2−π6⩽T2=πω,解得ω⩽3,又ω>1,ω=2n−1(n∈N∗),∴ω=3.故选B.12.【答案】D本题考查函数y=Asin(ωx+φ)的图象与性质,正弦、余弦函数的图象与性质,属于中档题.先根据函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,求出ω=2,再根据选项逐一判断即可.【解答】解:∵函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,∴2πω=π,解得ω=2,则f(x)=12sin(2x+π3),对于A.当x=π3时,f(π3)=12sin(2×π3+π3)=0,∴函数f(x)的图象关于点(π3,0)对称,故A不正确;对于B.当x=π12时,f(π12)=12sin(2×π12+π3)=12,∴函数f(x)的图象关于直线x=π12对称,故B不正确;对于C.f(x)=12sin(2x+π3)的单调递减区间满足:2kπ+π2≤2x+π3≤2kπ+3π2,k∈Z,解得kπ+π12≤x≤kπ+7π12,k∈Z,k=−1时不符合,故C不正确;对于D.将函数f(x)的图象向右平移5π12个单位,得到新函数为g(x)=f(x−5π12)=1 2sin(2x−π2)=−12cos2x,是偶函数,故D正确.故选D.13.【答案】C本题考查三角函数的图象的性质,属一般题.根据题意求出函数解析式,然后验证对称性和单调性.【解答】解:f(x)=2sin(ωx +φ)(ω>0,|φ|<π2),其图象相邻最高点之间距离为,ω=2, 所以将函数y =f(x)的向左平移π12个单位长度后,,因为g(x)为奇函数, 所以,则,则,当,,当,,故A ,B 错误;当x ∈(−π6,π3)时,,所以f(x)在(−π6,π3)单调递增,故C 正确;当x ∈(−2π3,−π6)时,,所以f(x)在(−2π3,−π6)单调递减,故D 错误; 故选C .14.【答案】D本题考查三角函数的图象变换、诱导公式的应用. 利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变, 得到函数y =cos2x 图象,再把得到的曲线向左平移π12个单位长度, 得到函数y =cos2(x +π12)=cos(2x +π6) =sin(2x +2π3)的图象,即曲线C 2,故选D .15.【答案】D本题主要考查函数y =Asin(ωx +φ)的图象变换规律,三角函数的图象和性质,属于基础题.利用函数y =Asin(ωx +φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象和性质,可得结论.【解答】解:把曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)=sin(2x+2φ+π6),由于所得曲线经过点(−π12,1),∴sin(−π6+2φ+π6)=sin2φ=1,,,∵φ>0,,,,,故g(x)=cos(2x+π6)的最小正周期为2π2=π,故A错误;在[11π12,17π12]上,2x+π6∈[2π,3π],故函数y=g(x)在[11π12,17π12]上单调递减,故B错误;当x=π6时,g(x)=0,故g(x)的图象关于点(π6,0)对称,故C错误;当x=2π3时,g(x)=0,故g(x)的图象关于点(2π3,0)对称,故D正确,故选:D.16.【答案】D由图象求y=Asin(ωx+φ)(A>0,ω>0)解析式的方法;(1)A可由图象上最高点和最低点的纵坐标确定;(2)ω可由图象上最高点与最低点的横坐标确定,先求出最小正周期T,再由T=2πω求出ω;(3)φ可以由某一点处的函数值求得,要注意φ的范围.【解答】解:设f(x)的最小正周期为T,则12T=2π3−π6=π2,T=π,∴ω=2πT =2.又由图象可得A=32,∴f(x)=32sin(2x+φ).∵f(5π12)=32sin(2×5π12+φ)=32,∴5π6+φ=2kπ+π2,k∈Z,即φ=2kπ−π3,k∈Z,又|φ|≤π,∴φ=−π3,∴y=f(x)=32sin(2x−π3).故选D.17.【答案】BD【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易由题意将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式g(x),又函数g(x)为奇函数,即可得出φ的值【解答】解:将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式为g(x)=sin[2(x−φ)+π3]=sin(2x−2φ+π3).由g(x)为奇函数可得−2φ+π3=kπ(k∈Z),故φ=π6−kπ2(k∈Z),又φ>0,结合选项,所以φ的值可以为π6,23π.故应选BD.18.【答案】BC【分析】本题考查函数y=Asin(ωx+φ)的图象与性质,函数图象的平移伸缩变换,属于基础题.依据函数y=Asin(ωx+φ)的图象平移伸缩变换的规则逐一判定即可.【解答】解:对于A,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的2倍,可得函数,故A错误;对于B,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的12倍,可得函数,故B正确;对于C,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π8个单位长度,可得函数,故C正确;对于D,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π4个单位长度,可得函数,故D错误.故选BC.19.【答案】BD本题考查三角函数的性质应用,考查两角和与差的三角函数公式,辅助角公式及二倍角公式应用,属基础题.依题意,根据两角和与差的三角公式及二倍角公式化简函数,再根据三角函数的性质求解即可.【解答】解:,因最小正周期为π得ω=1,故A错误,当时,,得函数f(x)在[0,π6]上为增函数,故B正确;当,,所以直线x=π3不是函数y=f(x)图象的一条对称轴,故C 错误;当,,得点(512π,0)是函数y=f(x)图象的一个对称中心,故D正确;故选BD.20.【答案】ACD本题考查三角函数的图象与性质,涉及正弦函数图象与性质的应用,属于中档题.先由函数图象得出g(x)的解析式,再由函数图象的变换得出f(x)的解析式,借助正弦函数的图象与性质得出答案即可.【解答】解:由图可知,A=2,T=4×(2π9−π18)=2π3,∴ω=2πT=3,又由g(2π9)=2,可得2π9×3+φ=π2+2kπ(k∈Z),且lφ|<π2,∴φ=−π6,∴g(x)=2sin(3x −π6),将函数g(x)的图象上所有点的横坐标伸长到原来的32,可得函数,再将函数图象向左平移π6个单位长度,得到函数,∴f(x)=2sin(2x +π6),∴f(x)的最小正周期为π,最大值为2,A 正确. 令2x +π6=kπ,k ∈Z ,得,∴函数f(x)图象的对称中心为(kπ2−π12,0)(k ∈Z), 由kπ2−π12=π6,得k =12,不符合k ∈Z ,B 错误; 对于选项C ,令2x +π6=π2+kπ(k ∈Z),得x =π6+kπ2(k ∈Z),∴函数f(x)图象的对称轴为直线x =π6+kπ2(k ∈Z),当k =0时,x =π6,故C 正确;当x ∈[π6,π3]时,2x +π6∈[π2,5π6],∴f(x)在区间[π6,π3]上单调递减,D 正确. 故选ACD .21.【答案】解:(1)因为f(x)=4cos xsin (x +π6)−1=4cos x (√32sin x +12cos x)−1=√3sin 2x +2cos 2x −1 =√3sin 2x +cos 2x=2sin (2x +π6), 所以f(x)的最小正周期为π; (2)因为−π6≤x ≤π4, 所以−π6≤2x +π6≤2π3.故当2x +π6=π2,即x =π6时,f(x)取得最大值2; 当2x +π6=−π6,即x =−π6时,f(x)取得最小值−1.【解析】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于中档题.(1)利用二倍角和两角和与差以及辅助角公式将函数化为y=Asin(ωx+φ)的形式,即可求出函数的最小正周期;(2)先根据x的取值范围求得2x+π6的范围,再由正弦函数的性质即可求出函数的最大值和最小值.22.【答案】解:(1)由图象知函数的最大值为1,即A=1,T2=3−(−1)=4,即周期T=8,即2πω=8,得ω=π4,则f(x)=sin(π4x+φ),由五点对应法得π4×1+φ=π2,得φ=π4,即f(x)=sin(π4x+π4).(2)若x∈[−53,53 ],则π4x+π4∈[−π6,2π3],∴当π4x+π4=−π6时,即x=−53时,f(x)最小,最小值为f(−53)=−12,当π4x+π4=π2时,即x=1时,f(x)最大,最大值为f(1)=1,∴f(x)的值域为[−12,1].【解析】本题主要考查三角函数的图象和性质,利用图象法求出函数的解析式以及结合三角函数的最值性质是解决本题的关键.难度不大.(1)根据函数图象先求出A和周期,结合周期公式求出ω,利用五点对应法求出φ即可求出函数的解析式.(2)求出角的范围,结合三角函数的最值关系进行求解即可.23.【答案】解:(Ⅰ;(Ⅱ)f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3)=√3sin2x−12cos2x+√32sin2x−12cos2x−√32sin2x=√3sin2x −cos2x =2sin(2x −π6),因为x ∈[−π12,5π12]∴−π3≤2x −π6≤2π3,∴2sin(2x −π6)∈[−√3,2]. 即函数f(x)在区间[−π12,5π12]上的最大值为2,最小值为−√3.【解析】本题考查三角函数的化简与求值,考查三角函数的性质,属基础题. (Ⅰ)将代入化简即可;(Ⅱ)利用辅助角公式化简得到f(x),由x 的取值范围得出2x −π6的范围,再由正弦函数的性质得出最值即可.24.【答案】解:(1)函数y =12sin (2x +π6)的振幅为12,周期为π,初相为π6.(2)列表:描点画图(如图所示):(3)函数y =sinx 的图象向左平移π6个单位长度,得到函数y =sin (x +π6)的图象, 再保持纵坐标不变,把横坐标缩短为原来的12倍,得到函数y =sin (2x +π6)的图象, 再保持横坐标不变,把纵坐标缩短为原来的12倍,得到函数y =12sin (2x +π6)的图象.【解析】本题主要考查了三角函数的图象和性质以及“五点法”作图和图象的平移和伸缩变换,属于基础题.(1)结合振幅、周期、初相的定义可得; (2)按照列表、描点、连线的步骤求解画图;(3)由y =sinx (x ∈R )的图象左移π6个单位得到数y =sin (x +π6),x ∈R 的图象,然后横坐标再伸缩得到y =sin (2x +π6),x ∈R 的图象,最后纵坐标再伸缩得到y =12sin (2x +π6),x ∈R 的图象.25.【答案】解:(1)如图可知,A =2,T =4×[π12−(−π6)]=π,∴ω=2πT=2.∵{2sin (2×π12+φ)=2|φ|<π2,∴φ=π3,即函数解析式为;(2)根据图象平移原则得g (x )=2sin (4x +π3), ∵x ∈[0,π4],∴4x +π3∈[π3,4π3],∴2sin (4x +π3)∈[−√3,2], 当,即x =π24时,函数g(x)在区间[0,π4]上的最大值为2.【解析】本题考查了三角函数的图象与性质的应用,求出函数f(x)的解析式是关键,属于中档题.(1)利用三角函数的图象,得出振幅A 与周期T ,代入特殊点求出φ,即可求出函数解析式;(2)根据图像平移,得到函数g(x)的解析式,最后利用正弦型函数的性质求出结果.26.【答案】解:(Ⅰ)函数f(x)=cos2x +sin(2x −π6)=cos2x +√32sin2x −12cos2x =sin(2x +π6),故它的最小正周期为2π2=π.(Ⅱ)令2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 得kπ−π3≤x ≤2kπ+π6,k ∈Z ,∴函数的增区间为[kπ−π3,2kπ+π6],k∈Z,∵x∈[0,π],∴函数的增区间为[0,π6]、[2π3,π].【解析】本题主要考查两角和差的三角公式,正弦函数的周期性和单调性,属于基础题.(Ⅰ)由题意利用两角和差的三角公式化简函数f(x)的解析式,可得它的最小正周期.(Ⅱ)由题意利用正弦函数的单调性,求出函数f(x)的单调递增区间.27.【答案】解:f(x)=2cosxcosπ3+2sinxsinπ3−2cosx=cosx+√3sinx−2cosx=√3sinx−cosx=2sin(x−π6 ).(1)令2kπ+π2≤x−π6≤2kπ+32π(k∈Z),∴2kπ+2π3≤x≤2kπ+5π3(k∈Z),∴f(x)的单调递减区间为[2kπ+2π3,2kπ+5π3](k∈Z).(2)f(x)取最大值2时,x−π6=2kπ+π2(k∈Z),则x=2kπ+2π3(k∈Z).∴f(x)的最大值是2,取得最大值时的x的取值集合是{x|x=2kπ+2π3,k∈Z}.(3)∵f(x)=65,∴2sin(x−π6)=65,∴sin(x−π6)=35.∴cos(2x−π3)=1−2sin2(x−π6)=1−2×(35)2=725.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质,诱导公式,两角和与差的三角函数公式和二倍角公式,属于中档题.利用诱导公式和两角差的余弦函数公式得f(x)=√3sinx−cosx,即.(1)利用函数y=Asin(ωx+φ)的单调性,计算得结论;(2)利用函数y=Asin(ωx+φ)的最值,计算得结论;(3)利用题目条件得,再利用余弦的二倍角公式,计算得结论.28.【答案】解:(1)由最值可确定A=2,周期T=2×(π3+π6)=π⇒ω=2,又f(π3)=2,即,,即,∵|φ|<π,∴φ=−π6,所以f(x)=2sin (2x−π6);(2)f(A)=2sin (2A−π6)=1⇒sin (2A−π6)=12⇒2A−π6=π6或5π6,故A=π6或π2,当A=π2时,三角形为直角三角形,此时a>c,这与题目条件a=1,c=2矛盾,所以舍掉;当A=π6时,由余弦定理得:a2=b2+c2−2bccos A⇒b2−2√3b+3=0,解得b=√3.【解析】本题考查函数y=Asin(ωx+φ)的图象与性质,余弦定理,考查运算化简的能力,属于中档题.(1)由图可得A=2,,可得ω=2,再由f(π3)=2,结合|φ|<π可得φ,从而可得f(x)的解析式;(2)由(1)及f(A)=1,求得A=π6或π2,按A讨论结合余弦定理可得.29.【答案】解:(1)f(x)=√3sinxcosx+sin2x−12=√32sin2x+1−cos2x2−12=sin(2x−π6 ),令−π2+2kπ≤2x−π6≤π2+2kπ,k∈Z.解得,k∈Z.所以f(x)的单调增区间为[−π6+kπ,π3+kπ](k∈Z).(2)由(1)得f(x)=sin(2x−π6),所以f(A)=sin(2A−π6)=13,令θ=2A−π6,则0<θ<π2,所以sinθ=13,cosθ=2√23,则cos(2A−56π)=cos(θ−23π)=cosθcos23π+sinθsin23π=2√23×(−12)+13×√32=√3−2√26.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质和三角恒等变换,是中档题。
函数y=Asin(ωx+φ)的图象考点及例题讲解突破
函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用考纲解读 1.以y =A sin(ωx +φ)或y =A cos(ωx +φ)为主要内容,考查三角函数图象的变换;2.根据函数y =A sin(ωx +φ)的图象求解析式,研究性质,待定参数;3.以y =A sin(ωx +φ)或y =A cos(ωx +φ)为模型,考查三角函数的实际应用.[基础梳理]1.五点法画函数y =A sin(ωx +φ)的图象 (1)列表:(2)描点:⎝⎛⎭⎫-φω,0,⎝⎛⎭⎫π2ω-φω,A ,⎝⎛⎭⎫πω-φω,0,⎝⎛⎭⎫3π2ω-φω,-A ,⎝⎛⎭⎫2πω-φω,0. (3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)的图象的步骤12个小环节构成6条路线: (以③⑨⑫线路为例)③把y =sin x 的图象向左平移φ(φ>0)个单位长度,得到y =sin(x +φ)的图象; ⑨再把所得图象上的所有点的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到y =sin(ωx+φ);⑫最后把所有点的纵坐标变为原来的A (A >0)倍,横坐标不变,就得到y =A sin(ωx +φ)的图象.3.y =A sin(ωx +φ)的物理意义[三基自测]1.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度答案:B2.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3答案:A3.电流i (单位:A)随时间t (单位:s)变化的函数关系是i =5sin ⎝⎛⎭⎫100πt +π3,t ∈[0,+∞),则电流i 变化的初相、周期分别是( )A.π3,150 B.π6,1100 C.π3,1100 D.π6,150 答案:π3,1504.(必修4·习题1.5例题改编)由y =sin x ______得到y =sin 13x ______得到y =2sin13x ______得到y =2sin(13x -π6).答案:横坐标伸长到原来的3倍,纵坐标不变 纵坐标伸长到原来的2倍,横坐标不变 向右平移π2个单位5.(2017·高考全国卷Ⅰ改编)由曲线C 1:y =cos x ,向左平移__________个单位,再将横坐标缩小到原来的__________倍,得到曲线C 2:y =cos ⎝⎛⎭⎫2x +23π. 答案:23π 12[考点例题]考点一 图象与变换|模型突破[例1] 设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.(3)由y =sin x 经过怎样的变换得到f (x )=cos(ωx +φ)的图象(x ∈R ). [解析] (1)最小正周期T =2πω=π,∴ω=2.∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ =cos ⎝⎛⎭⎫π2+φ =-sin φ=32, ∴sin φ=-32. ∵-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝⎛⎭⎫2x -π3,列表:(3)f (x )=cos(2x -π3)=sin[ π2+(2x -π3)]=sin(2x +π6),所以由y =sin x 向左平移π6个单位长度,得到y =sin(x +π6)的图象,再将图象的横坐标缩小到原来的12倍,纵坐标不变,得到y =sin(2x +π6)的图象,即f (x )=cos(2x -π3)的图象.[模型解法][高考类题](2017·高考全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析:易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,故选D. 答案:D考点二 由图象求解析式及三角函数模型应用|方法突破[例2] (1)(2018·黄山模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到点A 的距离与点P 的高度之和为( )A .5米B .(4+7)米C .(4+17)米D .(4+19)米(2) 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是__________.[解析] (1)以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一圈,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ).又T =12,所以θ=π6t ,所以f (t )=3-2cos π6t ,t ≥0;风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,θ=6π+23π,P (3,1),所以点P 的高度为3-2×⎝⎛⎭⎫-12=4, 因为A (0,-3),所以AP =3+16=19,所以点P 到点A 的距离与点P 的高度之和为(4+19)米. (2)由图象可知A =2,T 4=7π12-π3=π4,所以T =π,又T =2πω=π,所以ω=2,所以函数f (x )=2sin(2x +φ),由f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫2×7π12+φ=2sin ⎝⎛⎭⎫7π6+φ=-2, 得sin ⎝⎛⎭⎫7π6+φ=-1,所以7π6+φ=3π2+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z ,所以f (x )=2sin ⎝⎛⎭⎫2x +π3,f (0)=2sin π3=2×32=62. 