Vandermonde行列式及其应用
范德蒙行列式及应用论文
范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。
范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。
范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。
范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。
范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。
首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。
通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。
其次,在微积分中,范德蒙行列式也有着重要的应用。
在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。
通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。
另外,在数论中,范德蒙行列式也有着重要的应用。
由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。
通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。
除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。
它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。
范特蒙德矩阵行列式
范特蒙德矩阵行列式范特蒙德矩阵行列式矩阵理论作为现代数学的重要分支,在科学领域和应用领域中有着广泛的应用。
而矩阵行列式是矩阵理论中的重要概念。
本文将介绍范特蒙德矩阵行列式(Vandermonde determinant),并探讨其相关性质和应用。
一、范特蒙德矩阵行列式的定义范特蒙德矩阵行列式,又称范德蒙行列式,是由范特蒙德(Vandermonde)于1772年引入的。
它的定义如下:对于正整数n和n个实数a1, a2,…, an,范特蒙德矩阵V是一个n×n的矩阵,其中第i行第j列的元素是ai的j−1次方,即:$$V = \begin{pmatrix}1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & a_n & a_n^2 & \cdots & a_n^{n-1}\end{pmatrix}$$范特蒙德矩阵行列式(Vandermonde determinant)是矩阵V的行列式,记作:$$\prod_{1 \le i < j \le n} (a_j - a_i)$$二、范特蒙德矩阵行列式的性质范特蒙德矩阵行列式具有以下性质:1. 对任意正整数n和n个实数a1, a2,..., an,范特蒙德矩阵行列式的绝对值等于$\prod_{i<j}(ai - aj)$,即范德蒙定理。
2. 范特蒙德矩阵行列式的值只与a1, a2,…, an的大小关系有关,而与它们的顺序无关。
3. 当a1, a2,..., an等距时,即存在正整数k和h,使得ai=a1+(i−1)k(i=1,2,…,n),则Vandermonde determinant等于$\prod_{i<j}(j-i)$,即n个不同的有理数的秩次数。
浅析Vandermonde行列式的 相关性质及其应用
大学毕业论文论文题目:浅析Vandermonde行列式的相关性质及其应用姓名:年级:专业:数学与应用数学浅析Vandermonde行列式的相关性质及其应用摘要:在高等数学的学习中,行列式无疑是一个重点和难点,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础。
而行列式的计算具有一定的规律性和技巧性。
Vandermonde行列式是一类很重要的行列式。
本文系统的阐述了Vandermonde 行列式的相关性质及其应用,通过各种方法说明了行列式中的一些计算问题以及如何利用Vandermonde行列式计算一般的行列式,用多个例子论述并总结了Vandermonde 行列式在科研和实践生活中如何更好的应用。
关键字: 行列式;Vandermonde行列式;Vandermonde目录第一章引言 (1)第二章预备知识 (2)2.1 定义 (2)2.2 行列式的性质 (2)2.3 行列式计算中的几种基本方法 (3)2.3.1 三角形法 (3)2.3.2 加边法或升级法 (4)2.3.3 递推法或数学归纳法 (5)第三章行列式的一种特殊类型Vandermonde行列式 (6)3.1 Vandermonde行列式的证法 (6)3.2 Vandermonde行列式的性质 (7)3.2.1 推广的性质定理]7[:行列式 (7)3.2.2 一个Vandermonde行列式为0的充分必要条件 (9)3.2.3 V andermonde行列式的偏导数]8[ (9)3.3 Vandermonde行列式的翻转与变形 (11)3.4 Vandermonde行列式的应用 (12)第四章小结 (17)第五章参考文献 (18)第六章谢辞 (19)引言在中学数学和解析几何里,我们学习过两个未知量和三个未知量的线性方程组及其解法。
但是在数学研究和实际问题的解决过程中,经常会遇到由多个未知量而组成的多个方程组,并且未知量的个数和方程组的个数也未必相等。
范德蒙行列式及其应用
目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程组、矩阵、向量空间和线性变换的基础,起着重要作用。
而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。
本文将通过对n阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。
关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only animportant point but also a difficult point,it is a foundation of learning linear equations,matrices,vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义定义1[1]关于变元x,2x n x的n阶行列式1122221211112111n n nn n n nx x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。
浅析Vandermonde行列式的质与应用
