初一数学因式分解提高测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《因式分解》提高测试(100分钟,100分)

姓名 班级 学号

一 选择题(每小题4分,共20分):

1.下列等式从左到右的变形是因式分解的

是………………………………………( )

(A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x

(C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4

2.分解多项式 bc c b a 2222+--时,分组正确的是………………………( )

(A )()2()222bc c b a --- (B )bc c b a 2)(222+--

(C ))2()(222bc b c a --- (D ))2(222bc c b a -+-

3.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………( )

(A )20 (B ) 10 (C )-20 (D )绝对值是20的数

4.二项式15++-n n x x 作因式分解的结果,合于要求的选是………………( )

(A ))(4n n x x x -+ (B )n x )(5x x -

(C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n

5.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( )

(A )总是2 (B )总是0 (C )总是1 (D )是不确定的值

二 把下列各式分解因式(每小题8分,共48分):

1.x n +4-169x n +2 (n 是自然数); 2.(a +2b )2-10(a +2b )+25;

解: 解:

3.2xy +9-x 2-y 2; 4.322)2()2(x a a a x a -+-;

解: 解:

5.16)3(8)3(222++-+m m m m ; 6.2222224)(y x z y x --+. 解: 解:

三 下列整式是否能作因式分解?如果能,请完成因式分解(每小题10分,共

20分):1.xy y x 4)1)(1(22---; 2.13322)132(222-+-+-x x x x . 解: 解:

四 (本题12 分)

作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-

1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的

公式使用?用它可以分解有怎样特点的多项式?

2.用这两个公式把下列各式分解因式:

(1)338b a +; (2)16-m .

选作题(本题20分):

证明:比4个连续正整数的乘积大1的数一定是某整数的平方.

证明:

《因式分解》提高测试 答案

一.选择题(每小题4分,共20分):

答案:1.C;2.D;3.D;4.D;5.A.

二. 把下列各式分解因式(每小题8分,共48分):

1.x n +4-169x n +2 (n 是自然数);

解:x n +4-169x n +2 =x n +2(x 2-169) =x n +2(x +13)(x -13);

2.(a +2b )2-10(a +2b )+25;

解:(a +2b )2-10(a +2b )+25 =(a +2b -5)2;

3.2xy +9-x 2-y 2;

解:2xy +9-x 2-y 2

=9-x 2+2xy -y 2

=9-(x 2-2xy +y 2)

=32-(x -y )2

=(3 +x -y )(3-x +y );

4.322)2()2(x a a a x a -+-;

解:322)2()2(x a a a x a -+-

=322)2()2(a x a a x a ---

=[])2()2(2a x a a x a ---

=)2()2(2a x a a x a +--

=)3()2(2x a a x a --;

5.16)3(8)3(222++-+m m m m ;

解:16)3(8)3(222++-+m m m m

=222244)3(2)3(+⨯+-+m m m m

=16)3(8)3(222++-+m m m m

=[]224)3(-+m m =[]2)

1)(4(-+m m

=22)1()4(-+m m ;

6.2222224)(y x z y x --+.

解:2222224)(y x z y x --+ =[]xy z y x 2)(222+-+[]xy z y x 2)(222--+

=[][]2222)()(z y x z y x ---+

=))()()((z y x z y x z y x z y x --+--+++.

三. 下列整式是否可以作因式分解?如果可以,请完成因式分解(每#¥……小题10分,共20分):1.xy y x 4)1)(1(22---;

解:展开、整理后能因式分解.

xy y x 4)1)(1(22---

=xy y x y x 4)1(2222-+--

=)2()12(2222y xy x xy y x ++-+-

=22)()1(y x xy +--

=)1(y x xy ++-)1(y x xy ---;

2.13322)132(222-+-+-x x x x .

解:能,用换元法.

13322)132(222-+-+-x x x x

=10)132(11)132(222++--+-x x x x

=)932)(32(22---x x x x

=)3)(32)(32(-+-x x x x .

四.(本题12 分)

作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-

1.这两个乘法的结果为什么?所得的这两个等式是否可以作为因式分解的

公式使用?用它可以分解有怎样特点的多项式?

2.用上面两个公式把下列各式分解因式:

(1)338b a +; (2)16-m .

解:1.结果为

3322))((y x y xy x y x +=+-+;

3322))((y x y xy x y x -=++-.

利用它们从右到左的变形,就可以对立方和或立方差的多项式作因式分解;

2.(1)))(2()2(8223333b ab a b a b a b a +-+=+=+;

(2)1)(1326-=-m m

]1))[(1(2222++-=m m m

)1)(1)(1(24++-+=m m m m .

选作题(本题20分):

证明:比4个连续正整数的乘积 大1的数一定是某整数的平方.

证明:设n 为一个正整数,

据题意,比4个连续正整数的乘积大1的数可以表示为

A =n (n +1)(n +2)(n +3)+1,

于是,有

A = n (n +1)(n +2)(n +3)+1

=(n 2+3n +2)(n 2+3n )+1

=(n 2+3n )2+2(n 2+3n )+1

=[(n 2+3n )+1]2

=(n 2+3n +1)2,

相关文档
最新文档