答案:(1)D (2)62[方法提升][母题变式]1.若本例(2)中的图象改为如图所示图象,则函数的一个解析式为__________.解析:设f (x )=A sin(ωx +φ)(ω>0),易得A =2. 由34T =5π12+π3=3π4得T =π, 所以2πω=π,即ω=2.又图象过点⎝⎛⎭⎫5π12,2,则2sin ⎝⎛⎭⎫2×5π12+φ=2, 所以2×5π12+φ=π2+2k π,k ∈Z ,所以φ=-π3+2k π,k ∈Z .可取φ=-π3.所以y =2sin ⎝⎛⎭⎫2x -π3. 答案:y =2sin ⎝⎛⎭⎫2x -π3(不唯一) 2.若本例(1)条件不变,在大风车转第一周内,求风车圆周上的点到地面的距离大于4的时间.解析:由题意得,圆周上的点到地面的距离为f (t )=3-2cos π6t ,t ∈[0,12],令3-2cos π6t >4,∴cos π6t <-12,∴23π<π6t <43π.∴4<t <8,∴8-4=4(秒),即圆周上的点到地面的距离大于4 m 的时间有4秒.考点三 函数y =A sin(ωx +φ)的图象性质的综合应用|思维突破命题点1 三角函数图象变换与性质综合问题[例3] 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位长度后,所得到的图象与原图象关于x 轴对称,则ω的最小值为( )A.13 B .3 C .6D .9[解析] 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位长度后,得到函数y =cos ⎝⎛⎭⎫ωx -ωπ3的图象,因为该图象与f (x )=cos ωx (ω>0)的图象关于x 轴对称,所以cos ⎝⎛⎭⎫ωx -ωπ3=-cos ωx 恒成立,则ωπ3=(2k +1)π,k ∈Z ,即ω=3(2k +1),k ∈Z ,当k =0时,ω的最小正值为3.故选B.[答案] B [思维升华]1.若函数y =cos ωx (ω>0)的图象向右平移π6个单位后与函数y =sin ωx 的图象重合,则ω的值可能是( )A.12 B .1 C .3D .4解析:依题意得,函数y =cos ωx =sin ⎝⎛⎭⎫ωx +π2的图象向右平移π6个单位后得到的曲线对应的解析式是y =sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π6+π2=sin ⎝⎛⎭⎫ωx -πω6+π2=sin ωx ,因此有-πω6+π2=-2k π,k ∈Z ,即ω=12k +3,其中k ∈Z ,于是结合各选项知ω的值可能是3.答案:C2.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6解析:向右平移φ个单位长度后,得到g (x )=sin(2x -2φ),又因为|f (x 1)-g (x 2)|=2, 所以不妨令2x 1=π2+2k π,2x 2-2φ=-π2+2m π,所以x 1-x 2=π2-φ+(k -m )π,又因为|x 1-x 2|min =π3,所以π2-φ=π3⇒φ=π6.答案:D命题点2 与三角函数有关的方程、不等式问题[例4] (1)(2018·揭阳模拟)已知函数f (x )=sin πx 和函数g (x )=cos πx 在区间[-1,2]上的图象交于A ,B ,C 三点,则△ABC 的面积是( )A.22B.324C. 2D.524(2)设f (x )=sin x (sin x +cos x )+2cos 2x . ①求函数f (x )的最大值与最小正周期;②求使不等式f (x )≥32成立的x 的取值集合.[解析] (1)由sin πx =cos πx ⇒tan πx =1, 又x ∈[-1,2]得x =-34或x =14或x =54,即三点坐标分别为⎝⎛⎭⎫-34,-22,⎝⎛⎭⎫14,22,⎝⎛⎭⎫54,-22,故S △ABC =12×⎣⎡⎦⎤54-⎝⎛⎭⎫-34×⎣⎡⎦⎤22-⎝⎛⎭⎫-22= 2. (2)f (x )=sin 2x +sin x cos x +2cos 2x =32+12sin 2x +12cos 2x =22sin(2x +π4)+32, ①当sin(2x +π4)=1时,f (x )max =32+22.T =2π2=π.②令22sin(2x +π4)+32≥32,∴sin(2x +π4)≥0.由正弦图象可知2k π≤2x +π4≤2k π+π,k ∈Z .∴k π-π8≤x ≤k π+38π,∴x 的取值集合为{x |k π-π8≤x ≤k π+38π,k ∈Z }.[答案] (1)C [思维升华][跟踪训练]3.(2018·河北三市联考)已知函数f (x )=2sin(ωx +φ)+1(ω>0,|φ|≤π2),其图象与直线y=-1相邻两个交点的距离为π,若f (x )>1对∀x ∈(-π12,π3)恒成立,则φ的取值范围是( ) A .[π12,π2]B .[π6,π3]C .[π12,π3]D .[π6,π2]解析:由已知得函数f (x )的最小正周期为π,则ω=2.当x ∈(-π12,π3)时,2x +φ∈(-π6+φ,2π3+φ),∵f (x )>1,|φ|≤π2,∴⎩⎨⎧-π6+φ≥02π3+φ≤π,解得π6≤φ≤π3.答案:B[真题感悟]1.[考点三](2017·高考天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24 解析:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫23x +φ. ∴2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k =0,得φ=π12.故选A. 答案:A2.[考点二](2015·高考陕西卷) 如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10 解析:设水深的最大值为M ,由题意结合函数图象可得⎩⎪⎨⎪⎧3+k =M ①,k -3=2 ②,解得M =8. 答案:C3.[考点二、三](2017·高考北京卷)已知函数f (x )=3cos ⎝⎛⎭⎫2x -π3-2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎡⎦⎤-π4,π4时,f (x )≥-12. 解析:(1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3, 所以f (x )的最小正周期T =2π2=π. (2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6, 所以sin ⎝⎛⎭⎫2x +π3≥sin ⎝⎛⎭⎫-π6=-12, 所以当x ∈⎣⎡⎦⎤-π4,π4时,f (x )≥-12.。
函数y=Asin(ωx+φ)习题练习
2022-2023高二学考复习之函数y=Asin(ωx+φ)1.若要得到函数y=sin(2x-π4)的图象,可以把函数y=sin 2x的图象()A.向右平移π8个单位长度B.向左平移π8个单位长度C.向右平移π4个单位长度D.向左平移π4个单位长度2.函数f(x)=sin4x+2sin xcos x-cos4x的最小正周期是()A.π4B.π2C.πD.2π3.设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如右图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π24.已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sin x的图象上所有点向左平移π3个单位长度,可得到函数y=f(x)的图象. 其中所有正确结论的序号是()A.①B.①③C.②③D.①②③5.现将函数f(x)=sin(2x+π6)的图象向右平移π6个单位长度,再将所得的图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图象,则函数g(x)的式为()A.g(x)=sin(4x-π3) B.g(x)=sin x C.g(x)=sin(x-π12)D.g(x)=sin(x-π6)6.函数y=sin(ωx+φ)(x ∈R,ω>0,0≤φ<2π)的部分图象如图,则( )A.ω=π2,φ=π4 B.ω=π3,φ=π6 C.ω=π4,φ=π4D.ω=π4,φ=5π47.函数y=xcos x+sin x 在区间[-π,π]上的图象可能是( )8.将函数y=√3cos x+sin x(x ∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π69.已知函数f(x)=|sin x|+|cos x|,则下列说法正确的是( ) A.f(x)的最小值为0 B.f(x)的最大值为2 C.f(π2-x)=f(x)D.f(x)=12在[0,π2]上有解10.函数y=2sin(12x-π3)的振幅为 ,频率为 ,初相为 .11.将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.12.已知函数f(x)=Asin(ωx+φ)A>0,ω>0,-π2<φ(<π2)的部分图象如图所示,则函数f(x)的式是.13.函数y=2sin 2x+sin2x(x∈R)的最小正周期是,值域是.14.如图,一半径为3的水轮,水轮的圆心O距离水面2米,已知水轮每分钟逆时针旋转4圈,水轮上的点P到水面距离y(单位:米)与时间x(单位:秒)满足函数关系y=Asin(ωx+φ)+2(A>0),则A=,ω=.15.已知函数f(x)=√3cos 2x+sin 2x,x∈R.(1)求f(0)的值;(2)求f(x)的最小正周期;(3)求使f(x)取得最大值的x的集合.16.已知函数f(x)=2cos2ωx-2√3sin ωx·sin(ωx+π)-1(ω>0),其最小正周期为π.2(1)求ω的值及函数f(x)的单调递增区间;(2)将函数y=f(x)的图象向右平移π个单位长度得到函数y=g(x),求函数y=g(x)在区3)上的值域.间(0,7π1217如图,某公园摩天轮的半径为40 m,圆心O距地面的高度为50 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上的点P的起始位置在距地面最近处.),求t=2(1)已知在t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|≤π2020 min时,点P距离地面的高度;(2)当离地面(50+20√3)m以上时,可以看到公园的全貌,求转一圈中在点P处有多少时间可以看到公园的全貌.18.将函数f(x)=sin(2x+θ)(-π2<θ<π2)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,√32),则φ的值可以是( )A.5π3B.5π6C.π2D.π619.已知f(x)=2sin x+cos x+1.对任意的x ∈R 均有f(x 1)≤f(x)≤f(x 2),则f(x 1)-f(x 2)= ;sin x 2= .20.已知关于x 的方程2sin 2x-√3sin 2x+m-1=0在(π2,π)上有两个不同的实数根,则实数m 的取值范围是 .21.关于函数f(x)=sin x+1sinx 有如下四个命题: ①f(x)的图象关于y 轴对称; ②f(x)的图象关于原点对称; ③f(x)的图象关于直线x=π2对称; ④f(x)的最小值为2.其中所有正确的序号是 .22.已知函数f(x)=Asin(ωx+φ)(x ∈R,A>0,ω>0,0<φ<π2)的部分图象如图所示,P,Q 分别是图象的最高点与相邻的最低点,且OP ⃗⃗⃗⃗⃗ =(12,1),|OP ⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗ |=4,O 为坐标原点.(1)求函数y=f(x)的式;(2)将函数y=f(x)的图象向左平移1个单位长茺后得到y=g(x)的图象,求函数y=g(x)在区间[-1,3]上的单调递增区间.23.已知m≠0,函数f(x)=sin x+cos x-msin xcos x+1.(1)当m=1时,求函数f(x)的最大值并求出相应x的值;,2π]上有6个零点,求实数m的取值范围.(2)若函数f(x)在[-π2参考答案及部分解析1.A 由于函数y=sin(2x-π4)=3sin 2(x-π8),故要得到函数y=sin(2x-π4)的图象,将函数y=sin 2x 的图象沿x 轴向右平移π8个单位长度即可,故选A.2.C f (x )=sin 4x+2sin x cos x-cos 4x=(sin 2x+cos 2x )(sin 2x-cos 2x )+2sin x cos x=-cos 2x+sin 2x=√2sin(2x-π4),则最小正周期T=2π2=π,故选C. 3.C 由题图知f (-4π9)=cos (-4π9ω+π6)=0, 所以-4π9ω+π6=π2+k π(k ∈Z),化简得ω=-3+9k4(k ∈Z).因为T<2π<2T ,即2π|ω|<2π<4π|ω|,所以1<|ω|<2,解得-119<k<-79或19<k<59. 当且仅当k=-1时,1<|ω|<2. 所以ω=32,最小正周期T=2π|ω|=4π3. 4.B ∵f (x )=sin (x +π3),∴①f (x )最小正周期T=2π1=2π,正确; ②f (π2)=sin (π2+π3)=sin 5π6≠1,不正确; ③y=sin xf (x )=sin (x +π3),正确.故选B .5.D 将函数f (x )=sin(2x+π6)的图象向右平移π6个单位长度,可得y=sin(2x-π3+π6)=sin(2x-π6)的图象,再将y=sin(2x-π6)图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数g (x )的图象,所以g (x )=sin(x-π6).故选D.6.C 由图知T 4=2,故T=8,由T=2πω,得ω=π4.由图知,函数过(1,1),故π4+φ=2k π+π2,k ∈Z,从而φ=2k π+π4,由题意取φ=π4.故选C.7.A 因为f (-x )=(-x )cos(-x )+sin(-x )=-(x cos x+sin x )=-f (x ),x ∈[-π,π],所以函数f (x )是奇函数,故排除C,D,当x ∈(0,π2)时,x cos x+sin x>0,所以排除B .故选A .8.B 由于y=√3cos x+sin x=2cos(x-π6)(x ∈R),向左平移m (m>0)个单位长度后得函数y=2cos(x+m-π6)的图象,由于图象关于y 轴对称,所以m-π6=k π,于是m=π6+k π,k ∈Z,故当k=0时,m 取最小值π6.故选B .9.C ∵f(x+π2)=|sin (x+π2)|+|cos (x+π2)|=|cos x|+|sin x|=f (x ),∴f (x )是以π2为周期的函数. 当x ∈[0,π2]时,f (x )=|sin x|+|cos x|=sin x+cos x=√2sin(x+π4), 则x+π4∈[π4,3π4],∴1≤√2sin(x+π4)≤√2, 根据函数的周期性可得f (x )的最小值为1,最大值为√2,故ABD 错误. ∵f(π2-x)=|sin(π2-x)|+|cos(π2-x)|=|cos x|+|sin x|=f (x ),故C 正确.故选C. 10.214π -π311.x=-5π24 将函数y=3sin (2x +π4)的图象向右平移π6个单位长度后得到函数y=3sin[2(x -π6)+π4]=3sin (2x -π12)的图象.由2x-π12=π2+k π,k ∈Z,得平移后的对称轴的方程为x=7π24+kπ2,k ∈Z . 当k=0时,x=7π24,当k=-1时,x=-5π24. 所以与y 轴最近的对称轴的方程是x=-5π24.12.f (x )=√2sin(π8x+π4) 易知A=√2,T=4×[2-(-2)]=16, ∴ω=2πT =π8,∴f (x )=√2sin(π8x+φ),将点(-2,0)代入得sin(φ-π4)=0,得φ-π4=2k π,k ∈Z . ∵-π2<φ<π2,∴φ=π4, ∴f (x )=√2sin(π8x+π4). 13.π [1-√172,1+√172] 函数y=2sin 2x+sin 2x=2sin 2x+1-cos2x2=√172sin(2x-φ)+12,cosφ=4√1717,sin φ=√1717(x ∈R).∵-1≤sin(2x-φ)≤1, ∴1-√172≤√172sin(2x-φ)+12≤1+√172,即函数的值域为[1-√172,1+√172],最小正周期T=2π2=π.14.32π15由已知水轮上的点P 到水面最大距离为r+2,因为y=A sin(ωx+φ)+2的最大值为A+2,所以A=r=3. 又因为水轮每分钟逆时针旋转4圈,T=604=15,所以ω=2π15.15.解 (1)因为f (x )=√3cos 2x+sin 2x=2sin(2x+π3),所以f (0)=2sin π3=√3. (2)因为f (x )=2sin(2x+π3),所以T=2π2=π,所以f (x )的最小正周期为π.(3)因为f (x )=2sin(2x+π3),所以f (x )的最大值为2,当且仅当2x+π3=2k π+π2时,即x=k π+π12(k ∈Z)时,f (x )取到最大值,所以使f (x )取得最大值的x 的集合为{x|x=k π+π12,k ∈Z}.16.解 f (x )=2cos 2ωx-2√3sin ωx ·sin(ωx+π2)-1=cos 2ωx-2√3sin ωx ·cos ωx =cos 2ωx-√3sin 2ωx=2cos(2ωx+π3), (1)因为T=2π2ω=π,所以ω=1, 所以f (x )=2cos(2x+π3), 令2k π-π≤2x+π3≤2k π, 解得k π-2π3≤x ≤k π-π6,可得函数的增区间为[k π-2π3,k π-π6],k ∈Z .(2)由已知g (x )=f(x-π3)=2cos[2(x-π3)+π3]=2cos(2x-π3),当x ∈(0,7π12), 则2x-π3∈(-π3,5π6), 所以-√32<cos (2x-π3)≤1,则-√3<g (x )≤2,所以函数y=g (x )在区间(0,7π12)上的值域为(-√3,2]. 17.解 (1)依题意,A=40,h=50,T=3, 由2πω=3得ω=2π3,所以f (t )=40sin(2π3t+φ)+50.因为f (0)=10,所以sin φ=-1, 又|φ|≤π2,所以φ=-π2.所以f (t )=40sin(2π3t-π2)+50(t ≥0), 所以f (2 020)=40sin(2π3×2 020-π2)+50=70. 即t=2 020时点P 距离地面的高度为70 m . (2)由(1)知f (t )=40sin(2π3t-π2)+50=50-40cos 2π3t (t ≥0). 令f (t )>50+20√3,即cos 2π3t<-√32, 从而2k π+5π6<2π3t<2k π+7π6(k ∈N), ∴3k+54<t<3k+74(k ∈N).∵3k+74-(3k+54)=12=0.5(k ∈N),∴转一圈中在点P 处有0.5 min 的时间可以看到公园的全貌. 18.B 把P(0,√32)代入f (x )=sin(2x+θ)(-π2<θ<π2),解得θ=π3,所以g (x )=sin(2x+π3-2φ),把P(0,√32)代入得,φ=k π或φ=k π-π6,又φ>0得φ=5π6.故选B .19.-2√52√55∵f (x 1)≤f (x )≤f (x 2),∴f (x 1)是最小值,f (x 2)是最大值,f (x )=2sin x+cos x+1=√5sin(x+α)+1,其中sin α=√55,cos α=2√55,所以f (x 2)=√5+1,f (x 1)=-√5+1,所以f (x 1)-f (x 2)=-2√5.x 2+α=2k π+π2,x 2=2k π+π2-α,k ∈Z,所以sin x 2=sin(2k π+π2-α)=sin(π2-α)=cos α=2√55. 20.(-2,-1) 方程2sin 2x-√3sin 2x+m-1=0可转化为m=1-2sin 2x+√3sin 2x=cos 2x+√3sin 2x=2sin(2x+π6),x ∈(π2,π).设2x+π6=t ,则t ∈(76π,136π),∴题目条件可转化为m 2=sin t ,t ∈(76π,136π)有两个不同的实数根.∴y 1=m 2和y 2=sin t ,t ∈(76π,136π)的图象有两个不同交点,由图象(图略)观察知,m 2的取值范围是(-1,-12),故实数m 的取值范围是(-2,-1).21.②③ 对于①②,由sin x ≠0可得函数的定义域为{x|x ≠k π,k ∈Z},故定义域关于原点对称,且由f (-x )=sin(-x )+1sin (-x )=-sin x-1sinx =-f (x ),所以该函数为奇函数,关于原点对称,故①错误,②正确;对于③,因为f (π-x )=sin(π-x )+1sin (π-x )=sin x+1sinx =f (x ),所以函数f (x )的图像关于直线x=π2对称,③正确;对于④,令t=sin x ,则t ∈[-1,0)∪(0,1],由函数g (t )=t+1t (t ∈[-1,0)∪(0,1])的性质,可知g (t )∈(-∞,-2]∪[2,+∞),所以f (x )无最小值,④错误.22.解 (1)因为P 为f (x )的最高点,且OP ⃗⃗⃗⃗⃗⃗ =(12,1), 则P(12,1),所以A=1,设Q (m ,-1),m>0,所以OQ ⃗⃗⃗⃗⃗⃗ =(m ,-1),则OP ⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ =(12+m ,0),由|OP ⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ |=4,得12+m=4,即m=72, 所以T 2=72−12=3,得T=6,ω=2πT =π3,所以f (x )=sin(π3x+φ),因为点P 在函数f (x )的图象上,所以1=sin(π6+φ).因为0<φ<π2,所以φ=π3,故f (x )=sin(π3x+π3).(2)由题意知g (x )=sin[π3(x+1)+π3]=sin(π3x+2π3),令-π2+2k π≤π3x+2π3≤π2+2k π,k ∈Z,解得-72+6k ≤x ≤-12+6k ,k ∈Z,即g (x )的单调递增区间为[-72+6k ,-12+6k],k ∈Z,则当k=0时,x ∈[-72,-12];当k=1时,x ∈[52,112].又x ∈[-1,3],所以g (x )在区间[-1,3]的单调递增区间为[-1,-12],[52,3].23.解 (1)当m=1时,f (x )=sin x+cos x-sin x cos x+1,令t=sin x+cos x=√2sin(x+π4)∈[-√2,√2],且t 2=1+2sin x cos x ,即sin x cos x=t 2-12, 所以令f (x )=g (t )=t-t 2-12+1=-12(t-1)2+2.因为t ∈[-√2,√2],所以当t=1时,f (x )有最大值为2,此时√2sin(x+π4)=1,解得x=2k π或x=π2+2k π,k ∈Z .(2)因为x ∈[-π2,2π],所以x+π4∈[-π4,9π4],则t=sin x+cos x=√2sin(x+π4)∈[-√2,√2],由f (x )=g (t )=t-m ·t 2-12+1=0,则t+1-m ·t 2-12=(t+1)(1-m ·t -12)=0,当t=-1时,-1=sin x+cos x=√2sin(x+π4)在x+π4∈[-π4,9π4]有3个不同的解;当t ≠-1时,t=2m +1,则2m +1=sin x+cos x=√2sin(x+π4)在x+π4∈[-π4,9π4]也需有3个不同的解,所以2m +1∈[-1,1],解得m ≤-1,所以实数m 的取值范围为(-∞,-1].。
