20150923九年级数学(上)(浙江教育版)期末测试题附答案
浙教版九年级上册数学期末测试卷及含答案(全优)
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有()个。
A.2个B.3个C.4个D.5个2、如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F,已知BC=8,DE=2,则⊙O的半径为()A.8B.5C.2.5D.63、如图,已知===,且△ABC的周长为15cm,则△ADE的周长为()A.6cmB.9cmC.10cmD.12cm4、圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为()A.108°B.120°C.135°D.216°5、“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是()A. B. C. D.6、如图,边长为1的正方形ABCD绕点A逆时针旋转后得到正方形,边与CD交于点O,则图中阴影部分的面积是()A. B. C. D.7、下列语句中,不正确的个数()①三点确定一个圆②平分弦的直径垂直于弦③相等的圆心角所对的弧相等④相等弧所对的弦相等.A.1B.2C.3D.48、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4B.m+n=8C.m=n=4D.m=3,n=59、抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是().A.出现的点数是7B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数10、在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A. B. C. D.11、下列三个函数:①y=x+1;②;③y=x2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有()A.0B.1C.2D.312、如图,在△ABC中,∠B=70°,AB=4,BC=6,将△ABC沿图示中的虚线DE 剪开,剪下的三角形与原三角形相似的有()A.1个B.2个C.3个D.4个13、如图,在□ABCD中,EF//AB,DE:EA = 2:3,EF = 4,则CD的长为()A. B.8 C.10 D.1614、如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A. B. C. D.15、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于()A. B. C.4 D.3二、填空题(共10题,共计30分)16、如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=________cm.17、如图,直线与x轴,y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.18、在直角坐标系中,抛物线y=ax2-4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,若△ABC的外接圆经过原点O,则a的值为________.19、如图,D是⊙O弦BC的中点,A是弧BC上一点,OA与BC交于点E,若AO =8,BC=12,EO=BE,则线段OD=________,BE=________.20、请写出一个开口向下,并且与y轴交于负半轴的抛物线的解析式为________.21、已知弦AB将圆周分成1:2的两部分,则弦AB所对的圆心角的度数为________.22、已知正整数a满足不等式组(x为未知数)无解,则a的值为________ ;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为________ 23、如图,将四边形ABCD绕顶点A顺时针旋转45°至AB’C’D’的位置,若AB=16cm,则图中阴影部分的面积为________.24、抛物线y=x2+2x﹣3的对称轴是________.25、已知扇形的圆心角为120°,半径为6,则扇形的弧长是________三、解答题(共5题,共计25分)26、已知=k,求k2-3k-4的值.27、如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.28、已知:如图,DE∥BC,EF∥CD,求证:AD2=AF•AB.29、经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.30、如图,四边形ABCD是的内接四边形,DB=DC求证:∠CAD=∠EAD.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、A5、B6、B7、C8、B9、B10、C11、C12、C13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
浙教版九年级数学第一学期(期末)检测试题及答案
浙教版九年级数学第一学期(期末)检测试题及答案考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共4页,有三个大题,24个小题.满分150分,考试时间为120分钟.2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.若2y =7x ,则x ∶y 等于 ( ) A 、7∶2 B 、4∶7 C 、2∶7 D 、 7∶42.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,则摸到红球的概率为( ) A .15B .13C .38D .583.若两个相似三角形的面积之比为1:4,则它们的周长之比为( )A. 1:2B. 1:4C. 1:5D. 1:164.两个圆的半径分别为5 cm 和3 cm ,圆心距是2 cm ,则这两个圆的位置关系是 ( ) A .外离B .外切C .相交D .内切5.抛物线()231y x =-+的对称轴是( )A .直线1x =B .直线3x =C .直线1x =-D .直线3x =- 6.如图是小明制作的一个圆锥形纸帽的示意图,围成这个纸帽的纸的面积为( )c m 2.(A )6000π (B )3000π (C )3000 (D )2002π7.如图,⊙O 是△A BC 的外接圆,∠OCB =40°,则∠A 的度数等于( )A . 50°B . 40°C . 30°D . 20° 8.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高 BC =5m ,则坡面AB 的长度是( )A .10mB .103mC .15mD .53m第6题第7题第8题9.下列图中的每个矩形都是由五个相同的小正方形拼合组成,其中ΔABC 和ΔCDE 的顶点都在小正方形的顶点上,则ΔABC 与ΔCDE 一定相似的图形是( )10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac ﹣b 2=4a ;④a+b+c <0.其中正确结论的个数是( )A 、1B 、2C 、3D 、4第Ⅱ卷 (非选择题,共110分)二、填空题(本题共6小题,每小题5分,共30分) 11.函数y=13-x 中,自变量x 的取值范围是_______; 12.如图,在△ABC 中,DE ∥BC ,若31=AB AD ,DE =2,则BC 的长为 。
浙教版九年级(上)期末数学试卷(含答案)
浙教版九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.(3分)抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.(3分)下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.(3分)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.54.(3分)在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.(3分)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.29.(3分)已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO=r;④AO:OP:P A=1::.A.①④B.②③C.③④D.①③④10.(3分)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m的值约为.12.(4分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.(4分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.(4分)如图,在▱ABCD中,点E在DC边上,若,则的值为.15.(4分)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.(4分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三、解答题(本题有8小题,共66分)17.(6分)计算:2cos30°+sin45°﹣tan260°.18.(6分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△F AG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.【解答】解:∵抛物线y=4x2﹣3,∴该抛物线的顶点坐标为(0,﹣3),故选:B.2.【解答】解:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选:D.3.【解答】解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.4.【解答】解:如图,在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∴cos B===,故选:C.5.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.【解答】解:函数y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.故选:C.7.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.9.【解答】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△P AD是等腰三角形,∠P AD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△P AO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO==r,③正确;∵AO:OP:P A=r:r:r=1::.∴④正确;说法正确的是③④,故选:C.10.【解答】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=2,∴PC+PE的最小值为2,∴点H的纵坐标a=2,∵BC∥AD,∴=2,∵BD=4,∴PD==,∴点H的横坐标b=,∴a+b=2+=;故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.12.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.13.【解答】解:∵扇形的半径是1,弧长是,∴l==,即=,解得:n=60,∴此扇形所对的圆心角为:60°.故答案为:60.14.【解答】解:∵=,∴=;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴;∵==,∴=.15.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.16.【解答】解:y=ax2﹣2ax+a+3=a(x﹣1)2+3,故抛物线的顶点为:(1,3);如图所示,a<0,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间(不含点B),当抛物线过点A(3,1)时,将点A的坐标代入抛物线表达式并解得:a=﹣;同理当抛物线过点B(4,1)时,a=﹣,故答案为:﹣<a<﹣.三、解答题(本题有8小题,共66分)17.【解答】解:2cos30°+sin45°﹣tan260°=2×+×﹣=+1﹣3=﹣218.【解答】证明:(1)∵AD是∠BAC的平分线,∴∠BAD=∠DAE,∵∠ADE=∠B.∴△ABD∽△ADE;(2)∵△ABD∽△ADE,∴∴AD2=AE•AB.19.【解答】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,∵小明投放了一袋垃圾,∴小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为=.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.21.【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得或,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|P y|=4×AB×,∴|P y||=9,P y=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).22.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.23.【解答】解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.24.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.。
2015学年第一学期期末试卷(浙教九年级,含答案)
2015学年第一学期期末试卷《九年级数学》(时间:90分钟 满分:120)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 一.选择题(每小题3分,共30分)1.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ▲ ) A .8 B .8 C .10 D .5 2.若两个相似三角形的面积之比为1:4,则它们的周长之比为( ▲ )A .1:2B .1:4C .1:5D .1:16 3.对于反比例函数xy 1=,下列说法正确的是( ▲ )A .图象经过(1,-1)B .图象位于第二,四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.如果P 1(-1, y 1),P 2(1, y 2) 和P 3(2, y 3)在函数xy 2=的图象上,那么( ▲ )A .y 1<y 2< y 3B .y 3<y 2<y 1C .y 2<y 1< y 3D .y 1< y 3<y 25.如图,45°<A <90°,则下列各式中成立的是( ▲ )A .sin A =cos AB .sin A >cos AC .sin A > tan AD .sin A <cos A6.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ▲ ) A .(1,0) B .(2,0) C .(-2,0) D .(-1,0) 7.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是( ▲ ) A .6 cm B .5 cm C .4cm D .3cm 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 的延长线上一点, AE 与CD 相交于点F ,则图中的相似三角形共有( ▲ ) A .2对 B .3对 C .4对 D .5对C BA FED CBA9.已知抛一枚均匀硬币正面朝上的概率是21,下列说法错误的是( ▲ ) A .连续抛一枚均匀硬币2次,必有1次正面朝上 B .连续抛一枚均匀硬币10次,有可能正面都朝上C .大量反复抛一枚均匀硬币,平均每100次出现50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的10.在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得的抛物线的解析式是( ▲ )A .y =-(x +1)2 +2B .y =-(x -1)2 +4C .y =-(x -1)2 +2D .y =-(x +1)2 +4 二.填空题(每小题3分,共30分) 11.sin30°的值等于 .12.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖券,其中的一等奖5张,二等奖10张,三等奖25张,其余无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取1张,则中奖的概率是 .13.二次函数y =x 2+2x -5的最小值是 .14.已知双曲线xk y 2-=在其象限内y 随x 的增大而增大,则k 的取值范围是 . 152y 的对应值如下表:由表可知,下列说法中,正确的是 (填写序号)①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是直线21=x ;④在对称轴左侧,y 随x 的增大而增大. 16.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,若∠A =40°,则∠C = 度. 17.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD = 度.第16题 第17题 第18题 第19题 第20题DBCBA BACE DC18.如图,△ABC 中,DE //BC ,AD =5,BD =10,DE =4,则BC = .19.如图,在△ABC 中,D 是AB 边上一点,连结CD ,要使△ADC 与△ABC 相似,应添加的条件是 (只需要写出一个条件)20.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,且AE =6,EF =8,FC =10,三.解答题(每小题10分,共60分)21.已知反比例函数的图象与一次函数42-=x y 的图象都经过点A (a , 2),请求出该反比例函数的解析式.22.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致:小明认为如果两次分别从1~6六个整数中任取一个数(可重复取),分别作为点P (m , n )的横坐标和纵坐标,则点P(m, n )在反比例函数x y 12=的图象上的概率一定大于在反比例函数xy 6=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? (1)试用列表或画树状图的方法列举出所有点P (m, n )的情形;(2)分别求出点P(m, n )在两个反比例函数的图像上的概率,并说明谁的观点正确.23.