6.1 平面直角座标系同步练习(含答案)
人教版第七章《平面直角坐标系》全章同步练习(含答案)- (4)
2019中考数学一轮复习单元检测试卷第七单元 平面直角坐标系考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.已知点A (﹣3,0),则A 点在( ) A .x 轴的正半轴上 B .x 轴的负半轴上 C .y 轴的正半轴上D .y 轴的负半轴上2.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是( ) A .(﹣2,0)B .(0,﹣2)C .(1,0)D .(0,1)3.点P 在四象限,且点P 到x 轴的距离为3,点P 到y 轴的距离为2,则点P 的坐标为( ) A .(﹣3,﹣2)B .(3,﹣2)C .(2,3)D .(2,﹣3)4.点P (x ﹣1,x +1)不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )A .(0,3)B .(2,3)C .(3,2)D .(3,0)6.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )得 分 评卷人A.(5,4)B.(4,5)C.(3,4)D.(4,3)7.在下列点中,与点A(﹣2,﹣4)的连线平行于y轴的是()A.(2,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)8.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)9.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)二、填空题(本大题共4小题,每小题5分,共20分)11.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.12.已知△ABC的三个顶点分别为A(﹣2,3)、B(﹣4,﹣1)、C(2,0),现将△ABC 平移至△A′B′C′处,且A′坐标为(﹣1,2),则B′、C′点的坐标分别为.13.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C 点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C,D;得分评卷人得分评卷人(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是.16.如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.17.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4)B(2,4)C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.18.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.20.在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位它与点重合.(3)连接CE,则直线CE与y轴位置关系是.(4)点F分别到x、y轴的距离分别是.21.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.22.在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是个.(3)当P点从点O出发秒时,可得到整数点(10,5)23.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.参考答案与试题解析一.选择题(共10小题)1.解:点A(﹣3,0)在x轴的负半轴上.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:∵P在第四象限内,∴点P的横坐标>0,纵坐标<0,又∵点P到x轴的距离为3,即纵坐标是﹣3;点P到y轴的距离为2,即横坐标是2,∴点P的坐标为(2,﹣3).故选:D.4.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.5.解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.6.解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.7.解:∵平行于y轴的直线上所有点的横坐标相等,已知点A(﹣2,﹣4)横坐标为﹣2,所以结合各选项所求点为(﹣2,4).故选:C.8.解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.9.解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n 是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:C.二.填空题(共4小题)11.解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P 的坐标为(﹣3,4). 故答案为:(﹣3,4). 12.解:∵﹣1﹣(﹣2)=1, 2﹣3=﹣1,∴点A 的横坐标加1,纵坐标减1可得A ′的坐标; ∴B ′的横坐标为﹣4+1=﹣3,纵坐标为﹣1﹣1=﹣2; C ′的横坐标为2+1=3,纵坐标为0﹣1=﹣1. 故答案为:B ′(﹣3,﹣2)、C ′(3,﹣1).13.解:由题意可得线段AB 向右平移1个单位,向上平移了1个单位, ∵A 、B 两点的坐标分别为(1,0)、(0,2), ∴点A 1、B 1的坐标分别为(2,1),(1,3), ∴a +b =2, 故答案为:2.14.解:由A 2(1,1),A 6(3,1),A 10(5,1)…可得到以下规律,A 4n ﹣2(2n ﹣1,1)(n 为不为0的自然数), 当n =505时,A 2018(1009,1). 故答案为:(1009,1) 三.解答题(共9小题)15.解:(1)∵点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点, ∴得C (﹣3,0),D (﹣5,﹣3);(2)如图,S 四边形ABCD =S △ABC +S △ACD , =×3×6+×3×6, =18.故答案为(﹣3,0),(﹣5,﹣3);18.16.解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.17.解:(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).18.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.19.解:(1)A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);(2)1+4+2+1+2=10;(3)点P如图所示.20.解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.21.解:(1)以爷爷家为坐标原点,东西方向为x轴,南北方向为y轴建立坐标系.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史可得:和平广场A坐标为(400,0);老年大学(﹣600,0);平路小学(﹣400,﹣300).(2)由(1)得:和平路小学(﹣400,﹣300),爷爷家为坐标原点,即(0,0)故爷爷家到和平路小学的直线距离为=500(m).22.解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒(0,2),(2,0),(1,31)3秒(0,3),(3,0),(2,41),(1,2)(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.23.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.。
平面直角坐标系练习题及答案
平面直角坐标系练习题及答案6.1.2 平面直角坐标系基础过关作业1.点 P(3,2) 在第一象限。
2.如图,矩形 ABCD 中,A(-4,1),B(2,1),C(2,3),则点D 的坐标为(-4,3)。
3.以点 M(-3,0) 为圆心,以5为半径画圆,分别交 x 轴的正半轴,负半轴于 P、Q 两点,则点 P 的坐标为(4,0),点 Q 的坐标为(-2,0)。
4.点 M(-3,5) 关于 x 轴的对称点 M1 的坐标是(-3,-5);关于y 轴的对称点 M2 的坐标是(3,5)。
5.已知 x 轴上的点 P 到 y 轴的距离为3,则点 P 的坐标为(C) (0,3) 或 (0,-3)。
6.在平面直角坐标系中,点(-1,m2+1) 一定在第二象限。
7.在直角坐标系中,点 P(2x-6,x-5) 在第四象限中,则 x 的取值范围是(B) -3<x<5.8.如图,在所给的坐标系中描出下列各点的位置:A(-4,4)、B(-2,2)、C(3,-3)、D(5,-5)、E(-3,3)、F(0,0)。
这些点没有明显的关系。
综合创新作业9.(综合题) 在如图所示的平面直角坐标系中描出 A(2,3)、B(-3,-2)、C(4,1) 三点,并用线段将 A、B、C 三点依次连接起来,其面积为 12.5.10.如图,是儿童乐园平面图。
建立适当的平面直角坐标系,各娱乐设施的坐标为:滑梯(5,5)、秋千(2,2)、跷跷板(-3,-3)、摇摆(0,0)。
11.(创新题) 在平面直角坐标系中,画出点 A(0,2)、B(-1,0),过点 A 作直线 L1 ∥x轴,过点 B 作 L2 ∥y轴,分析 L1、L2上点的坐标特点,由此,可以总结出在平面直角坐标系中,如果一条直线平行于 x 轴,那么这条直线上的点的 y 坐标相等;如果一条直线平行于 y 轴,那么这条直线上的点的 x 坐标相等。
12.(1) 已知点 P1(a,3) 与 P2(-2,-3) 关于原点对称,则a=2.(2) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(D) (-2,-800)。
中职基础模块(下册)6.1两点间的距离公式和线段的中点坐标公式
6.1 两点间距离公式和线段的中点坐标公式
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
例3 如图,已知△ABC的三个顶点分别是A(2,4)、 B(-1,1)、C(5,3).
(1)求BC边上的中点D的坐标; (2)计算BC边上的中线的长度.
分析 (1)已知点B(-1,1)、C(5,3),由中点坐标 公式,即可求出BC边上的中点D的坐标. (2) 连接点A和点D,得到BC边上的中线AD,由两 点间距离公式,即可求出线段AD的长度.
即P1与P2两点间的距离5.
6.1 两点间距离公式和线段的中点坐标公式
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
2. 线段的中点坐标公式 若数轴上点A对应的实数是-1,点B对应的实数是2, 线段AB的中
点是点C, 那么如何求点C对应的实数?
若线段的两个端点分别为
A(x1,y1)和B(x2,y2), 线段AB的中点 为M(x0,y0),如何求线段AB的中点 M(x0,y0)的坐标呢?
公式称为线段AB的中点坐标公式.
6.1 两点间距离公式和线段的中点坐标公式
2. 线段的中点坐标公式
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
例2 已知点A(2,3)与B(8,-3),求线段AB的中点坐标. 解 设线段AB的中点为M(x0,y0),由中点坐标公式,得
即线段AB的中点M的坐标为(5,0).
6.1 两点间距离公式和线段的中点坐标公式
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
已知线段两个端点的坐标,可以确定线段中点的 坐标.如果知道线段的一个端点和中点的坐标,能否确 定另一个端点?怎么求它的坐标?