必修四函数y=Asin(ωx+φ)的图像(二)(附答案)
函数y =A sin(ωx +φ)的图像(二)[学习目标] 1.会用“五点法”画函数y =A sin(ωx +φ)的图象.2.能根据y =A sin(ωx +φ)的部分图象,确定其解析式.3.了解y =A sin(ωx +φ)的图象的物理意义,能指出简谐运动中的振幅、周期、相位、初相.知识点一 “五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的图象.利用“五点法”作出函数y =A sin(ωx +φ) (A >0,ω>0)在一个周期上的图象,要经过“取值、列表、描点、连线”这四个步骤.请完成下面的填空.所以,描点时的五个关键点的坐标依次是(-φω,0),(-φω+π2ω,A ),(-φω+πω,0),(-φω+3π2ω,-A ),(-φω+2πω,0). 若设T =2πω,则这五个关键点的横坐标依次为-φω,-φω+T 4,-φω+T 2,-φω+34T ,-φω+T .思考 利用“五点法”作出函数y =2sin(2x +π3)一个周期上的图象,通常选取的五个点依次为 .答案 (-π6,0),(π12,2),(π3,0),(712π,-2),(56π,0).知识点二 由函数y =A sin(ωx +φ)的部分图象 求三角函数的解析式(1)在由图象求解析式时,“第一个零点”的确定是关键,一般地可将所给一段图象左、右扩展找离原点最近且穿过x 轴上升的即为“第一零点”(x 1,0).从左到右依次为第二、三、四、五点,分别有ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π.(2)由图象确定系数ω,φ通常采用两种方法:①如果图象明确指出了周期的大小和初始值x 1(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出ω和φ,或由方程(组)求出.②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定ω和φ. (3)A 的求法一般由图象观察法或代入点的坐标通过解A 的方程求出.思考 已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则ω= ,φ= . 答案 2 -π6解析 由图象知,T 4=7π12-π3=π4,∴T =π,ω=2.且2×7π12+φ=k π+π(k ∈Z ),φ=k π-π6(k ∈Z ).又|φ|<π2,∴φ=-π6.知识点三 函数f (x )=A sin(ωx +φ)或 f (x )=A cos(ωx +φ)的奇偶性关于函数f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的奇偶性有以下结论:①f (x )=A sin(ωx +φ)是奇函数⇔f (x )=A sin(ωx +φ)的图象关于原点对称⇔f (0)=0⇔φ=k π(k ∈Z ).②函数f (x )=A sin(ωx +φ)是偶函数⇔f (x )=A sin(ωx +φ)的图象关于y 轴对称⇔f (0)=A 或f (0)=-A ⇔φ=k π+π2(k ∈Z ).③函数f (x )=A cos(ωx +φ)是奇函数⇔f (x )=A cos(ωx +φ)的图象关于原点对称⇔f (0)=0⇔φ=k π+π2(k ∈Z ).④函数f (x )=A cos(ωx +φ)是偶函数⇔f (x )=A cos(ωx +φ)的图象关于y 轴对称⇔f (0)=A 或f (0)=-A ⇔φ=k π(k ∈Z )思考 (1)若函数f (x )=5sin(2x +α)是偶函数,则α等于( ) A .k π,k ∈Z B .(2k +1)π,k ∈Z C .2k π+π2,k ∈ZD .k π+π2,k ∈Z(2)若函数f (x )=cos(3x +φ)是奇函数,则φ等于( ) A .-π2B .k π+π2(k ∈Z )C .k π(k ∈Z )D .2k π-π2(k ∈Z )答案 (1)D (2)B解析 (1)f (0)=5sin α=±5,∴sin α=±1. ∴α=k π+π2,k ∈Z .(2)f (0)=cos φ=0,∴φ=k π+π2,k ∈Z .题型一 “五点法”作y =A sin(ωx +φ)的简图例1 利用五点法作出函数y =3sin(12x -π3)在一个周期内的草图.解 依次令x 2-π3取0、π2、π、3π2、2π,列出下表:描点,连线,如图所示.跟踪训练1 用“五点法”作出函数y =2sin(2x -π3)的简图.解 列表:描点,连线得函数y =2sin(2x -π3)在一个周期内的图象.再将这部分图象向左或向右延伸k π(k ∈Z )个单位长度,就可得函数y =2sin(2x -π3)(x ∈R )的图象.题型二 求函数y =A sin(ωx +φ)的解析式例2 如图为y =A sin(ωx +φ)的图象的一段,求其解析式.解 方法一 以N 为第一个零点, 则A =-3,T =2⎝⎛⎭⎫5π6-π3=π,∴ω=2,此时解析式为y =-3sin(2x +φ). ∵点N ⎝⎛⎭⎫-π6,0, ∴-π6×2+φ=0,∴φ=π3,所求解析式为y =-3sin ⎝⎛⎭⎫2x +π3 方法二 由图象知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,P ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3=-3sin(2x +π3).跟踪训练2 已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的部分函数图象如图所示,求此函数的解析式. 解 由图象可知A =2, T 2=43-13=1, ∴T =2,∴T =2πω=2,∴ω=π.∴y =2sin(πx +φ).代入(13,2)得2sin(π3+φ)=2,∴sin(π3+φ)=1,∴π3+φ=2k π+π2,φ=2k π+π6, 又∵|φ|<π2,∴φ=π6,∴y =2sin(πx +π6).题型三 函数y =A sin(ωx +φ)的对称性例3 已知函数f (x )=a 2sin 2x +(a -2)cos 2x 的图象关于点⎝⎛⎭⎫π2,0中心对称,求a 的值. 解 ∵函数f (x )=a 2sin 2x +(a -2)cos 2x 的图象关于⎝⎛⎭⎫π2,0中心对称,∴f ⎝⎛⎭⎫π2=2-a =0,∴a =2.跟踪训练3 已知函数f (x )=a 2sin 2x +(a -2)cos 2x 的图象关于直线x =-π8对称,求a 的值.解 根据函数图象关于直线x =-π8对称,∴f ⎝⎛⎭⎫-π8+x =f ⎝⎛⎭⎫-π8-x 对一切x ∈R 恒成立. 取x =π8得f (0)=f ⎝⎛⎭⎫-π4. 代入得a -2=-a 2,解得a =1或a =-2.数形结合思想在三角方程问题中的应用例4 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.分析 可先作出函数y =2sin(2x +π3)的图象,再结合直线y =a +1与图象交点个数判定a 的取值范围.解 构造函数y =2sin(2x +π3)及y =a +1,用五点作图法作出函数y =2sin(2x +π3)在[-π6,13π12]上的图象如图.显然要使y =a +1与图象有两个交点, 只须-2<a +1<0或a +1=2, 解得-3<a <-1或a =1,即a 的取值范围为{a |-3<a <-1或a =1}.1.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于直线x =π4对称 C .关于点⎝⎛⎭⎫π4,0对称 D .关于直线x =π3对称 2.若函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π43.函数y =sin(12x +π6)的对称中心是 ,对称轴方程是 .4.作出y =3sin ⎝⎛⎭⎫12x -π4在一个周期上的图象.5.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f (x )的单调增区间.一、选择题1.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( ) A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π32.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )3.若函数f (x )=3sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则有f (π6)等于( ) A .3或0 B .-3或0 C .0D .-3或34.下列函数中,图象的一部分如图所示的是( )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫4x -π3 D .y =cos ⎝⎛⎭⎫2x -π65.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度6.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,那么a 等于( )A. 2 B .- 2 C .1 D .-1 二、填空题7.把函数y =2sin(x +2π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小正值是 .8.已知函数y =sin(ωx +φ) (ω>0,-π≤φ<π)的图象如下图所示,则φ= .9.若函数f (x )=A sin(ωx +φ)+1(ω>0,|φ|<π)对任意实数t ,都有f (t +π3)=f (-t +π3),记g (x )=A cos(ωx +φ)-1,则g (π3)= .10.关于f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍; ②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )图象关于⎝⎛⎭⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为 . 三、解答题11.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1),求函数的解析式.12.已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝⎛⎭⎫38π,0,若φ∈⎝⎛⎭⎫-π2,π2.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象.13.(1)利用“五点法”画出函数y =sin(12x +π6)在长度为一个周期的闭区间的简图列表:作图:(2)并说明该函数图象可由y =sin x (x ∈R )的图象经过怎样变换得到的.当堂检测答案1.答案 A 2.答案 C解析 由所给图象可知,T4=2,∴T =8.又∵T =2πω,∴ω=π4.∵图象在x =1处取得最高点,∴π4+φ=π2+2k π(k ∈Z ),∴φ=2k π+π4(k ∈Z ),∵0≤φ<2π,∴φ=π4.3.答案 (2k π-π3,0),k ∈Z x =2k π+23π,k ∈Z4.解 列表:描点、连线,如图所示:5.解 (1)∵直线x =π8是函数y =f (x )的图象的一条对称轴,∴sin(2×π8+φ)=±1,∴π4+φ=k π+π2(k ∈Z ).∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此f (x )=sin(2x -3π4).由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z ,即k π+π8≤x ≤k π+58π(k ∈Z ).∴函数y =sin(2x -3π4)的单调递增区间为[k π+π8,k π+5π8](k ∈Z ).课时精练答案一、选择题 1.答案 A解析 T =2πω=2ππ3=6,代入(0,1)点得sin φ=12.∵-π2<φ<π2,∴φ=π6.2.答案 D解析 当a =0时f (x )=1,C 符合,当0<|a |<1时T >2π,且最小值为正数,A 符合,当|a |>1时T <2π,且最小值为负数,B 符合,排除A 、B 、C. D 项中,由振幅得a >1,∴T <2π,而由图象知T >2π矛盾,故选D. 3.答案 D解析 由f (π6+x )=f (π6-x )知,x =π6是函数的对称轴,解得f (π6)=3或-3,故选D.4.答案 D解析 由图知T =4×⎝⎛⎭⎫π12+π6=π, ∴ω=2πT =2.又x =π12时,y =1,经验证,可得D 项解析式符合题目要求.5.答案 B解析 由图象知,函数f (x )的周期T =4×(5π12-π4)=2π3=2πω,所以ω=3.因为函数f (x )的图象过图中最小值点(5π12,-1),所以A =1且sin(3×5π12+φ)=-1,又因为|φ|<π2,所以φ=π4,所以f (x )=sin(3x +π4).因为g (x )=sin 3x ,所以g (x )=f (x -π12).为了得到g (x )=sin 3x 的图象,只需将f (x )的图象向右平移π12个单位长度,故选B.6.答案 D解析 方法一 ∵函数y =sin 2x +a cos 2x 的图象关于x =-π8对称,设f (x )=sin 2x +a cos 2x ,则f (-π4)=f (0),∴sin(-π2)+a cos(-π2)=sin 0+a cos 0.∴a =-1.方法二 由题意得f (-π8-x )=f (-π8+x ),令x =π8,有f (-π4)=f (0),即a =-1.二、填空题 7.答案5π6解析 把y =2sin(x +2π3)的图象向左平移m 个单位,则y =2sin(x +m +2π3),其图象关于y 轴对称,∴m +2π3=k π+π2,即m =k π-π6,k ∈Z .∴取k =1,m 的最小正值为5π6. 8.答案9π10解析 由图象知函数y =sin(ωx +φ)的周期为 2⎝⎛⎭⎫2π-3π4=5π2,∴2πω=5π2,∴ω=45. ∵当x =3π4时,y 有最小值-1,∴45×3π4+φ=2k π-π2 (k ∈Z ). ∵-π≤φ<π,∴φ=9π10.9.答案 -1解析 ∵f (t +π3)=f (-t +π3),∴f (x )在x =π3时,取到最大值或最小值,即x =π3时,sin(ωx +φ)=±1,∴x =π3时,cos(ωx +φ)=0,∴g (π3)=-1.10.答案 ②③解析 对于①,由f (x )=0,可得2x +π3=k π (k ∈Z ),∴x =k 2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin ⎝⎛⎭⎫2x +π3利用公式得: f (x )=4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6.∴②对;对于③,f (x )=4sin ⎝⎛⎭⎫2x +π3的对称中心满足2x +π3=k π,k ∈Z ,∴x =k 2π-π6,k ∈Z . ∴⎝⎛⎭⎫-π6,0是函数y =f (x )的一个对称中心,∴③对; 对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z ,∴x =π12+k π2,k ∈Z ,∴④错.三、解答题11.解 由于最小值为-2,所以A =2. 又相邻的最高点与最低点横坐标之差为3π. 故T =2×3π=6π,从而ω=2πT =2π6π=13, y =2sin ⎝⎛⎭⎫13x +φ. 又图象过点(0,1),所以sin φ=12.因为|φ|<π2,所以φ=π6.故所求解析式为y =2sin ⎝⎛⎭⎫13x +π6.12.解 (1)由题意知A =2,T =4×⎝⎛⎭⎫38π-π8=π, ω=2πT=2,∴y =2sin(2x +φ).又∵sin ⎝⎛⎭⎫π8×2+φ=1,∴π4+φ=2k π+π2,k ∈Z , ∴φ=2k π+π4,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2,∴φ=π4, ∴y =2sin ⎝⎛⎫2x +π4. (2)列出x 、y 的对应值表:描点、连线,如图所示:13.解 (1)先列表,后描点并画图.(2)把y =sin x 的图象上所有的点向左平移π6个单位长度,得到y =sin(x +π6)的图象,再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(12x +π6)的图象.或把y =sin x 的图象横坐标伸长到原来的2倍(纵坐标不变),得到y =sin 12x 的图象,再把所得图象上所有的点向左平移π3个单位长度,得到y =sin [12(x +π3)],即y =sin(12x +π6)的图象.。
Asin(ωx+φ)的图像与性质练习(含解析)
专题4.5 函数y=Asin(ωx+φ)的图象与性质【考试要求】1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【知识梳理】1。
用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.2.函数y=A sin(ωx+φ)的有关概念3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径4。
三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流。
(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=A sin(ωx+φ)+k中的待定系数。
(3)把实际问题翻译为函数f(x)的性质,得出函数性质后,再把函数性质翻译为实际问题的答案。
【微点提醒】1。
由y=sin ωx到y=sin(ωx+φ)(ω>0,φ〉0)的变换:向左平移错误!个单位长度而非φ个单位长度。
2。
函数y=A sin(ωx+φ)的对称轴由ωx+φ=kπ+错误!(k∈Z)确定;对称中心由ωx+φ=kπ(k∈Z)确定其横坐标。
3.音叉发出的纯音振动可以用三角函数表达为y=A sin ωx,其中x表示时间,y表示纯音振动时音叉的位移,错误!表示纯音振动的频率(对应音高),A表示纯音振动的振幅(对应音强)。
4。