浅析Vandermonde行列式的质与应用浅析Vandermonde行列式的性质与应用摘要:在线性代数与高等代数的学习中,行列式无疑是一个重点和难点,它是后续课程矩阵、向量空间和线性变换等的基础,且其计算具有一定的规律性和技巧性.而Vandermonde行列式是一类很重要的行列式,它构造独特、形式优美、性质特殊,是行列式中的一颗璀璨明珠.为了使我们对vandermonde行列式进一步加深了解与应用,同时开阔数学视野、培养发散思维能力,以便更好地为我们的科研和生活服务,本文主要阐述了Vandermonde行列式的证法及其相关性质,并用例举法介绍及总结了如何利用Vandermonde行列式计算某些特殊的行列式与其在多项式、向量空间等中的简单应用.关键词:行列式 Vandermonde Vandermonde行列式宁夏师范学院2012届本科毕业生毕业论文Analysis of Vandermonde determinant Properties and ApplicationsAbstract:Linear algebra and advanced algebra learning, the determinant i s undoubtedly a key and difficult points, it is the follow-up course matrix, the basis of vector spaces and linear transformations, and its calculation with a certain regularity and skill. Vandermonde determinant is a very important determinant, it constructs a unique, beautiful form of special nature, is a shining pearl in the determinant. To enable us to further deepen the understanding and application of the Vandermonde determinant, and at the same time broaden their mathematical horizons, develop divergent thinking ability in order to better serve our research and living services, the paper mainly expounds the Vandermonde determinant permit law and its related properties, and introduced with examples of France and summarizes how to use the Vandermonde determinant for the calculation of some of the special determinant of the Vandermonde determinant polynomial, the vector space.Keywords: Determinant Vandermonde Vandermonde determinant宁夏师范学院2012届本科毕业生毕业论文目录1 引言 (1)2 VANDERMONDE行列式的定义与证法 (2)2.1V ANDERMONDE行列式的定义 (2)2.2V ANDERMONDE行列式的证法 (2)3 VANDERMONDE行列式的性质 (4)3.1V ANDERMONDE行列式的翻转与变形 (4)3.2V ANDERMONDE行列式为0的充分必要条件 (5)3.3V ANDERMONDE行列式推广的性质定理 (5)4 VANDERMONDE行列式的应用 (7)4.1V ANDERMONDE行列式在行列式计算中的应用 (7)4.1.1 计算准Vandermonde行列式 (7)4.1.2 计算特殊的行列式 (7)4.2V ANDERMONDE行列式在多项式与向量空间中的应用 (10)4.2.1 Vandermonde行列式在多项式中的应用 (10)4.2.2 Vandermonde行列式在向量空间中的应用 (13)5 小结 (15)参考文献 (16)谢辞 (17)1 引言行列式最早出现在17世纪关于线性方程组的求解问题中,由日本数学家关孝和德国数学家莱布尼茨分别发明,而法国数学家范德蒙德(A-T.Vander- monde,1735-1796)对行列式理论做出了连贯的、逻辑的阐述,并命名了著名的Vandermonde 行列式.后许多数学家如柯西、雅可比、泰勒等对其不断发展完善,做了进一步的解析与应用,使得19世纪中期行列式与向量、矩阵完美融合.时至今日,行列式成为了线性代数与高等代数的主要内容与重点内容之一,是后续课程矩阵、向量空间和线性变换等的基础,而vandermonde行列式在多项式、向量空间、线性方程组、线性变换、矩阵的特征值与特征向量、微积分等理论中都有大量应用,例如对Cramer法则的补充、Lagrange插值公式的推导、向量空间基的证明、与Taylor公式结合求微积分问题等起了重要的作用[1],而其在简化行列式计算方面,更是灵活巧妙,成为了广大学生的有力工具.出于对n阶vandermonde行列式其独特的构造、优美的形式、特殊的性质的好奇与喜爱,我查阅了大量的参考文献后,决定就Vandermonde行列式的证法与相关性质,浅谈其在行列式计算、多项式、向量空间中的基本应用,使得对vandermonde行列式进一步加深了解与应用,培养自身的科研素养.当然我相信,随着科技的进步与更多数学家的进一步研究,Vandermonde行列式这颗璀璨明珠,将会在各领域绽放更耀眼的光芒.2 Vandermonde 行列式的定义与证法 2.1 Vandermonde 行列式的定义我们把型如 n V =121111211...1..................nn n n na a a a a a ---的行列式叫做Vandermonde 行列式,其值为1()i j j i na a ≤<≤-∏,即n V =121111211...1..................nn n n na a a a a a ---=1()i j j i na a ≤<≤-∏其中1()i j j i na a ≤<≤-∏表示12,,...n a a a 这n 个数的所有可能的差i j a a -(1j i n ≤<≤)的乘积(2n ≥)[2].2.2 Vandermonde 行列式的证法方法一:消元法(降阶法)[3]证明 从第n 行开始,每一行加上前一行的1a -倍,根据行列式的性质可知行列式的值不变,此时有n V =)()(...)(0)()(...)(0............ (01)1 (1)11211211222131131123211112a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n n n n n n n n n -------------------- 再按行列式首项展开得:n V =1·)()(...)()()(...)(...............1211211222131131123211112a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n n n n n n n n n --------------------各列提公因式得:n V =21111()...()()n n a a a a a a ----·2313333231222223111...11........................n nn n n n n n n n n n n na a a a a a a a a a a a ----------- 注意到行列式2313333231222223111...11........................n nn n n n n n n n n n n na a a a a a a a a a a a -----------是1n -阶Vandermonde 行列式1-n V ,即已经将n V 用1-n V 表示出来,降了一阶,并且少了一元1a .重复用上述方法对1-n V 再进行求解,经过有限步则可以得到:1n V -=((21a a -)…111()()n n a a a a ---)·(()32122()...()n n a a a a a a ----)…(1n n a a --)=1()i j j i na a ≤<≤-∏即证.方法二:数学归纳法[4] 证明 (1)当2n =时, 221121 1V a a a a ==-成立. (2)假设对于1n -阶成立,则对于n 阶,首先构造一个辅助的n 阶行列式: 11-n 112112212221121)(1 1 1 1------=n n n n n n x xa a a xa a a xa a a V显然,n aV V n =)(,将)(x V 按第n 列展开,得:1)(=x V ·n A 1x +·n A 22x +·13-++n n x A ·nn A其中),,2,1(n i A in =是行列式)(x V 中元素),,2,1(1n i x a i in ==-的代数余子式,且不含x ,因此可知)(x V 是一个n-1次的多项式,它的最高次1-n x 的系数是nn A ,按定义知11)1(--+=-=n n n n nn V V A .另一方面,根据行列式的性质知121,,-n a a a 是)(x V 的n-1个根,根据多项式的理论,得:)())((1211)(-----=n n x a x a x a x V V取n a x =代入,得:)())((1211)(-----=n n n n n x a a a a a a V V即 )())((1211-----=n n n n n n a a a a a a V V根据归纳假设,1-n V =11()i j j i n a a ≤<≤--∏,因此n V =1()i j j i na a ≤<≤-∏.由(1)(2)结论得证.3 Vandermonde 行列式的性质3.1 Vandermonde 行列式的翻转与变形n V =121111211...1..................nn n n nx x x x x x ---(1)将Vandermonde 行列式逆时针旋转90,得11(1)11211111(1)1n nn n n n n n n n x x x x V x x ------=-.(2)将Vandermonde 行列式顺时针旋转90,得1111(1)222111(1)1n n n n n n nn x x x x V x x ----=-.(3)将Vandermonde 行列式旋转180,得1111111111n n n n n n n x x x V x x x -----=.3.2 Vandermonde 行列式为0的充分必要条件一个Vandermonde 行列式121111211...1..................nn n n na a a a a a ---为0的充分必要条件是:12,,,n a a a 这n 个数中至少有两个相等.3.3 Vandermonde 行列式推广的性质定理行列式()n k V = 122221211112111121211...1.......................................nnk k k n k k k n nn n nx x x x x x x x x x x x x x x ---+++=1212......n k n kp p p p p p x x x --∑·V (k=0,1,2…n -1) 其中符号“()n k V ”中的下标“n ”表示n 阶行列式,“(k)”表示仅缺少的k 次方幂元素行;12,...n k p p p -是1,2,...n 中(n k -)个数的一个正序排列;12...n kp p p -∑表示对所有(n k -)阶排列求和;1(x -x )i j j i nV ≤<≤=∏[5].证明 (i )在行列式()1,2(...)n k n V x x x 中增补第(1k +)行和(1n +)列相应的元素,考虑(1n +)阶Vandermonde 行列式1211111212121111121211...11.....................()(,...,)........................n k k k k n n kk k k n k k k k n nn n nnx x x x x x x x f x V x x x x x x x x x x x x x x x x ----++++===213111()()()()n x x x x x x x x ----·))(()(2223x x x x x x n --- ·… … … … ))((11----n n n x x x x · ()n x x -=12()()...()n x x x x x x ---·1()i j j i nx x ≤<≤-∏(ii)由上式的两端分别计算多项式k x 中项的系数.在上式左端,由行列式 计算k x 的系数为:行列式中该元素对应的代数余子式(1)k n +-·()n k V ,在上式右端,由多项式计算知12,,...,n x x x 为()0f x =的n 个不同根,根据根与系数的关系,k x 项的系数为:(1)n k n k a --=-·1212,......n k n kp p p p p p x x x --∑·1(x -x )i j j i n≤<≤∏(k=0,1,2…n -1)其中12,...n k p p p -是1,2…n 中(n k -)个数的一个正序排列,12,...n kp p p -∑表示对所有(n k -)阶排列求和.