6.1 两点间距离公式和线段的中点坐标公式
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;
平面直角坐标系同步练习(含答案)
标为6.1.2平面直角坐标系(1)班级 姓名 座号 月 日主要内容:平面直角坐标系的有关概念 ,探索点与坐标之间的关系一、课堂练习:1. 写出图中点A,B,C,D,E,F 的坐标.答:A(亠)_ B( ), _____________ C( _,丄 D( ), _________________ E( ______ ), F( —, _L2. 在上图中描出下列各点:L(-5, ^3),M(4,0), N(-6,2), P(5,-3.5),Q(0,5), R(6,2)3. 已知三角形 ABC 的三个顶点 A B 、C 的坐标分别是 (0,2),(-5,0),(2,-2),在右图平面直角坐标系中表示出来;下列各点中,在三角形ABC 的内部的是(B ) A. (2,0) B. (-2,1) C. (-2,-1)D.(0,-2)4. 坐标平面内有一点 A(-2,3),那么它到x 轴的距离为 _, 到y 轴的距离为 _.5. 平面直角坐标系内有一点 P(x, y),1rB;^5 4E3 n厶-6」 )-4 -3 - 2 - 1 O 23 i 4- 6「A-2-C J —第1题它到x轴的距离为2,到y轴的距离为3,那么点P的坐标为二、课后作业:6.如图,写出图中标有字母的各点的坐标7.在平面直角坐标系中,标出下列各点:点A在y轴上,位于原点上方,距离原点2个单位长度;点B在x轴上,位于原点右侧,距离原点1个单位长度;点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;点D在x轴上,位于原点右侧,距离原点3个单位长度;点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到的图形是 _______________ .8.如图,在所给的坐标系中描出下列各点的位置:A(M,_4),B(-2,-2),C(3,3),D(5,5),E(-3,-3),F(0,0)y“54--6 4 n4 3 -[2 -r1 O请写出两个类似的点:9.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来⑴(』,0),( _4,3),( J3,0),( 23),( _1,0);⑵(2,1),(6,1),(6,3),(7,3),(4,6),(1 ,3),(2,3),(2,1)观察得到的图形,你觉得它们像什么?65432112 - 10 2 >345 6~=1三、新课预习:10.点A( -1,4)在第________ 象限,B( -1, -4)在第________ 象限,点C(1,4)在第________D(1,4)在第 _______ 限,点E(-2,0)在 ________ 轴上,点F (0, —2)在________ 轴上11•点P( £,2)在第 _______ 象限,它到x轴的距离是______ ,到y轴的距离是______ .象限,点y*⑵x2. 在上图中描出下列各点:L(-5, -^),M(4,0), N(-6,2), P(5,-3.5),Q(0,5), R(6,2)3. 已知三角形 ABC 的三个顶点 A B 、C 的坐标分别是 (0,2),(-5,0),(2,-2),在右图平面直角坐标系中表示出来;下列各点中,在三角形ABC 的内部的是(B ) A. (2,0) B. (-2,1) C. (-2,-1) D.(0,-2)4.坐标平面内有一点 A(-2,3),那么它到x轴的距离为 5.平面直角坐标系内有一点 P(x, y),它到x 轴的距离为2,到y 轴的距离为 3,那么点P 的坐、课堂练习1. 写出图中点A,B,C,D,E,F 的坐标. 参考答案答:A( -2 ,-2 ) B( -5 , 4 ) C( 5 ,-4 ), D( 0 ,-3 )E( 2 ,5 ), F( -3,0 ).B ;L 5 4 EL32r-6」)-4 - 3 - 2 - 1 O2 3 i 4■ 6[IA-2^=3 D3 ,至卩y 轴的距离为 2 .第1题y *标为(3,2)或(-3,2)或(-3,-2)或(3,-2)、课后作业6. 如图,写出图中标有字母的各点的坐标解:A(_5,4), B(A,2), C(3,4), D(2,1)E(5, A),F(_1,d),G(_5, -3),H ( -4, -1)依次连接这些点,你能得到的图形是英文字母W8.如图,在所给的坐标系中描出下列各点的位置A(M, _4),B(-2,-2),C(3,3),D(5,5), E(-3,-3),F(0,0)这些点的位置有何关系:答:横坐标与纵坐标相等,并且它们在一条直线上.请写出两个类似的点:答:如(-i,-i),(i,i).离y轴4个单位长度.4 Cy*第8题⑴(』,0),( _4,3),( J3,0),( 23),( _1,0);⑵(2,1),(6,1),(6,3),(7,3),(4,6),(1 ,3),(2,3),(2,1)解:(1)如图,依次连接(1)中各点,得到的图形像字母 M 或两座小山;(2)如图,依次连接(2)中各点,得到的图形像一座小房子或一个箭头 .三、新课预习: 10.点A( -1,4)在第二 象限,B( -1,/)在第 三 象限,点C(1,—4)在第 四 象限, 点D (1,4)在第 一象限,点E(_2,0)在 x 轴上,点F(0,_2)在 y 轴上•11•点 P(:,2)在第二象限,它到x 轴的距离是 2,到y 轴的距离是 3.观察得到的图形,你觉得它们像什么?。
6.1_平面直角坐标系
-1 -2 -3 -4 -5
D(4,-2)
B(3,-3)
例6 在坐标系中,描出M(-3,1),N(2,1)。
1、直线MN与x轴的 位置关系如何。 MN平行于X轴 2、若点Q(2,-3) 画直线NQ,则NQ与y 轴的位置关系如何。 NQ平行于Y轴 3、若点P(x0,y0) 为MN上的任一点, 则y0为多少?若点P (x0,y0)为NQ上的 任一点,则x0为多 少? y0=1,x0=2 M(-3,1)
(6,6)
A(O)
(
0,0)
7 B(6,0)
x
在平面直角坐标系内,任意一点P (a,b)到x 轴的距离是P点的纵坐标b的绝对值,到y轴的距离 是P点横坐标a的绝对值。简单地说:点P (a,b)到 x轴的距离是|b|,到y轴的距离是|a|,如图所示:
y
o
x P (a,b)
例4.(1)分别写出点 A(2,3) ,B(-2,-1), C(3,-2), D(4,0), E(0,-5)到x轴和y轴 的距离。 (2)设点P在x轴上方,-5 又在y轴左边,且距x 轴和y轴分别为5个单 位长和4个单位长, 求P点坐标。
A
D点在x轴上
E点在第二象限 F点在y轴上 G点在第四象限 O点在坐标原点
D
O1
2 3 4 5
X轴
G
F
-3
B
-4
教 材 分 析 学教 方 法 学 习 方 法 教 学 程 序 设 计 说 明
例2.在平面直角坐标系中描出下列各点
A(4,5) B(-2,3) C(-4,-1) D(2.5,-2) E(0,-4)
2
1 -4 -3 -2 -1 O -1 -2
X正半轴与Y负半轴之 间的部分叫第四象限
人教版七年级数学下册平面直角坐标系同步练习(解析版)
人教版七年级数学下册平面直角坐标系同步练习(解析版)同步练习参考答案与试题解析一.选择题1.解:点P的坐标为(3,﹣2).故选A.2.选D.3.解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.4.解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.5.解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.6.解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.7.解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选B.8.解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.9.解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2011次运动后点P的横坐标为2011,纵坐标以1﹨0﹨2﹨0每4次为一个循环组循环,∵2011÷4=502…3,∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,∴点P(2011,2).故选C.二.填空题10.解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.11.解:由题意点A的纵坐标为0,横坐标为3或﹣3,即点A(3,0)或(﹣3,0).12.解:P(,﹣)到x轴距离为,到y轴距离为,故答案为:,.13.解:x<0时,﹣x>0,所以,x2﹣4x>0,所以,点P(x,x2﹣4x)的纵坐标一定是正数,所以,点P(x,x2﹣4x)一定不在第三象限.故答案为:三.14.解:根据定义,f(﹣5,6)=(6,﹣5),所以g[f(﹣5,6)]=g(6,﹣5)=(﹣6,5).故答案是:(﹣6,5).15.解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵18÷4=4…2;∴A18的坐标在第四象限,横坐标为(18﹣2)÷4+1=5;纵坐标为﹣5,∴点A18的坐标是(5,﹣5).故答案为:(5,﹣5).三.解答题16.解:∵点Q(m+3,2m+4)在x轴上,∴2m+4=0,解得m=﹣2,∴m+3=﹣2+3=1,∴点Q的坐标为(1,0).17.解:由题意,得2a+1=a+7或2a+1=﹣a﹣7,解得a=6,a=﹣.18.解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.19.解:如图所示:A(﹣4,4),B(﹣3,0),C(﹣2,﹣2),D(1,﹣4),E(1,﹣1),F(3,0),G(2,3).20.。
新七年级下册数学第七章平面直角坐标系测试题(含答案解析)
人教版七年级下册数学第七章平面直角坐标系单元达标练习题一、选择题(每小题只有一个正确答案)1.如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班2.在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)3.在平面直角坐标系中,点M(-1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A. (-3,-1)B. (-3,7)C. (1,-1)D. (1,7)4.如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A. (2,6)B. (2,5)C. (6,2)D. (3,6)5.如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处6.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A. (4,2)B. (5,2)C. (6,2)D. (5,3)7.观察下列数对:(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (2,4)...那么第32个数对是()A. (4,4)B. (4,5)C. (4,6)D. (5,4)8.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A. 原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)9.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (-4,3)B. (4,-3)C. (-3,4)D. (3,-4)10.P点横坐标是-3,且到x轴的距离为5,则P点的坐标是( )A. (-3,5)或(-3,-5)B. (5,-3)或(-5,-3)C. (-3,5)D. (-3,-5)11.若点P(a﹣2,a)在第二象限,则a的取值范围是()A. 0<a<2B. ﹣2<a<0C. a>2D. a<012.