交变电流可以用三角函数表达为y=A sin(ωx+φ),其中x表示时间,y表示电流,A表示最大电流,错误!表示频率,φ表示初相位。
【疑误辨析】1.判断下列结论正误(在括号内打“√"或“×”)(1)将函数y=3sin 2x的图象左移错误!个单位长度后所得图象的解析式是y=3sin错误!.()(2)利用图象变换作图时“先平移,后伸缩"与“先伸缩,后平移”中平移的长度一致.()(3)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为错误!.( )(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的。
高一 函数y=Asin(ωx+φ)的性质知识点+例题+练习 含答案
1.y=A sin(ωx+φ)的有关概念y =A sin(ωx +φ)(A>0,ω>0),x∈R 振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 03.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(×)(2)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (3)由图象求解析式时,振幅A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ )(4)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )1.y =2sin ⎝⎛⎭⎫2x -π4的振幅、频率和初相分别为 . 答案 2,1π,-π42.(2015·山东改编)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,需将函数y =sin 4x 的图象进行的变换为 .①向左平移π12个单位;②向右平移π12个单位;③向左平移π3个单位;④向右平移π3个单位.答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2015·湖南改编)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ= .答案 π6解析 因为g (x )=sin [2(x -φ)]=sin(2x -2φ), 所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2. 因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以sin 2x 1和sin(2x 2-2φ)的值中,一个为1,另一个为-1,不妨取sin 2x 1=1,sin(2x 2-2φ)=-1,则2x 1=2k 1π+π2,k 1∈Z,2x 2-2φ=2k 2π-π2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1-k 2)∈Z ,得|x 1-x 2|=⎪⎪⎪⎪(k 1-k 2)π+π2-φ. 因为0<φ<π2,所以0<π2-φ<π2,故当k 1-k 2=0时,|x 1-x 2|min =π2-φ=π3,则φ=π6.4.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为 .答案 y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14] 解析 从图中可以看出,从6~14时的是函数 y =A sin(ωx +φ)+b 的半个周期, 所以A =12×(30-10)=10,b =12×(30+10)=20, 又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2π, 解得φ=3π4,所以y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14].5.(2014·安徽)若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是 . 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ).∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2, 周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表如下:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 0 1 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π3 02-2(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象; 再把y =sin ⎝⎛⎭⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象; 最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象; 再将y =sin ⎝⎛⎭⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为 (填正确的序号).①x =-π2;②x =-π4;③x =π8;④x =π4.(2)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于 . 答案 (1)① (2)6解析 (1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x=-π2是其图象的一条对称轴方程.(2)由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.题型二 由图象确定y =A sin(ωx +φ)的解析式例2 (1)已知函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的图象上一个最高点的坐标为(2,2),由这个最高点到其右侧相邻最低点间的图象与x 轴交于点(6,0),则此函数的解析式为 .(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为 .答案 (1)y =2sin ⎝⎛⎭⎫π8x +π4 (2)f (x )=2sin(2x +π3)解析 (1)由题意得A =2,T 4=6-2,所以T =16,ω=2πT =π8.又sin ⎝⎛⎭⎫π8×2+φ=1,所以π4+φ=π2+2k π (k ∈Z ).又因为|φ|<π2,所以φ=π4. (2)由题图可知A =2,T 4=7π12-π3=π4,所以T =π,故ω=2, 因此f (x )=2sin(2x +φ), 又⎝⎛⎭⎫712π,-2为最小值点,∴2×712π+φ=2k π+3π2,k ∈Z ,∴φ=2k π+π3,k ∈Z ,又|φ|<π,∴φ=π3.故f (x )=2sin(2x +π3).思维升华 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法: (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2. 函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ= . 答案 -π3解析 ∵T 2=1112π-512π,∴T =π.又T =2πω(ω>0),∴2πω=π,∴ω=2.由五点作图法可知当x =512π时,ωx +φ=π2,即2×512π+φ=π2,∴φ=-π3.题型三 三角函数图象性质的应用命题点1 三角函数模型的应用例3 如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为 .答案 y =sin ⎝⎛⎭⎫-π30t +π6 解析 设点P 的纵坐标y 与时间t 的函数关系式为y =sin(ωt +φ).由题意可得,函数的初相位是π6.又函数周期是60(秒)且秒针按顺时针旋转,即T =⎪⎪⎪⎪2πω=60,所以|ω|=π30,即ω=-π30,所以y =sin ⎝⎛⎭⎫-π30t +π6. 命题点2 方程根(函数零点问题)例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是 . 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π,有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,“有两个不同的实数根”改成“有实根”,则m 的取值范围是 . 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12,∴-2≤m <1, ∴m 的取值范围是[-2,1). 命题点3 图象性质综合应用例5 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值;(2)求函数y =f (x )+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 解 (1)f (x )=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6. 因为f (x )是偶函数, 则φ-π6=π2+k π(k ∈Z ),所以φ=2π3+k π(k ∈Z ),又因为0<φ<π,所以φ=2π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2.故f (x )=2cos 2x . 因此f ⎝⎛⎭⎫π8=2cos π4= 2. (2)y =2cos 2x +2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4 =2cos 2x +2cos ⎝⎛⎭⎫2x +π2 =2cos 2x -2sin 2x =22sin ⎝⎛⎭⎫π4-2x =-22sin ⎝⎛⎭⎫2x -π4 令2x -π4=2k π-π2(k ∈Z ),y 有最大值22,所以当x =k π-π8(k ∈Z )时,y 有最大值2 2.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.(2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是 .(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案 ①③解析 ∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (2π3)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6, ∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,2π3)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sin π=0,正确.④:应平移π12个单位长度,错误.4.三角函数图象与性质的综合问题典例 (14分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [4分]=2sin(x +π3),[6分]于是T =2π1=2π.[7分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[9分]∵x ∈[0,π], ∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[12分]∴g (x )=2sin(x +π6)∈[-1,2].[13分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2· (sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范. 温馨提醒 (1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=ab ),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由图象确定y =A sin(ωx +φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离). [失误与防范]1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.A 组 专项基础训练 (时间:40分钟)1.函数y =cos ⎝⎛⎭⎫2x -π3的部分图象可能是 .答案 ④解析 ∵y =cos ⎝⎛⎭⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有④.2.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .答案34解析 取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f (x )=12cos πx ,∴f (16)=12cos π6=34.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的单调递增区间是 . 答案 [k π-π12,k π+5π12],k ∈Z解析 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2,∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2,∴取k =0,则φ=-π3,即得f (x )=2sin(2x -π3),∴f (x )的单调增区间为2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,即单调递增区间为[k π-π12,k π+5π12],k ∈Z .4.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为 . 答案 -2或0解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为 . 答案 -32解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是 . 答案 32解析 由函数向右平移4π3个单位后与原图象重合,得4π3是此函数周期的整数倍. ∴2πω·k =4π3,∴ω=32k (k ∈Z ), 又ω>0,∴ωmin =32.7.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数从1减小到-1,则f ⎝⎛⎭⎫π4= . 答案32解析 由题意可得,函数的周期为2×⎝⎛⎭⎫2π3-π6=π,即2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 由sin ⎝⎛⎭⎫2×π6+φ=1,|φ|<π2可得φ=π6, ∴f (x )=sin ⎝⎛⎭⎫2x +π6, ∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.若方程f (x )=m 在区间[0,π]上有两个不同的实数x 1,x 2,则x 1+x 2的值为 .答案 π3或43π解析 由图象可知y =m 和y =f (x )图象的两个交点关于直线x =π6或x =23π对称,∴x 1+x 2=π3或43π.9.(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14, f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34,所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34, 最小值为-12.10.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3. 依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 所以-1≤f (x )≤32. 故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. B 组 专项能力提升 (时间:20分钟)11.已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为 . 答案 f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 观察图象可知:A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 12.(2014·天津改编)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为 .答案 π解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.13.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是 . 答案 ⎣⎡⎦⎤2π9,5π18解析 画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32, 且f ⎝⎛⎭⎫2π9=cos π=-1, 要使f (x )的值域是⎣⎡⎦⎤-1,-32, 所以π≤3m +π3≤76π,则2π9≤m ≤5π18,即m ∈⎣⎡⎦⎤2π9,5π18.14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω= . 答案143解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4ω+π3=-1, ∴π4ω+π3=2k π+3π2 (k ∈Z ), ∴ω=8k +143(k ∈Z ),∵f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, ∴π3-π4<πω,即ω<12,令k =0,得ω=143. 15.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应的x 的取值集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解 (1)f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2 =sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4.当ω=12时,f (x )=2sin ⎝⎛⎭⎫x 2-π4, 而-1≤sin ⎝⎛⎭⎫x 2-π4≤1,所以f (x )的最大值为2,此时x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,所以相应的x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =3π2+4k π,k ∈Z .(2)依题意f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z , 整理得ω=8k +2,k ∈Z .因为0<ω<10,所以0<8k +2<10,-14<k <1.又k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π.。
高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面
辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。
函数y=Asin(ωx+φ)的图象及应用考点与提醒归纳