(iii )比较)(x f 中k x 项的系数,计算行列式)(k n V .因为(*)式左右两端k x 项系数应该相等,所以(1)k n +-·)(k n V (1)n k -=-·1212,......n k n kp p p p p p x x x --∑·1(x -x )i j j i n≤<≤∏,则1212(),......n k n kn k p p p p p p V x x x --=∑·1(x -x )i j j i n≤<≤∏1212......n k n kp p p p p p x x x --=∑·V (k=0,1,2…n -1)定理得证.4 Vandermonde 行列式的应用4.1 Vandermonde 行列式在行列式计算中的应用4.1.1 计算准Vandermonde 行列式利用Vandermonde 行列式推广的性质定理可以计算各阶准Vandermonde 行列式(缺行的Vandermonde 行列式也叫做超Vandermonde 行列式或准Vandermon -de 行列式),简便易行[6].特别地,当k n =时,令0p =1,()n k V 即为Vandermonde 行列式n V .例1 计算准Vandermonde 行列式1234562222221234566(3)444444123456555555123456666666123456111111a a a a a a a a a a a a V a a a a a a a a a a a a a a a a a a =解 由定理,n =6,k =3,所以 1231236(3)p p p p p p V aa a =∑·∏≤<≤-61)(i j j ia a=123124456(...)a a a a a a a a a +++·∏≤<≤-61)(i j j ia a4.1.2 计算特殊的行列式Vandermonde 行列式在行列式计算中的应用,除了应用其推广的性质定理来计算各阶准Vandermonde 行列式之外,还可以用以下一些方法来计算某些类似Vandermonde 行列式的特殊的行列式.(1)法一: 所给行列式各行(列)都是某元素的不同方幂,但其方幂次数或其排列与Vandermonde 行列式不完全相同,需利用行列的性质(如提取公因式,调换各行(列)的次序等)将其化为Vandermonde 行列式[7].例2 计算n 阶行列式nn n n n n D22222111=解 n D 1212122211111!--=n n n n n n)1()13)(12(!---=n n ·)]1([)2()24)(23(-----n n n!n =·)!1(-n ·)!2(-n ·!2·!1(2)法二:利用行列式性质,改变原行列式中的元素,产生以新元素为行(列)的Vandermonde 行列式.例3 计算)1(+n 阶行列式n n n n n n n n n n n n n n n n n n nn n n nn b b a b a b a a b b a b a b a a b b a b a b a a D 1111212111112122222221221111212111111+-+++-++-++------+=其中0≠i b ,0≠i a ,(1,,2,1+=n i )解 提取1+n D 各行的公因式,得:nn n n n a a a D 211=+·11222211111)(1)(1)(1---n n n nnn n a b a b a b a b a b a b (Vandermonde 行列式)上式右端的行列式是以新元素112211,,,++n n a b a b a b 为列元素的1+n 阶Vandermonde 行列式,所以:1+n D =n nn n a a a 21·∏+≤<≤-11)(n i j j jii a b a b(3)法三:如n 阶行列式n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含有相同分行(列),且n D 中含有n 个分行(列)组成的Vandermonde 行列式,那么将n D 的第i 行(列)乘以(1-)加到(1+i )行(列),消除一些分行(列),即可化成Vandermonde 行列式[8].例4 计算行列式△4=434233322322213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++ 解 在△4的第2行中去掉与第一行成比例的分行,得到△4=434233322322213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++在上面行列式的第3行中去掉与第2行成比例的分行,得到一个新的行列式,在此新行列式的第4行中去掉与第3行成比例的分行,得:△4=4333232134********321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=∏≤<≤-41)sin (sin i j j i ϕϕ(4)法四:行列式中其他各行(列)都是元素的不同方幂,只有一行(列)的元素不是相应元素的零次幂(即该行(列)元素都不是1),而是各行(列)元素的函数,利用行列式的性质将这一行(列)元素化为全是1的元素.例5 证明△3=ba a c cbc b a cb a +++222证明 将△3的第1行加到第3行上,得到△3=c b a c b a c b a c b a c b a++++++222=222111)(c b a c b ac b a ++ ))()()((b c a c a b c b a ---++=4.2 Vandermonde 行列式在多项式与向量空间中的应用在线性方程组中,Cramer 法则有着非常重要的作用,它给出了一类重要的线性方程组的解的存在唯一性.而在许多行列式的计算与证明中,Vandermonde 行列式又是一个十分重要的行列式.两个如此“重要”的数学元素相结合,其产生的作用将更重要.Vandermonde 行列式在多项式与向量空间中的应用,主要就是结合Cramer 法则来证明相关的问题[9].下面一起来看几个典型的例子. 4.2.1 Vandermonde 行列式在多项式中的应用例6 证明一个n 次多项式至多有n 个互异的根. 证明 用反证法.设n n x a x a x a a x f ++++= 2210)(有n+1个互异的根,分别为:121 , , ,+n x x x ,则有:0)(2210=++++=n i n i i i x a x a x a a x f (11+≤≤n i )即⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++000122111022221201221110n n n n n n nn na x a x a x a a x a x a x a a x a x a x a这个关于n a a a , , ,10 的齐次线性方程组的系数行列式是一个Vandermonde 行列式:0)( 11 111121!22221211≠-=∏+≤<≤+++n i j j in n n n n nx xx x x x x x x x x则由Cramer法则知该方程组只有零解,即0210=====n a a a a ,而n 次多项式)(x f 的最高次项的系数n a 是不为零的.