在如图的方格纸上,若用(-1,1)表示A点,(0,3)表示B点,那么C点的位置可表示为()A. (1,2)B. (2,3)C. (3,2)D. (2,1)二、填空题13.点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为________.14.如果点P在第二象限内,点P到轴的距离是4,到轴的距离是3,那么点P的坐标为________.15.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.16.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为________.17.三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为________,________.18.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-`2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.19.如下图,五间亭的位置是________,飞虹桥的位置是________,下棋亭的位置是________,碑亭的位置是________.20.如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是________21.已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;22.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(,)在第四象限,则m的值为________;三、解答题23.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?24.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?25.王林同学利用暑假参观了幸福村果树种植基地如图,他出发沿的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.26.如图,已知火车站的坐标为,文化宫的坐标为.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市、医院的坐标.27.如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤.(1)请你以火车站为原点建立平面直角坐标系;(2)写出市场的坐标是________;超市的坐标为________;(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.参考答案一、选择题D D C A B B B D C A A A二、填空题13. (0,4) 14.(﹣3,4)15. 16. (-505,-505)17.(-3,-6);(-4,-1)18. (5,4)19.(0,0);(-2,0);(-3,-1);(-2,-2)20.(-1,2)21.(7,-2)或(-3,-2)22.0三、解答题23.解:有6种走法分别为:①(2,4)→(3,4)→(4,4)→(4,3)→(4,2);②(2,4)→(3,4)→(3,3)→(4,3)→(4,2);③(2,4)→(3,4)→(3,3)→(3,2)→(4,2);④(2,4)→(2,3)→(3,3)→(4,3)→(4,2);⑤(2,4)→(2,3)→(3,3)→(3,2)→(4,2);⑥(2,4)→(2,3)→(2,2)→(3,2)→(4,2)24.解:如下图所示,可知小明与小刚相距3个格.25.解:由各点的坐标可知他路上经过的地方:葡萄园杏林桃林梅林山楂林枣林梨园苹果园.如图所示:26.(1)解:如图所示(2)解:体育场、市场、超市、医院.27.(1)解:如图所示:(2)(4,3);(2,﹣3)(3)解:如图所示:△A1B1C1的面积=3×6﹣×2×2﹣×4×3﹣×6×1=7.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成__________.2.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是__________.3. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.4.点P(-3,-5)到x轴距离为______,到y轴距离为_______.5.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),平行于X轴,则点C的坐标为___.6.已知点(a+1,a-1)在x轴上,则a的值是。
七年级下册数学同步练习题库:平面直角坐标系(填空题:一般)
平面直角坐标系(填空题:一般)1、若A(x,3)关于y轴的对称点是B(-2,y),则x=____ ,y=______ ,点A关于x轴的对称点的坐标是___________。
2、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是_________.3、在平面直角坐标系中,已知点A(-2,4)、B(3,m),若直线AB∥x轴,则m的值为__________.4、点A(﹣4,3)到y轴的距离是______.5、下面是某医院各部门的示意图,横向表示的是楼层,纵向表示的是门号,例如:院长室在4楼3门,我们用(4,3)来表示其位置,试根据上面方法,结合图形,完成下面问题:(1)儿科诊室可以表示为;(2)口腔科诊室在楼门;(3)图形中显示,与院长室同楼层的有;(4)与神经科诊室同楼层的有;(5)表示为(1,2)的诊室是;(6)表示为(3,5)的诊室是;(7)3楼7门的是.6、若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n= .7、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P的坐标是8、剧院里5排2号可以用(5,2)表示,则(9,6)表示________.9、若点P(a+2,a2-1)在x轴上,则点P的坐标为________.10、在平面直角坐标系中,点P(-3,4)到x轴的距离为________.11、在平面直角坐标系中,点P(,+1)在轴上,那么点的值是_________.12、若点P(+6,3)在轴上,则点P的坐标为___________.13、若将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(7,2)表示的数是__________.14、如图所示,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,则梅花上点B可以用坐标____表示.15、已知两点A,B,若AB∥轴,则= ,的取值范围是 .16、点M(-6,5)到x轴的距离是_____,到y轴的距离是______.17、已知:A(3,1),B(5,0),E(3,4),则△ABE的面积为________.18、在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为________________________________.19、已知点M(|x|,x+1)在第一、三象限的角平分线上,则x=_______.20、如图,在平面直角坐标系中,已知正方形网格的格点A的坐标为(-3,5),则它到x轴的距离是_____,到y轴的距离是_ __,到原点的距离是_____.格点B,C的坐标分别为B_____,C_____.若点D(-3,-4),则它到x轴的距离为_____,到y轴的距离为____,到原点的距离为__.21、同学们玩过五子棋吗?它的比赛规则是只要同色5子连成一条直线就算胜.如图是两人玩的一盘棋,若白①的位置是(1,-5),黑❶的位置是(2,-4),现在轮到黑棋走,则黑棋放在______的位置,就获得胜利了.22、如图,以灯塔A为观测点,小岛B在灯塔A的北偏东45°方向上,距灯塔A 20 km处.若以小岛B为观测点,则灯塔A在小岛B的_____方向上,距小岛B_____km处.23、在直角坐标系中,点M在X轴上方,Y轴的左侧,到X轴的距离为2,到Y轴的距离为4,则M点的坐标为__________24、如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,=_____.25、如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥轴,将△ABC以轴为对称轴作轴对称变换,得到(和,和,和分别是对应顶点),直线经过点,,则点的坐标是__________.26、如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,=_____.27、如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,=_____.28、如图所示,在长方形ABCD中,CD=3,CB=2,则此时点A的坐标为_______。
人教版2022学年七年级数学下册第七章平面直角坐标系同步练习题
2022学年人教版七年级下册数学第7章7.1《平面直角坐标系》考点一:有序数对把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。
考点二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 .①条数轴②互相垂直③公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。
考点三、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。
注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。
例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。
2、平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b)注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.考点四:坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)考点五:点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。
初中数学七年级下数学平面直角坐标系同步专项练习题含答案