函数y=A sin(ωx+φ)的图象及应用考点与提醒归纳一、基础知识1.函数y=A sin(ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图用五点法画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:3.由函数y=sin x的图象通过变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种方法(1)两种变换的区别①先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;②先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度.(2)变换的注意点无论哪种变换,每一个变换总是针对自变量x 而言的,即图象变换要看“自变量x ”发生多大变化,而不是看角“ωx +φ”的变化.考点一 求函数y =A sin(ωx +φ)的解析式[典例] (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4 B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫14x +3π4 D .f (x )=2sin ⎝⎛⎭⎫2x +π4 (2)(2019·皖南八校联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________________.[解析] (1)由题图可知A =2,T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π,故2πω=4π,解得ω=12. 所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1,所以φ-π4=2k π+π2(k ∈Z), 解得φ=2k π+3π4(k ∈Z).又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4. (2)依题意得22+⎝⎛⎭⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝⎛⎭⎫π2x +φ,由于该函数图象过点⎝⎛⎭⎫2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎫π2x +π6.[答案] (1)B (2)sin ⎝⎛⎭⎫π2x +π6[解题技法]确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法有以下2种[题组训练]1.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62B .-32C .-22D .-1解析:选D 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.由f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π6+φ=-2,|φ|<π2,得φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin5π4=-1. 2.(2018·咸阳三模)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则f (x )的解析式为( )A .f (x )=23sin ⎝⎛⎭⎫πx 8+π4B .f (x )=23sin ⎝⎛⎭⎫πx 8+3π4C .f (x )=23sin ⎝⎛⎭⎫πx 8-π4D .f (x )=23sin ⎝⎛⎭⎫πx 8-3π4解析:选D 由图象可得,A =23,T =2×[6-(-2)]=16, 所以ω=2πT =2π16=π8.所以f (x )=23sin ⎝⎛⎭⎫π8x +φ. 由函数的对称性得f (2)=-23, 即f (2)=23sin ⎝⎛⎭⎫π8×2+φ=-23, 即sin ⎝⎛⎭⎫π4+φ=-1, 所以π4+φ=2k π-π2(k ∈Z),解得φ=2k π-3π4(k ∈Z).因为|φ|<π,所以k =0,φ=-3π4.故函数的解析式为f (x )=23sin ⎝⎛⎭⎫πx 8-3π4.考点二 函数y =A sin(ωx +φ)的图象与变换[典例] (2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2[解析] 易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2. [答案] D[解题技法] 三角函数图象变换中的3个注意点(1)变换前后,函数的名称要一致,若不一致,应先利用诱导公式转化为同名函数; (2)要弄清变换的方向,即变换的是哪个函数的图象,得到的是哪个函数的图象,切不可弄错方向;(3)要弄准变换量的大小,特别是平移变换中,函数y =A sin x 到y =A sin(x +φ)的变换 量是|φ|个单位,而函数y =A sin ωx 到y =A sin(ωx +φ)时,变换量是⎪⎪⎪⎪φω个单位.[题组训练]1.将函数y =sin ⎝⎛⎭⎫x +π6的图象上所有的点向左平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象对应的函数解析式为( )A .y =sin ⎝⎛⎭⎫2x +5π12 B .y =sin ⎝⎛⎭⎫x 2+5π12C .y =sin ⎝⎛⎭⎫x 2-π12 D .y =sin ⎝⎛⎭⎫x 2+5π24解析:选B 将函数y =sin ⎝⎛⎭⎫x +π6的图象上所有的点向左平移π4个单位长度,得到函数y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π4+π6=sin ⎝⎛⎭⎫x +5π12的图象,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),可得函数y =sin ⎝⎛⎭⎫12x +5π12的图象,因此变换后所得图象对应的函数解析式为y =sin ⎝⎛⎭⎫x 2+5π12.2.(2019·潍坊统一考试)函数y =3sin 2x -cos 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的值为( )A.π12 B.π6C.π4D.π3解析:选B 由题意知y =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6,其图象向右平移φ个单位长度后,得到函数g (x )=2sin ⎝⎛⎭⎫2x -2φ-π6的图象,因为g (x )为偶函数,所以2φ+π6=π2+k π,k ∈Z ,所以φ=π6+k π2,k ∈Z ,又因为φ∈⎝⎛⎭⎫0,π2,所以φ=π6.考点三 三角函数模型及其应用[典例] 据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9千元,9月份价格最低为5千元,则7月份的出厂价格为________元.[解析] 作出函数f (x )的简图如图所示,三角函数模型为:f (x )=A sin(ωx +φ)+B ,由题意知:A =2 000,B =7 000,T =2×(9-3)=12, ∴ω=2πT =π6.将(3,9 000)看成函数图象的第二个特殊点, 则有π6×3+φ=π2,∴φ=0,故f (x )=2 000sin π6x +7 000(1≤x ≤12,x ∈N *).∴f (7)=2 000×sin 7π6+7 000=6 000.故7月份的出厂价格为6 000元. [答案] 6 000[解题技法]三角函数模型在实际应用中的2种类型及解题策略(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.[题组训练]1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解析:选C 设水深的最大值为M ,由题意并结合函数图象可得⎩⎪⎨⎪⎧3+k =M ,k -3=2,解得M=8.2.某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.解析:由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18,即⎩⎪⎨⎪⎧a =23,A =5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),令x =10,得y =20.5.答案:20.5[课时跟踪检测]A 级1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 令x =0,得y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D.由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C ,故选A.2.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝⎛⎭⎫π6的值是( )A .-3 B.33C .1D.3解析:选D 由题意可知该函数的周期为π2,∴πω=π2,ω=2,f (x )=tan 2x . ∴f ⎝⎛⎭⎫π6=tan π3= 3. 3.(2018·天津高考)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减解析:选A 将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度后的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π10+π5=sin 2x ,则函数y =sin 2x 的一个单调递增区间为⎣⎡⎦⎤3π4,5π4,一个单调递减区间为⎣⎡⎦⎤5π4,7π4.由此可判断选项A 正确.4.(2019·贵阳检测)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为( )A .-π3B.π3C .-π6D.π6解析:选B 由题意,得T 2=π3-⎝⎛⎭⎫-π6=π2,所以T =π,由T =2πω,得ω=2,由图可知A =1,所以f (x )=sin(2x +φ).又因为f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,-π2<φ<π2,所以φ=π3. 5.(2019·武汉调研)函数f (x )=A cos(ωx +φ)(ω>0)的部分图象如图所示,给出以下结论: ①f (x )的最小正周期为2;②f (x )图象的一条对称轴为直线x =-12;③f (x )在⎝⎛⎭⎫2k -14,2k +34,k ∈Z 上是减函数; ④f (x )的最大值为A . 则正确结论的个数为( ) A .1 B .2 C .3D .4解析:选B 由题图可知,函数f (x )的最小正周期T =2×⎝⎛⎭⎫54-14=2,故①正确;因为函数f (x )的图象过点⎝⎛⎭⎫14,0和⎝⎛⎭⎫54,0,所以函数f (x )图象的对称轴为直线x =12⎝⎛⎭⎫14+54+kT 2=34+k (k ∈Z),故直线x =-12不是函数f (x )图象的对称轴,故②不正确;由图可知,当14-T4+kT ≤x ≤14+T 4+kT (k ∈Z),即2k -14≤x ≤2k +34(k ∈Z)时,f (x )是减函数,故③正确;若A >0,则最大值是A ,若A <0,则最大值是-A ,故④不正确.综上知正确结论的个数为2.6.(2018·山西大同质量检测)将函数f (x )=tan ⎝⎛⎭⎫ωx +π3(0<ω<10)的图象向右平移π6个单位长度后与函数f (x )的图象重合,则ω=( )A .9B .6C .4D .8解析:选B 函数f (x )=tan ⎝⎛⎭⎫ωx +π3的图象向右平移π6个单位长度后所得图象对应的函数解析式为y =tan ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π6+π3=tan ⎝⎛⎭⎫ωx -ωπ6+π3,∵平移后的图象与函数f (x )的图象重合,∴-ωπ6+π3=π3+k π,k ∈Z ,解得ω=-6k ,k ∈Z.又∵0<ω<10,∴ω=6. 7.已知函数f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2 的图象经过点(0,1),则该函数的振幅为____________,最小正周期T 为__________,频率为___________,初相φ为___________.解析:振幅A =2,最小正周期T =2ππ3=6,频率f =16.因为图象过点(0,1),所以2sin φ=1,所以sin φ=12,又因为|φ|<π2,所以φ=π6.答案:2 6 16 π68.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (x )=________.解析:由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2,∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z),∴φ=π6+2k π(k ∈Z),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 答案:2sin ⎝⎛⎭⎫2x +π6 9.已知函数f (x )=sin ⎝⎛⎭⎫π3-ωx (ω>0)向左平移半个周期得g (x )的图象,若g (x )在[0,π]上的值域为⎣⎡⎦⎤-32,1,则ω的取值范围是________.解析:由题意,得g (x )=sin ⎣⎡⎦⎤π3-ω⎝⎛⎭⎫x +πω =sin ⎣⎡⎦⎤-π-⎝⎛⎭⎫ωx -π3=sin ⎝⎛⎭⎫ωx -π3, 由x ∈[0,π],得ωx -π3∈⎣⎡⎦⎤-π3,ωπ-π3. 因为g (x )在[0,π]上的值域为⎣⎡⎦⎤-32,1, 所以π2≤ωπ-π3≤4π3,解得56≤ω≤53.故ω的取值范围是⎣⎡⎦⎤56,53. 答案:⎣⎡⎦⎤56,5310.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个三角函数模型来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________.解析:设y =A sin(ωx +φ)+B (A >0,ω>0), 由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6. 因为当x =1时,y =6,所以sin ⎝⎛⎭⎫π2+φ=0, 故π2+φ=2k π,k ∈Z ,可取φ=-π2, 所以y =sin ⎝⎛⎭⎫π2x -π2+6=-cos π2x +6. 答案:y =-cos π2x +611.设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解:(1)因为T =2πω=π,所以ω=2,又因为f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32且-π2<φ<0,所以φ=-π3. (2)由(1)知f (x )=cos ⎝⎛⎭⎫2x -π3. 列表:12.(2019·湖北八校联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在它的某一个周期内的单调递减区间是⎣⎡⎦⎤5π12,11π12.将y =f (x )的图象先向左平移π4个单位长度,再将图象上所有点的横坐标变为原来的12(纵坐标不变),所得到的图象对应的函数记为g (x ).(1)求g (x )的解析式;(2)求g (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值. 解:(1)∵T 2=11π12-5π12=π2,∴T =π,ω=2πT =2,又∵sin ⎝⎛⎭⎫2×5π12+φ=1,|φ|<π2, ∴φ=-π3,f (x )=sin ⎝⎛⎭⎫2x -π3, 将函数f (x )的图象向左平移π4个单位长度得y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4-π3=sin ⎝⎛⎭⎫2x +π6, 再将y =sin ⎝⎛⎭⎫2x +π6的图象上所有点的横坐标变为原来的12 (纵坐标不变)得g (x )=sin ⎝⎛⎭⎫4x +π6. ∴g (x )=sin ⎝⎛⎭⎫4x +π6. (2)∵x ∈⎣⎡⎦⎤0,π4,∴4x +π6∈⎣⎡⎦⎤π6,7π6,当4x +π6=π2时,x =π12,∴g (x )在⎣⎡⎦⎤0,π12上为增函数,在⎣⎡⎦⎤π12,π4上为减函数, 所以g (x )max =g ⎝⎛⎭⎫π12=1,又因为g (0)=12,g ⎝⎛⎭⎫π4=-12,所以g (x )min =-12, 故函数g (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值分别为1和-12. B 级1.(2019·惠州调研)函数f (x )=A sin(2x +θ)⎝⎛⎭⎫A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又∵|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增.所以选项B 正确.2.(2019·福州四校联考)函数f (x )=sin ωx (ω>0)的图象向右平移π12个单位长度得到函数y=g (x )的图象,并且函数g (x )在区间⎣⎡⎦⎤π6,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则实数ω的值为( )A.74 B.32C .2D.54解析:选C 因为将函数f (x )=sin ωx (ω>0)的图象向右平移π12个单位长度得到函数y =g (x )的图象,所以g (x )=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π12,又因为函数g (x )在区间⎣⎡⎦⎤π6,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,所以g ⎝⎛⎭⎫π3=sin ωπ4=1且2πω≥π3,所以{ ω=8k +2(k ∈Z ),0<ω≤6,所以ω=2.3.(2018·南昌模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求函数f (x )的解析式,并写出其图象的对称中心; (2)若方程f (x )+2cos ⎝⎛⎭⎫4x +π3=a 有实数解,求a 的取值范围. 解:(1)由图可得A =2,T 2=2π3-π6=π2,所以T =π,所以ω=2.当x =π6时,f (x )=2,可得2sin ⎝⎛⎭⎫2×π6+φ=2, 因为|φ|<π2,所以φ=π6.所以函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. 令2x +π6=k π(k ∈Z),得x =k π2-π12(k ∈Z),所以函数f (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0(k ∈Z). (2)设g (x )=f (x )+2cos ⎝⎛⎭⎫4x +π3, 则g (x )=2sin ⎝⎛⎭⎫2x +π6+2cos ⎝⎛⎭⎫4x +π3 =2sin ⎝⎛⎭⎫2x +π6+2⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫2x +π6, 令t =sin ⎝⎛⎭⎫2x +π6,t ∈[-1,1], 记h (t )=-4t 2+2t +2=-4⎝⎛⎭⎫t -142+94, 因为t ∈[-1,1], 所以h (t )∈⎣⎡⎦⎤-4,94, 即g (x )∈⎣⎡⎦⎤-4,94,故a ∈⎣⎡⎦⎤-4,94.故a 的取值范围为⎣⎡⎦⎤-4,94.。
函数y=Asin(ωx+φ)的图象及应用练习题