这个矛盾表明)(x f 至多有n 个互异的根.例7 设多项式n k n k k x a x a x a x f +++= 2121)(,0≠i a , j i k k ≠,j i ≠,},,2,1{,n j i ∈,则)(x f 不可能有非零且重数大于1-n 的根.证明 用反证法.设0≠α是)(x f 的重数大于1-n 的根,则0)(,,0)(,0)()1('===-αααn ff f进而有0)(,,0)(,0)()1(1'===--αααααn n ff f即:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+--+++--++--=+++=+++0)2()1()2()1()2()1(0021212122221111221121n n n k n n nn k k k n n kk k n k k a n k k k a n k k k a n k k k a k a k a k a a a ααααααααα 把上式看作是以n k n k k a a a ααα,,, 2121为未知量的齐次线性方程组,则其系数行列式为:)2()1()2()1()2()1()1()1()1(111222*********+--+--+-----n k k k n k k k n k k k k k k k k k k k k n n n n n n1121121111---=n nn n nk k k k k k∏≤<≤≠-=ni j j i k k 10)( 由Cramer 法则知上面的齐次线性方程组只有零解,从而),,2,1(,0n i a k i ==α因为0≠i a ,所以必须0=α,这与假设0≠α矛盾,故)(x f 没有非零且重数大于1-n 的根.例8 证明:对于平面上n 个点),(i i b a (n a a a n i , , , , 121 ≤≤互不相等),必存在唯一的一个次数不超过n-1的多项式)(x f 通过这n 个点, 即 i i b a f =)()(1 n i ≤≤.分析 要证明n 个等式成立,也就是要证明n 个方程组成的方程组有解,很自然地会想到Cramer 法则,再根据系数行列式的特点,考虑用Vandermonde 行列式的结论.证明 设n n n n c x c x c x c x f ++++=---12211)( ,要使)(1 )(n i b a f i i ≤≤=,即满足关于n c c c , , , 21 的线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---------n n n n n n n n n n n n n n n n bc c a c a c a b c c a c a c a b c c a c a c a 12211212222112111221111该方程组的系数行列式为Vandermonde 行列式:111212221212111n n n n n n n n n a a a a a a a a a------,当n a a a , , , 21 互不相等时,该行列式不为0,由Cramer 法则知方程组有唯一解,即对于平面上n 个点),(i i b a (n a a a n i , , , , 121 ≤≤互不相等),必存在唯一的一个次数不超过n-1的多项式)(x f 通过这n 个点. 4.2.2 Vandermonde 行列式在向量空间中的应用例9 设n t t t 21 ,是互不相同的实数,证明向量组(12, , ,1-n i i i t t t )i=1,2,…n 是n 维向量空间n R 中的一个基.证明 只需证明12, , ,1-n i i i t t t 线性无关即可.令 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---12122221121121 1 1 1 n m m m n n n t t t t t t t t t a a a A , 因为n t t t 21 ,是互不相同的实数,所以 0)(1≠-==∑≤<≤ni j j iT t tA A ,故12, , ,1-n i i i t t t (i=1,2,…n )线性无关,是n 维向量空间n R 中的一个基.例10 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数},证明 C[a,b]是R 上的向量空间.证明 我们知道,C[a,b]是R 上的无限维向量空间,要证该结论,只需对任意的正整数n ,可证得n x x x , , ,12线性无关即可.设R k k k k n ∈∃, , , , 210 ,使得02210=++++n n x k x k x k k取n+1个实数121, , , +n c c c ,使得b c c c a n ≤<<<≤+121 ,则由上式知:⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++000121211022222101212110n n n n n nn nn c k c k c k k c k c k c k k c k c k c k k即A ·⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 00 10 n k k k , 其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++n n n n nn c c c c c c c c c A 121122221211 1 1 1而0)(det 11≠-==∏+≤<≤n i j j i c c A A ,则A 可逆,用1-A 左乘A ·⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 00 10 n k k k 的两端,得:0210=====n k k k k ,所以n x xx , , ,12线性无关.故C[a,b]是R 上的向量空间,且是R 上的无限维向量空间.例11 设0dim >=n V F (即V 的维数为n ),存在集合V S ⊆, 使S 含无穷多个向量,且S 中任意n 个不同的向量都是V 的一个基.