初中数学七年级下数学平面直角坐标系同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1.第一个数表示排数,第二个数表示列数.请在图中找一个格点C,使它与已知格点A、B 构成的△ABC的面积为1,则符合条件的格点C的有序数对一共有()对.A.3B.4C.5D.62. 若点P在第二象限,并且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标为( )A.(2, −3)B.(−3, 2)C.(3, −2)D.(−2, 3)3. 如图,点A(3,3),B(5,1),则点C的坐标为()A.(6,4)B.(3,3)C.(6,5)D.(3,4)4. 点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,-3)5. 有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.最早引入坐标系,用代数方法研究几何图形的数学家是()A.高斯B.笛卡尔C.欧几里得D.毕达哥拉斯6. 点P在第四象限,到y轴的距离为3,到原点距离为5,则点P为()A.(3,−5)B.(3,−4)C.(4,−3)D.(−3,4)7. 如图,弹性小球从P(2, 0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…第n次碰到正方形的边时的点为P n,则P2015的坐标是()A.(5, 3)B.(3, 5)C.(0, 2)D.(2, 0)8. 已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4, −2)B.(−4, 2)C.(−2, 4)D.(2, −4)9. 如图,在平面直角坐标系中,已知A(−2,4),P(−1,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90∘,M为BC的中点,则PM的最小值为( )A.√172B.√17 C.4√55D.√510. 点M(−2,5)是由点N向上平移3个单位得到的,则点N的坐标为( )A.(2,0)B.(2,1)C.(−2,2)D.(2,−3)二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 若A(a, b)在第二、四象限的角平分线上,a与b的关系是________.12. 在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点A2019的坐标是________.13. 将正整数按如图所示的规律排列下去,若有序实数对(n, m)表示第n 排,从左到右第m 个数,如(4, 2)表示9,则表示60的有序数对是________.14. 如图,△ABC 三个顶点的坐标分别为A(2,2),B(4,2),C(6,4) ,以原点O 为位似中心,将△ABC 缩小为原来的一半,则线段AC 的中点P 变换后在第一象限对应点的坐标为________.15. 已知△ABC 的三个顶点坐标分别为A (−2,3),B (0,−6),C (0,−1),当AD//BC 且AD =BC 时,D 点的坐标为________.16. 正方形ABCD 中, AB =2, P 为BC 中点,Q 为DC 中点,则 PQ →⋅PC →=________;若M 为CD 上的动点,则 PQ →⋅PM →的最大值为________.17. 已知点A(1,m −1) 在x 轴与y 轴的角平分线上,则m 的值为________.18. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.19. 将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2, 1)对应;数5与(1, 3)对应;数14与(3, 4)对应;根据这一规律,数2017对应的有序数对为________.20. 如图,小强告诉小华,图中A,B,C三点的坐标分别为(−3, 5),(3, 5),(−1, 7),小华一下就说出了点D在同一坐标系中的坐标为________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 如图,在平面直角坐标系内,已知点A(8,0),点B的横坐标是2,△AOB的面积为12.(1)求点A到y轴的距离;(2)求点B的坐标;(3)如果P是平面直角坐标系内的点,那么点P的纵坐标为多少时,S△AOP=2S△AOB.22. 如图,已知长方形ABCD的长为6,宽为4,请建立适当的平面直角坐标系,分别表示其各个顶点的坐标.23. 已知,点P(2m−6,m+2).(1)若点P在y轴上,P点的坐标为________;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?24. 已知点B(m−6,2m)到x轴的距离与它到y轴的距离相等,求m的值.25. 已知:A(0, 1),B(2, 0),C(4, 3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(x<0)的图象交于点P,且点P的纵26. 如图,正比例函数y=−2x与反比例函数y=kx坐标为8,过点P作PQ⊥x轴于点Q.(1)求k的值;(2)点A在线段PQ上,若OA=PA,①求OA的长;②点B为x轴负半轴上一动点,当△OAB与△PAB的面积相等时,请直接写出所有符合题意的点B的坐标.27. 如图,正方形ABCD的边长为4,过它的中心建立平面直角坐标系(中心在原点上),各边和坐标轴平行或垂直.(1)试写出正方形四个顶点的坐标;(2)从中你发现了什么规律,请举例说明(写出一个即可).28. 观察下列有序数对:(3,1),(−5,12),(7,13),(−9,14),(11,15)…根据你发现的规律,求出第100个有序数对.29. 在平面直角坐标系中,已知点M(m−1, 2m+3).(1)若点M在y轴上,求m的值;(2)若点N的坐标为(−3, 2),且直线MN // y轴,求线段MN的长.30. 在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1, 0)、B(5, 0)、C(3, 3)、D(2, 4).(1)求:四边形ABCD的面积.(2)如果把四边形ABCD先向左平移3个单位,再向下平移1个单位得四边形A′B′C′D′,求A′,B′,C′,D′点坐标.31. △ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)写出点A的坐标:A________;(2)若点P(x,y)是△ABC内部一点,则△A′B′C′内部的对应点P′的坐标为________;(3)求△ABC的面积.32. 根据点所在位置,用“+”“-”或“0”填表:33. 如图是某台阶的一部分,每级台阶的高和宽都是1.(1)若点A2的坐标为(−2,−2),则坐标原点是点________;(2)如果点A的坐标为(−1,0).①在图中画出平面直角坐标系,并写出点A1,A2,A3的坐标;②观察①中点的坐标的规律,直接写出A2021的坐标.34. 在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(________,________),A8(________,________);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A2012到点A2013的移动方向.35. 如图10,某小区有大米产品加工点M(4,4),大豆产品加工点2个D1和D2,为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格,并建立了平面直角坐标系(隐藏).(1)请你画出管理员建立的平面直角坐标系;(2)根据(1)所画的平面直角坐标系,用坐标表示出2个大豆产品加工点D1和D2的位置.36. 已知点P(2a−2, a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4, 5),直线PQ // y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴,y轴的距离相等,求a2020+2020的值.37. 如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2, 2)、A2的坐标为(5, 2)(1)A3的坐标为________,A n的坐标(用n的代数式表示)为________.(2)2020米长的护栏,需要两种正方形各多少个?38. 如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N 处.第三次再跳到点N关于点C的对称点处,….如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:(2)求经过第2011次跳动之后,棋子落点的坐标.39. (1)如图,在x轴上,点A的坐标为3,点B的坐标为5,则AB的中点C的坐标为________39.(2)在图中描出点A(2, 1)和B(4, 3),连结AB,找出AB的中点D并写出D的坐标.39.(3)已知点M(a, b),N(c, d),根据以上规律直接写出MN的中点P的坐标.40. (1)在平面直角坐标系中描出下列各点:(−3, −2),(−2, −1),(−1, 0),(0, 1),(1, 2),(2, 3),观察你描出的给点,这些点有什么规律? 40.(2)若点(2015, y)符合(1)中你所描的点的排列规律,那么y的值是多少?40.(3)若点(m, n)也符合(1)中你所描的点的排列规律,那么m,n之间有什么关系?参考答案与试题解析初中数学七年级下数学平面直角坐标系同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】三角形的面积有序数对【解析】此题暂无解析【解答】解:由图可知,要使S△ABC=1,根据面积公式可得,图中符合条件的有序数为:(1,3),(2,4),(3,5),(3,1),(4,2),(5,3),共6对.故选D.2.【答案】B【考点】点的坐标【解析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P(a, b)在第二象限,到x轴的距离是2,到y轴距离是3,∴a=−3,b=2,∴点P的坐标为(−3, 2).故选B.3.【答案】A【考点】网格中点的坐标【解析】利用已知点坐标确定原点位置进而得出答案.【解答】解:依题意,可建立平面直角坐标系如下,点C的坐标为(6,4).故选A.4.【答案】D【考点】已知面积求坐标轨迹【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】平面直角坐标系的相关概念有序数对【解析】最早引入坐标系,用代数方法研究几何图形的数学家是笛卡尔,据此即可解答. 【解答】解:最早引入坐标系,用代数方法研究几何图形的数学家是笛卡尔.故选B.6.【答案】A【考点】象限中点的坐标【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】规律型:点的坐标【解析】根据所给出的图形,得出小球第一次碰到正方形的边时的点为P1的坐标,小球第二次碰到正方形的边时的点为P2的坐标,找出规律,得出第三次、第四的坐标,从而得出规律,每四次一个循环,即可得出答案.【解答】解:∵小球第一次碰到正方形的边时的点为P1的坐标是(5, 3),小球第二次碰到正方形的边时的点为P2的坐标是(3, 5),小球第三次碰到正方形的边时的点为P3的坐标是(0, 2),小球第四次碰到正方形的边时的点为P4的坐标是(2, 0),∴每四次一个循环,则2015÷4=503...3,∴P2015的坐标是(0, 2);故选C.8.【答案】A【考点】点的坐标【解析】根据第四象限的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由点P在第四象限,且到x轴的距离为2,则点P的纵坐标为−2,横坐标为正数,故A正确.故选:A.9.【答案】C【考点】勾股定理相似三角形的性质与判定网格中点的坐标【解析】作AH⊥y轴,CE⊥AH,证明△AHB∽△CEA,根据相似三角形的性质得到AE=2BH,求出点M的坐标,根据两点间的距离公式用x表示出PM,根据二次函数的性质解答即可.【解答】解:如图,过点A作AH⊥y轴于H,过点C作CE⊥AH于E,则四边形CEHO是矩形,∵OH=CE=4,∴∠BAC=∠AHB=∠AEC=90∘,∴∠ABH+∠HAB=90∘∠HAB+∠EAC=90∘,∴∠ABH=∠EAC,∴△AHB∼△CEA,∴AHEC =BHAE,即24=BHAE,∴AE=2BH.设BH=x,则AE=2x,∴OC=HE=2+2x,OB=4−x,∴B(0,4−x),C(−2−2x,0),∵ BM=CM,∴ M(−1−x,4−x2),∴P(−1,0),∴PM=√x2+(4−x2)2=√54(x−45)2+165,∴PM的最小值为√165=4√55.故选C.10.【答案】C【考点】位置的确定点的坐标【解析】此题暂无解析【解答】解:点N向上平移三个单位得到点M(−2,5),点M(−2,5)向下平移三个单位得到点N(−2,2).故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】互为相反数【考点】象限中点的坐标【解析】A(a, b)在第二、四象限的角平分线上,则a与b的值互为相反数,则a=−b.【解答】解:∵A(a, b)在第二、四象限的角平分线上,∴a=−b,即a与b互为相反数.故答案为:互为相反数.12.