§4.4 函数y =A sin(ωx +ϕ)的图象及应用一、选择题1.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称 B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称 D .关于直线x =π3对称解析 由已知,ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,因为f ⎝ ⎛⎭⎪⎫π3=0,所以函数图象关于点⎝ ⎛⎭⎪⎫π3,0中心对称,故选A.2.要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象( ) A. 向左平移1个单位 B. 向右平移1个单位C. 向左平移12 个单位 D.向右平移 12个单位 解析 因为1cos(21)cos(2()2y x x =+=+,所以将cos 2y x =向左平移12个单位,故选C.3.若函数f (x )=2sin(ωx +φ),x ∈R(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( ). A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3解析 由T =2πω=π,∴ω=2.由f (0)=3⇒2sin φ=3,∴sin φ=32,又|φ|<π2,∴φ=π3. 4.将函数y =f (x )·sin x 的图象向右平移π4个单位后,再作关于x 轴对称变换,得到函数y =1-2sin 2x 的图象,则f (x )可以是( ).A .sin xB .cos xC .2sin xD .2cos x解析运用逆变换方法:作y=1-2sin2x=cos 2x的图象关于x轴的对称图象得y =-cos 2x =-sin 2⎝ ⎛⎭⎪⎫x +π4的图象,再向左平移π4个单位得y =f (x )·sin x =-sin 2⎝⎛⎭⎪⎫x +π2=sin 2x =2sin x cos x 的图象.∴f (x )=2cos x . 5.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安解析:由函数图象知A =10,T 2=4300-1300=1100.∴T =150=2πω,∴ω=100π. ∴I =10sin(100πt +φ). 又∵点⎝ ⎛⎭⎪⎫1300,10在图象上, ∴10=10sin ⎝ ⎛⎭⎪⎫100π×1300+φ ∴π3+φ=π2,∴φ=π6, ∴I =10sin ⎝⎛⎭⎪⎫100πt +π6.当t =1100时,I =10sin ⎝⎛⎭⎪⎫100π×1100+π6=-5.6.已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( ).A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析 ∵f (x )的最小正周期为6π,∴ω=13,∵当x =π2时,f (x )有最大值,∴13×π2+φ=π2+2k π(k ∈Z),φ=π3+2k π(k ∈Z),∵-π<φ≤π,∴φ=π3.∴f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π3,由此函数图象易得,在区间[-2π,0]上是增函数,而在区间[-3π,-π]或[3π,5π]上均不是单调的,在区间[4π,6π]上是单调增函数.7.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ). A.13B .3C .6D .9 解析 依题意得,将y =f (x )的图象向右平移π3个单位长度后得到的是f ⎝⎛⎭⎪⎫x -π3=cos ω⎝ ⎛⎭⎪⎫x -π3=cos ⎝⎛⎭⎪⎫ωx -ωπ3 的图象,故有cos ωx =cos ⎝ ⎛⎭⎪⎫ωx -ωπ3,而cos ωx =cos ⎝ ⎛⎭⎪⎫2k π+ωx -ωπ3(k ∈Z),故ωx -⎝ ⎛⎭⎪⎫ωx -ωπ3=2k π(k ∈Z), 即ω=6k (k ∈Z),∵ω>0,因此ω的最小值是6. 二、填空题8. 将函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,π2<φ<π的图象,向右最少平移4π3个单位长度,或向左最少平移2π3个单位长度,所得到的函数图象均关于原点中心对称,则ω=________.解析 因为函数的相邻两对称轴之间距离或相邻两对称点之间距离是函数周期的一半,则有 T 2=4π3-⎝⎛⎭⎪⎫-2π3=2π,故T =4π,即2πω=4π,ω=12.答案 129.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.解析:由已知两相邻最高点和最低点的距离为22,而f(x)max-f(x)min=2,由勾股定理可得T 2=222-22=2,∴T =4,∴ω=2πT=π2. 10.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.解析 由题意知ω=2,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,56π,∴f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3.11.在函数f (x )=A sin(ωx +φ)(A >0,ω>0)的一个周期内,当x =π9时有最大值12,当x =4π9时有最小值-12,若φ∈⎝ ⎛⎭⎪⎫0,π2,则函数解析式f (x )=________.解析 首先易知A =12,由于x =π9时f (x )有最大值12,当x =4π9时f (x )有最小值-12,所以T =⎝ ⎛⎭⎪⎫4π9-π9×2=2π3,ω=3.又12sin ⎝ ⎛⎭⎪⎫3×π9+φ=12,φ∈⎝ ⎛⎭⎪⎫0,π2,解得φ=π6,故f (x )=12sin ⎝⎛⎭⎪⎫3x +π6.12.设函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,φ∈⎝ ⎛⎭⎪⎫-π2,π2的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中: ①图象关于点⎝ ⎛⎭⎪⎫π4,0对称; ②图象关于点⎝ ⎛⎭⎪⎫π3,0对称; ③在⎣⎢⎡⎦⎥⎤0,π6上是增函数; ④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数.以上正确结论的编号为________.解析 ∵y =sin(ωx +φ)最小正周期为π,2ππ=2,又其图象关于直线x=π12对称,∴ω=∴2×π12+φ=k π+π2(k ∈Z),∴φ=k π+π3,k ∈Z. 由φ∈⎝ ⎛⎭⎪⎫-π2,π2,得φ=π3,∴y =sin ⎝ ⎛⎭⎪⎫2x +π3.令2x +π3=k π(k ∈Z),得x =k π2-π6(k ∈Z). ∴y =sin ⎝⎛⎭⎪⎫2x +π3关于点⎝ ⎛⎭⎪⎫π3,0对称.故②正确. 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z),得 k π-5π12≤x ≤k π+π12(k ∈Z). ∴函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z).∵⎣⎢⎡⎦⎥⎤-π6,0⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z).∴④正确. 三、解答题13.已知函数f (x )=3sin2x +2cos 2x .(1)将f (x )的图象向右平移π12个单位长度,再将周期扩大一倍,得到函数g (x )的图象,求g (x )的解析式;(2)求函数f (x )的最小正周期和单调递增区间.解析 (1)依题意f (x )=3sin2x +2·cos2x +12=3sin2x +cos2x +1=2sin ⎝⎛⎭⎪⎫2x +π6+1,将f (x )的图象向右平移π12个单位长度,得到函数f 1(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π12+π6+1=2sin2x +1的图象,该函数的周期为π,若将其周期变为2π,则得g (x )=2sin x +1. (2)函数f (x )的最小正周期为T =π,当2k π-π2≤2x +π6≤2k π+π2(k ∈Z)时,函数单调递增,解得k π-π3≤x ≤k π+π6(k ∈Z),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z).14.已知函数f (x )=23·sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π). (1)求f (x )的最小正周期; (2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值. 解析 (1)因为f (x )=3sin ⎝⎛⎭⎪⎫x +π2+sin x =3cos x +sin x =2⎝ ⎛⎭⎪⎫32cos x +12sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )的最小正周期为2π. (2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象, ∴g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π3=2sin ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴当x +π6=π2,即x =π3时,sin ⎝⎛⎭⎪⎫x +π6=1,g (x )取得最大值2. 当x +π6=7π6,即x =π时,sin ⎝ ⎛⎭⎪⎫x +π6=-12,g (x )取得最小值-1.【点评】 解决三角函数的单调性及最值值域问题主要步骤有:第一步:三角函数式的化简,一般化成y =A sin ωx +φ+h 或y =A cos ωx+φ+h 的形式.第二步:根据sin x 、cos x 的单调性解决问题,将“ωx +φ”看作一个整体,转化为不等式问题.第三步:根据已知x 的范围,确定“ωx +φ”的范围. 第四步:确定最大值或最小值. 第五步:明确规范表述结论.15.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x -π122,求函数g (x )在x ∈⎣⎢⎡⎦⎥⎤-π6,π3上的最大值,并确定此时x 的值.解析 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f ⎝⎛⎭⎪⎫-π6=2sin ⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫-π6+φ =2sin ⎝ ⎛⎭⎪⎫-π4+φ=0,∴sin ⎝⎛⎭⎪⎫φ-π4=0,∵0<φ<π2,∴-π4<φ-π4<π4, ∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫32x +π4.(2)由(1)可得f ⎝ ⎛⎭⎪⎫x -π12=2sin ⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫x -π12+π4=2sin ⎝ ⎛⎭⎪⎫32x +π8,∴g (x )=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x -π122=4×1-cos ⎝⎛⎭⎪⎫3x +π42=2-2cos ⎝ ⎛⎭⎪⎫3x +π4,∵x ∈⎣⎢⎡⎦⎥⎤-π6,π3,∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4. 16.已知直线y =2与函数f (x )=2sin 2ωx +23sin ωx cos ωx -1(ω>0)的图象的两个相邻交点之间的距离为π.(1)求f (x )的解析式,并求出f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π4个单位长度得到函数g (x )的图象,求函数g传播优秀Word 版文档 ,希望对您有帮助,可双击去除!(x )的最大值及g (x )取得最大值时x 的取值集合.解析 (1)f (x )=2sin 2ωx +23sin ωx cos ωx -1=1-cos2ωx +3sin2ωx -1=2sin ⎝⎛⎭⎪⎫2ωx -π6, 由题意可知函数的最小正周期T =2π2ω=π(ω>0),所以ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6,令2k π-π2≤2x -π6≤2k π+π2其中k ∈Z ,解得k π-π6≤x ≤k π+π3,其中k ∈Z ,即f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z.(2)g (x )=f ⎝ ⎛⎭⎪⎫x +π4=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π6=2sin ⎝ ⎛⎭⎪⎫2x +π3,则g (x )的最大值为2,此时有2sin ⎝ ⎛⎭⎪⎫2x +π3=2,即sin ⎝ ⎛⎭⎪⎫2x +π3=1,即2x +π3=2k π+π2,其中k ∈Z ,解得x =k π+π12,k ∈Z ,所以当g (x )取得最大值时x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π12,k ∈Z .-----精心整理,希望对您有所帮助!。
函数y=Asin(ωx+φ)的图象练习(含答案)
函数y=Asin(ωx+φ)的图象练习题一、选择题1.把函数y=f(x)的图象沿直线x+y=0的方向向右下方平移22个单位,得到函数y=sin3x 的图象,则( )A.f(x)=sin(3x+6)+2B.f(x)=sin(3x-6)-2C.f(x)=sin(3x+2)+2D.f(x)=sin(3x-2)-22.把函数y=sin(ωx+φ)(ω>0,|φ|<2π)的图象向左平移3π个单位,所得曲线的一部分如图所示,则ω、φ的值分别为( )A.1,3π B.1,3π- C.2,3πD.2,3π-3.已知函数f(x)=sinωx 在[0,4π]上单调递增且在这个区间上的最大值为23,则实数ω的一个值可以是( )A.32B.38C.34D.310 4.已知函数f(x)=sinx,g(x)=cosx,则下列结论中正确的是( ) A.函数y=f(x)·g(x)是偶函数 B.函数y=f(x)·g(x)的最大值为1C.将f(x)的图象向右平移2π个单位长度后得到g(x)的图象D.将f(x)的图象向左平移2π个单位长度后得到g(x)的图象5.函数y=Asin(ωx+φ)图象的一部分如图所示,则此函数的解析式可以写成( )A.)8sin(π+=x y B.)82sin(π+=x yC.)42sin(π+=x y D.)42sin(π-=x y 6.函数f(x)=Asin(ωx+φ)+b 的图象如图,则f(x)的解析式及S=f(0)+f(1)+f(2)+…+f(2 006)的值分别为( )A.12sin 21)(+=x x f π,S=2 006 B.12sin 21)(+=x x f π,212007=SC.12sin 21)(+=x x f π,212006=SD.12sin 21)(+=x x f π,S=2 0077. 为了得到函数)63sin(2π+=x y ,x ∈R 的图象,只需把函数y=2sinx,x ∈R 的图象上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)8.已知函数y=Asin(ωx+φ)+m 的最大值为4,最小值为0,最小正周期为2π,直线3π=x 是其图象的一条对称轴,则下列各式中符合条件的解析式是( )A )44sin(4π+=x y B.2)32sin(2++=πx y C 2)34sin(2++=πx y D.2)64sin(2++=πx y9.把函数x x y sin 3cos -=的图象沿向量a =(-m,m)(m >0)的方向平移后,所得的图象关于y 轴对称,则m 的最小值是( )A.6πB.3πC.32πD.65π10.如果f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( ) A.T=2, B.T=1,θ=π C.T=2,θ=π D.T=1,2πθ=二、填空题11.曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|=____________.12.要得到)42cos(π-=x y 的图象,且使平移的距离最短,则需将y=sin2x 的图象向_______平移____________个单位,即可得到.13.函数)3sin()(x x f -=π的单调递增区间为___________.若将函数的图象向左平移a(a >0)个单位,得到的图象关于原点对称,则a 的最小值为______________.14.函数f(x)=sinx+2|sinx|,x ∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是_____________. 三、解答题15.已知函数)23sin(2)3cos(2)(x x x f ++-=ππ.(1)用“五点法”画出函数f(x)在[0,35π]上的简图; (2)在△ABC 中,a,b,c 分别是角A,B,C 的对边,f(A)=1,3=a ,b+c=3(b >c),求b,c 的长. 16.已知函数f(x)=Asin(x+φ)(A >0,0<φ<π)(x ∈R )的最大值是1,其图象经过点M(3π,21). (1)求f(x)的解析式;(2)已知α,β∈(0,2π),且53)(=αf ,1312)=(βf ,求f(α-β)的值.函数y=Asin(ωx+φ)的图象练习题参考答案解析:实质上是将y=f(x)向右平移2个单位,向下平移2个单位,得到y=sin3x,逆向思维即得y=f(x)=sin [3(x+2)]+2=sin(3x+6)+2.故选A. 答案:A解析:将y=sin(ωx+φ)(ω>0,|φ|<2π)的图象向左平移3π个单位,得到])3(sin[ϕπω++=x y .∴⎪⎪⎩⎪⎪⎨⎧=++=++.23)3127(,)33(πϕππωπϕππω解得⎪⎩⎪⎨⎧-==.3,2πϕω故选D.解析:∵f(x)=sinωx 在[0,4π]上单调递增,∴当4π=x 时,234sin )(max =•=ωπx f .检验,当34=ω时,有233sin =π,符合题意.故选C.答案:C解析:∵f(x)=sinx 是奇函数,g(x)=cosx 是偶函数,∴y=f(x)·g(x)是奇函数.故A 错;∵y=f(x)·g(x)=sinx·cosx=21·sin2x,∴y=f(x)·g(x)的最大值为21.故B 错;∵)2sin(cos )(π+==x x x g ,∴将f(x)=sinx 的图象向左平移2π个单位长度后得到g(x)的图象.故选D.答案:D解析:由图象可知41周期是4π,所以周期是π,再根据原点向左平移了8π,可知)42sin(π+=x y .故选C. 答案:C解析:观察题中图象可知,12sin 21)(+=x x f π,f(0)=1,23)1(=f ,f(2)=1,21)3(=f ,f(4)=1,∴f(x)以4为周期.f(0)+f(1)+f(2)+f(3)=4, 2 006=4×501+2,∴f(0)+f(1)+f(2)+f(3)+…+f(2 006)=4×501+f(2 004)+f(2 005)+f(2 006)21200712312004=+++=.故选B.答案:B 解析:2sinx2sin(x+6π) )63sin(2π+x .故选C.答案:C8解析:由最大值为4,最小值为0,得A=2,m=2. 由2π=T ,得ω=4.由3π=x 是一条对称轴得234ππϕπ+=+⨯k .∴65ππϕ-=k .令k=1得6πϕ=, ∴2)64sin(2++=πx y .答案:D9解析:)3cos(2sin 3cos π+=-=x x x y ,y=cosx(x ∈R )的图象关于y 轴对称,将y=cosx 的图象向左平移π个单位时,图象仍关于y 轴对称.故选C.答案:C10解析:∵22==ππT ,又∵x=2时,有222ππθπ+=+k ,∴2)1(2ππθ+-=k ,k ∈Z .又0<θ<2π,则k=1,2πθ=.故选A.答案:A解析:12sin )4cos()4sin(2+=-+=x x x y ππ, 联立方程组⎪⎩⎪⎨⎧+==,12sin ,21x y y ∴|P 2P 4|=|x 2-x 4|=π.答案:π 12解析:由y=sin2x 的图象向左平移8π个单位,得到)8(2sin π+=x y 的图象.而)42cos()24cos()]42(2cos[)42sin()8(2sin ππππππ-=-=+-=+=+=x x x x x y .答案:左 8π13解析:(1)∵)3sin()3sin()(ππ--=-=x x x f ,∴22ππ+k ≤3π-x ≤232ππ+k 时,f(x)单调递增,解得函数增区间为[652ππ+k ,6112ππ+k ](k ∈Z ).(2)向左平移a 个单位,得g(x)=-sin(x+a-3π).因其关于原点对称,∴33ππππ+=⇒=-k a k a ,a 的最小值为3π.答案:[652ππ+k ,6112ππ+k ](k ∈Z ) 3π14解析:⎩⎨⎧∈-∈=].2,[,sin ],,0[,sin 3)(πππx x x x x f作图如下:由图知k ∈(1,3).答案:(1,3)16解:(1)x x x x f cos 2)3sin sin 3cos(cos 2)(-+=ππx x x x x cos sin 3cos 2cos sin 3-=-+=)6sin(2)cos 21sin 23(2π-=-=x x x . 列表:x6π32π 67π 35π y -1 0 2 0 -2描点、连线可得函数f(x)的图象如下:(2)∵f(A)=1,即1)6sin(2=-πA ,∴21)6sin(=-πA .∵0<A <π,∴-6π<6π-A <65π.∴66ππ=-A .∴3π=A .由bc a c b A 221cos 222-+==,即(b+c)2-a 2=3bc,∴bc=2.又b+c=3(b >c),∴⎩⎨⎧==.1.2c b16解:(1)∵f(x)=Asin(x+φ)(A >0,0<φ<π)的最大值是1,∴A=1.∵f(x)的图象经过点M(3π,21),∴21)3sin(=+ϕπ.∵0<φ<π⇒2πϕ=,∴x x x f cos )2sin()(=+=π.(2)∵f(x)=cosx,∴53cos )(==ααf ,1312cos )(==ββf .已知α,β∈(0,2π),∴54)53(1sin 2=-=α,135)1312(1sin 2=-=β.故f(α-β)=cos(α-β)=cosαcosβ+sinαsinβ=6556135********=⨯+⨯.解:(1)由题图,知最大温差为30-10=20(℃).(2)题图中从6时到14时的图象是函数y=Asin(ωx+φ)+b 的半个周期的图象. ∴8614221=-=•ωπ.∴8πω=. 由题图所示1021030=-=A ,2021030=+=b .这时20)8sin(10++=ϕπx y ,将x=6,y=10代入上式,可得43πϕ=.综上,所求解析式为20)438sin(10++=ππx y ,x ∈[6,14].【例2】作出函数y=|sinx|+|cosx|,x ∈[0,π]的图象,并写出函数的值域.解:⎪⎪⎩⎪⎪⎨⎧∈-∈+=].,2[),4sin(2],2,0[),4sin(2πππππx x x x y 如下图,函数的值域为[1,2].。