如图,有一段斜坡BD 的长为10m ,坡角∠CBD =12°,为了方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1m ) (参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09)22.如图,BD 是⊙O 的直径,A ,C 在⊙O 上,AB =AC ,AD 与BC 的延长线交于点E . (1)求证:△ABD ∽△AEB ;(2)若AD =1,DE =3,求BD 的长.5︒12︒D C BA25.如图,在△ABC中,∠B=90°,∠C=30°,BC=53,点D从点C出发,沿CA方向以每秒2个单位长的速度匀速运动,同时点E从点A出发,沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0),作DF⊥BC于点F,连结EF,(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)四边形AEFD的面积S有最大值吗?如果有,求出相应的t值;如果没有,说明理由.A26.如图,将抛物线x x y 23412+-=向上平移h 个单位后分别与x 轴,y 轴交于点A , B , C ,抛物线的对称轴与x 轴的交于点D ,与抛物线交于点E . (1)用h 表示下列各点的坐标:C ,E ,A ,B ; (2)若∠ACB =90°,求此时抛物线的解析式;(3)以AB 为直径作⊙D ,在(2)的条件下,判断直线CE 与⊙D 的位置关系,并说明理由.2012学年第一学期九年级数学期末试卷参考答案一.选择题(每小题3分,共30分)DACDB CCCAB二.填空题(每小题3分,共30分)11.21 12.5113.-6 14.k <2 15.①③④ 16.25 17.4018.12 19.∠B=∠ACD 或∠BCA=∠ADC 或AC 2=AB ·AD 20.80π-160 三.解答题(每小题10分,共60分)21.把A(a , 2)代入42-=x y ,得2=2a -4,a =3, ------------------------5分设反比例函数为xk y =,把A(3, 2)代入得32k =,k =6,所求的反比例函数为xy 6=. ------------------------5分------------------------4分(2)由表格可知,点P(m , n )共有36种可能,且每种结果出现的可能性相等,点(2,6) ,(6,2) ,(3,4) ,(4,3)在x y 12=图像上,点(1,6) ,(6,1), (2,3) ,(3,2)在xy 6=图像上, -----------------------4分故点P(m , n )在两个函数图像上的概率相等,都是91364=, 所以小芳的观点是正确的. -----------------------2分 23.(1)CD=BDsin12°≈10×0.21=2.1(m ) -----------------------4分(2)AB=AC-BC=︒5tan DC -BD cos12°≈09.01.2-10×0.98≈23.3-9.8=13.5(m ) --------6分24.(1)∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ACB=∠ADB ,∴∠ABC=∠ADB ,而∠A 是公共角,∴△ABD ∽△AEB . -----------------------5分(2)由△ABD ∽△AEB 得,ABAEADAB=∴AB 2=AD ·AE=1×(1+3)=4, ∵BD 是直径,∴∠BAD=Rt ∠,∴BD=522=+AD AB . -----------------------5分25.(1)∵DF ⊥BC ,∠C=30°,∴DF=21DC=t =AE ; -----------------------3分(2)∵∠B=90°,DF ⊥BC ,∴AE//DF ,又AE=DF ,∴四边形AEFD 是平行四边形,∴当AE=AD 时,四边形AEFD 是菱形,此时t =10-2t ,t =310. -----------------------4分(3)S=AE ·BF=()()503532335≤≤+-=-t t t t t ,34253225342525=+-==最大值时,当S t . -----------------------3分26.(1)()()()0,493;0,493;49,3;,0h B h A h E h C +++-+⎪⎭⎫⎝⎛; ---------------------4分 (2)由∠ACB=90°可得△AOC ∽△COB ,∴OC 2=OA ·OB ,∴()()h h h h 43493492=++-+=,∴h =4,∴此时抛物线的解析式为423412++-=x x y ; -----------------------3分 (3)由∠ACB=90°可知,CD 是⊙D 的半径,∵()();425,3,4,0,0,3⎪⎭⎫ ⎝⎛E C D ∴41544253,543,4252222=-+==+==⎪⎭⎫ ⎝⎛CE CD DE , ∵222222,5415425CD CE DE =-=-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛即, ∴CE 与⊙D 相切. -----------------------3分。
浙教版九年级(上)期末数学试题(含答案)
浙教版九年级数学第一学期期末教学质量检测试题卷考生须知:1. 本试卷满分120分,考试时间为100分钟.2. 答题前,在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明,考试结束后,上交答题纸.一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.已知反比例函数是xy 2=,则它的图象在( ▲ ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.已知31=-a b a ,则ab的值为( ▲ ) A .2 B .21 C .23D .323.在Rt △ABC 中,∠A =Rt ∠,AB =3,BC =4,则cosB =( ▲ ) A .43 B .47 C .53 D .544.如图,DE 是△ABC 的中位线,则△ADE 与四边形BCED 的面积的比是( ▲ ) A .1:5 B .1:4 C .1:3 D .1:2 5.若函数xm y 2+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .2-<mB .0<mC .2->mD .0>m6.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( ▲ )A .点PB .点QC .点RD .点M(第4题图) (第6题图) (第7题图) 7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ )A .36°B .46°C .27°D .63°8.已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tanα的值等于( ) A .23 B .43 C .34D .32(第8题图) (第9题图)9.如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (38,m )在第13段抛物线C 13上,则m 的值为( ▲ ) A .5B .4C .3D .210.若实数a ,b ,c ,满足a ≥b ≥c ,4a +2b +c =0且a ≠0,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0),则线段AB 的最大值是( ▲ ) A .2B .3C .4D .5二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知:锐角α满足sinα=22,则α= ▲ 12.用一圆心角为120°,半径为6㎝的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是 ▲ ㎝13.如图,D 是△ABC 的边BC 上一点,已知AB =4,AD =2,∠DAC =∠B ,若△ABC 的面积为m ,则△ACD 的面积为 ▲14.对于抛物线y =-(x +1)2+3,下列结论:①抛物线开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x ≥1时,y 随x 的增大而减小,其中正确的结论是 ▲ .(第13题图) (第15题图) (第16题图)15.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为 ▲16.如图,已知Rt △ABC ,AB ∥y 轴,BC ∥x 轴,且点B 的坐标为(-1,-3),∠A =30°,点A 、C 在反比例函数()0<=k xky 图象上,线段AC 过原点O ,若M (a ,b )是该反比例函数图象在第二象限上的点,且满足∠BMC >30°,则a 的取值范围是 ▲ . 三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤。
浙教版九年级上册数学期末测试卷【及含答案】
浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A′B′C′.以下说法错误的是()A.△ ABC∽△ A′ B′ C′B.点C,O,C′三点在同一条直线上C. AB∥ A′ B′D. AO:AA′=1:22、设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23、一元二次方程(m+1)x2-2x-1=0有两个相等的实数根,则m等于()A.-6B.-1C.-2D.14、如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A. B. C. D.5、在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A. B. C. D.6、如图,是的直径,弦与交于点,,,则等于()A. B. C. D.7、如图,在平面直角坐标系中,等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限将△ABC绕点A逆时针旋转75°得到△ADE,点C的对应点E恰好落在y轴的正半轴上,若点A的坐标为(1,0),则边AB的长为()A. B. C.2 D.8、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图所示看到的万花简的一个图案,如图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是把四边形ABCD以A为旋转中心()A.顺时针旋转60°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.逆时针旋转120°得到9、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°10、已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个11、如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为( )A.1B.2C.3D.412、已知y=ax2+bx的图象如图所示,则y=ax-b的图象一定过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限13、如图,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它绕点C旋转一定角度,扶起平放在地面上(如图),则灰斗柄AB绕点C转动的角度为()A.75°B.25°C.115°D.105°14、如图,已知抛物线的图象与x轴交于两点,其对称轴与x轴交于点C其中两点的横坐标分别为-1和1下列说法错误的是()A. B. C. D.当时,y随x的增大而减小15、设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣x2﹣2x+2上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2二、填空题(共10题,共计30分)16、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.17、把抛物线y=x2向右平移4个单位,所得抛物线的解析式为________.18、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.19、如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.20、已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为________.21、平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为________.22、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为________.23、、是半径为的上的两条弦,且,,那么,的弦心距________,圆周角所对的弧等于________.24、如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于________(结果保留π)25、已知y=(a+2)x2+x﹣3是关于x的二次函数,则常数a应满足的条件是________ .三、解答题(共5题,共计25分)26、如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.27、有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,求小红第二次取出的数字能够整除第一次取出的数字的概率.28、如图,为的中点,求的周长.29、如图,分别是的边,上的点,,,,,求的长.30、在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、A5、C6、D7、A8、D9、D11、C12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
浙教版九年级上册数学期末测试卷及含答案
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. B. C. D.2、函数与的图象如图所示,则的大致图象为()A. B. C. D.3、如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A.是正方形B.是长方形C.是菱形D.以上答案都不对4、如图是从一幅扑g牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A. B. C. D.5、抛物线y=x2-mx-m2+1的图象过原点,则m的值为( )A.0B.1C.-1D.±16、下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A.1个B.2个C.3个D.4个7、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,若∠B=60°,则∠1的度数是()A.15°B.25°C.10°D.20°8、周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是( )A. B. C. D.9、二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0B.b>0C.b 2﹣4ac>0D.a+b+c<010、将函数y=2(x+1)2﹣3的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)11、如图,是半圆的直径,为弦,于,过点作交半圆于点,过点作于,若,则的长为()A. B. C. D.12、用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2π cmB.1.5 cmC.π cmD.1 cm13、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.714、下列命题正确的是()A.若两个相似三角形的周长比为3:4,则这两个相似三角形的面积比也是3:4 B.如果两个多边形是相似多边形,那么它们一定是位似图形 C.顺次连接菱形的各边中心所得的四边形是正方形 D.各有一个内角是100°的两个等腰三角形相似15、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球二、填空题(共10题,共计30分)16、在△ABC中,AB=AC,点O是△ABC的外心,∠BOC=60°,BC=2,则S△ABC=________。
浙教版九年级上册数学期末考试试题附答案