【答案】(1009,0)【考点】规律型:点的坐标【解析】根据点A n坐标的变化找出变化规律“A4n+1(2n, 1),A2n+2(2n+1, 1),A2n+3(2n+ 1, 0),A4n+4(2n+2, 0)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现:A1(0, 1),A2(1, 1),A3(1, 0),A4(2, 0),A5(2, 1),A6(3, 1),A7(3, 0),A8(4, 0),A9(4, 1),∴A4n+1(2n, 1),A4n+2(2n+1, 1),A4n+3(2n+1, 0),A4n+4(2n+2, 0)(n为自然数).∵2019=4×504+3,2×504+1=1009,∴点A2019的坐标是(1009,0).故答案为:(1009,0).13.【答案】(11,5)【考点】规律型:数字的变化类有序数对【解析】根据图中的数据,可知第几排有几个数,每排的数据从左到右是由大变小,由此可以判断58所在的位置.【解答】解:由题意可得,∵60=(1+2+3+...+10)+5,∴60所对应的有序数对是(11, 5),故答案为:(11, 5).14.【答案】(2,3 2 )【考点】网格中点的坐标作图-位似变换【解析】此题暂无解析【解答】解:如图所示,∵ A(2,2),C(6,4),∴ P(4,3),∴ 以原点O为位似中心,将△ABC缩小为原来的一半,). 则线段AC的中点P变换后在第一象限对应点的坐标为(2,32).故答案为:(2,3215.【答案】(−2,−2)或(−2,8)【考点】平行线的性质坐标与图形性质已知面积求坐标【解析】根据题意直接画出图形,进而分类讨论得出答案.【解答】解:如图所示,BC的长度为5,AD//BC,AD=BC,∴ D点的坐标为:(−2,−2)或(−2,8).故答案为:(−2,−2)或(−2,8).16.【答案】1,3【考点】平面直角坐标系的相关概念【解析】此题暂无解析【解答】解: PQ →⋅PC →=|PQ →|⋅|PC →| cos 45∘=1,|PQ →|=√2 ,则PM → 在PQ → 上的投影最大时,即M 在D 点处, PQ →⋅PM →最大,过D 作直线PQ 的垂线,垂足为H , |QH|=√22, |PH|=3√22,(PQ →⋅PM →)max =√2×3√22=3.故答案为:1,3.17.【答案】0或2【考点】坐标与图形性质【解析】此题暂无解析【解答】解:因为点A(1,m −1) 在x 轴与y 轴的角平分线上,所以m −1=1或m −1=−1,所以m =2或0.故答案为:0或2.18.【答案】49【考点】规律型:点的坐标【解析】求出边长为1、2、3、4、5、6、7、的正方形的整点的个数,得到边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,推出边长为7和8的正方形内部有49个整点,即可得出答案.【解答】解:设边长为8的正方形内部的整点的坐标为(x, y),x ,y 都为整数.则−4<x <4,−4<y <4,故x 只可取−3,−2,−1,0,1,2,3共7个,y 只可取−3,−2,−1,0,1,2,3共7个,它们共可组成点(x, y)的数目为7×7=49(个).故答案为:49.19.【答案】(45, 9)【考点】规律型:数字的变化类有序数对【解析】根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2017所在的位置.【解答】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同,∵45×45=2025,2017在第45行,向右依次减小,故2017所在的位置是第45行,第9列,即数2017对应的有序数对为(45, 9);故答案为:(45, 9).20.【答案】(−2, 3)【考点】点的坐标【解析】根据点A的坐标,横坐标加1,纵坐标减2即可得到点D的坐标.【解答】解:∵点D在点A(−3, 5),右边一个单位,下边2个单位,∴点D的横坐标为−3+1=−2,纵坐标为5−2=3,∴点D的坐标为(−2, 3).故答案为:(−2, 3).三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)∵ 点A的坐标为(8,0),∴ OA=8,∵ OA⊥y轴,∴ OA的长即为点A到y轴的距离,∴ 点A到y轴的距离为8.(2)设点B的纵坐标为y,因为A(8,0),所以OA=8,OA⋅|y|=12,则S△AOB=12∴ y=±3,∴ 点B的坐标为(2,3)或(2,−3).(3)设点P的纵坐标为ℎ.S△AOP=2S△AOB=2×12=24,∴1OA⋅|ℎ|=24,21×8|ℎ|=24,2ℎ=±6,所以点P的纵坐标为6或−6.【考点】求坐标系中两点间的距离三角形的面积点的坐标已知面积求坐标【解析】由点A的坐标为(8,0),得OA=8,根据OA⊥y轴,得点A到y轴的距离为8.设点B的纵坐标为y,根据△AOB的面积为12列等式求出y的值.写出点B的坐标:设点P的纵坐标为ℎ,先求出△AOP的面积,再列等式求出ℎ的值,因为横坐标没有说明,所以点P在直线y=6或直线y=−6上.【解答】解:(1)∵ 点A的坐标为(8,0),∴ OA=8,∵ OA⊥y轴,∴ OA的长即为点A到y轴的距离,∴ 点A到y轴的距离为8.(2)设点B的纵坐标为y,因为A(8,0),所以OA=8,OA⋅|y|=12,则S△AOB=12∴ y=±3,∴ 点B的坐标为(2,3)或(2,−3).(3)设点P的纵坐标为ℎ.S△AOP=2S△AOB=2×12=24,OA⋅|ℎ|=24,∴121×8|ℎ|=24,2ℎ=±6,所以点P的纵坐标为6或−6.22.【答案】解:以点B为原点,BC边所在的直线为x轴,AB边所在直线为y轴,建立平面直角坐标系如图所示:则有A(0, 4),B(0, 0),C(6, 0),D(6, 4).【考点】平面直角坐标系的相关概念点的坐标【解析】以点B为坐标原点建立平面直角坐标系,然后根据点的坐标的写法分别写出即可.【解答】解:以点B为原点,BC边所在的直线为x轴,AB边所在直线为y轴,建立平面直角坐标系如图所示:则有A(0, 4),B(0, 0),C(6, 0),D(6, 4).23.【答案】(0,5)(2)根据题意可得,2m−6+6=m+2,解得,m=2,∴P点的坐标为(−2,4),∴点P在第二象限.【考点】象限中点的坐标点的坐标【解析】此题暂无解析【解答】解:(1)∵点P在y轴上,∴2m−6=0,解得m=3,∴P点的坐标为(0,5).故答案为:(0,5).(2)根据题意可得,2m−6+6=m+2,解得,m=2,∴P点的坐标为(−2,4),∴点P在第二象限.24.【答案】解:由题意得|m−6|=|2m|,∴ m−6=2m或m−6=−2m,∴ m=−6或m=2.【考点】点的坐标【解析】此题暂无解析【解答】解:由题意得|m−6|=|2m|,∴ m−6=2m或m−6=−2m,∴ m=−6或m=2.25.【答案】解:(1)如图所示,S△ABC=S矩形ODCE−S△BDC−S△AEC−S△AOB=3×4−12×2×3−12×2×4−12×1×2=4;(2)如图所示,以AO为高时,PB的长度为8;以BO为高时,PA的长度为4;则P1(−6, 0)、P2(10, 0)、P3(0, 5)、P4(0, −3).【考点】坐标与图形性质三角形的面积已知面积求坐标【解析】(1)过C点作CF⊥x轴于点F,则OA=1,OF=4,OB=2,OA=1,CF=3,AE=2.根据S△ABC=S四边形EOFC−S△OAB−S△ACE−S△BCF代值计算即可.(2)分点P在x轴上和点P在y轴上两种情况讨论可得符合条件的点P的坐标.【解答】解:(1)如图所示,S△ABC=S矩形ODCE−S△BDC−S△AEC−S△AOB=3×4−12×2×3−12×2×4−12×1×2=4;(2)如图所示,以AO为高时,PB的长度为8;以BO为高时,PA的长度为4;则P1(−6, 0)、P2(10, 0)、P3(0, 5)、P4(0, −3).26.【答案】解:(1)由题意设P(m,8),∴−2m=8,∴m=−4 .∴P(−4,8),∴k=−4×8=−32 .(2)①设OA=n,则PA=n,AQ=8−n,由勾股定理得:OA2=OQ2+AQ2,∴n2=42+(8−n)2,解得:n=5,即OA=5,②设B的坐标为(m,0),当△OAB与△PAB的面积相等时,点B在点Q右侧时,1 2×5×(m+4)=12×3×(−m),解得:m=−52,点B在点Q左侧时,1 2×5×(−4−m)=12×3×(−m),解得:m=−10,点B的坐标为(−10,0)或(−52,0) . 【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式已知面积求坐标勾股定理【解析】【解答】解:(1)由题意设P(m,8),∴−2m=8,∴m=−4 .∴P(−4,8),∴k=−4×8=−32 .(2)①设OA=n,则PA=n,AQ=8−n,由勾股定理得:OA2=OQ2+AQ2,∴n2=42+(8−n)2,解得:n=5,即OA=5,②设B的坐标为(m,0),当△OAB与△PAB的面积相等时,点B在点Q右侧时,1 2×5×(m+4)=12×3×(−m),解得:m=−52,点B在点Q左侧时,1 2×5×(−4−m)=12×3×(−m),解得:m=−10,点B的坐标为(−10,0)或(−52,0) .27.【答案】解:(1)设正方形与y轴的交点分别为E,F(F点在E点下方),与x轴交于M、N点(N点在M点右方),如图1所示:∵正方形ABCD的边长为4,且中心为坐标原点,∴AE=ED=DN=NC=CF=FB=BM=MA=2,∴点A的坐标为(−2, 2),点B的坐标为(−2, −2),点C的坐标为(2, −2),点D的坐标为(2, 2).(2)B,D点的横(纵)坐标互为相反数.连接AC,BD,如图2所示:∵坐标原点为正方形的中心,且正方形的对角线互相平分,∴点O为线段BD的中点,∴B,D点的横(纵)坐标互为相反数.【考点】规律型:点的坐标【解析】(1)根据正方形的性质,即可得出AE=ED=DN=NC=CF=FB=BM=MA=2,结合图象即能得出点A、B、C、D四点的坐标;(2)B,D点的横(纵)坐标互为相反数,根据正方形的性质可得知点O为线段BD的中点,由此得出结论.(根据正方形的性质寻找即可).【解答】解:(1)设正方形与y轴的交点分别为E,F(F点在E点下方),与x轴交于M、N点(N点在M点右方),如图1所示:∵正方形ABCD的边长为4,且中心为坐标原点,∴AE=ED=DN=NC=CF=FB=BM=MA=2,∴点A的坐标为(−2, 2),点B的坐标为(−2, −2),点C的坐标为(2, −2),点D的坐标为(2, 2).(2)B,D点的横(纵)坐标互为相反数.连接AC,BD,如图2所示:∵坐标原点为正方形的中心,且正方形的对角线互相平分,∴点O为线段BD的中点,∴B,D点的横(纵)坐标互为相反数.28.【答案】解:观察上述有序数对,可发现3,−5,7,−9符合(2n +1)(−1)n+1这一规律, 1,12,13,14符合1n 这一规律,所以第n 个有序数对为((2n +1)(−1)n+1,1n ). 将n =100代入可得,第100个有序数对为(−201,1100).【考点】规律型:数字的变化类有序数对 【解析】解:本题为找规律的题型,观察数字的变化,找出规律即可.【解答】解:观察上述有序数对,可发现3,−5,7,−9符合(2n +1)(−1)n+1这一规律, 1,12,13,14符合1n 这一规律, 所以第n 个有序数对为((2n +1)(−1)n+1,1n ). 将n =100代入可得,第100个有序数对为(−201,1100).29.【答案】解:(1)点在y 轴上则横坐标为0,即m −1=0,解得:m =1.(2)直线MN // y 轴,则点M 与点N 横坐标相等,∵ 点N(−3, 2),∴ m −1=−3,解得 m =−2,∴ M(−3, −1),∴ MN =2−(−1)=3.【考点】点的坐标【解析】(1)根据点在y 轴上横坐标为0求解.(2)根据平行y 轴的横坐标相等求解.【解答】解:(1)点在y 轴上则横坐标为0,即m −1=0,解得:m =1.(2)直线MN // y 轴,则点M 与点N 横坐标相等,∵ 点N(−3, 2),∴ m −1=−3,解得 m =−2,∴M(−3, −1),∴MN=2−(−1)=3.30.【答案】解:(1)作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF+S△BCE+S梯形CDFE=12×(2−1)×4+12×(5−3)×3+12×(3+4)×(3−2)=8.5.