(2021年整理)必修四函数y=Asin(ωx+φ)的图像(一)(附答案)
(完整)必修四函数y=Asin(ωx+φ)的图像(一)(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)必修四函数y=Asin(ωx+φ)的图像(一)(附答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)必修四函数y=Asin(ωx+φ)的图像(一)(附答案)的全部内容。
函数y=A sin(ωx+φ)的图像(一)[学习目标]1。
理解y=A sin(ωx+φ)中ω、φ、A对图象的影响.2。
掌握y=sin x与y =A sin(ωx+φ)图象间的变换关系,并能正确地指出其变换步骤.知识点一φ对y=sin(x+φ),x∈R的图象的影响如图所示,对于函数y=sin(x+φ)(φ≠0)的图象,可以看作是把y=sin x的图象上所有的点向左(当φ〉0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到的.知识点二ω(ω>0)对y=sin(ωx+φ)的图象的影响如图所示,函数y=sin(ωx+φ)的图象,可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的错误!倍(纵坐标不变)而得到.知识点三A(A>0)对y=A sin(ωx+φ)的图象的影响如图所示,函数y=A sin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ)图象上所有点的纵坐标伸长(当A>1时)或缩短(当0〈A<1时)到原来的A倍(横坐标不变)而得到.思考由函数y=sin x的图象经过怎样的变换得到函数y=sin(2x+错误!)的图象?答案方法一(先相位变换,再周期变换)先将y=sin x的图象向左平移错误!个单位长度,得函数y=sin(x+错误!)的图象;再将函数y=sin(x+错误!)的图象上各点的纵坐标不变,横坐标变为原来的错误!倍,得y=sin(2x+错误!)的图象.方法二(先周期变换,再相位变换)先将f(x)=sin x的图象上各点纵坐标不变,横坐标变为原来的错误!倍,得函数f(2x)=sin 2x的图象,再将函数f(2x)=sin 2x的图象上各点沿x轴向左平移错误!个单位长度,得f[2(x+错误!)]=sin [2(x+错误!)]的图象,即函数y=sin(2x+错误!)的图象.题型一相位变换的应用例1 要得到函数y=sin错误!的图象,只要将y=sin 2x的图象()A.向左平移错误!个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案C解析因为y=sin错误!=sin [2错误!],所以把y=sin 2x的图象上所有点向左平移错误!个单位,就得到y=sin [2错误!]=sin错误!的图象.跟踪训练1 要得到y=cos错误!的图象,只要将y=sin 2x的图象( )A.向左平移错误!个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案A解析y=sin 2x=cos错误!=cos错误!=cos错误!=cos错误!.若设f(x)=sin 2x=cos 错误!,则f错误!=cos错误!,∴向左平移错误!个单位.题型二周期、相应变换的应用例2 把函数y=sin x(x∈R)的图象上所有的点向左平行移动错误!个单位长度,再把所得图象上所有点的横坐标缩短到原来的错误!倍(纵坐标不变),得到的图象所表示的函数是() A.y=sin错误!,x∈R B.y=sin错误!,x∈RC.y=sin错误!,x∈R D.y=sin错误!,x∈R答案C解析把函数y=sin x的图象上所有的点向左平行移动错误!个单位长度后得到函数y=sin 错误!的图象,再把所得图象上所有的点的横坐标缩短到原来的错误!倍,得到函数y=sin错误!的图象.跟踪训练2 要得到y=sin(-错误!x)的图象,只需将y=sin(-错误!x-错误!)的图象( )A.向左平移错误!个单位 B.向右平移错误!个单位C.向左平移错误!个单位 D.向右平移错误!个单位答案B解析因为y=sin(-12x-错误!)=sin[-错误!(x+错误!)],所以需将y=sin(-错误!x-错误!)的图象向右平移错误!个单位才可得y=sin(-错误!x)的图象.题型三图象变换的综合应用例3 把函数y=f(x)的图象上各点向右平移错误!个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的错误!倍,所得图象的解析式是y=2sin错误!,求f(x)的解析式.解y=2sin错误!错误!y=3sin错误!错误!y=3sin错误!错误!y=3sin错误!=3sin错误!=3cos x。
5、函数y=Asin(ωx+φ)的图象及应用(有答案)
学科教师辅导教案学员编号:年级:高一课时数:3课时学员姓名:辅导科目:数学学科教师:授课类型T同步知识梳理C相关专题训练T 能力提高教学目标1.了解函数y=A sin(ωx+φ)的物理意义.2.能画出y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.星级★★★授课日期及时段2016.教学内容:函数y=A sin(ωx+φ)的图象及应用一、同步知识梳理1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点.如下表所示.x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的步骤如下:二、题型讲解题型一 函数y =A sin(ωx +φ)的图象及变换思维点播 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π.(1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到.思维启迪 将f (x )化为一个角的一个三角函数,由周期是π求ω,用五点法作图要找关键点. 解 (1)f (x )=sin ωx +3cos ωx =2(12sin ωx +32cos ωx )=2sin(ωx +π3),又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin(2x +π3).∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3. (2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X .列表,并描点画出图象: x -π6 π12 π3 7π12 5π6 Xπ2π3π22πy =sin X 0 1 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π3 02-2巩 固 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?解 (1)列表取值:x π2 32π 52π 72π 92π 12x -π4 0 π2 π 32π 2π f (x )3-3描出五个关键点并用光滑曲线连接,得到一个周期的简图.(2)先把y =sin x 的图象向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.题型二 求函数y =A sin(ωx +φ)的解析式思维升华 根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②k 的确定:根据图象的最高点和最低点,即k =最高点+最低点2;③ω的确定:结合图象,先求出周期T ,然后由T =2πω (ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( )A .ω=12,φ=π6 B .ω=12,φ=π3 C .ω=2,φ=π6D .ω=2,φ=π3(2) 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.答案 (1)D (2)f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 (1)∵f (x )(ω>0,|φ|<π2)的最小正周期为π,∴T =2πω=π,ω=2.∵f (0)=2sin φ=3,即sin φ=32,∵|φ|<π2,∴φ=π3. (2)观察图象可知:A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 巩 固 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.解 (1)由图象知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,N ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3.(2)f (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-2π3=3sin ⎝⎛⎭⎫2x -π3, 令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).题型三 函数y =A sin(ωx +φ)的应用例3 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如下图所示.(1)求函数f (x )的解析式;(2)当x ∈[-6,-23]时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.思维启迪 (1)由图象知A ,T →图象过(-1,0)求φ→解析式(2)解 (1)由图象知A =2,T =8,∵T =2πω=8,∴ω=π4.又图象经过点(-1,0),∴2sin(-π4+φ)=0.∵|φ|<π2,∴φ=π4.∴f (x )=2sin(π4x +π4).(2)y =f (x )+f (x +2)=2sin(π4x +π4)+2sin(π4x +π2+π4)=22sin(π4x +π2)=22cos π4x .∵x ∈[-6,-23],∴-3π2≤π4x ≤-π6,∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2.巩 固 (1)已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图象与直线y =2的某两个交点的横坐标为x 1、x 2,若|x 2-x 1|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4(2)如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin(2πt +π6),那么单摆来回摆动一次所需的时间为( )A .2π sB .π sC .0.5 sD .1 s答案 (1)A (2)D解析 (1)∵y =2sin(ωx +θ)为偶函数,∴θ=π2.∵图象与直线y =2的两个交点的横坐标为x 1、x 2,∵|x 2-x 1|min =π,∴2πω=π,ω=2. (2)T =2π2π=1,∴选D.家庭作业1. 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin 2x 的图象( )A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度答案 A2. 已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A .[-7π12,5π12]B .[-7π12,-π12]C .[-π12,7π12]D .[-π12,5π12]答案 D3. 将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是( )A.π12B.π6C.5π6D.7π12 答案 D解析 图象F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ,则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 令k =1时,φ=7π12,故选D.4. 设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32 D .3 答案 C解析 由函数向右平移4π3个单位后与原图象重合,得4π3是此函数周期的整数倍.又ω>0,∴2πω·k =4π3(k ∈Z ),∴ω=32k (k ∈Z ),∴ωmin =32. 5. 已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是( )A .(-∞,-92]∪[6,+∞)B .(-∞,-92]∪[32,+∞)C .(-∞,-2]∪[6,+∞)D .(-∞,-32]∪[32,+∞)答案 D解析 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知-π3ω≥π2,即ω≤-32.综上可知,ω的取值范围是(-∞,-32]∪[32,+∞).6. 已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=______. 答案143解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ). ∴ω=8k +143 (k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0, 得ω=143.7. 设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则 f (16)的值为________.答案348. 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃. 答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6), x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 9. (2013·天津)已知函数f (x )=-2sin ⎝⎛⎭⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)f (x )=-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x =2sin 2x -2cos 2x =22sin ⎝⎛⎭⎫2x -π4. 所以,f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤0,3π8上是增函数,在区间⎣⎡⎦⎤3π8,π2上是减函数.又f (0)=-2,f ⎝⎛⎭⎫3π8=22,f ⎝⎛⎭⎫π2=2,故函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为22,最小值为-2. 10.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的周期为π2.(1)求ω的值和函数f (x )的单调递增区间; 解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin(2ωx -π6)-12, 由f (x )的周期T =2π2ω=π2,得ω=2,∴f (x )=sin(4x -π6)-12,由2k π-π2≤4x -π6≤2k π+π2(k ∈Z ),得-π12+k π2≤x ≤π6+k π2(k ∈Z ),即f (x )的单调递增区间是[-π12+k π2,π6+k π2](k ∈Z ).。
函数y=Asin(ωx+φ)的图象(一) 知识点及习题
§1.5 函数y =A sin(ωx +φ)的图象(一) 课时目标 1.了解φ、ω、A 对函数f (x )=A sin(ωx +φ)的图象的影响.2.掌握y =sin x 与f (x )=A sin(ωx +φ)图象间的变换关系.用“图象变换法”作y =A sin(ωx +φ) (A >0,ω>0)的图象1.φ对y =sin(x +φ),x ∈R 的图象的影响y =sin(x +φ) (φ≠0)的图象可以看作是把正弦曲线y =sin x 上所有的点______(当φ>0时)或________(当φ<0时)平行移动________个单位长度而得到.2.ω(ω>0)对y =sin(ωx +φ)的图象的影响函数y =sin(ωx +φ)的图象,可以看作是把y =sin(x +φ)的图象上所有点的横坐标________(当ω>1时)或________(当0<ω<1时)到原来的______倍(纵坐标________)而得到.3.A (A >0)对y =A sin(ωx +φ)的图象的影响函数y =A sin(ωx +φ)的图象,可以看作是把y =sin(ωx +φ)图象上所有点的纵坐标________(当A >1时)或________(当0<A <1时)到原来的________(横坐标不变)而得到,函数y =A sin x 的值域为________,最大值为________,最小值为________.4.函数y =sin x 的图象到函数y =A sin(ωx +φ)的图象的变换过程.y =sin x 的图象__________的图象______________的图象______________的图象.一、选择题1.要得到y =sin ⎝⎛⎭⎫x -π3的图象,只要将y =sin x 的图象( ) A .向左平移π3个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.为得到函数y =cos(x +π3)的图象,只需将函数y =sin x 的图象( ) A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 3.把函数y =sin ⎝⎛⎭⎫2x -π4的图象向右平移π8个单位,所得图象对应的函数是( ) A .非奇非偶函数B .既是奇函数又是偶函数C .奇函数D .偶函数4.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =cos2xB .y =1+cos2xC .y =1+sin(2x +π4) D .y =cos2x -1 5.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 6.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .y =sin ⎝⎛⎭⎫2x -π3,x ∈R B .y =sin ⎝⎛⎭⎫x 2+π6,x ∈RC .y =sin ⎝⎛⎭⎫2x +π3,x ∈R D .y =sin ⎛⎭⎫2x +2π,x ∈R 7.函数y =sin2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=____________.8.将函数y =sin ⎝⎛⎭⎫2x +π6的图象向左平移π6个单位,所得函数的解析式为____________. 9.为得到函数y =cos x 的图象,可以把y =sin x 的图象向右平移φ个单位得到,那么φ的最小正值是________.10.某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象; ②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象;③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象;④函数y =sin ⎝⎛⎭⎫2x +π3的图象是由y =sin2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上).三、解答题11.怎样由函数y =sin x 的图象变换得到y =sin ⎝⎛⎭⎫2x -π3的图象,试叙述这一过程.12.已知函数f (x )=sin ⎝⎛⎭⎫π3-2x (x ∈R ). (1)求f (x )的单调减区间;(2)经过怎样的图象变换使f (x )的图象关于y 轴对称?(仅叙述一种方案即可).能力提升13.要得到y =cos ⎝⎛⎭⎫2x -π4的图象,只要将y =sin2x 的图象( ) A .向左平移π8个单位 B .向右平移π8个单位 C .向左平移π4个单位 D .向右平移π4个单位 14.使函数y =f (x )图象上每一点的纵坐标保持不变,横坐标缩小到原来的12倍,然后再将其图象沿x 轴向左平移π6个单位得到的曲线与y =sin2x 的图象相同,则f (x )的表达式为( ) A .y =sin ⎝⎛⎭⎫4x -π3 B .y =sin ⎝⎛⎭⎫x -π6 C .y =sin ⎝⎛⎭⎫4x +π3D .y =sin ⎝⎛⎭⎫x -π31.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)的图象,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换§1.5 函数y =A sin(ωx +φ)的图象(一)答案知识梳理1.