证明 设n ααα, , , 21 是V 的一个基,令{}F k k k k S n n ∈+++==-|13221αααα , n n k k k k ααααβ13221-++++= ,让n k k k , , , 21 互不相同,则⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---11211222212121 1 11), , , (), , , (21n n n n nn n k k k k k k k k k k k k n αααβββ由于⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---112112222121 1 11n n n n nn k k k k k k k k k T ,其行列式是Vandermonde 行列式,即0)(det 1≠-==∏≤<≤ni j j ik kT T ,故), , , (21n k k k βββ 线性无关,是V 的一个基,且S中含无穷多个向量.当然,Vandermonde 行列式与Cramer 法则相结合的应用远不仅此,二者还可用于求缺项)11( -≤≤n k x k 的多项式的表达式、Lagrange 插值公式的推导等,还可与泰勒公式相结合来证明有关高阶微积分的问题,因所需的专业知识较深、综合性较强、推导计算等过程较复杂,这里不作研究.5 小结以上我们在回顾行列式相关知识的基础上,进一步比较系统地阐述了Vandermonde行列式的一些重要性质与其在行列式计算、多项式、向量空间中的基本应用等知识,使得我们对vandermonde行列式进一步加深了解与应用.在本文的撰写中,我通过查阅大量文献,在各代数学家研究的理论基础上选择并总结了适合大学生学习与应用的部分,通过举例向大家具体呈现了Vandermonde行列式的应用方法,同时开阔了自己的数学视野,培养了发散思维能力与科研素养,为今后继续对行列式及vandermonde行列式更深层次、更复杂层次的相关研究做铺垫.对于第一次论文的撰写,难免有纰漏,望老师提出宝贵的意见,以便更好地为我们的学习、科研和生活服务.参考文献谢辞在论文的选题及撰写过程中得到我的指导教师的悉心指导,在此表示衷心的感谢!李老师严谨治学的态度使我受益匪浅,在论文写作的这段时间里,她时刻关心着我的论文完成情况,并时常给我指出论文中的缺点和需要改进的地方,并指导我如何查找资料,使得我最后顺利完成论文.同时感谢其他所有帮助过我的老师、同学以及一起努力过的朋友.[1] 张贤科,许甫华.高等代数[M].北京:清华大学出版社,1998年4月:102.[2] 王萼芳,石生明.高等代数[M].北京:高等教育出版社.2003年6月:79-81.[3] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社.2004年7月:95-96.[4] 张禾瑞,郝炳新. 高等代数[M].北京:高等教育出版社.1999年5月:119-120.[5] 黄玉蝉.多项式、线性方程组及Vandermonde 行列式的相互应用[J].济南大学学宁夏师范学院2012届本科毕业生毕业论文报.1994(2):4-6.[6] 刘建中.范德蒙德行列式的一个性质的证明及其应用[J].河北大学学报(自然科学版).2000(4):8-10.[7] 袁旭华,杨海文,赵耀峰.几种类Vandermonde行列式的计算[J].延安大学学报(自然科学版).2006(1):7-9.[8] 王新长.Vandermonde行列式在高等代数中的应用[J].井冈山师范学院学报(自然科学版).2002(3):3-5.[9] 宴林.范德蒙行列式的应用[J].文山师范高等专科学校学报.2001(2):10-13.17。
论行列式计算机中vandermonde行列式的应用
论行列式计算机中vandermonde行列式的应用行列式计算机中vandermonde行列式在许多领域都具有重要的应用价值,尤其是在多项式拟合、回归分析、线性系统解法等方面发挥了重要作用。
本文主要讨论vandermonde行列式在行列式计算机中的应用,及其优点及局限性。
一、Vandermonde行列式的基本概念Vandermonde行列式是一种特殊的行列式,它可以由一组数据进行构成,表示一个n×n的行列式,它是由n个不同的数构成,如a1,a2,...an,以及对应的幂数构成,即X1,X2,...,Xn,其行列式形式为:a1^X1 a2^X2 ... an^Xna1^(X1-1) a2^(X2-1) ... an^(Xn-1)....a1^0 a2^0 ... an^0二、Vandermonde行列式在行列式计算机中的应用1.Vandermonde行列式在多项式拟合中的应用在多项式拟合中,Vandermonde行列式可以用来拟合一组数据,可以解决最小二乘问题,以获得一个最优的多项式拟合曲线。
因此,我们可以利用Vandermonde行列式来求解该问题,并随时追踪数据变化,以评估建模的效果。
2.Vandermonde行列式在线性系统求解中的应用Vandermonde行列式也可以用于求解线性系统,即方程组。
Vandermonde行列式可以用来表示方程组,并可以以减小解决线性系统的复杂度。
通过将线性系统表示为Vandermonde行列式,可以方便快捷地解决线性系统,而无需明确矩阵的形式。
三、Vandermonde行列式的优点及局限性1.优点a) vandermonde行列式可以有效地解决多项式拟合及线性系统求解的问题,可以更简单快捷地求解这些问题。
b)列式计算机中的vandermonde行列式可以帮助分析复杂的数据。
2.局限性a) vandermonde行列式只适用于固定长度的一组数据,如果数据太多或太少,则无法使用。
范德蒙的行列式
范德蒙的行列式摘要:一、范德蒙行列式的定义二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系2.行列式的可逆性3.行列式的乘积性质三、范德蒙行列式的计算方法1.递推法2.矩阵的行列式公式3.扩展行列式公式四、范德蒙行列式在数学中的应用1.线性方程组的求解2.矩阵的逆矩阵求解3.矩阵的LU 分解五、范德蒙行列式的推广1.范德蒙行列式的更高阶数2.带标号的范德蒙行列式正文:范德蒙行列式是一种特殊的行列式,它是以法国数学家范德蒙命名的。
范德蒙行列式具有很多重要的性质和应用,下面我们来详细了解一下。
一、范德蒙行列式的定义范德蒙行列式是一个n 阶行列式,它的定义如下:|A| = a11 * a22 * ...* ann- a12 * a21 * ...* an1+ a13 * a22 * ...* an2- a14 * a23 * ...* an3+ ...+ (-1)^(n-1) * a1n * a2n-1 * ...* ann其中,a11, a12, ..., ann 是矩阵A 的主对角线元素,a12, a21, ..., an1 是矩阵A 的次对角线元素,以此类推。
二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系范德蒙行列式的转置行列式等于其本身,即|A| = |A^T|。