(2)由题意得,将A,B,C,D点的横坐标都减去3,纵坐标都减去1,可得A′,B′,C′,D′四点,则A′(−2,−1),B′(2,−1),C′(0,2),D′(−1,3).【考点】网格中点的坐标梯形的面积三角形的面积坐标与图形变化-平移坐标与图形性质【解析】本题应分别过C、D向x轴作垂线,四边形ABCD的面积分割为过D、C两点的直角三角形和直角梯形.【解答】解:(1)作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF+S△BCE+S梯形CDFE=12×(2−1)×4+12×(5−3)×3+12×(3+4)×(3−2)=8.5.(2)由题意得,将A,B,C,D点的横坐标都减去3,纵坐标都减去1,可得A′,B′,C′,D′四点,则A′(−2,−1),B′(2,−1),C′(0,2),D′(−1,3).31.【答案】A(1,3)(x−4,y−2)(3)三角形ABC的面积:3×2−12×2×2−12×1×3−12×1×1=6−2−1.5−0.5=2.【考点】网格中点的坐标三角形的面积坐标与图形变化-平移【解析】此题主要考查了平移变换作图,三角形的面积,网格图形中经常利用三角形所在的矩形的面积减去四周三角形的面积的方法求解.(1)根据平面直角坐标系的特点直接写出坐标;(2)首先根据A与A′的坐标观察变化规律,P的坐标变换与A点的变换一样,写出点P′的坐标;(3)先求出三角形所在的矩形的面积,然后减去它四周的三角形的面积即可.【解答】解:(1)由图知:A(1,3).故答案为:A(1,3).(2)A(1,3)变换到点A′的坐标是(−3,1),横坐标减4,纵坐标减2,∴ 点P的对应点P′的坐标是(x−4,y−2).故答案为:(x−4,y−2).(3)三角形ABC的面积:3×2−12×2×2−12×1×3−12×1×1=6−2−1.5−0.5=2.32.【答案】+,+;-,+;-,-;+,-;+,0;-,0;0,+;0,-;0,0.【考点】点的坐标【解析】根据各象限点的坐标特点和坐标轴上点的坐标特点进行回答.【解答】解:填表如下:【答案】A4(2)①如图:A1(0,1),A2(1,2),A3(2,3).②观察可知,第A n的纵坐标为n,横坐标比纵坐标少1,故A n(n−1,n),∴A2021(2020,2021).【考点】点的坐标规律型:点的坐标【解析】根据题意和图形来解答即可.根据题意画出图形,然后根据图形来解答即可.【解答】解:(1)如果A2(−2,−2),由于每级台阶的长和宽都是1,故将A2右移两个台阶,同时上移两个台阶,得到A4,因此坐标原点为A4.故答案为:A4.(2)①如图:A1(0,1),A2(1,2),A3(2,3).②观察可知,第A n的纵坐标为n,横坐标比纵坐标少1,故A n(n−1,n),∴A2021(2020,2021).34.【答案】2,0,4,0(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n, 0);(3)∵2012÷4=503,∴2012是4的倍数,∴从点A2012到点A2013的移动方向与从点O到A1的方向一致,为↑.【考点】规律型:点的坐标【解析】(1)观察图形可知,A4,A8都在x轴上,求出OA4、OA8的长度,然后写出坐标即可;(2)根据(1)中规律写出点A4n的坐标即可;(3)根据2012是4的倍数,可知从点A2012到点A2013的移动方向与从点O到A1的方向一致.【解答】解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2, 0),A8(4, 0);(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n, 0);(3)∵2012÷4=503,∴2012是4的倍数,∴从点A2012到点A2013的移动方向与从点O到A1的方向一致,为↑.35.【答案】解:(1)根据M(4,4),设每一个小方格边长为1,将其向下平移4个单位,向左移动4个单位,可得到平面直角坐标系。
新人教版七年级下册数学:《平面直角坐标系》同步练习题及答案(两份)
《平面直角坐标系》同步练习题(1)知识点:1.平面直角坐标系:在平面内相互垂直,原点重合的两条数轴构成平面直角坐标系。
水平的数轴叫做x 轴(横轴),竖直的数轴叫做y 轴(纵轴),交点叫做原点,坐标为( 0,0)2.四个象限:一象限、二象限、三象限、四象限3.四个象限的坐标特色:(+,+)、(—, +)、(—,—)、(+,—)同步练习:一、选择题1. P( -2 ,y)与 Q( x,-3)对于 x 轴对称,则 x-y的值为()A.1B.-5C.5D.-12.若点 P(a,b )在第四象限内,则 a,b 的取值范围是()A.a ﹥ 0,b ﹤ 0B.a ﹥ 0, ﹤0C.a﹤ 0,b ﹥ 0D.a ﹤0,b﹤ 03.点 P( m+3,m+1)在 x 轴上,则点 P 的坐标为()A.(2,0)B.(0, -2)C.(4,0)D.(0,-4)4.过点 C(-1 , -1 )和点 D(-1,5)作直线,则直线CD ()A. 平行于 y 轴B. 平行于 x 轴C. 与 y 轴订交D. 没法确立5.在平面直角坐标系中,点P(-2,5)在()A. 第一象限B.第二象限C.第三象限D.第四象限6.若点 A(2,m)在 x 轴上,则点B(m-1,m+1) 在()A. 第一象限B.第二象限C.第三象限D. 第四象限二、仔细做一做。
7.已知点 P( x,y )在第四象限,它到x 轴的距离为2,到 y 轴的距离为3,求 P 点的坐标。
8. 若点 P'( m,-1 )是点 P(2,n) 对于 x 轴的对称点,求m+n。
《平面直角坐标系》同步练习题(2)答案:1.B2.A3.A4.A5.B6.B7.∵点 P 到 X 轴的距离为│ y│ , 到y轴的距离为│x│.∴│y│﹦2,│x│﹦3.又∵点P在第四象限,∴X=3,Y=2.∴点P的坐标为(3,-2).8.∵P′与P对于X轴对称,∴横坐标相等,纵坐标互为相反数。
即 m=2, -n=-1.∴m+n=2+1=3.《平面直角坐标系》同步练习题(2)知识点:1.平面直角坐标系:在平面内相互垂直,原点重合的两条数轴构成平面直角坐标系。
(完整版)七年级物理平面直角坐标系练习题及答案
(完整版)七年级物理平面直角坐标系练习题及答案1. 坐标系的基本概念题目:1. 描述平面直角坐标系的定义和特点。
2. 给出以下坐标点的位置:A(3, 5), B(-2, -4), C(0, 0)。
答案:1. 平面直角坐标系是由一个水平的x轴和一个垂直的y轴组成的。
其中,x轴和y轴的交点称为原点O,x轴的正方向是从左往右,y轴的正方向是从下往上。
通过确定点的x坐标和y坐标,可以唯一确定平面上的点。
2. - 点A(3, 5)位于x轴正方向3个单位,y轴正方向5个单位处。
- 点B(-2, -4)位于x轴负方向2个单位,y轴负方向4个单位处。
- 点C(0, 0)位于原点O处。
2. 与坐标轴的关系题目:1. 计算点P(5, 3)与x轴和y轴的夹角。
2. 坐标系中存在哪些象限?分别描述它们的特点。
答案:1. 点P(5, 3)与x轴和y轴的夹角可以通过以下方法计算:- 与x轴的夹角:$\theta_x = \arctan \left(\frac{3}{5}\right)$- 与y轴的夹角:$\theta_y = 90 - \theta_x$2. 坐标系中存在四个象限:- 第一象限:x坐标和y坐标均为正数。
- 第二象限:x坐标为负数,y坐标为正数。
- 第三象限:x坐标和y坐标均为负数。
- 第四象限:x坐标为正数,y坐标为负数。
3. 点的坐标计算题目:1. 分别计算点A(2, 5)和点B(-3, 7)在x轴和y轴上的投影坐标。
答案:1. - 点A(2, 5)在x轴上的投影坐标为(2, 0)。
- 点A(2, 5)在y轴上的投影坐标为(0, 5)。
- 点B(-3, 7)在x轴上的投影坐标为(-3, 0)。
- 点B(-3, 7)在y轴上的投影坐标为(0, 7)。
以上是七年级物理平面直角坐标系练题及答案的完整版。
参考资料:- 《物理教程(七年级上册)》。
七年级下册数学同步练习题库:平面直角坐标系(简答题:一般)
平面直角坐标系(简答题:一般)1、如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为(_______),______);(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(__________).2、如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2015的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()20133、在如图所示的网格中,三角形ABC的顶点A(0,5),B(-2,2).(1)根据A,B坐标在网格中建立平面直角坐标系,并写出点C坐标:( );(2)平移三角形ABC,使点C移动到点F(7,-4),画出平移后的三角形DEF,其中点D与点A对应,点E与点B对应.4、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,),A12(,).(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.5、在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.6、(14分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O—C—B—A—O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.7、在平面直角坐标系中,横坐标与纵坐标都为整数的点叫整点,动点P从原点O出发,运动速度为每秒1个单位长度,规定P只能向上或向右运动,请回答下列问题:(1)填表(2)当t=12时,整点有个(3)当t= 时,可得到整点(8,7)(4)当t= 时,可得到整点(m,n)8、如图,一个粒子在第一象限内及x轴,y轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位。
平面直角坐标系典型例题含答案-精品
【关键字】条件、规律、特点、位置、关系、满足、方向、中心平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数d与彷组成的数对,记作⑺上)。
注意d与b的先后顺序对位置的影响。
2.平面直角坐标系(1) 定义:在同一平而内画两条相互垂宜并且原点重合的数轴,组成平而直角坐标系。
这个平而叫做坐标平面。
(2) 平面直角坐标系中点的坐标:通常若平而直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为",有序实数对⑺上)叫做点A的坐标,英中a叫横坐标,〃叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标6.点到坐标轴的距离:点P(x,y)到X轴距离为卜|,到y轴的距离为|x|o7.点的平移坐标变化规律:简单记为"左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.A.—B.二C.三D.四2.若点P{a,a-2)在第四象限,则d的取值范围是( )A.— 2<a<0B. 0vav2C. a>2D. «<03.在平面直角坐标系中,点P (-2, x2 +1 )所在的象限是( )A.第一象限B.第二象限C.第三彖限D.第四象限考点2:点在坐标轴上的特点1.点P伽+ 3,加+ 1)在久轴上,则P点坐标为( )A.(0,-2)B. (2,0)C. (4,0)D. (0T)2.已知点P(加,2加-1)在y轴上,则P点的坐标是________ 。