向左 向右 |φ| 2.缩短 伸长1ω不变 3.伸长 缩短 A 倍 [-A ,A ] A -A4.y =sin(x +φ) y =sin(ωx +φ) y =A sin(ωx +φ)作业设计1.B 2.C 3.D4.B [将函数y =sin2x 的图象向左平移π4个单位,得到函数y =sin2(x +π4),即y =sin(2x +π2)=cos2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos2x .]5.B [y =sin(2x +π6)4π−−−−−−−→向右平移个长度单位y =sin[2(x -π4)+π6]=sin(2x -π3).] 6.C [把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度后得到函数y =sin ⎝⎛⎭⎫x +π3的图象,再把所得图象上所有的点的横坐标缩短到原来的12倍,得到函数y =sin ⎝⎛⎭⎫2x +π3的图象.]7.sin x8.y =cos 2x9.32π 解析 y =sin x =cos ⎝⎛⎭⎫π2-x =cos ⎝⎛⎭⎫x -π2向右平移φ个单位后得y =cos ⎝⎛⎭⎫x -φ-π2, ∴φ+π2=2k π,k ∈Z ,∴φ=2k π-π2,k ∈Z . ∴φ的最小正值是32π. 10.①③11.解 由y =sin x 的图象通过变换得到函数y =sin ⎝⎛⎭⎫2x -π3的图象有两种变化途径: ①y =sin x ————→向右平移π3个单位y =sin ⎝⎛⎭⎫x -π3——————→纵坐标不变横坐标缩短为12y =sin ⎝⎛⎭⎫2x -π3 ②y =sin x ————→纵坐标不变横坐标缩短为12y =sin2x ——————→向右平移π6个单位y =sin ⎝⎛⎭⎫2x -π3.12.解 (1)由已知函数化为y =-sin ⎝⎛⎭⎫2x -π3.欲求函数的单调递减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调递增区间.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ), 解得k π-π12≤x ≤k π+512π (k ∈Z ), ∴原函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+512π (k ∈Z ). (2)f (x )=sin ⎝⎛⎭⎫π3-2x =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +π6=cos2⎝⎛⎭⎫x +π12. ∵y =cos2x 是偶函数,图象关于y 轴对称,∴只需把y =f (x )的图象向右平移π12个单位即可. 13.A [y =sin2x =cos ⎝⎛⎭⎫π2-2x =cos ⎝⎛⎭⎫2x -π2=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π8-π4――→向左平移π8个单位 y =cos[2(x -π8+π8)-π4]=cos(2x -π4).] 14.D [方法一 正向变换y =f (x )——————→横坐标缩小到原来的12y =f (2x )——————→沿x 轴向左平移π6个单位y =f ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6,即y =f ⎝⎛⎭⎫2x +π3, 所以f ⎝⎛⎭⎫2x +π3=sin2x .令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝⎛⎭⎫t -π3,即f (x )=sin ⎝⎛⎭⎫x -π3. 方法二 逆向变换据题意,y =sin2x 6π−−−−−−→向右平移个单位y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3――→横坐标伸长到原来的2倍纵坐标不变 y =sin ⎝⎛⎭⎫x -π3.]。
《函数y=Asin(ωx+φ)的图象》习题
《函数y=A sin(ωx+φ)的图象》习题(一)基础训练11.(1) )是由向平移个单位得到的.(2) -)是由向平移个单位得到的.(3) -)是由+)向平移个单位得到的.2.若函数的图象关于直线对称,则.3.若将某函数的图象向右平移以后所得到的图象的函数式是 ),则原来的函数表达式为 ( )A. +)B. +)C. -)D. +)-4.把函数)的图象适当变动就可以得到的图象,这种变动可以是 ( )A.向右平移B.向左平移C.向右平移D.向左平移5.将函数的图象沿轴向右平移,再保持图象上的纵坐标不变,而横坐标变为原来的倍,得到的曲线与的图象相同,则是 ( )A. +)B. -)C. +)D. -)6.若对任意实数,函数) 在区间上的值出现不少于次且不多于次,则的值是 ( )A. B. C. 或 D. 或基础训练21.若函数的图象上每一点的纵坐标保持不变,横坐标伸长到原来的倍,然后再将整个图象沿轴向左平移个单位,沿轴向下平移个单位,得到函数x的图象,则有是 ( )A. +)+1B. -)+1C. -)+1D. +)+12.函数+)的图象,可由的图象经过下述哪种变换而得到( )A.向右平移 个单位,横坐标缩小到原来的 倍,纵坐标扩大到原来的 倍B.向左平移 个单位,横坐标缩小到原来的 倍,纵坐标扩大到原来的 倍C.向右平移 个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的 倍D.向左平移 个单位,横坐标缩小到原来的 倍,纵坐标缩小到原来的 倍3.已知如图是函数y =2 (ωx+ )的图象,那么 ( )A.ω= , =B.ω= , =-C.ω=2, =D.ω=2, =-4.已知函数y =A (ωx+ ),在同一周期内,当x = 时函数取得最大值2,当x = 时函数取得最小值-2,则该函数的解析式为 ( )A. (3x - )B. (3x + )C. ( + )D. ( - )⎪⎭⎫ ⎝⎛<2πϕ5.已知函数y=A (ωx+)(A>0,ω>0,0<<2π)图象的一个最高点(2,),由这个最高点到相邻最低点的图象与x轴交于点(6,0),试求函数的解析式.6.已知函数y=A (ωx+)(其中A>0,||<)在同一周期内,当x=时,y有最小值-2,当x=时,y有最大值2,求函数的解析式.参考答案:基础训练11.(1)左;(2)右;(3)右2.分析:这是已知函数图象的对称轴方程,求函数解析式中参数值的一类逆向型题,解题的关键是如何巧用对称性.解:∵ =0,=-是定义域中关于=-对称的两点∴ =(-) ,即=(-)+cos(-)∴ =-13. A4. 分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x的系数相同.解:∵y=cos(3x+)=( -3x)=[-3(x-)]∴由y=[-3(x- )]向左平移才能得到y=(-3x)的图象.答案:D5.分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推法.解:y=可由,纵坐标不变,横坐标压缩为原来的,得;再沿x轴向左平移,得y=sin2(x+),即=sin(2x+).答案:C6.分析:这也是求函数解析式中参数值的逆向型题,解题的思路是:先求出与k相关的周期T的取值范围,再求k.解:∵T=又因每一周期内出现值时有2次,出现4次取2个周期,出现值8次应有4个周期.∴有4T≥3且2T≤3即得≤T≤ ,∴ ≤ ≤解得≤k≤ ,∵k∈N,∴k=2或3.答案:D基础训练21.解析:由题意可知y=f[(x+)]-1=sinx ,即y=f[(x+)]=sinx+1 令(x+)=t,则x=2t-∴f(t)=sin(2t-)+1∴f(x)=sin(2x-)+1答案:B2. B评述:由的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换.途径一:先平移变换再周期变换(伸缩变换)先将的图象向左( >0)或向右( <0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象.途径二:先周期变换(伸缩变换)再平移变换.先将的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右( <0=平移个单位,便得y=sin(ωx+)的图象.3.解析:由图可知,点(0,1)和点( ,0)都是图象上的点.将点(0,1)的坐标代入待定的函数式中,得2sin =1,即sin =,又||<,∴ =又由“五点法”作图可知,点( ,0)是“第五点”,所以ωx+=2π,即ω· π+=2π,解之得ω=2,故选C.解此题时,若能充分利用图象与函数式之间的联系,则也可用排除法来巧妙求解,即:解:观察各选择答案可知,应有ω>0观察图象可看出,应有T=<2π,∴ω>1故可排除A与B由图象还可看出,函数y=2sin(ωx+)的图象是由函数y=2sinωx的图象向左移而得到的∴ >0,又可排除D,故选C.答案:C4.解析:由题设可知,所求函数的图象如图所示,点( ,2)和点( ,-2)都是图象上的点,且由“五点法”作图可知,这两点分别是“第二点”和“第四点”,所以应有:解得答案:B5.解:由已知可得函数的周期T=4×(6-2)=16∴ω==又A=∴y=sin( x+)把(2,)代入上式得:=sin( ×2+)·∴sin( +)=1,而0<<2π∴ =∴所求解析式为:y=sin( x+)6.分析:由y=Asin(ωx+)的图象易知A的值,在同一周期内,最高点与最低点横坐标之间的距离即,由此可求ω的值,再将最高(或低)点坐标代入可求.解:由题意A=2,=-∴T=π=,∴ω=2∴y=2sin(2x+)又x=时y=2∴2=2sin(2× +)∴ +=( <)∴ =∴函数解析式为:y=2sin(2x+)《函数y =A sin(ωx +φ)的图象》习题(二)【知识梳理.双基再现】1.函数,(其中)的图象,可以看作是正弦曲线上所有的点_________(当>0时)或______________(当<0时)平行移动个单位长度而得到. 2.函数(其中>0且)的图象,可以看作是把正弦曲线上所有点的横坐标______________(当>1时)或______________(当0<<1时)到原来的倍(纵坐标不变)而得到.3.函数>0且A 1)的图象,可以看作是把正弦曲线上所有点的纵坐标___________(当A>1时)或__________(当A<1)到原来的A 倍(横坐标不变)而得到的,函数的值域为______________.最大值为______________,最小值为______________.4.函数其中的(A>0,>0)的图象,可以看作用下面的方法得到:先把正弦曲线上所有的点___________(当>0时)或___________(当<0时)平行移动||个单位长度,再把所得各点的横坐标____________(当>1时)或____________(当0<<1)到原来的倍(纵坐标不变),再把所得各点的纵横坐标____________(当A>1时)或_________(当0<1时到原来的A 倍(横坐标不变)而得到.【基础训练.锋芒初显】1.若将某正弦函数的图象向右平移以后,所得到的图象的函数式是则原来的函数表达式为( ) A. B.C. D. φφφφφ2.已知函数在同一周期内,当时,,当x=,那么函数的解析式为()A. B.C. D.3.已知函数图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图形沿着轴向左平移个单位,这样得到的曲线与的图象相同,那么已知函数的解析式为()A. B.C. D.4.下列命题正确的是( )A.的图象向左平移的图象B.的图象向右平移的图象φφC.当<0时,向左平移||个单位可得的图象D.的图象由的图象向左平移个单位得到5.把函数的图象向右平移后,再把各点横坐标伸长到原来的2倍,所得到的函数的解析式为()A. B.C. D.6.函数的图象,可由函数的图象经过下述________变换而得到()A.向右平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍B.向左平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍C.向右平移个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的D.向左平移个单位,横坐标缩小到原来的,纵坐标缩小到原来的7.函数的图象可看作是函数的图象,经过如下平移得到的,其中正确的是()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位8.函数的周期是______,振幅是______,当x=____________时,__________;当x=____________________时,__________.9.函数的图象的对称轴方程为____________________.10.已知函数(A>0,>0,0<)的两个邻近的最值点为()和(),则这个函数的解析式为____________________.11.函数的图象关于y 轴对称,则Q 的最小值为_______________.12.已知函数(A>O,>0,<)的最小正周期是,最小值是-2,且图象经过点(),求这个函数的解析式.13.函数的图象可由的图象经过怎样的变化而得到?【举一反三能力拓展】1.函数的最小值为-2,其图象相邻的最高点和最低点横坐标差是,又图象过点(0,1),求这个函数的解析式.2.下图为某三角函数图形的一段.(1)用正弦函数写出其解析式.(2)求与这个函数关于直线对称的函数解析式 ()ϕω+=x A y sin3.已知函数为常数,的一段图象如图所示,求该函数的解析式.参考答案:【知识梳理双基再现】1.向左;向右2.缩短;伸长3.伸长;缩短;[-A,A];A;-A4.向左;向右;缩短;伸长;伸长;缩短【基础训练锋芒初显】1.A2.A3.D4.A5.A6.B7.D9. 10.11.12.解:∵图象过即又()Z k k x ∈-=ππ2故函数解析式为.13.解:,即为横坐标变为原来的2倍,纵坐标不变,得,再沿x 轴向右平移个单位,得,即【举一反三能力拓展】1.解:A=2,半周期又∴解析式2.解:(1)该函数的周期所以,又A=3,所以所给图象是曲线沿X辐向右平移而得到的,于是所求函数的解析式为:.设(x,y)为上任意一点,该点关于直线对称点应为,所为与关于直线对称的函数解析式是3.解:由图可知:,则而则函数解析式为。
专题4.4 函数y=Asin(ωx+φ)的图像及应用(课时训练)(解析版)
专题4.4 函数y=Asin (ωx+φ)的图像及其应用课时训练【基础巩固】1、如图,函数f (x )=A sin(2x +φ)(A >0,|φ|<π2)的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin(2x -π3)B .f (x )=2sin(2x +π3)C .f (x )=2sin(2x +π6)D .f (x )=2sin(2x -π6)【答案】B【解析】由题意知,A =2,函数f (x )的图象过点(0,3),所以f (0)=2sin φ=3,由|φ|<π2,得φ=π3,所以f (x )=2sin(2x +π3).故选B.2.将函数y =cos x -sin x 的图象先向右平移φ(φ>0)个单位长度,再将所得的图象上每个点的横坐标变为原来的a 倍,得到y =cos 2x +sin 2x 的图象,则φ,a 的可能取值为( ) A .φ=π2,a =2B .φ=3π8,a =2C .φ=3π8,a =12D .φ=π2,a =12【答案】D【解析】:.将函数y =cos x -sin x =2cos(x +π4)的图象向右平移φ(φ>0)个单位长度,可得y =2cos(x +π4-φ)的图象,再将函数图象上每个点的横坐标变为原来的a 倍,得到y =2cos(1a x +π4-φ)的图象,又y =2cos(1a x +π4-φ)=cos 2x +sin 2x =2cos(2x -π4),所以1a =2,π4-φ=-π4+2k π(k ∈Z ),所以a =12,又φ>0,所以φ=π2+2k π(k ∈N ),结合选项知选D. 3.在平面直角坐标系xOy 中,将函数f (x )=sin ⎪⎭⎫⎝⎛+43πx 的图象向左平移φ(φ>0)个单位后得到的图象经过原点,则φ的最小值为( ) A.π2 B .π4C.π6D .π12【答案】B.【解析】:将函数f (x )=sin ⎪⎭⎫⎝⎛+43πx 的图象向左平移φ(φ>0)个单位后得到的图象对应的解析式为y =sin[3(x +φ)+π4],因为其图象经过原点,所以sin ⎪⎭⎫ ⎝⎛+43πϕ=0,所以3φ+π4=k π,k ∈Z ,解得φ=k π3-π12,k ∈Z ,又φ>0,所以φ的最小值为π3-π12=π4,故选B.4.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724- B .524-C .524D .724【答案】D 【解析】1tan 2α=,22tan 4tan21tan 3ααα==-,()4cos cos 5πββ+=-=-,()(0,βπ∈, 4cos 5β∴=,3sin 5β=,3tan 4β=,()43tan2tan 734tan 2431tan2tan 24134αβαβαβ---===++⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数y=Asin(ωx+φ) 的图象基础训练
一选择题
1.已知右图是函数y=2sin(ωx+φ)(|φ|<
2π的图象,那么( ) A. ω=1110 φ=6
π B.ω=1011 φ=-6π C. ω=2 φ=6π
D. ω=2 φ=-6
π 2.函数y=-xcosx 的部分图像是( )
3.下列函数中,最小正周期为π的偶函数是( ) A.y=sin2x B.y=cos 2x C .sin2x+cos2x D. y=x
x 22tan 1tan 1+- 4.函数y=sin(2x+
2
5π)的图像的一条对轴方程是( ) A . x=-2π B. x=-4π C .x=8
π D.x=45π 5.满足sin(x-4π)≥21的x 的集合是( ) A .⎭
⎬⎫⎩⎨⎧
∈+≤≤+Z k k x k x ,121321252|ππππ B .⎭
⎬⎫⎩⎨⎧
∈+≤≤-Z k k x k x ,1272122|ππππ C .⎭
⎬⎫⎩⎨⎧
∈+≤≤+Z k k x k x ,65262|ππππ D .⎭⎬⎫⎩⎨⎧
∈+≤≤Z k k x k x ,622|πππ∪⎭
⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,)1(2652|πππ
6.要得到函数y=cos(
42π-x )的图象,只需将y=sin 2x 的图象( ) A .向左平移2π个单位 B.同右平移2
π个单位 C .向左平移4π个单位 D.向右平移4
π个单位 7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,
再将整个图象沿x 轴向左平移
2π个单位,沿y 轴向下平移1个单位,得到函数y=2
1sinx 的图象。
则y=f(x)是( ) A .y=1)22sin(21++πx B.y=1)2
2sin(21+-πx C.y=1)42sin(21++πx D. 1)4
2sin(21+-πx 二填空题
8.把函数y=cos(x+3
4π)的图象向右平移φ个单位,所得的图象正好关于y 对称,则φ的最小正值为
9.)32sin(3π+
-=x y 的振幅为 初相为 三解答题
10. 已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与
x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单
调区间。
11. 画出y=
|cos |21cos 21x x +图象的示意图。
12. 试判断方程sinx=
π
100x 实数解的个数。
函数y=Asin(ωx+φ) 的图象基础训练
参考答案:
1-7CDDAAAB (8).
3
π (9) 3 32π (10) T=2×8=16=ωπ2,ω=8π,A=2 设曲线与x 轴交点中离原点较近的一个点的横坐标是0x ,则2-0x =6-2即0x =-2
∴ϕ=–ω0x =
()428ππ=-⨯-,y=2sin(48ππ+x ) 当48π
π+x =2k л+
2
π,即x=16k+2时,y 最大=2 当48ππ+x =2k л+23π,即x=16k+10时,y 最小=–2 由图可知:增区间为[16k-6,16k+2],减区间为[16k+2,16k+10](k ∈Z) (11).y= ⎩⎨⎧0,cos x ]232,22[]
22,22[ππππππππ++∈+-∈k k x k k x (k ∈Z)
(12)方程sinx=
π100x 实数解的个数等于函数y=sinx 与y=π
100x 的图象交点个数 ∵|sinx|≤1∴|π100x |≤1, |x|≤100л 当x ≥0时,
如图:
此时两线共有100奇函数,由对称性知当x ≥0时,也有100个交点,原点是重复计数的所以只有
199个交点。