2.行列式的可逆性当且仅当矩阵A 可逆时,范德蒙行列式不为零。
3.行列式的乘积性质设矩阵A 和矩阵B 都是n 阶矩阵,则有|AB| = |A| * |B|。
三、范德蒙行列式的计算方法1.递推法对于n 阶矩阵A,我们可以通过递推的方式计算范德蒙行列式。
具体来说,我们可以先计算出n-1 阶矩阵A"的范德蒙行列式,然后用主对角线元素和次对角线元素的关系来计算n 阶矩阵A 的范德蒙行列式。
2.矩阵的行列式公式根据矩阵的行列式公式,我们可以直接计算出范德蒙行列式。
3.扩展行列式公式通过扩展行列式公式,我们也可以计算范德蒙行列式。
范德蒙行列式的证明及其应用
范德蒙行列式的证明及其应用在高等代数中,范德蒙行列式是一个具有特殊形式和重要性质的行列式。
它不仅在理论上有着深刻的意义,而且在实际的数学问题求解中也有着广泛的应用。
范德蒙行列式的形式如下:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix}\接下来,我们先来证明范德蒙行列式。
证明范德蒙行列式通常使用数学归纳法。
当\(n = 2\)时,范德蒙行列式为:\begin{vmatrix}1 & 1 \\x_1 & x_2\end{vmatrix} = x_2 x_1\假设\(n 1\)阶范德蒙行列式成立,即:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_{n 1} \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_{n 1}^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 2} & x_2^{n 2} & x_3^{n 2} &\cdots & x_{n 1}^{n 2}\end{vmatrix} =\prod_{1\leq i < j\leq n 1} (x_j x_i)\对于\(n\)阶范德蒙行列式,将其按第一列展开:\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix} =\sum_{k = 1}^n (-1)^{1 + k} 1 \timesM_{1k}\其中\(M_{1k}\)是原行列式中第一行第\(k\)列元素的余子式。
毕业论文范德蒙行列式
可得
5 / 16
2、 若将范德蒙行列
3、 若将范德蒙行列式
1.3 范德蒙行列式的推广定义及证明 利用行列式的性质,我们可以简化行列式的计算。但是对于一些结构特
殊的行列式,可以考虑用一些特别的方法。下面以n阶范德蒙行列式为例, 我们来说明怎样利用n阶范德蒙行列式来简化行列式的计算。对于(1)式而 言,n阶行列式D_n的每列都是某一个数的不同方幂,且自上而下方幂次数由 0递增至n-1。根据范德蒙行列式的这种结构特点,将所给行列式化为范德蒙 行列式,然后利用其结果计算。个人收集整理 勿做商业用途
2 / 16
商业用途
商业用途
个人收集整理 勿做
个人收集整理 勿做
(
)(
)(
)
途
个人收集整理 勿做商业用
后面这行列式是一个n-1级的范德蒙德行列式,根据归纳法假设,它等于所有可
能差 (2≤j<i≤n);而包含 的差全在前面出现了.因之,结论对 级范德 蒙德行列式也成立.根据数学归纳法,完成了证明. 个人收集整理 勿做商业用途
这里
,i=1,2, 第三章
15 / 16
个人收集整理 勿做商业用途
拉格朗日插值公式
公 式 内 容 求 一 个 n 次 多 项 式 f (x) an an1x …… a0xn 使 得 f (x0 ) y0 ,
f (x1) y1 ,…… f (xn ) yn ,其中 X 0 , , X n 是两两互不相同的数,y0 , , yn 是 n 1
从而
,这显然不合题意,
故以下考虑 当 时最高阶无穷小为6阶的情形.令
等价于
此时 为未知数的线性方程组,其系数行列式为范德蒙行列式
论行列式计算机中vandermonde行列式的应用
论行列式计算机中vandermonde行列式的应用
Vandermonde行列式是一种重要的行列式,它可以在行列式计算机中应用于不同的工程领域。
在这篇文章中,我将讨论Vandermonde 行列式的应用,以及它在行列式计算机中的重要性。
Vandermonde行列式是一种常见的行列式,它的特点是它的元素是由两个数字的乘积来确定的,也就是说,它的元素的形式是
xi^(n-i),其中x是任意的实数,而n是任意的正整数。
此外,Vandermonde行列式的行数和列数均可以任意指定,可以任意缩放,且它也可以用来代表系数矩阵。
由于Vandermonde行列式的特殊性质,它可以用于行列式计算机中的多种工程领域,例如图像处理、多媒体压缩和信号处理等。
在图像处理中,Vandermonde行列式可以用于图像缩放,这样就可以改变原始图像的大小,以适应指定的画布尺寸。
此外,在多媒体压缩中,Vandermonde行列式可以用于图像的稀疏编码,这样可以有效地减少图像的文件大小,以节省存储空间。
此外,在信号处理中,Vandermonde 行列式可以用于曲线拟合,这样可以更好地描述复杂的物理系统状态。
另外,Vandermonde行列式还可以用于解决多元函数方程组,因为它可以把函数变成矩阵表示,用矩阵乘法来解决该问题。
在这种情况下,Vandermonde行列式可以用来快速求解多元函数方程组的根,从而大大提高计算机的计算效率。
总之,Vandermonde行列式因其独特的性质而受到广泛的应用,它可以用于多种工程领域,为行列式计算机提供便利。
它有助于减少
计算机计算时间,节省存储空间,提高系统效率,并为行列式计算机应用开发提供了新的思路。
范德蒙行列式的应用
范德蒙行列式的应用范德蒙行列式是线性代数中的一个重要概念,它在许多领域中都有广泛的应用。
本文将从几何、物理、概率和统计四个方面介绍范德蒙行列式的应用。
一、几何1.计算向量组的体积向量组的体积可以通过范德蒙行列式来计算。
假设有三个向量a,b和c,它们所构成的平行六面体的体积可以表示为:V=|a·(b×c)|其中,|b×c|表示向量b和向量c所构成的平面上的面积,a·(b×c)表示向量a与该平面垂直的投影长度。
因此,V可以写成:V=|a·(b×c)|=|a b c|=|abc|这里的“abc”就是一个3阶范德蒙行列式。
2.求解三角形面积在平面几何中,三角形面积可以通过海龙公式或海涅公式来计算。
而另一种方法是使用范德蒙行列式。
假设三角形顶点为A(x1,y1),B(x2,y2)和C(x3,y3),则三角形ABC所构成的面积S可以表示为:S=1/2 |x1 y1 1||x2 y2 1||x3 y3 1|这里的“xyz”就是一个3阶范德蒙行列式。
二、物理1.计算电荷分布的能量在电学中,电荷分布所具有的能量可以通过静电能公式来计算。
而静电能公式可以表示为:U=1/2 ∑i∑j qi qj / (4πεr)其中,qi和qj表示第i个和第j个电荷,r表示它们之间的距离,ε是真空介质中的介电常数。