3.若点P (x, y)的坐标满足xy二0 (xHy),则点P必在( )A.原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点) 考点3:对称点的坐标A. (-3,2)B. (3-2)C. (-2,3)D. (2,3) A. (-5, 6)则P 点的坐标) D.扌或1 1 •平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )2•已知点A 的坐标为(-2, 3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点 C 关于X 轴对称的点的坐标为()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)3.若坐标平面上点P (a, 1)与点Q (-4, b)关于x 轴对称,则( )A. a=4, b 二TB. a=-4, b=lC. a=-4, b 二TD. a=4, b=l考点4:点的平移1.已知点A (-2, 4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A', 则点A 的坐标是( )B. (1, 2) C ・(1, 6) D ・(-5, 2) 2. 已知A (2, 3),其关于x 轴的对称点是B, B 关于y 轴对称点是C,那么相当于将A 经过( )的平移到了 C.A. 向左平移4个单位,再向上平移6个单位B. 向左平移4个单位,再向下平移6个单位 C ・向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3•如图,A, B 的坐标为(2, 0) , (0, 1),若将线段AB 平移至AiBi ,则a+b 的值为( )A. 2 B ・ 3 C ・ 4 D. 5考点5:点到坐标轴的距离 1•点M (-3, -2)到y 轴的距离是( )A ・ 3B ・ 2C. 一3D ・ ~22•点P 到x 轴的距离是5,到y 轴的距离是6,且点P 在x 轴的上方,为 _____________ ・3. 已知P (2-x, 3x-4)到两坐标轴的距离相等,则x 的值为( 33 A. - B- -1 C.二或一 12 2考点6:平行于x 轴或)•轴的直线的特点1 •如图,AD 〃BC 〃x 轴,下列说法正确的是( )A. A 与D 的横坐标相同B. C 与D 的横坐标相同C. B 与C 的纵坐标相同D. B 与D 的纵坐标相同2.已知点A (m+1, -2)和点B (3, m-1),若直线AB//x 轴,则m 的值为( )A・ 2 B・一4 C・一1 D. 33.已知点M (-2, 3),线段MN二3,且MX〃y轴,则点N的坐标是( )A. (-2, 0)B. (1, 3)C.(1, 3)或(一5, 3)D. (-2, 0)或(-2, 6)考点7:角平分线的理解1._________________________________________________________ 已知点A (3a+5, a-3)在二、四象限的角平分线上,则沪__________________________________ .考点&特定条件下点的坐标1.如图,已知棋子“车〃的坐标为(-2, 3),棋子“马〃的坐标为(1, 3),贝9棋子"炮〃的坐标为( )A. (3, 2)B. (3, 1)C. (2, 2)D. ( - 2, 2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A (-1, 0) , B (3, -1) , C (4, 3);(2)顺次连接A, B, C,组成ZXABC,求ZXABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0, 2) (1, 0) (6, 2) (2,4),求四边形ABCD的面积.3.在图中A (2, -4)、B (4, -3)、C (5, 0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (d, 0)和B点(0, 10)两点,且AB与坐标轴围成的三角形的面积等于20,则&的值为( )A. 2B. 4C. 0 或4D. 4 或-42.如图,已知:人(一5,4)、3(-2,-2)、C(0,2)。
第7章平面直角坐标系+同步练习题+2021-2022学年人教版七年级数学下册
2021-2022学年人教版七年级数学下册《第7章平面直角坐标系》同步练习题(附答案)一.选择题1.根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°2.在平面直角坐标系中,点M(﹣3,6)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在如图所示的直角坐标系中,M,N的坐标分别为()A.M(2,﹣1),N(2,1)B.M(﹣1,2),N(2,1)C.M(﹣1,2),N(1,2)D.M(2,﹣1),N(1,2)4.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)5.在直角坐标系内,将点P(1,﹣2)向左平移2个单位长度,再向上平移3个单位长度,可以得到对应点P1的坐标为()A.(﹣1,1)B.(﹣1,﹣5)C.(3,1)D.(3,﹣5)6.如图,这是一所学校的平面示意图,在同一平面直角坐标系中,教学楼A的坐标为(﹣3,0),实验楼B的坐标为(2,0),则图书馆C的坐标为()A.(0,﹣3)B.(﹣1,﹣3)C.(3,0)D.(﹣2,0)7.在平面直角坐标系中,点A的坐标为(﹣4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(﹣4,8)C.(﹣4,8)或(﹣4,﹣2)D.(1,3)或(﹣9,3)8.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为()A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4表示,则顶点A2022的坐标是()A.(505,﹣505)B.(﹣505,505)C.(506,﹣506)D.(﹣506,506)10.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2021个点的坐标为()A.(45,9)B.(45,4)C.(45,21)D.(45,0)二.填空题11.点A(5,﹣2)到y轴的距离为,到x轴的距离为.12.点P(m,m+3)在平面直角坐标系的y轴上,则点P的坐标是.13.在平面直角坐标系中,线段AB平行于x轴,且AB=4.若点A的坐标为(﹣1,2),点B的坐标为(a,b),则a+b=.14.已知点P(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=.15.如图所示点A0(0,0),A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0),…根据这个规律,探究可得点A2021坐标是.16.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.三.解答题17.在平面直角坐标系中,点A(m﹣n,2m+n)在第二象限,到x轴和y轴的距离分别为4,1,试求(m﹣n)2021的值.18.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.19.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.20.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.参考答案一.选择题1.解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬43°,能确定具体位置,故本选项正确.故选:D.2.解:点M(﹣3,6)在第二象限,故选:B.3.解:点M在第二象限,那么横坐标小于0,是﹣1,纵坐标大于0,是2,即M点的坐标为(﹣1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:B.4.解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.5.解:∵P(1,﹣2)先向左平移2个单位长度,再向上平移3个单位长度得到点P1,∴1﹣2=﹣1,﹣2+3=1.∴P1(﹣1,1).故选:A.6.解:如图所示:图书馆C的坐标为(﹣1,﹣3).故选:B.7.解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3﹣5=﹣2,∴B点的坐标为:(﹣4,﹣2)或(﹣4,8);故选:C.8.解:∵点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,1)、A6(3,1)、A7(3,0)、A8(4,0)、A9(4,1)、…,∴点A4n+2(n为自然数)的坐标为(2n+1,1),∴点A2022的坐标为(1011,1).故选:B.9.解:根据题意,可知:A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,∴A4n﹣2(﹣n,n)(n为正整数).又∵2022=506×4﹣2,∴A2022(﹣506,506).故选:D.10.解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n结束的有n2个点,第2025个点是(45,0),∴2021个点的坐标是(45,4);故选:B.二.填空题11.解:∵|5|=5,|﹣2|=2,∴点A(5,﹣2)到y轴的距离是5,到x轴的距离是2.故答案为:5,2.12.解:∵点P(m,m+3)在平面直角坐标系的y轴上,∴m=0,∴m+3=0+3=3,所以,点P的坐标为(0,3).故答案为:(0,3).13.解:∵AB∥x轴,A的坐标为(﹣1,2),∴点B的纵坐标为2.∵AB=4,∴点B的横坐标为﹣1+4=3或﹣1﹣4=﹣5.∴点B的坐标为(3,2)或(﹣5,2).则a+b=3+2=5或a+b=﹣5+2=﹣3.故答案为:5或﹣3.14.解:∵点P(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,∴5a﹣7+(﹣6a﹣2)=0,解得a=﹣9.故答案为:﹣9.15.解:观察图形可知,点的横坐标依次是0、1、2、3、4、…、n,纵坐标依次是0、2、0、﹣2、0、2、0、﹣2、…,四个一循环,2021÷4=505…1,故点A2021坐标是(2021,2).故答案为:(2021,2).16.解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,∴A2n﹣1(3032,1010),故答案为(3032,1010).三.解答题17.解:∵点A(m﹣n,2m+n)在第二象限,到x轴和y轴的距离分别为4,1,∴,2m+n=4,m-n=1解得m=1,n=2所以,(m﹣n)2021=(﹣1)2021=﹣1.18.解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=﹣1,解得:m=﹣1或m=﹣2,∴点M的坐标是(﹣2,1)或(﹣3,﹣1);(2)∵|m﹣1|=2,∴m﹣1=2或m﹣1=﹣2,解得:m=3或m=﹣1,∴点M的坐标是:(2,9)或(﹣2,1).19.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).20.解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.。
(2021年整理)七年级数学《平面直角坐标系》练习题及答案
七年级数学《平面直角坐标系》练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学《平面直角坐标系》练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学《平面直角坐标系》练习题及答案的全部内容。