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .42.若32a b =,则a bb -的值是()A .2B .12C .32D .523.下列选项中的事件,属于必然事件的是()A .在一个只装有白球的袋中,摸出黄球B .a 是实数,0a >C .明年元旦那天温州的最高气温是10℃D .两个正数相加,和是正数4.将抛物线22y x =-向左平移1个单位,得到的抛物线表达式为()A .221y x =-+B .()221y x =-+C .221y x =--D .()221y x =--5.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为()A .12πB .πC .3π2D .3π6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为()A .2∶3B .2∶5C .4∶9D7.如图,在O 中,点B 是 AC 上一点,若100AOC ∠=︒,则ABC ∠的度数是()A .80°B .100°C .120°D .130°8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是()A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--9.已知二次函数221y ax ax =+-(其中x 是自变量),当1≥x 时,y 随x 的增大而减小,且32x -≤≤时,y 的最小值为9-,则a 的值为()A .1-B .43-C .83-D .103-10.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为()A .6B .C .8D .9二、填空题11.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.12.若线段4a =,9b =,则线段a ,b 的比例中项为______.13.下表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n 4882124176230287328投中次数m 335983118159195223投中频率m n0.690.720.670.670.690.680.68根据表格,这名篮球运动员投篮一次,投中的概率约为______.(结果精确到0.01)14.如图,在ABC 中,30C ∠=︒,100ABC ∠=︒,将ABC 绕点A 顺时针旋转至ADE (点B 与点D 对应),连结BD ,若//BD AE ,则CAD ∠的度数为______度.15.如图,矩形ABCD 中,6AB =,以点D 为圆心,CD 长为半径的圆弧与以BC 为直径的半圆O 相交于点E ,若 BE的度数为60°,则直径BC 长为______.三、解答题16.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形ABCD )高2AD =米,直杆5DE =米,斜拉杆EG ,EH 起稳固作用,点H 处装有一射灯.遮阳棚边缘曲线FHG 可近似看成抛物线的一部分,G 为抛物线的最高点且位于主席台边缘BC 的正上方,若点E ,H ,C 在同一直线上,且1DF =米,4EG =米,60AEG ∠=︒,则射灯H 离地面的高度为______米.17.(1)计算:()()0211432⎛⎫---- ⎪⎝⎭.(2)先化简,再求值:()()()422a a a a --+-,其中31a =.18.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n 的值.19.如图,在ABC 中,CD 是角平分线,DE 平分CDB ∠交BC 于点E ,且//DE AC .(1)求证:2CD CA CE =⋅.(2)若22CE BE ==,求CD 的长.20.如图,在66⨯的正方形网格中,点A ,B ,C 均在格点上,请按要求完成下列作图:①仅用无刻度直尺;②保留作图痕迹.(1)在图1中画一个ADE ,使得ADE ∽ACB △,且相似比为1:2.(2)在图2中以AB 为直径的半圆上找一点P ,画出PBA ∠,使得22.5PBA ∠=︒.21.如图抛物线y =ax 2+bx +c 交x 轴于A (﹣1,0)、B (4,0)两点,交y 轴于点C (0,2),动点P 从点O 出发,以每秒1个单位长度的速度沿x 轴正方向运动,过点P 作x 轴的垂线,交抛物线于点E ,交直线BC 于点F ,点P 运动到B 点即停止运动,连接CE ,设点P 运动的时间为t 秒.(1)求抛物线y =ax 2+bx +c 的表达式;(2)当t =32时,求△CEF 的面积;(3)当△CEF 是等腰三角形时,求出此时t 的值.22.如图,AB 为O 的直径,C ,D 为O 上不同于A ,B 的两点,且OC 平分ACD ∠,延长AC 与DB 交于点E ,过点C 作CF OC ⊥交DE 于点F .(1)求证:A E ∠=∠.(2)若5BF =,34BD OB =,求O 的半径.23.如图所示的矩形ABCD 是一张平面设计图纸,它由甲、乙、丙三个部分构成,已知240AB BC ==cm ,点E ,F 在BC 和CD 上,BE CE ≥,且CE CF =.设CE x =(cm ).(1)当甲部分的面积是乙部分面积的4倍时,求丙部分的面积.(2)若甲、乙、丙三个部分分别用不同的材料打印,且每平方厘米的材料价格依次为3元、6元、2元,要使乙部分的面积不小于220cm ,且x 取整数,求打印该矩形图纸所需材料的最省费用.24.如图,AC 是四边形ABCD 外接圆O 的直径,AB =BC ,∠DAC =30°,延长AC 到E 使得CE =CD ,作射线ED 交BO 的延长线与F ,BF 交AD 与G .(1)求证:△ADE 是等腰三角形;(2)求证:EF 与⊙O 相切;(3)若AO=2,求△FGD的周长.参考答案1.D【分析】根据点在圆内,点到圆心的距离小于圆的半径进行判断.【详解】解:∵⊙O的半径为5,点P在⊙O内,∴5OP<,故选:D.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.B【分析】根据32ab=可设a=3k,b=2k,代入约去k即可得.【详解】解:∵32 ab=,∴可设a=3k,b=2k,∴a bb-=322k kk-=12,故选:B.【点睛】本题主要考查比例的性质,熟练掌握设k法求比例式的值是解题的关键.3.D【分析】必然事件是一定发生的,根据这个定义便可找到答案.【详解】解:A、在一个只装有白球的袋中,摸出黄球,是不可能事件,故A不符合题意.B、a是实数,0a>,当a=0时,不成立,故是可能事件,故B不符合题意.C、明年元旦那天温州的最高气温是10℃,是可能事件,故C不符合题意.D、两个正数相加,和一定是正数,故是必然事件.故本题选:D.【点睛】本题考查不可能事件、可能事件、必然事件的定义,属于基础题4.B【分析】根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,把抛物线y=-2x2向左平移1个单位,则平移后的抛物线的表达式为y=-2(x+1)2,故选:B.【点睛】本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==,故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.6.C 【详解】试题分析:∵AD ∥BC ∴∠ACB=∠DAC 又∵∠B=∠ACD=90°∴△ABC ∽△DCA∴S △ABC :S △DCA =AB 2:CD 2=22:32=4:9故选C考点:相似三角形的判定与性质7.D 【分析】在优弧AC 上取点D ,连接AD 、CD ,由∠AOC=100°求出∠ADC=12∠AOC ,根据四边形ABCD 是圆内接四边形,得到∠ADC+∠ABC=180°,即可求出∠ABC 的度数.【详解】在优弧AC 上取点D ,连接AD 、CD ,∵∠AOC=100°,∴∠ADC=12∠AOC=50°,∵四边形ABCD 是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-50°=130°,故选:D .【点睛】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.8.B 【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =---即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.A 【分析】先根据解析式确定对称轴,再根据当1≥x 时,y 随x 的增大而减小,判断抛物线的开口方向,利用对称轴和二次函数的增减性确定最小值时的自变量,仔细求解即可.【详解】∵二次函数221y ax ax =+-,∴抛物线的对称轴为x=-1,∵当1≥x 时,y 随x 的增大而减小,∴抛物线开口向下即a <0,且x=2时的函数值小于x=1时的函数值,∵3112-+=-,∴(-3,m )和(1,m )是抛物线上的对称点,∴当32x -≤≤时,y 的最小值为x=2时的函数值,∵y 的最小值为9-,∴8a-1=-9,解得a=-1,故选A .【点睛】本题考查了二次函数的开口,对称性,增减性和最值,熟练掌握二次函数的性质灵活求解是解题的关键.10.D 【分析】过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b ,利用AAS 证出△NAQ ≌△BAC ,用a 和b 表示出各线段长,然后根据平行线分线段成比例定理求出a 和b 的关系,然后根据面积关系列出方程即可求出b 的值.【详解】解:过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b∴NQ ∥FA ,∠NAQ +∠ANQ=90°,AF=CF -AC=b -a ∴∠FAN=∠ANQ ,QR=AF=b -a ,FR=AQ ,112S ab =∵∠ACB=90°∴∠BAC +∠FAN=90°∴∠NAQ=∠BAC∵∠Q=∠ACB=90°,NA=BA ∴△NAQ ≌△BAC ∴AQ=AC=a ,NQ=BC=b∴FR=AQ=a ,NR=NQ -QR=b -(b -a )=a∴△NRF 为等腰直角三角形∴∠NFR=45°∵FR ∥PQ ∴2NR NF RQ FP ==,∠FPA=∠NFR=45°∴2a b a=-,△FAP 为等腰直角三角形∴23a b =,AP=AF=b -a=13b ∴PNA S =△12AP NQ ⋅=216b ,112S ab ==213b ∵FR ∥PQ ,2NF FP=∴△FNH ∽△PNA ,23NF NP =∴2249PNA S NF S NP ⎛⎫== ⎪⎝⎭△∴2242927PNA S S b ==△∵1221S S -=即221221327b b -=解得:b=9或-9(不符合实际,舍去)即BC=9故选D .【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质,掌握正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质是解题关键.11.八【详解】360°÷(180°-135°)=812.6【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】解:设线段a,b的比例中项为x,∵线段x是a,b的比例中项,∴x2=ab,即x2=36,∴x=6(负数舍去),故答案为:6.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.13.0.68【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.30【分析】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,根据平行线的性质得出∠ADB=50°,再利用等腰三角形的性质得出结果.【详解】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,∵BD∥AE,∴∠BDE+∠E=180°,∵∠E=∠C=30°,∠ADE=∠ABC=100°,∴∠ADB=50°,∵AD=AB,∴∠ABD=∠ADB=50°,∴∠BAD=180°-∠ABD-∠ADB=80°,∵∠BAC=180°-∠C-∠ABC=50°,∴∠CAD=∠BAD-∠BAC=30°,故答案为:30.【点睛】本题考查了旋转的性质,平行线的性质及等腰三角形的性质,解题的关键是熟练掌握旋转的性质.15.【分析】连接BE 、OE 、CE ,由圆周角定理及其推论可得30BCE ∠=︒,利用矩形的性质及等边三角形的判定和性质得出6CE =,由特殊三角函数值即可求解.【详解】解:连接BE 、OE 、CE ,∵BC 是O 的直径,∴90BEC ∠=︒,∵ BE的度数是60°,∴60BOE ∠=︒∴1=302BCE BOE ∠=∠︒,∵四边形ABCD 是矩形,∴6AB CD ==,90DCB ∠=︒,∴903060DCE DCB BCE ∠=∠-∠=︒-︒=︒,∵6CD DE ==,∴CDE △是等边三角形,∴6CE =,在Rt BEC △中,∵6cos cos30CE BCE BC BC ∠=︒==,∴6cos30BC ==︒故答案为:【点睛】本题考查了圆周角定理及其推论,四边形的性质,等边三角形的判定和性质以及特殊三角函数值.16.4.5【分析】首先建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,再得出抛物线的解析式为y=-163及直线EC 解析式为y=-563,最后求出H 的纵坐标即可得解.【详解】解:如图所示,建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),∵GQ ⊥AD,EG=4,∠AEG=60°,∴34232=∴2216122EG GQ -=-=,∴AQ=AE-EQ=7-2=5,∴5),0),2),∵5)为抛物线顶点,∴设抛物线的解析式为:,将点F(0,3)代入解析式得,即12a+5=3,解得a=-16,故抛物线解析式为:y=-16,设直线EC 解析式为:y=kx+b(k≠0),将E(0,7),,2)代入解析式联立,得:72b b =⎧⎪⎨=+⎪⎩,解得:7b k =⎧⎪⎨=⎪⎩直线解析式为:y=-56x+7,∴H 同时在抛物线与直线EC 上联立得(21567y x y ⎧=--+⎪⎪⎨⎪=+⎪⎩,解得:舍去)即Hy=7+,得H的纵坐标为:7=4.5,故射灯离地面高度4.5米.故答案为:4.5.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.17.(1)5;(2)44a -+,-【分析】(1)先算乘方,算术平方根以及零指数幂,再算加减法,即可求解;(2)通过整式的运算法则,先化简,再代入求值,即可.【详解】解:(1)原式1213=+-+5=;(2)()()()422a a a a --+-()2244a a a =---44a =-+,当1a =+时,原式)44414a =-+=-⨯+=-.【点睛】本题主要考查实数的运算以及整式的化简求值,熟练掌握实数运算法则和整式的运算法则,是解题的关键.18.(1)13;(2)4n =【分析】(1)依据题意,先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)根据概率公式列方程,解方程即可求得n 的值.【详解】(1)树状图如下:∴一共有6种等可能的结果,两次摸出的球恰好颜色不同的有2种,∴两次摸出的球恰好颜色不同的概率为:2163P ==.(2)由题意得:1537n P n +==+解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴4n =.【点睛】本题主要考查列表法,树状图法和概率公式,解题的重点在于要分析出所有等可能出现的结果,而解题的关键在于要根据概率公式求解或列方程.19.(1)见解析;(2)CD =【分析】(1)根据角平分线定义及平行线性质可得A CDE ∠=∠,再利用相似三角形的判定可证明ACD △∽DCE ,最后根据相似三角形的性质即可得出结论.(2)由已知22CE BE ==,可求出2CE =,1BE =,利用角平分线定义及平行线性质可得BCD CDE ∠=∠,推出2DE CE ==,再根据平行线分线段成比例性质求出6CA =,结合212CD CA CE =⋅=即可求得结果.【详解】(1)证明:∵CD 是角平分线,∴ACD DCE ∠=∠.∵DE 平分CDB ∠,∴CDE EDB∠=∠又∵//DE AC ,∴A EDB∠=∠∴A CDE ∠=∠,∴ACD △∽DCE ,∴CA CD CD CE=,∴2CD CA CE=⋅(2)解:∵22CE BE ==,∴2CE =,1BE =,∵CD 平分CDB ∠,∴ACD BCD ∠=∠,又∵//DE AC ,∴ACD CDE ∠=∠,∴BCD CDE ∠=∠,∴2DE CE ==,∵//DE AC ,∴13DE BE CA BC ==,∴6CA =,∴212CD CA CE =⋅=,∴CD =.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质以及平行线分线段成比例性质的综合应用是解题的关键.20.(1)见解析;(2)见解析【分析】(1)由ADE ∽ACB △,且相似比为1:2可直接进行作图;(2)由题意及圆周角定理可直接进行作图.【详解】解:(1)由ADE ∽ACB △,且相似比为1:2,如图所示:(2)根据圆周角定理可确定点P 的位置,然后可作如图所示:【点睛】本题主要考查圆周角定理及相似三角形的性质,熟练掌握圆周角定理及相似三角形的性质是解题的关键.21.(1)213222y x x =-++;(2)4532;(3)2或32或45【分析】(1)利用待定系数法把三个坐标点代入即可求表达式;(2)结合题意利用一次函数求出点E ,F 的坐标即可求面积;(3)分别用含t 的表达式表示点E ,F 的坐标,当△CEF 为等腰三角形,分为①当CE =CF 时②当CE =EF 时③当CF =EF 时三种情况分别求解即可.【详解】解:(1)将A (﹣1,0)、B (4,0),C (0,2)代入抛物线y =ax 2+bx +c ,得016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴213222y x x =-++;(2)由题意知:当t =32时,P (32,0),设直线BC 的解析式为y =kx +b ,则有402k b b +=⎧⎨=⎩,∴122k b ⎧=-⎪⎨⎪=⎩,∴122y x -+=,∵PF ⊥x 轴,∴点P ,E ,F 的横坐标均为32,∴分别代入一次函数和二次函数求出两点坐标:F 3524⎛⎫ ⎪⎝⎭,,E 32528⎛⎫ ⎪⎝⎭,,∴13125534522284232CEF S EF ⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ;(3)P (t ,0),则)F (t ,-122t +),E (t ,213222t t -++),∵△CEF 为等腰三角形,①当CE =CF 时,此时EF 的中点的纵坐标为2,∴214222t t -++=,∴t =2或t =0(舍),∴t =2;②当CE =EF 时,222221313122222t t t t t t +-+=-++()()解得32t =;(0t =不合题意舍去)③当CF =EF 时,2222211312222t t t t +-=-++()()解得4t +=4t =综上所述:t 的值为2或32或4.【点睛】此题考查二次函数的综合应用,有一定难度,利用坐标点结合图像解题是关键.22.(1)见解析;(2)8【分析】(1)根据角平分线和半径相等证//OC DE ,再用平行线的性质证明即可;(2)设3BD x =,4OB x =,根据(1)中的等角,得到AB=BE ,CE=CD ,列方程即可.【详解】(1)证明:∵OC=OA,∴ACO A ∠=∠.∵∠A=∠D ,∴∠D=∠ACO∵OC 平分ACD ∠,∴ACO OCD ∠=∠,∴OCD D ∠=∠.∴//OC DE ,∴E ACO ∠=∠,∴E A ∠=∠.(2)解:∵34BD OB =,∴设3BD x =,4OB x =,由(1)得E D ∠=∠,∴CD=CE ,∵//OC DE .CF OC ⊥,∴CF DE ⊥,∴35EF DF x ==+.∴310BE x =+,∵E A ∠=∠,∴AB BE =,即3108x x +=,解得2x =∴半径48OB x ==.【点睛】本题考查了圆周角的性质、等腰三角形的性质、平行线的判定与性质,解题关键是准确把握已知,合理利用已知条件,设未知数列方程.23.(1)550;(2)所需材料的最省费用为1958元【分析】(1)根据题意分别用x 表示出甲、乙、丙三个部分的面积,利用4S S =甲乙,便可求出CE 的值,从而求出丙的面积.(2)根据题意表示出三者的费用总和,利用乙部分的面积不小于220cm ,且x 取整数,找到X 的取值范围,根据二次函数性质和特征便可求解.【详解】解(1)由题意得:()14020400202S x x =⨯-=-甲,212S x =乙,()22112040400202040022S x x x x =⨯---=-++丙,∵4S S =甲乙,∴214002042x x -=⨯,解得110x =,220x =-(舍去)∴21204005502S x x =-++=丙.(2)()222113204006220400220200022y x x x x x x ⎛⎫=-++⨯+-++=-+ ⎪⎝⎭费用对称轴为直线20522x -=-=⨯,∵21202S x =≥乙,∴x ≥BE CE ≥,∴20x x -≥,∴10x ≤,∴10x ≤且x 为整数,∴x 的最小整数为7∴当7x =时,22720720001958y =⨯-⨯+=最小答:所需材料的最省费用为1958元.【点睛】本题考查二次函数的应用问题,能够把具体的问题抽象为数学函数问题才是关键.24.(1)见解析;(2)见解析;(3)【分析】(1)由圆周角定理可得∠ADC =90°,由等腰三角形的性质和直角三角形的性质可求∠E =∠DAC =30°,可得AD =DE ,可得结论;(2)先证△OCD 是等边三角形,可得∠ODC =60°,可得∠ODE =90°,可得结论;(3)由等腰三角形的性质可得BO ⊥AC ,可证△FGD 是等边三角形,可得FD =DG =FG ,由直角三角形的性质可求DG 的长,即可求解.【详解】(1)∵AC 是直径,∴∠ADC =90°,∵∠DAC =30°,∴∠ACD =60°,∵CE=CD,∴∠E=∠CDE,∵∠CDE+∠E=∠ACD=60°,∴∠E=30°=∠CDE,∴∠E=∠DAC,∴AD=DE,∴△ADE是等腰三角形;(2)如图,连接OD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴∠ODC=60°,∴∠ODE=∠ODC+∠CDE=90°,又∵OD是半径,∴EF是⊙O的切线;(3)∵AB=BC,AO=CO,∴BO⊥AC,∴∠AOG=∠EOF=90°,∵∠DAC=∠E=30°,∴∠AGO=∠F=60°,∴∠F=∠FGD=60°,∴△FGD是等边三角形,∴FD=DG=FG,∵AO=2,∠DAC=30°,∠ADC=∠AOG=90°,∴AC =4,DC =12AC =2,AD =AG =2OG ,AO ,∴OG AG∴DG∴△FGD 的周长=3×DG =【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,直角三角形的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.。
新浙教版九上数学期末试卷附答案
2015学年第一学期初三数学调研测试试题卷考生须知:1.全卷共三大题,24小题,满分为120分. 考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答. 卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上.3.本次考试不得使用计算器.卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分)1.-2016的相反数是……………………………………………………………………( ) A. 62011-B. 2016C.62011D. -20162.四边形的内角和为 ……………………………………………………………………( ) A. 90°B. 180°C. 360°D. 720° 3.已知b a a,a b+=则32的值是 …………………………………………………………( ) A.53B.52C.35 D.25 4.将抛物线23x y =向上平移1个单位,得到抛物线…………………………………( ) A.2)1(3-=x y B.2)1(3+=x y C.132-=x yD.132+=x y5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的俯视图是…( )A. 图①B. 图②C. 图③D. 图④6.在Rt △ABC 中,∠ACB=Rt ∠,BC =1,AB =2,则sin A 的值为……………………( ) A.12B.D.7.已知半径为3的圆⊙O 外有一条直线l ,已知⊙O 与直线l 相切,则圆心到直线l 的距离为……………………………………………………………………………………………( ) A. 1 B. 2 C. 3 D.4(第5题图)图④图③图②图①8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为………………………………( ) A. 12B. 13C. 14D. 169.如果正比例函数y =ax (a ≠0)与反比例函数y =bx(b ≠0)的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为……………………………………( ) A. (2,3)B. (3,-2)C. (-2,3)D. (3,2)10.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1 cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2(在0<t ≤10内,图像为抛物线),则下列结论错误的是……………………( ) A .AE =6cmB .sin ∠EBC =45C. 当0<t ≤10时,y =25t 2D. 当t =12s 时,△PBQ 是等腰三角形卷 Ⅱ二、填空题(本题有6小题,每小题4分,共24分)11.函数11-=x y 中,自变量x 的取值范围是 . 12.因式分解:264ab a -= .13.扇形的半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为 .14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共有小三角形的个数是 .Q图1 图2(第10题图)△△△△△△△ △△△ n =2 △△△△△ △△n =1 △△△△△ △△ △ △ △△△△ n =3△△△△△△△ △ △ △ △ △△△△△ n =4 ……15.对任意两实数a 、b ,定义运算“*”如下:⎪⎩⎪⎨⎧<+≥=*)()(b a b b b a b b a a a . 根据这个规则,则方程2 *x =9的解为 .16.如图,梯形OABC 中,BC //AO ,O (O ,O ),A (10,0),B (10,4),BC =2,G (t ,0)是底边OA 上的动点. (1)tan ∠OAC = .(2)边AB 关于直线CG 的对称线段为MN ,若MN 与△OAC 的其中一边平行时,则t = .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:(1112cos302-︒⎛⎫++⋅ ⎪⎝⎭-18.(本题6分)已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AE ∥BC ,CE ⊥AE ,垂足为E .(1)求证:△ABD ≌△CAE ;(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论.A EB D C19. (本题6分)如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是AF =3700米,从飞机上观测山顶目标C 的俯角是45°,飞机继续以相同的高度飞行300米到B 处,此时观测目标C 的俯角是50°,求这座山的高度CD .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).20.(本题8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E . (1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF ,弦AC 和CF ︵围成的图形(阴影部分)的面积S .F D21.(本题8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组.(2)样本中,女生的身高在E组的人数有人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?男生身高情况直方图女生身高情况扇形统计图C BA图2DEFCBA图122.(本题10分)阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC 中,三边的长分别为AB,ACBC =2,求∠A 的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC (△ABC 三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC 相似的格点△DEF ,从而使问题得解.(1)如图2,△DEF 中与∠A 相等的角为 , ∠A 的正切值为(2)参考小华的方法请解决问题:若△LMN 的三边分别为LM =2,MNLN求∠N的正切值.23. (本题10分)某公司装修需用A 型板材240块,B 型板材180块,A 型板材规格是60cm×30cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型,B 型板材(如右图是裁法一的裁剪示意图).现有下表中三种裁法:(1) 上表中,m = ,n = ;(2) 若裁完剩余的部分可以..拼接成A 型或B 型板材使用,则至少需要几张标准板材? (3) 若裁完剩余的部分不能..拼接成A 型或B 型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种裁剪方案(要求:①其中一种方案三种裁剪方法都使用,另一种方案只用到两种裁剪方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).单位:cm24.(本题12分)在平面直角坐标系中,O 是坐标原点,矩形OABC 的位置如图所示,点A , C 的坐标分别为(10,0),(0,8). 点P 是y 轴上的一个动点,将△OAP 沿AP 翻折得到:△O'AP ,直线BC 与直线O'P 交于点E ,与直线O'A 交于点F . (1)当O' 落在直线BC 上时,求折痕AP 的长.(2)当点P 在y 轴正半轴上时,若△PCE 与△POA 相似,求直线AP 的解析式; (3)在点P 的运动过程中,是否存在某一时刻,使得51BC CE ? 若存在,求点P 坐标,若不存在,请说明理由.2015学年第一学期初三数学调研测试参考答案及评分意见一、 选择题(本题有10小题,每小题3分,共30分) BCADC ACADD二 、填空题(本题有6小题,每小题4分,共24分)11、1≠x ; 12、)8)(8(-+b b a ; 13、10;14、43+n ; 15、2137;321-=-=x x ; 16、(1)2, (2) 4或54或5210-(答对1个2分,答对2个3分,答对3个4分) 【16解析】情况一:B A ''∥OA ,此时CG 平分∠B BC ',CDG ∆是等腰直角三角形所以,DG =CD =4,OG =4,t =4情况二:B A ''∥AC ,此时CG 平分∠B BC ',OGC BCG CG B ∠=∠='∠,所以,OG =OC =54,t =54情况三:B A ''∥OC ,此时CG 平分∠B BC ',AGC BCE CE B ACG ∠=∠='∠=∠,所以,AG =AC =52,t =5210-三、解答题(本题有8小题,共66分.各题均应写出解答过程) 17、略解:3 (每式化简正确各得1分,结论正确得2分) 18、略解:(1)略 (3分) (2)DE ∥AB;AB DE =(理由略) (3分)19、略解:设EC =x ,则BE = ,AE = (2分)∵AB +BE =AE ,∴ (2分) 解得:x =1800,故可得山高CD =DE -EC =3700-1800=1900(米). (2分) 答:这座山的高度是1900米. 20、略解:(1)0E =23(4分) (2)连结OC ,证明AEF ∆≌CEO ∆,则ππ23612===r S S OCF 扇形阴影(4分) 21、略解:(1)B ;C (各2分,共4分) (2) 2 ; (2分)(3)332152180%)15%25(38040810400=+=+⨯++⨯(人) (2分) 22、略解:(1)∠D ;21(各3分,共6分)(2)31(构造一个三边长为构造一个三边长为5,10,5的三角形,与△LMN 相似)(4分)23、解:(1) m = 0 ,n = 3 ; (4分) (2) 略解:(240×60+180×40)÷150=144 (∵所有材料宽均为30) (2分) 【或依据“总面积相等”列等式:(240×60+180×40)×30=144×150×30】 (3) 解:第一种方案:三种裁剪方法全部使用①若170张标准版纸刚好用完:设按裁法一裁x 张,则按裁法二该裁12(240-x )张,按裁法三该裁13(180-2x )张若170张标准版刚好够用,则有x +12(240-x )+13(180-2x )=170解得x =60∴170张标准版够用,用裁法一裁60张,用裁法二裁90张,用裁法三裁20张.(计算1分,结论1分,共2分)②若170张标准版纸可以有剩余:方案很多,如:用裁法一裁62张,用裁法二裁89张,用裁法三裁19张; 用裁法一裁63张,用裁法二裁89张,用裁法三裁18张; 用裁法一裁65张,用裁法二裁88张,用裁法三裁17张; 用裁法一裁66张,用裁法二裁87张,用裁法三裁16张; 用裁法一裁68张,用裁法二裁86张,用裁法三裁15张; ………………………(只要能完成装修任务即可)第二种方案:三种裁剪方法不全部使用,则必须同时使用裁法一和裁法二∵裁法二只能得到A 型板材,∴B 型板材只能由裁法一得到 ∴按裁法一需裁剪180÷2=90张标准版还剩下150(即240-90)张A 型板材只能由裁法二得到 ∴按裁法二需裁剪150÷2=75张标准版∴按照第二种方案共需90+75=165张标准版,故也够用 此时,用裁法一裁90张,用裁法二裁75张.(计算1分,结论1分,共2分)注:第二种方案中还有其余10种不同的裁剪方法,具体如下,写对同理给分.24、略解:(1)AP =55 (4分)(2)当APO CPE ∠=∠时,︒='∠=∠=∠60O AP APO CPE ,3310=OP 可得直线AP 解析式为:331033+-=x y (3分) 当OAP CPE ∠=∠时,O AP APO CEP '∠=∠=∠,此时,AP ∥CE ,显然不可能 (1分)(3))43310,0(),43310,0(),7410,0(),7410,0(4321+--+-P P P P (各1分,共4分)由题意:CE =2情况一:如图,BE =8,AB =8,AE =28,AO '=10,72='E O ,设OP =x ,则72,-=='x PE x P O ,根据222PE CE CP =+得:22)72(4)8(-=+-x x , 解得:)7410,0(,7410--=P x 此时情况二:同理求得72='E O ,设OP=x ,则72,+=='x PE x P O22)72(4)8(+=+-x x ,解得:)7410,0(,7410++=P x 此时情况三:先求出36='E O ,设OP =x ,则x PE x P O -=='36,22)36(4)8(x x -=+-解得:)43310,0(,43310--=P x 此时情况四:36='E O ,设OP =x ,则x PE x P O -=='36,22)36(4)8(x x -=++解得:)43310,0(,43310+-+=P x 此时。
浙教版九年级数学上册期末综合检测试卷(含答案)
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。
浙教版九年级(上)期末数学试卷(含答案)
浙教版第一学期九年级数学期末试卷亲爱的同学:祝贺你完成了初三一个学期的学习,现在是展示你的学习成果之时,请仔细审题,细心答题,祝你成功! (时间:100分钟 满分:120分)1.某反比例函数xky =的图象经过(-2, 1 ),则它也经过的点是 ( ) A .(1,-2) B .(1,2) C .(2,1) D .(4,-2) 2.抛掷一枚均匀的硬币一次,出现正面朝上的概率是 ( )A .21 B .31 C . 41D .13.抛物线23(5)2y x =-+的顶点坐标为 ( ) A .(2 ,5) B .(-5 ,2) C .(5 ,2) D .(-5 ,-2)4.已知A (x 1,y 1)和B (x 2,,y 2)是反比例函数y=x 8的上的两个点,若x 2>x 1>0,则( )A .y 2>y 1>0B .y 1>y 2>0C .0>y 1>y 2D .0>y 2>y 1 5.如图, 已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠C DB 的度数是40o,则∠C 的度数是 ( ) A.50oB. 40oC. 30oD.20o6.已知圆心角为1200的扇形的弧长为12π,那么此扇形的半径为( ). A . 12 B . 18 C .36 D .457.在△ABC 中,BC=6,AC=8,AB=10,另一个与它相似的三角形 的最短边长是3,则其最长边一定是( ) A .12B .5C . 16D .208.如图,在平面直角坐标系中,点A 在第一象限,⊙A 与轴相切于B , 与轴交于C (0,1),D (0,4)两点,则点A 的坐标是 ( )A .35(,)22B .3(,2)2C .5(2,)2D .53(,)229.四个全等的直角三角形围成一个大正方形,中间空出的部分 是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果 小正方形面积为49,大正方形面积为169,直角三角形中(第5题图)较小的锐角为θ,那么θsin 的值 ( )A .53 B . 54 C . 136 D .13510.如图,已知△EFH 和△MNK 是位似图形,那么其位似中心是 ( )A . 点AB . 点 BC . 点CD . 点D 11.如图,矩形AEHC 是由三个全等矩形拼成的,AH与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设△BPQ, △DKM, △CNH 的面积依次为S 1,S 2,S 3。
浙教版九年级上册数学期末测试卷及含答案
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A. B. C.D.2、如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A. B. C. D.3、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4、一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.5、如图,⊙O的弦AB=8,OE⊥AB于点E,且OE=3,则⊙O的半径是( )A. B.2 C.10 D.56、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复,上述过程小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ).A.10个B.12个C.15个D.18个7、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了米,并使得铁丝均匀地离开地面.下面关于铁丝离开地面高度的说法中合理的是()(已知圆的周长公式,).A.这个高度只能塞过一张纸B.这个高度只能伸进你的拳头C.这个高度只能钻过一只羊D.这个高度能驶过一艘万吨巨轮8、O是△ABC的外心,且∠ABC+∠ACB=100°,则∠BOC=()A.100°B.120°C.130°D.160°9、如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.910、如图,两个三角形纸板△ABC,△MNP能完全重合,∠A=∠M=50°,∠ABC=∠N=60°, BC=4,将△MNP 绕点C(P)从重合位置开始,按逆时针方向旋转,边MN,MP分别与BC,AB交于点H,Q(点Q 不与点A,B 重合),点O是△BCQ 的内心,若∠BOC=130°,点N 运动的路径为NB,则图中阴影部分的面积为()A. B. C. D.11、下列命题正确的是()。