七年级数学《平面直角坐标系》练习题A卷•基础知识班级姓名得分一、选择题(4分×6=24分)1.点A(4,3-)所在象限为( )A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2) B、(3-) D、(2,3-)-) C、 (2,3,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A、在x轴上B、在y轴上C、是坐标原点 D 、在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A、第2排第4列B、第4排第2列C、第2列第4排D、不好确定6.线段AB两端点坐标分别为A(4,1-),现将它向左平移4个单位长度,得到线段-),B(1,4A1B1,则A1、B1的坐标分别为()A、 A1(0,5-) B 、 A1(7,3), B1(0,5)-),B1(3,8-C、 A1(4,5-) B1(-8,1) D、 A1(4,3) B1(1,0)二、填空题( 1分×50=50分)7.分别写出数轴上点的坐标:A-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9。
初中数学平面直角坐标系练习题(附答案)
初中数学平面直角坐标系练习题(附答案)【知识积累】基本概念:1、有序数对:我们把有序的两个数a与b组成的数对,叫做有序数对。
平面直角坐标系内的点与有序实数对一一对应。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,习惯上取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
3、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不属于任何象限。
三大规律1、平移规律:点的平移规律:一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把图形向上(或向下)平移a个单位长度。
特点:左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律找特殊点2、对称规律:关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
3、位置规律:(注意:坐标轴上的点不属于任何一个象限)第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)特征坐标:x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;第二、四象限夹角平分线上→横纵坐标互为相反数。
【典型习题】1、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)2、如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)3、如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)4、在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5、线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)6、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57、点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8、如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)9、课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)10、在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)11、在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112、若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13、在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33) D.(99,34)14、小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家 B.学校C.书店D.不在上述地方15、如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺16、在平面直角坐标系中,第四象限内有一点M,它到x轴的距离为4,到y轴的距离为5,则点M的坐标为( )A. (-4,5)B. (-5,4)C. (4,-5)D. (5,-4)17、若点P(m,-1)在第三象限,则点Q(-m,0)在( )A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上18、在平面直角坐标系中,如果点M(-2,3)与点N(-2,y)之间的距离是5,那么y的值是( )A.-2 B.8 C.2或8 D.-2或819、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4)20、已知点P(m+2,2m—4)在y轴上,则点P的坐标是()A.(8,0)B.(0,8)C.(-8,0)D.(0,-8)21、在平面直角坐标系中,将点A(-1,2)向下平移3个单位长度,再向右平移2个单位长度,得到点A′,则点A′的坐标是()A. (-3,-1)B. (1,-1)C. (-1,1)D. (-4,4)22、三角形ABC三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)23、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n ,则点A2019的坐标是( )A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)24、点A(2,0),B(-3,0),C(0,2),则△ABC的面积=_______25、我们规定向东和向北方向为正,若向东走 4 m,向北走 6 m,记为(4,6),则向西走5 m,向北走3 m,记为(-5,3),数对(-2,-6)表示_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 平面直角座标系(§6.1)同步练习
(时间45分钟 满分100分)
班级 ______________ 学号
姓名 ____
得分____
一、填空题(每小题3分,共30分)
1.为了用一对实数表示平面内的点,在平面内画两条互相垂直的数轴,组成了 ,水平的数轴叫做 ,取 为正方向,铅直的数轴叫做 ,取 为正方向. 2.如图是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成________.” 3.电影票上“6排3号”,记作(6,3),则8排6号记作__________. 4.点P (-6,-9)到y 轴的距离是________.
5.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,•则此点的坐标为________;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为_________;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,•则此点的坐标为_______.
6.点P (-5,1)沿x 轴正方向平移2个单位,再沿y 轴负方向平移4个单位,所得到的点的坐标为_______________ .
7.已知点P 在第二象限,它的横坐标与纵坐标的和为1,点P 的坐标可以是________. 8.已知P (x ,y )点在y 轴的左侧,且│x │=3,│y │=2,则点P 的坐标为________. 9.某镇三个厂址的地理位置如下:汽车配件厂在兽药厂的正南1000m ,酒厂在汽车配件厂的正西800m 处,若酒厂的坐标是(-800,-1000),则选取的坐标原点是______. 10.如图所示的马所处的位置为(2,3).
⑴你能表示图中象的位置吗?⑵写出马的下一步可以到达的位置.(马走日字)
2
3 4
5 3 (第2题)
D
y x
A
C
O B
(第11题)
二、选择题(每小题3分,共24分) 11.如图,下列说法正确的是( ).
A .A 与D 的横坐标相同
B .
C 与
D 的横坐标相同
C .B 与C 的纵坐标相同
D .B 与D 的纵坐标相同
12.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那
么点P 的坐标是( )
A .(4,2)
B .(-2,-4)
C .(-4,-2)
D .(2,4) 13.若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )
A .在x 轴上
B .在y 轴上
C .是坐标原点
D .在x 轴上或在y 轴上
14.在点(0,0),(1,0),(0,2),(1,2),(-1,2)(-2,3)中,不属于任何象限的
点有( ).
A .2个
B .3个
C .4个
D .5个
15.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)• 的对应点D 的坐标为( )
A .(2,9)
B .(5,3)
C .(1,2)
D .(-9,-4)
16.已知点P (2a ,13a )在第二象限,且点P 到x 轴的距离与到y 轴的距离之和为6,
则a 的值为( ).
A .-1
B .1
C .5
D .3
17.小明住在学校正东200米处,从小明家出发向北走150米就到了李华家,若选取李华家
为原点,分别以正东、正北方向为x ,y 轴正方向建立平面直角坐标系,则学校的坐标为( ).
A .(-150,-200)
B .(-200,-150)
C .(0,-50)
D .(150,200)
18.三角形ABC 三个顶点的坐标分别是A (-4,-1),B (1,1),C (-1,4),将三角
形ABC 向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )
A .(2,2),(3,4),(1,7)
B .(-2,2),(4,3),(1,7)
C.(-2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)
三、解答题(共46分)
19.(6分)这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.
马南门两栖动物
飞禽
20.(7分)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求a的值及点的坐标?
21.(8分)如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
22.(8分)适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点. (1)看图案像什么?
(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?
23.(8分)在直角坐标系中,画出三角形AOB ,使A 、B 两点的坐标分别为A (-2,-4),B
(-6,-2).试求出三角形AOB 的面积.
24.(9分)如果点A ()n m -3,2在第二象限内,那么点B ()4,1--n m 在第几象限?如果点
M ()m m -+4,13在第几象限?如果点M ()m m -+4,13在第四象限内,那么m 的取值范围是怎样的?
参考答案
一、填空题
1.平面直角坐标系;x 轴,向右;y 轴,向上 2.(2,1) 3.(8,6) 4.6 5.(5,0),(0,-5),(-5,-5) 6.(-3,-3) 7.答案不唯一,略 8.(-3,2)或(-3,-2) 9.兽药厂 10.⑴ 象的位置(5,3);⑵马的下一步可到达位置(1,1)(3,1)(4,2)(1,5)(3,5) 二、选择题
11.C 12.C 13.D 14.B 15.C 16.A 17.B 18.C 三、解答题
19.略 20.a =1、(-1,-1) 21.(2,0)(7,0) 22.图略(1)像“鱼”;(2)没有变化 23.10 24.点B ()4,1--n m 在第三象限内,m 的取值范围是4>m。