浙教版九年级数学上学期期末试题(含答案)
1浙教版九年级上学期期末数学试题及答案一、单选题1.若,则的值是()A .2B .3C .D . 【答案】C【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【详解】解:∵3x =2y ,∴x :y =2:3,故选:C .【点睛】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3.如图所示,A ,B ,C 是上的三点,若,则的度数为()A .23°B .26°C .29°D .32°【答案】C【分析】根据同弧所对的圆周角等于圆心角的一半,即可得到答案.【详解】解:∵∠AOB =58°,∴∠ACB =29°,故选C .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.4.抛物线与y 轴交点的坐标是()A .(0,3)B .(3,0)C .(1,0)D .(0,1) 【答案】A【分析】将代入抛物线,求得即可.【详解】解:将代入抛物线得,,即与y 轴交点的坐标是,故选:A【点睛】此题考查了二次函数与坐标轴的交点,解题的关键掌握与与y 轴交点,横坐标为0.5.如图,在矩形中,,.若以点B 为圆心,以4cm 长为半径作OB ,则下列选项中的32x y =:x y 2332O 58O ∠=︒C∠243y x x =-+0x =y 0x =243y x x =-+3y =(0,3)ABCD 3cm AB =4cm AD =各点在外的是()A .点AB .点BC .点CD .点D【答案】D【分析】根据勾股定理求出BD 的长,进而得出点A ,C ,D 与⊙B 的位置关系.【详解】解:连接BD ,在矩形ABCD 中,AB =3,AD =4,∵∠B =90°,∴BD 5,∵AB =3<4,BD =5>4,BC =4,∴点D 在⊙B 外,点C 在⊙B 上,点A 在⊙B 内.故选:D .【点睛】此题主要考查了点与圆的位置关系,矩形的性质,勾股定理,解决本题的关键是掌握点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:①如果点P 在圆外,那么d >r ;②如果点P 在圆上,那么d =r ;③如果点P 在圆内,那么d <r .反之也成立.6.二次函数的图象如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .B .C .D .【答案】C【分析】先根据二次函数是顶点式,开口向上,可求出二次函数的最小值,然后结合函数图像求出最大值即可得到答案.【详解】解:∵二次函数的解析式为,1>0, ∴当时,二次函数有最小值, ∵由函数图像可知,二次函数的最大值为3,∴当时,, 故选C .【点睛】本题主要考查了二次函数图像的性质,解题的关键在于能够利用数形结合的思想进行求解.B ==23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤1y ≥13y ≤≤334y ≤≤03≤≤y 23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤32x =3413x ≤≤334y ≤≤37.从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A .B .C .D . 【答案】C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是. 故选:C .【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,D 是等边△ABC 外接圆上的点,且∠CAD =20°,则∠ACD 的度数为( )A .20°B .30°C .40°D .45°【答案】C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B =60°,∵四边形ABCD 是圆内接四边形,∴∠D =180°−∠B =120°,∴∠ACD =180°−∠DAC −∠D =40°,故选C.9.如图,抛物线y =﹣(x+m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为()A .B .C .3D . 【答案】B【分析】将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,根据题意得:, 解得:, 71012310110310AC 5211413422()5{(3)5y x m y x m =-++=-+-+32{114x m y =-=∴交点C 的坐标为(,), 故选:B .【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.10.如图,在面积为144的正方形ABCD 中放两个正方形BMON 和正方形DEFG ,重合的小正方形OPFQ 的面积为4,若点A ,O ,G 在同一直线上,则阴影部分面积为()A .36B .40C .44D .48【答案】D【分析】先求出AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,然后证明△ANO ∽△OQG ,得到,即,求出x =8,由此即可求解. 【详解】解:∵正方形ABCD 的面积为144,正方形OPFQ 的面积为4,∴AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,∵四边形BMON 和四边形OPFQ 都是正方形,∴∠ANO =∠BNO =∠OQF =∠OQG =∠POQ =90°,∴AN ∥OQ ,∴∠NAO =∠QOG ,∴△ANO ∽△OQG ,∴,即, 解得:或(舍去),∴BN =8,∴EF =12-x +2=6,∴阴影部分面积=144-82-62+4=48,故选D .【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 a 、b 的比例中项,且a =4,b =9,则x =_____.32m -114=AN NO OQ QG12=212x x x--=AN NO OQ QG 12=212x x x--8x =18x =5【答案】6【分析】根据已知线段a =4,b =9,线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵线段x 是线段a 、b 的比例中项,且a =4,b =9,∴=, ∴x 2=ab =4×9=36,∴x =±6(负值舍去).故答案为:6.【点睛】本题考查了成比例线段,理解比例的性质是解题的关键.12.若二次函数的图象经过点,则的值为______________.【答案】10【分析】直接把点代入到二次函数解析式中求解即可.【详解】解:∵二次函数的图象经过点,∴,故答案为:10.【点睛】本题考查了求二次函数的函数值,解题的关键在于能够熟练掌握二次函数的函数值的求解方法.13.已知圆中40°圆心角所对的弧长为3π,则这个圆的周长_____.【答案】27π.【分析】圆周角等于360°,先求得圆周角与40°的圆心角之间的倍数关系,再乘以40°的圆心角所对的弧长.【详解】解:×3π=27π, 故这个圆的周长是27π,故答案为:27π.【点睛】主要考查了圆的周长与弧长之间的关系.14.如图,在中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果,那么____________.【答案】4【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB ,∴. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴ a x x b23y x x =+()2,P a a ()2,P a 23y x x =+()2,P a 22324610a =+⨯=+=36040ABCD □:2:3DE EC =:DEF ABF S S =△△2()DEF ABF S DE S AB=:425DEF ABF S S =:△△故答案为:4:25或. 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是_________.【答案】. 【详解】试题分析:将图中剩余的编号为1-7的小正方形中任意一个涂黑共7种情况,其中涂黑3,4,7,1,6有5种情况可使所得图案是一个轴对称图形(如图),故其概率是.考点:1.轴对称图形;2.几何概率.16.如图,半圆的直径,将半圆绕点B 顺时针旋转45°得到半圆,与AB 交于点P ,那么AP 的长为_____________.【答案】【分析】连接,由题意可得,,为直径,可得,可得为等腰直角三角形,即可求解.【详解】解:连接,如下图:由题意可得,,∵为直径, 4255757O 10AB =O O '10-A P '45A BP '∠=︒A B '90A PB '∠=︒A BP 'A P '45A BP '∠=︒A B '7∴,∴为等腰直角三角形,,由勾股定理得,,解得故答案为:【点睛】此题考查了圆周角定理,等腰直角三角形的判定与性质,勾股定理以及旋转的性质,解题的关键是掌握并灵活运用相关性质进行求解.17.如图,一张扇形纸片OAB ,,,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为__________.【答案】【分析】根据阴影部分的面积等于S 扇形OBD 面积减去S 弓形OD 面积计算即可.【详解】解:由折叠可知,S 弓形AD=S 弓形OD ,DA =DO ,∵OA=OD ,∴AD =OD =OA ,∴△AOD 为等边三角形,∴∠AOD =60°,∠DOB =60°,∵AD =OD =OA =6,∴CD=,∴S 弓形AD =S 扇形ADO ﹣S △ADO 6π﹣, ∴S 弓形OD =6π﹣,阴影部分的面积=S 扇形BDO ﹣S 弓形OD (6π﹣ 故答案为:【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解题的关键.18.如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 交BD 于点E ,连结AD ,若BE =4DE ,CE =6,则AB 的长为_____.【答案】【分析】90A PB '∠=︒A BP 'A P PB '=222A P A B ''=BP A P '==AP AB BP =-=10-120AOB ∠=︒6OA =260613602π⋅=-⨯2606360π⋅=-BD如图,连接OC 交BD 于K .设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,由AD ∥CK ,推出AE :EC =DE :EK ,可得AE =4,由△ECK ∽△EBC ,推出EC 2=EK•EB ,求出k 即可解决问题.【详解】解:如图,连接OC 交BD 于K .∵,∴OC ⊥BD ,∵BE =4DE ,∴可以假设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,∵AB 是直径,∴∠ADK =∠DKC =∠ACB =90°,∴AD ∥CK ,∴AE :EC =DE :EK ,∴AE :6=k :1.5k ,∴AE =4,∵△ECK ∽△EBC ,∴EC 2=EK•EB ,∴36=1.5k×4k ,∵k >0,∴k,∴BC=,∴AB=故答案为:.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题1、1、2,乙同学口袋中也有三张卡片,分别写着数字 1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.【答案】. 【分析】先列出表格,从而可得两人摸出的卡片上的数字之和的所有可能结果,再找出两人摸出的卡片上的数字之和为偶数的结果,然后利用概率公式进行计算即可得.【详解】解:由题意,所有可能的结果列表如下:CD BC =36499由表可知,一共有9种等可能结果,其中,两人摸出的卡片上的数字之和为偶数的结果有4种,则甲胜的概率为, 答:甲胜的概率是. 【点睛】本题考查了利用列举法求概率,正确利用表格列出所有可能的结果是解题关键.20.如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.【答案】(1;(2)作图见解析【分析】(1)作AB 和BC 的垂直平分线,交点即为点O 的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可.【详解】解:(1)作AB 和BC 的垂直平分线,交点即为点O ,如图:,;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:49P =4966⨯A B C ABC O O AC P PAC △P O 90PAC ∠=︒90PCA ∠=︒=PAC △P O 90PAC ∠=︒90PCA ∠=︒.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键. 21.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB=6,AE=9,DE=2,求EF 的长.【分析】利用相似三角形的对应边成比例,求出DF 的长度,在直角三角形DEF 中,利用勾股定理求出斜边EF 长【详解】解:∵△ABE ∽△DEF ,∴ , ∴DF=3在矩形ABCD 中,∠D=90°. ∴在Rt △DEF 中,22.如图,AB 是的直径,弦于点M ,连结CO ,CB .(1)若,,求CD 的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解【分析】(1)根据垂径定理得出CM =DM ,再由已知条件得出圆的半径为5,在Rt △OCM 中,由勾股定理得出CM 即可,从而得出CD ;(2)过点O 作ON ⊥BC ,垂足为N ,由角平分线的性质得出OM =ON ,从而得出CB =CD .【详解】解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5,在Rt △OCM 中,OM 2+CM 2=OC 2, AB AE DE DF692AB AE DE ===,,69=2DF∴EF DE =O CD AB ⊥2AM =8BM =CO DCB ∠CD CB =11∴CM 4,∴CD =8;(2)过点O 作ON ⊥BC ,垂足为N ,∵CO 平分∠DCB ,∴OM =ON ,∵CO =CO∴Rt △COM ≌Rt △CON∴CM =CN∴CB =CD .【点睛】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键.23.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为元,试写出与之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?【答案】(1)(1≤x ≤110,且x 为整数);(2)这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量6×存放天数)”列出函数关系式; (2)根据等量关系“利润=销售总金额收购成本各种费用”列出函数关系式并求最大值.【详解】解:(1)由题意y 与x 之间的函数关系式为:y =(10+0.5x )(2000-6x )=3x 2+940x +20000(1≤x ≤110,且x 为整数);(2)设利润为w ,由题意得w =3x 2+940x +2000010×2000340x=3(x 100)2+30000∵a =3<0,∴抛物线开口方向向下,∴x =100时,w 最大=30000,∴李经理将这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【点睛】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键. 24.如图直角坐标系中,O 为坐标原点,抛物线y=﹣x 2+6x+3交y 轴于点A ,过A 作AB ∥x 轴,交抛物线于点B ,连结OB .点P 为抛物线上AB 上方的一个点,连结PA ,作PQ ⊥AB 垂足为H ,交OB 于点Q .(1)求AB 的长;(2)当∠APQ=∠B 时,求点P 的坐标;(3)当△APH 面积是四边形AOQH 面积的2倍时,求点P 的坐标.=x y yx 2394020000y x x =-++----------【答案】(1)AB=6;(2)P (4,11);(3)P (4,11)或P (3,12).【分析】(1)先求得点A (0,3),令,解得x=0或6,故点B (6,3),即可求解;(2)证明△ABO ~△HPA ,则,即可求解; (3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,即可求解.【详解】解:(1)对于,令x=0,则y=3,故点A (0,3),令,解得x=0或6,故点B (6,3),故AB=6;(2)设P (,),∵∠APQ=∠B ,∠AHP=∠OAB=90°,∴△ABO ~△HPA ,故, ∴, 解得m=4.∴P (4,11);(3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,∵HQ ∥OA ,∴,即, ∴HQ=, ∴, 解得:m 1=4,m 2=3,∴P (4,11)或P (3,12).【点睛】本题考查了二次函数的性质,相似三角形的判定和性质,平行线分线段成比例定理,图形的面积计算等,解题的关键是灵活运用所学知识解决问题.2633y x x =-++=HP AH AB AO=263y x x =-++2633y x x =-++=m 263m m -++HP AH AB AO =2663m m m -+=HQ BH AO AB =636HQ m -=62m -262362m m m -⎛⎫+=-+ ⎪⎝⎭。
浙教版初中数学九年级第一学期期末考试试卷附参考答案
第一学期期末考试初三数学试卷、选择题:(每题3分,共30分)1 . Rt △ ABC 中,/ C=90°, AB=13, BC=5 A 5 厂 5 A. B . 12 13 则 tan ./A =( 12 .13D. 13 12 2.已知两圆半径分别为 2cm 和3cm,当两圆外切时,它们的圆心距 d 满足 请仔细审题, 细心答题,相 信你一定会有 出色的表现! A. d 5cm B. d =5cm C. d =1cm D. d :::1cm 3.在反比例函数A.正数 4.如图,小明周末到外婆家 是() b5E2RGbCAP A. 14k1(k :::0)的图像上有两点(-1,yJ ,(,y 2),则y 1 -■ y 2的值是()x4B .负数C .非正数D.不能确定,走到十字路口处,记不清前面哪条路是往外婆家的 ,那么他能一次选对路的概率B.C.D.1外婆家□ 口1(第4题图)5•如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,DXDiTa9E3d第5题图)(第 7 题图)p1EanqFDPw 那么监视器的盲区在() A. △ ACE B. △ BFD C. 四边形 BCED D. △ ABD6 •函数y 二ax 2,bx 的图像如图所示,这个函数的解析式为( 2 2A. y - -x 2x 3 B . y = x-2x -3 2 c. y 二-x-2x 3 D. 2y _ -x _2x _3 7.如图,在△ ABC 中, AB=AC / A=36o , BD 平分/ ABC DE// BC 那么在下列三角形中,与RTCrpUDGiT△ EBD 相似的三角形是( ) A. △ ABC B. △ ADE C. △ DAB D. △ BDC 8.已知一个圆锥的底面积是全面积的 1 丄,那么这个圆锥的侧面展开图的圆心角是(3 A. 60 o B. 90 o C.120o D. 180 o9.如图,正方形 ABCD 勺边长为1,E 、F 分别是边BC 和CD 上的动点 E(不与正方形的顶点重合),不管E 、F 怎样动,始终保持 AE ± EF 。
浙教版九年级上册数学期末测试卷及含答案(基础题)
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励。
假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A. B. C. D.2、如果(x+2)(x-2)<0成立,那么x的取值范围是()A. x≤2B. -2<x<2C. x<2D. x>23、已知抛物线与y轴交于点A,与直线(k为任意实数)相交于B,C两点,则下列结论错误的是()A.存在实数k,使得为等腰三角形B.存在实数k,使得的内角中有两角分别为30°和60° C.任意实数k,使得都为直角三角形 D.存在实数k,使得为等边三角形4、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若△ADE与四边形DBCE的面积相等,则等于()A.1B.C.D.5、如图,▱ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°6、如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-57、如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A.0个B.1个C.2个D.3个8、已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,则①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,这四个式子中正确的个数有()A.4个B.3个C.2个D.1个9、四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,则四边形ABCD与四边形A2B2C2D2相似且相似比为()A.5:6B.6:5C.5:6或6:5D.8:1510、一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需()A.6秒B.5秒C.4秒D.3秒11、如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB于D,则四边形OEAD为()A.正方形B.菱形C.矩形D.平行四边形12、二次函数的图像如图所示,则点Q(,)在()A.第一象限B.第二象限C.第三象限D.第四象限13、如图,Rt△ABC中,∠A=60°,将△ABC绕点C顺时针旋转得到△A1B1C,斜边A1B1与CB相交于点D,且DC=AC,则旋转角∠ACA1等于()A.20°B.25°C.30°D.35°14、已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<cB.a<c<C.b<c<aD.c<b<a15、如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A. B. C. D.二、填空题(共10题,共计30分)16、在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0、b、c,记为G=(a, b, c).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为Gn =(an, bn,c n ).小明发现:若G=(4,8,18),则游戏永远无法结束,那么G2016=________.17、如图,正六边形ABCDEF内接于,若,则的半径为________.18、请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的解析式________.19、若二次函数y=ax2+bx+c的图象如图所示,则abc________0.20、若,则=________21、化y=x2+4x+3为y=a(x﹣h)2+k的形式是________,图象的开口向________,顶点是________,对称轴是________.22、如图,在矩形中,分别是的中点,分别在,上,且,连结,则与重叠部分六边形的周长为________23、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.24、在平面直角坐标系中,已知点A、B的坐标分别为(10,0)、(0,4),C 是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C以每秒1个单位匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P运动的时间为________秒.25、将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为________.三、解答题(共5题,共计25分)26、已知a:b:c=2:4:5,且2a﹣b+3c=15,求3a+b﹣2c的值.27、小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.28、如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.(1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;(3)连结DF,①当t取何值时,有DF=CD?②直接写出ΔCDF的外接圆与OA相切时t的值.29、如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?30、已知:如图,在△ABC中,D是边BC上一点,以点D为圆心,CD为半径作半圆,分别与边AC、BC相交于点E和点F.如果AB=AC=5,cosB=,AE=1.求:(1)线段CD的长度;(2)点A和点F之间的距离.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B6、B7、D8、A9、A10、C11、A12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版九年级上册数学期末考试试卷附答案
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案) 1.若32y x =,则x yx +的值为( )A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是( ) A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为( )A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为( )A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为( )A B C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心( )A .AEDB .ABD △C .BCD △ D .ACD △8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为( )A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,PQ =,则四边形PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒. (2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC △△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积. 21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少? (3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线; ②ACDBAD △△;(2)若8BD =,1tan 2B =,求⊙O 的半径. 23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”. ①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值. 24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA . (1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当PDF 的周长最大时,求出PDF 周长的最大值及此时点P 的坐标.参考答案【分析】 由32y x =,设()30,y k k =≠ 则2,x k =再代入求值即可得到答案. 【详解】 解:32y x =, ∴ 设()30,y k k =≠ 则2,x k = ∴2355.222x y k k k x k k ++=== 故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键. 2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案. 【详解】解:不透明的口袋里装有1个白球、3个红球,共有4个球, ∴现随机从袋里摸出1个球是白球的概率为14; 故选:C . 【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键. 3.A 【分析】根据图象向左平移加,向上平移加,可得答案. 【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5, 故选:A . 【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC=,代入计算可得:643EC=,即可解EC=2,故选B.考点:平行线分线段成比例5.D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm,∴圆的半径r=OB=13cm,由题意可知,CD=8cm,∴OD=13-8=5(cm),∴()12BD cm==,∴AB=24cm,故选:D.【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=23,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC,易得四边形CDOE是矩形,△DOE≌△CEO,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE,由矩形CDOE易得到△DOE≌△CEO,∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC =210360nπ⨯=10π,解得:n=36,∴CDE∠=∠DEO=∠COE=36°.故选B.【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC取最小值时,O与BC相切,证明△OCP∽△BCD∽△BAC得出::3:4:5OP PC CO=,从而求出OC的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB ==若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC= 15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】 解:在k y x =中,设(,)(0)k B x k x >, 则3k x x+=,(,)k C x x ∵AB 经过坐标原点, ∴(,)k A x x-- ∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒ ∴1,22BC AB AB BC == 又∵2AB OB =∴BC OB =∴3k x x =⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100, 故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA,2,OA OC OP OC ==2,OP OA ∴= PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠== 60AOP ∴∠=︒,,AC AC =11603022ABC AOC ∴∠=∠=⨯︒=︒, 故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】 根据两角对应相等得出AEDCGD ,再根据相似三角形的性质得出=AD DE DG DC ,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA ∴AEDCGD , ∴=AD DE DG DC, ∵DG=6 ∴4=64DE ∴83DE = 【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键 15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12ba -=,∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p <0时,()()120<--p m x m x∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.112 2 【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=+,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=∴CQ AC AQ x x =-==, 设DPQ 底边PQ 上的高为1h ,∴2h AD ===∴113222DPQ S PQ h =⨯⨯=△, 设BDQ △底边PQ 上的高为2h ,∴2h AQ ,∴21132222BDQ S BD h x =⨯⨯=⨯+=+△,∴四边形PDBQ 3332222S x x =++=+, ∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-==∴四边形PDBQ 的面积最大值1132=; (2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==== ∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=+, ∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH =====∴BF AF ===∴BH BF FH =+=∴1FG D H AF AG ==-=∴11EH D E D H =-== ∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得; (2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a =,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23 【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率; (2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13; (2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种, ∴4263P ==. 【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解; 【详解】如图所示:设AB 与正北方向线交于点C , ∵ 在Rt △AOC 中,∠AOC=30°,OA=500m , ∴sin30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC == ,∴250AB AC BC =+=+,∴3=560+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般; 20.(1)见解析;(2)64 【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论; (2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案. 【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ; (2)∵35AF FC =, ∴58CF AC =, ∵//EF AB , ∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭EFC ABCCF AC S S , ∵25=EFCS ,∴64=ABCS,即△ABC 的面积为64. 【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键. 21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可. 【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+; (2)由题意得:()()502180600x x --+=, 整理得214048000x x -+=:, 解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克; (3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元. 【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键. 22.(1)①见解析;②见解析;(2)3r = 【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度; 【详解】(1)①如图所示,连接AO , 由BC 是直径得90BAC ∠=, ∵ OB=OA , ∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°, ∴AD 为圆的切线;②在△ACD 和△BAD 中, ∠CAD=∠ABD , ∠ADC=∠BDA , ∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC ACDB DA AB==, ∵1tan 2B = , ∴1tan 2AC B AB == , ∴12DA DC DB DA ==, 则2AD CD = , 即182AD AD BD == , 得AD=4, ∴ 122CD AD == , ∴ BC=BD-CD=8-2=6, ∴半径3r =; 【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ==== 连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan ,4AH B BH ==tan 1,AHC CH==可得:4,,3BH AH CH AH == 再列方程414,3AH AH += 求解6,8,6,AH BH CH === 设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CHDH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论; ②如图④,连接,AD 证明90,ABD ∠=︒ 可得AD 是直径,所以,,A O D 共线,设,OH x = 则3,OA OD x == 2,BD x = 再分别求解,,CH DH 从而可得答案. 【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ==== 连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒, 2,4,EF AC CE CB ====(),CEF BCA SAS ∴≌,ECF CBA ∴∠=∠ 90,ECF BCD ∠+∠=︒90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴ 90CDA CDB ∠=∠=︒,,ACD CBD ∴∽ ,CD ADBD CD∴= 2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴=(2)如图③,作BC 边上的高AH ,3tan ,4AH B BH ==tan 1,AH C CH== 4,,3BH AH CH AH ∴== 14,BC BH CH =+=∴414,3AH AH += 6,8,6,AH BH CH ∴=== 设BD x =,则8,14,DH x CD x =-=-222,AD AH DH =+ 2AD BD CD =⋅,∴ 22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴ 5x =或10x =,经检验:5x =或10x =都符合题意, 所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠ ∴,AHC DHB ∽ ∴,AH CHDH BH= 即••AH BH CH DH =, ∵点H 是BCD △中CD 边上的“好点”, 2•,BH CH DH ∴= 2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH = 理由如下:如图④,连接,AD//,OH BD ,OH AB ⊥∴ 90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH =∴ 设,OH x = 则3,OA OD x ==2,BD x ∴=,AB ∴== ,OH AB ⊥,,AH BH HD ∴=== 2•,BH CH DH =22,BHCH xDH∴==2.3xCHDH∴==【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y=﹣13x2x+3;(2)l==213m-;(3,P15)4【分析】(1)由抛物线y=ax2+bx+3的表达式知:C(0,3),根据∠OBC=30°,得B(0),而OB=3OA,得A0),再用待定系数法即可得y=﹣13x2+3;(2)延长PF交x轴于点E,先由B(0),C(0,3)得直线BC的表达式为y=x+3,设点P(m ,2123333m m),则点F(m,+3),故PF=l=213m-;(3)先证明∠OBC=30°=∠P,在Rt△PDF中,PD=cos30°⋅PF,DF=sin30°⋅PF=12PF,故△PDF的周长=PD+PF+DF12)PF,可知PF最大时,△PDF的周长最大,而当m l最大=94,即PF最大为94,即可得到答案.【详解】解:(1)由抛物线y=ax2+bx+3的表达式知:C(0,3),∴OC=3,∵∠OBC=30°,∴OB=tan30?OC∴B(0),又OB=3OA,即3OA,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=+3, 设点P (m ,2123333m m ),则点F(m ,+3), ∴PF =l=21(3)(3)3m -+-+=213m -+;(3)∵∠OBC =30°, ∴∠BFE =60°=∠PFD , ∵PD ⊥BC , ∴∠P =30°,在Rt △PDF 中,PD =cos30°⋅PF ,DF =sin 30°⋅PF =12PF , ∴△PDF 的周长=PD +PF +DF 12)PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219(34x -+,∴当m l 最大=94,即PF 最大为94,此时,△PDF ,∴点P 的坐标为15)4,△PDF . 【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
九年级数学上学期期末考试试题 浙教版-浙教版初中九年级全册数学试题
某某省某某市开发区汤溪镇第二中学2015届九年级数学上学期期末考试试题 一、选择题:(每小题3分,共30分),32=b a 则=+ba a () A.23 B.53 C.52 D.32 2.cos60°的值等于( )A .21B . 1C .D . 23 3.如图的几何体是由一个正方体切去一个小正方体形成的,它的左视图是( )A .B .C .D . 4.将抛物线y=﹣2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( )A . y=﹣2(x+1)2﹣1B .y ﹣2(x+1)2+3 C . y=﹣2(x ﹣1)2+1 D . y=﹣2(x ﹣1)2+35.如图,在△ABC 中,点D 在边AB 上,BD=2AD ,DE∥BC 交AC 于点E ,若线段DE=5, 则线段BC 的长为( )A .B . 10C . 15D . 20(第5题) (第7题) (第8题)6. 已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )A .B . 2πC .3π D.12π7.如图,河坝横断面迎水坡AB 的坡比是(坡比是坡面的铅直高度BC 与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B6m C.m D.m8.如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°9.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②平分弦的直径垂直于这条弦;③相等圆心角所对的弧相等.其中真命题的个数是( )A.0B.1C.2D.310. 设a<4,函数y=(x-a)2(x-4)的图象可能是( )二、填空题:(每小题4分,共24分)11.抛物线y=x2﹣2x+3的顶点坐标是.12.已知圆锥的底面半径为3,母线为8,则圆锥的侧面积等于_________.13.袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为___________.14.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是.(第14题)(第15题)(第16题)15. 如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC 的外接圆半径是 .16. 如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0),B (5,0)两点,直线y=﹣x+3与y 轴交于点C ,与x 轴交于点D .点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E .若点E′是点E 关于直线PC 的对称点, 当点E′ 落在y 轴上时,点P 的坐标为___三:解答题:(共66分)17.(6分)计算:20151031(1)8()2sin 453--+-+18.(6分) 在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.19.(6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE⊥AB 于E .求证:△ABD∽△CBE.(19题) (20题)20.(8分)已知,如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为多少?(结果保留π)21.(8分)有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行?22.(10分)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高).(1)某市的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米?,cos34.88°=0.82,tan34.88°=0.70)23.(10分)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值X围.24.(12分)如图,抛物线()21y x 312=--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.(1)求点A ,B ,D 的坐标;(2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD.求证:∠AEO=∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P作⊙O 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.初三数学期末试卷答题卷(请把班级、某某、某某号写在左边沿)(一、选择题 ,本题有10小题,每小题3分,共30分)17. 计算:(6分)(﹣1)2014+﹣()﹣1+sin45°18.(6分)请在各题目的区域内作答,超出黑色矩形边框限定区域内的答案无效19.(本题6分)20.(本题8分)21.(本题8分)请在各题目的区域内作答,超出黑色矩形边框限定区域内的答案无效22.(本题10分)请在各题目的区域内作答,超出黑色矩形边框限定区域内的答案无效请在各题目的区域内作答,超出黑色矩形边框限定区域内的答案无效22.(本题10分) 23.(本题10分)请在各题目的区域内作答,超出黑色矩形边框限定区域内的答案无效24.(本题12分)答案:∏ 13.12 14.2 15.10 16.)3112,113)(411,21)(5,4(-- 17.-1 18.P=32 19.略 20.3434π- 21.2251x y -= 超过2569米就会影响 22.解答: 解:(1)如图所示:AC 为太阳光线,太阳高度角选择冬至日的34.88度,即∠ACE=34.88°,楼高AB 为2.80×20=56米,窗台CD 高为1米;过点C 作CE 垂直AB 于点E ,所以AE=AB ﹣BE=A B ﹣CD=55米; 在直角三角形ACE 中,由tan∠ACE=,得:BD=CE= 即两栋住宅楼的楼间距至少为.(2)利用(1)题中的图:此时∠ACE=34.88°,楼高AB 为2.80×20=56米,楼间距BD=CE=AB×1.2=;在直角三角形ACE 中,由tan∠ACE=×0.70= 则CD=BE=AB ﹣AE=而 8.96=2.8×3+0.56,故北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响.23. (1)1 060(2)BP=32(3),300︒〈︒〈α︒〈≤︒12060α24. (1)A )0,23()0,23(+-Bword11 / 11 (2)略(3)Q 的坐标为(3,1)或()513,519。
浙教版九年级上册数学期末考试卷(附答案)
浙教版九年级上册数学期末考试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.一天晚上,小丽在清洗两只颜色分别是粉色和白色的有盖茶杯时,突然停电了,小丽只好将杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是()A.1B.C.D.2.如图,△ABC中,点E、F在BC边上,点D,G分别在AB,AC边上,四边形DEFG是矩形,若矩形DEFG 面积与△ADG的面积相等,设△ABC的BC边上高AH与DG相交于点K,则的值为()A. 1:1B. 1:2C. 2:3D. :33.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是()A. 25°B. 60°C. 65°D. 75°4.抛物线的顶点坐标为()A. (2 ,5)B. (-5 ,2)C. (5 ,2)D. (-5 ,-2)5.在硬地上掷1枚图钉,通常会出现两种情况:“钉尖着地”与“钉尖不着地”.任意重复抛掷1枚图钉很多次时,你认为是哪种情况的可能性大()A. 钉尖着地B. 钉尖不着地C. 一样大D. 不能确定6.如图所示,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上,若,,则的长为()A. B. C. D.7.一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A. 2πB. 4πC. 12πD. 24π8.如图所示:∠CAB=∠BCD,AD=2,BD=4,则BC=()A. B. C. 3 D. 69.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个10.如图,在平面直角坐标系中,将点绕原点顺时针旋转90°得到点,则的坐标为()A. B. C. D.二、填空题(共6题;共24分)11.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是________.12.如图是某市1月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择1月1日至1月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量是重度污染的概率是________.13.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为________度.14.如图,抛物线与直线的两个交点坐标分别为,,则方程的解是________.15.如图,在△ABC中,D,E两点分别在边BC,AB上,DE∥AC,过点E作EF∥DC,交∠ACB的平分线于点F,连结DF,若∠EDF=∠B,且BC=4,BD=1,那么EF的长度是________.16.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为________ .三、解答题(共8题;共66分)17.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).18.如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N,满足4CN=5ON.已知抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的函数关系式;(2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若△BCD和△ABC面积满足S△BCD=S△ABC,求点D的坐标;(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.19.某水果专卖店5月份销售芒果,采购价为10元/kg,上旬售价是15元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.调整价格时也要兼顾顾客利益。
浙教版九年级上册数学期末测试卷【参考答案】
浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知二次函数的图象如图所示,以下四个结论:①;② ;③ ;④ .正确的是().A.①②B.②④C.①③D.③④2、⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定3、如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A. B. C.6 D.104、如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°5、如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1B.C.2D.26、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.147、一只蚂蚁在如图所示的树上寻觅食物,假定蚂蚁在每个岔路口都会随机选择一条路径,它获得食物的概率是()A. B. C. D.8、如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB 于点D,E是⊙O上一点,且CE的弧长和CD的弧长相等,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠COE的度数为()A.88°B.72°C.68°D.56°9、如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.410、如图,AB为⊙O的弦,OC⊥AB于点D,交⊙O于点C,且CD=1,OC=5,则弦AB的长是()A.3B.4C.6D.811、从一副扑g牌中任意抽出1张牌,抽得下列牌中的概率最大的是()A.小王B.大王C.10D.黑桃12、如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A =60°,BC=6,则图中阴影部分的面积为A. πB. πC. πD.3π13、如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为()A.30°B.40°C.50°D.80°14、如图,⊙O是△ABC的外接圆,已知∠OAB=40°,则∠ACB为()A.50°B.60°C.70°D.80°15、如图,将图案绕点O按逆时针方向旋转90°,得到的图案是()A. B. C. D.二、填空题(共10题,共计30分)16、任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是________.17、已知且,则=________.18、二次函数的图象经过原点,则a的值为________ .19、在半径为3的圆中,80°的圆心角所对的弧长是 ________.20、弧的半径为24,所对圆心角为60°,则弧长为________.21、若两个相似三角形的相似比是1:2,则它们的面积比是________.22、为了测量某小球的直径,技术人员将小球放到透明烧杯上,如图是过球心O作为截面图,已知烧杯的高度是13cm,测得l=8cm,h=11cm,则小球的直径为________ cm.23、如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是________cm.24、已知当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,则k的取值范围为________.25、在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AODC.当∠A=________°时,线段BD最长.三、解答题(共5题,共计25分)26、已知xyz≠0且,求k的值.27、在△AMB中,∠AMB=90°,将△AMB以B为中心顺时针旋转90°,得到△CNB.求证:AM∥NB.28、已知二次函数的图象过点(-1,0),对称轴为直线. 求当时,函数的取值范围.29、如图,⊙ 是△ 的外接圆,为直径,弦,交的延长线于点,求证:(Ⅰ);(Ⅱ)是⊙ 的切线.30、问题探究(1)请在图(1)中作出两条直线,使它们将圆面积四等分,并写出作图过程;拓展应用(2)如图(2),M是正方形ABCD内一定点,G是对角线AC、BD的交点.连接GM并延长,分别交AD、BC于P、N.过G做直线EF⊥GM,分别交AB、CD于E、F.求证:PN、EF将正方形ABCD的面积四等分.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、B6、B7、A8、C9、B10、C11、D12、D13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若29ab=,则a bb+=()A.119B.79C.911D.79-2.(2014·四川泸州中考)一个圆锥的底面半径是6 cm,其侧面展开图为半圆,则圆锥的母线长为()A.9 cmB.12 cmC.15 cmD.18 cm3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且,则∠()A.100°B.110°C.120°D.135°第4题图4. (2015·浙江宁波中考)如图,用一个半径为30 cm,面积为300π cm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cmB.10 cmC.20 cmD.5π cm5.(2014·四川宜宾中考)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是()A. 19B.13C.12D.236.(2014·天津中考)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶27.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD 相似的三角形有()A.3个B.2个C.1个D.0个8.(2015·浙江金华中考)如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是( )A. B. C. D.2第8题图9.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁绕一圈到点的距离..为,则关于的函数图象大致为( )10.(陕西中考)如图,是两个半圆的直径,∠ACP =30°,若,则 PQ 的值为( )A. B.C.a 3D.a 3211.(2014·哈尔滨中考)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y =-2(x +1)2-1 B.y =-2(x +1)2+3 C.y =-2(x -1)2+1 D.y =-2(x -1)2+3 12. (2015·宁波中考)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的处,称为第1次操作,折痕DE 到BC 的距离记为;还原纸片后,再将△ADE 沿着过AD 中点的直线折叠,使点A 落在DE 边上的处,称为第2次操作,折痕到BC 的距离记为;按上述方法不断操作下去……经过第2015次操作后得到的折痕到BC 的距离记为,若=1,则的值为( )A. B. C.1- D.2-第12题图二、填空题(每小题3分,共30分)13.若,则yx yx +-=_____________. 14(2015·兰州中考)已知△ABC 的边BC =4 cm ,⊙O 是其外接圆,且半径也为 4 cm ,则∠A 的度数是 .15.(2014·山东烟台中考)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是14,那么袋子中共有球_________个. 16.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3,0),且对称轴为直线1x =,给出下列四个结论:①;②0bc <;③20a b +=;④0a b c ++=,其中正确结论的序号是___________.(把你认为正确的序号都写上)17.如图,四边形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 cm.18.(2014·山东烟台中考)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .19.(江苏中考)如图,四边形为正方形,图(1)是以AB为直径画半圆,阴影部分面积记为,图(2)是以O为圆心,OA长为半径画弧,阴影部分面积记为,则的大小关系为_________.20.将一副三角板按如图所示叠放,则△AOB与△DOC的面积之比等于_________.4cm,一只蚂蚁由A点出发绕侧面一周后21.如图所示的圆锥底面半径OA=2 cm,高PO=2回到A点处,则它爬行的最短路程为________.22. (2014·山东潍坊中考)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,第22题图则建筑物的高是米.三、解答题(共54分)23.(6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.25.(6分)已知二次函数的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?26.(7分)已知抛物线的部分图象如图所示.(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.27.(7分)如图,在△ABC 中,AC =8 cm ,BC =16 cm ,点P 从点A 出发,沿着AC 边向点C 以1 cm/s 的速度运动,点Q 从点C 出发,沿着CB 边向点B 以2 cm/s 的速度运动,如果P 与Q 同时出发,经过几秒△PQC 和△ABC 相似? 28.(6分)(2014·武汉中考)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果. 29.(6分)(2015·浙江金华中考)如图,在矩形ABCD 中,点F 在边BC 上,且AF =AD ,过点D 作DE ⊥AF ,垂足为点E . (1)求证:DE =AB .(2)以D 为圆心,DE 为半径作圆弧交AD 于点G .若BF =FC =1,试求¼EG的长.30.(10分)(2015·浙江金华中考)如图,抛物线+c (a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H . (1)求a ,c 的值.(2)连接OF ,试判断△OEF 是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P ,是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.图① 图②期末测试题参考答案一、选择题1.A 解析: 22,,99a a b b =∴= 2111199=.9b b b a b b b b ++∴==2.B 解析:设圆锥的母线长为l ,∴ 180180p ·l =2×π×6,∴ l =2×π×6×180180p=12(cm ).3.C 解析: ∵ ,∴,∴ 弦三等分半圆,∴ 弦、、对的圆心角均为60°,∴ ∠=.4. B 解析:扇形的半径R =30 cm ,面积S =300π cm 2.根据S 扇形=12lR 可得扇形的弧长l =260030S R =π=20π(cm).根据题意,得2πr =20π,∴ r =10 cm . 5. B 解析:因为袋子中装有6个黑球和3个白球,所以摸到白球的概率是363+=13. 6.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠, ∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵AD BC =,∴12ED BC =,∴ EF ︰FC =1︰2.7.B 解析: 由∠BAE =∠EAC , ∠ABC =∠AEC ,得△ABD ∽△AEC ; 由∠BAE =∠BCE ,∠ABC =∠AEC ,得△ABD ∽△CED .共两个.8.C 解析:如图所示,连结OC ,OF ,OD ,∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴»A B =¼»»¼»»====,,BC CD DA AE EF AF ∴¼»»¼-=-,AE ABAF AD ∴»»¼»»»=-=-,,BEFD BC BE CD FD 即¼»=,EC CF ∴ OC ⊥EF .设垂足为点M .∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴ ∠COD =90°,∠COF =60°.∵ OC =OD ,∴ ∠OCD =45°,∴ MH =MC .在Rt △OMF 中,设OM =a ,则OF =2a ,∴ MC =a ,MF ==a .又∵ OC ⊥EF ,∴ GH =2MH =2a ,EF =2MF =2a , ∴ ==,故选C.第8题答图9.C 解析:蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离s 不变,走另一条半径时,s 随t 的增大而减小,故选C .10.C 解析:如图,连接AP 、BQ .∵ AC ,BC 是两个半圆的直径,∠ACP =30°,∴ ∠APC =∠BQC =90°.设,在Rt △BCQ 中,同理,在Rt △APC 中,,则,故选C .11.D 解析:根据抛物线的平移规律:上加下减,左加右减,平移只改变其顶点.抛物线y =-2x 2+1平移以后的解析式为y =-2(x -1)2+1+2=-2(x -1)2+3,故选D. 12. D 解析:如图,连接AA 1,由已知可得DE 是△ABC 的中位线,∴ AA 1=2h 1=2,点A 与D 1E 1的距离为12,∴ h 2=2-12;点A 到D 2E 2的距离为,∴ h 3=2-2,h 4=2-3,…,h 2 015=2-2 014=2-201412 .二、填空题 13.31-解析:设,∴ 3122-=+-=+-kk k k y x y x .14. 30︒或150︒解析:由已知条件得到△OBC 是等边三角形,所以∠BOC =60︒,当点A 在优弧BC 上时,30A ∠=︒,当点A 在劣弧BC 上时,150A ∠=︒.15.12 解析:设袋中共有球x 个,∵ 有3个白球,且摸出白球的概率是14,∴ 31=4x ,解得x =12.16.①③ 解析:因为图象与轴有两个交点,所以, ①正确;由图象可知开口向下,对称轴在轴右侧,且与轴的交点在轴上方,所以,所以, ②不正确;由图象的对称轴为,所以,即,故, ③正确;由于当时,对应的值大于0,即,所以④不正确.所以正确的有①③. 17. 解析:如图,过点O 作OF ⊥AD ,已知∠B =∠C =90°, ∠AOD =90°, 所以.又,所以.在△ABO 和△OCD 中,第12题答图所以△≌△.所以=.根据勾股定理得.因为△AOD 是等腰直角三角形,所以,即圆心O 到弦AD 的距离是.18.163π 解析:如图,连接OC 、OD 、OE ,OC 交BD 于点M ,OE 交DF 于点N ,过点O 作OZ ⊥CD 于点Z ,∵ 六边形ABCDEF 是正六边形,∴ BC =CD =DE =EF ,∠BOC =∠COD =∠DOE =∠EOF =60°. 由垂径定理得OC ⊥BD ,OE ⊥DF ,BM =DM ,FN =DN . ∵ 在Rt △BMO 中,OB =4,∠BOM =60°, ∴ ∠OBM =30°∴ OM = 2.由勾股定理得BM BD =2BM∴ △BDO 的面积是12·BD ·OM =12×同理△FDO 的面积是.∵ ∠COD =60°,OC =OD =4,∴ △COD 是等边三角形.∴ ∠OCD =∠ODC =60°. ∴ ∠COZ =∠DOZ=30°.∴ CZ =DZ =2.由勾股定理得OZ .同理可得∠DOE =60°,∴ S 弓形CD =S 弓形DE .S 弓形CD =S 扇形COD -S △COD =2604360p 创-12×4×=83p-4∴ S 阴影=83p )=163π. 19.解析:设正方形OBCA 的边长是1,则,∴,,故.20.1︰3 解析:∵ ∠ABC =90°,∠DCB =90°,∴ AB ∥CD ,∴ △AOB ∽△COD .又∵ AB ︰CD =BC ︰CD =1︰,∴ △AOB 与△DOC 的面积之比等于1︰3.21.36cm 解析:圆锥的侧面展开图如图所示,设∠,由OA =2 cm ,高PO =24 cm ,得P A =6 cm ,弧AA ′=4 cm , 则,解得.作,由,得∠.又cm ,所以cm,∴所以cm.22.54 解析:∵ △ABG ∽△CDG ,∴ CD ∶AB =DG ∶BG .∵ CD =DG =2,∴ AB =BG . 又△EFH ∽△ABH ,∴ EF ∶AB =FH ∶BH .∵ EF =2,FH =4,∴ BH =2AB ,∴ BH =2BG =2GH .∵ GH =DH -DG =DF +FH -DG =52+4-2=54,∴ AB =BG =GH =54. 三、解答题23. 解:∵,∴ 汽车的速度为(km/h ),∵ 60 km/h >40 km/h ,∴ 这辆汽车经过弯道时超速.24.证明:(1)因为AB 为⊙O 的直径,所以∠ADB =90°,即AD ⊥BC . 又因为AB =AC ,所以D 是BC 的中点.(2)因为AB 为⊙O 的直径, 所以∠AEB =90°. 因为∠ADB =90°,所以∠ADB =∠AEB . 又∠C =∠C ,所以△BEC ∽△ADC . 25.解:(1)将点A (2,-3),B (-1,0)分别代入函数解析式,得解得所以二次函数解析式为322--=x x y .(2)由二次函数的顶点坐标公式,得顶点坐标为,作出函数图象如图所示,可知要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移4个单位. 26. 解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得解得(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4.(3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0). 所以当时,的取值范围为.27.解:设经过t s △PQC 和△ABC 相似,由题意可知P A =t cm ,则CQ =2t cm.(1)若PQ ∥AB ,则△PQC ∽△ABC ,∴CB CQ CA CP =,∴ 16288tt =-,解得4=t . (2)若B CPQ ∠=∠,则△PQC ∽△BAC ,∴CA CQ CB CP =,∴ 82168t t =-,解得58=t . 答: 经过4 s 或58s △PQC 和△ABC 相似.28.分析:(1)①先将两种颜色的球进行标号,然后列表或画树状图得出所有等可能的结果数,找出第一次摸到绿球,第二次摸到红球的结果数,根据概率计算公式求出其概率;②找出两次摸到的球中有1个绿球和1个红球的结果数,根据概率计算公式求出其概率. (2)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:从表格中可以看出所有等可能的结果数为12,其中两次摸球中有1个绿球和1个红球的结果为8种,根据概率计算公式求出其概率为82=123. 解:(1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16种等可能结果. ①∵ 其中第一次摸到绿球,第二次摸到红球的结果有4种, ∴ 第一次摸到绿球,第二次摸到红球的概率P =41=164. ②∵ 其中两次摸到的球中有1个绿球和1个红球的结果有8种, ∴ 两次摸到的球中有1个绿球和1个红球的概率P =81=162. (2)23.29. (1)证明:∵ DE ⊥AF ,∴ ∠AED =90°.又∵ 四边形ABCD 是矩形,∴ AD ∥BC ,∠B =90°. ∴ ∠DAE =∠AFB ,∠AED =∠B =90°.又∵ AF =AD ,∴ △ADE ≌△F AB (AAS),∴ DE =AB .(2)解:∵ BF =FC =1,∴ AD =BC =BF +FC =2.又∵ △ADE ≌△F AB ,∴ AE =BF =1,∴在Rt△ADE中,AE=AD,∴∠ADE=30°.又∵DE===,∴¼EG的长===π.30.解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即=4,∴OA=2,∴A(0,2),B(-2,0),C(2,0),∴c=2,∴抛物线的函数表达式为+2.把C(2,0)代入+2中得4a+2=0,解得a=-,∴a=-,c=2.(2)△OEF是等腰三角形.理由如下:图③如图③,设直线AB的函数表达式为y=kx+b,把A(0,2),B(-2,0)代入y=kx+b中得,k=1,b=2, ∴直线AB的函数表达式为y=x+2.又∵平移后的抛物线顶点F在直线BA上,∴设顶点F的坐标为(m,m+2),∴平移后的抛物线的函数表达式为y=-+m+2。