而∑i∑j qi qj可以表示为一个n阶范德蒙行列式:∑i∑j qi qj =|q11 q12 … q1n||q21 q22 … q2n||… … … ||qn1 qn2 … qnn|因此,静电能公式可以写成:U=1/2|q11/q12/…/q1n||q21/q22/…/q2n||… … … ||qn1/qn2/…/qnn| / (4πεr)这里的“qi”就是一个长度为n的向量。
三、概率计算概率分布函数在概率论中,概率分布函数可以通过累积分布函数来计算。
范德蒙德行列式
02
范德蒙德行列式的性质
行列式的值唯一确定
• 范德蒙德行列式的值是由其元素唯一确定的。行列式的元素满足线性关系,即对于任意两个不同的排列,其对 应的行列式值是相等的。这种线性关系是范德蒙德行列式的一个重要性质,也是其广泛应用于矩阵计算和线性 方程组求解的基础。
转置不改变行列式的值
• 范德蒙德行列式的转置不改变其值。也就是说,对于任意一个n阶范德蒙德行 列式D,有D^T=D。这个性质在计算行列式时非常重要,因为它意味着我们 不需要对每个元素进行单独处理,而可以将它们按照一定的规律进行排列,从 而简化计算过程。
范德蒙德行列式的推广
范德蒙德行列式是组合数学中的重要公式,可以用于求解一 些组合数的问题。通过对该行列式的推广,我们可以将其应 用于更广泛的数学问题中。
推广的范德蒙德行列式可以用于求解更复杂的组合数问题, 也可以用于研究矩阵的特性。通过对行列式的深入研究,我 们可以得到许多有价值的数学结论。
范德蒙德行列式在量子力学中的应用
代数余子式
• 在范德蒙德行列式的定义中,我们可以看到每个子行列式都是由给定点的坐标差组成的。这些子行列式称为代 数余子式(Algebraic Minors)。
范德蒙德矩阵
• 范德蒙德矩阵(Vandermonde Matrix)是由给定平面上任意n个点的所有有 序坐标差组成的矩阵。其行向量和列向量都由给定点的坐标构成。
THANK YOU
感谢观看
03
范德蒙德行列式的计算方 法
递归法
递归法是一种通过不断将问题分解为更小的子问题来解决问题的方法。在计算范德蒙德行列式时,可 以将行列式拆分成更小的行列式,然后逐个计算,最终得到原行列式的值。
具体来说,我们可以将范德蒙德行列式的每一行都拆分成两个或更多的行,然后利用拆分后的行列式 与原行列式的递推关系,从低阶行列式推导出高阶行列式的值。这种方法虽然比较繁琐,但对于计算 一些低阶的范德蒙德行列式非常有效。
线性代数中的范德蒙德矩阵
线性代数中的范德蒙德矩阵范德蒙德矩阵(Vandermonde Matrix)是线性代数中的一种特殊矩阵形式,它具有重要的数学性质和应用。
本文将介绍范德蒙德矩阵的定义、性质以及它在代数和数值分析等领域的应用。
一、范德蒙德矩阵的定义范德蒙德矩阵是由一组数列构成的矩阵,它的每一列代表一个等比数列,而每一行代表数列中的元素。
具体地说,一个n阶范德蒙德矩阵的第i行第j列元素为a^(j-1),其中a是指定的常数。
形式化表示为:```V = [1 a a^2 ... a^(n-1)1 b b^2 ... b^(n-1)...1 z z^2 ... z^(n-1)]```二、范德蒙德矩阵的性质1. 范德蒙德矩阵是满秩的。
这意味着它的行向量(或列向量)是线性无关的,从而可逆。
2. 范德蒙德矩阵的行列式为Vandermonde determinant,可以表示为:```det(V) = Π(i < j) (z_j - z_i)```其中z_i是矩阵第i行的元素。
3. 范德蒙德矩阵的转置矩阵等于它本身的伴随矩阵。
也就是说,如果V是一个范德蒙德矩阵,则V的转置矩阵等于V的伴随矩阵。
三、范德蒙德矩阵的应用1. 插值多项式:范德蒙德矩阵在插值多项式的求解中起到重要的作用。
给定一组数据点(x_i, y_i),其中i=1,2,...,n,我们可以通过求解范德蒙德矩阵和数据点关于多项式系数的线性方程组来构造一个插值多项式。
2. 数值分析:范德蒙德矩阵在数值分析中的应用很广泛。
例如,在多项式插值、最小二乘拟合、信号处理和图像处理等领域,范德蒙德矩阵都有着重要的应用。
3. 代数性质:范德蒙德矩阵被广泛研究和应用的一个原因是它具有许多有趣的代数性质。
例如,范德蒙德矩阵的特征值和特征向量与多项式插值和多项式逼近问题相关联。
总结:范德蒙德矩阵是线性代数中一种重要的特殊矩阵形式,具有满秩、可逆等性质。
它在插值多项式、数值分析和代数性质研究等领域都有着广泛应用。
Vandermonde行列式及其应用
(xi-x) 其中 σ=Σx1…xi-1xi+1 j ,
i = 1
[1]张禾瑞, 郝炳新.高等代数[M].北京: 高等教育出 版社, 1999. 高等教育出 [2]北京大学数学系.高等代数[M].北京: 版社, 2003. 黑龙江教育出 [3]白述伟.高等代数选讲[M].哈尔滨: 1996. 版社,
科
技
论
坛
Vandermonde 行列式及其应用
杨文泉
(佳木斯大学理学院, 黑龙江 佳木斯 154007 )
摘 要 :介绍了 Vandermonde 行列式及其在计算行列式等方面的应用。 关键词 :行列式; Vandermonde 行列式; 多项式; 微积分
行列式最早出现在 16 世纪关于线性方程组 的求解问题中,时至今日行列式理论的应用却远 不如此, 它在消元论、 矩阵论等诸多问题中都有广 泛的应用, 它是高等代数中的一个重点和难点, 是 矩阵、 向量空间和线性变换的基础。 线性方程组、 在行列式理论中, Vandermonde 行列式以其独特 的性质令人瞩目, 它构造独特、 形式优美、 应用广 泛, 因而成为一个著名的行列式。 这里主要介绍了 Vandermonde 行列式的定义、计算方法及其在各 个领域内的应用。 1 Vandermonde 行列式的定义
参考文献
由这个结果立即得出 (1 ) 为零的充分 定理 2 Vandermonde 行列式 x2,…xn 这 n 个数中至少有两个相 必要条件是 x1, 等。 3 Vandermonde 行列式的应用 3.1 Vandermonde 行列式在求解行列式中的 应用
将 Dn 看作关于 y 的多项式, 把 Dn+1 按最后一 2+n+1 列展开便知 y 的系数为 (-1 ) Dn 而由上式易知 y
不完全的范达蒙(vandermonde)行列式
不完全的范达蒙(vandermonde)行列式
范达蒙(Vandermonde)行列式是一个基本的数学概念,它
是一种多项式拟合方法,可以用来拟合复杂的函数形式。
它由十九世纪法国数学家Alexandre-Théophile Vandermonde发明,它具有一系列独特的优点,可以用来拟合复杂的函数形式。
范达蒙行列式的一般形式为:
A(x)=a_0+a_1x+a_2x^2+...+a_nx^n其中,a_
1,a_
2,...,a_n是常数系数。
可以将范达蒙行列式用于拟合数据,以获得最佳拟合。
范达蒙行列式的一个重要优势就是它可以轻松地拟合复杂的数据集,而且可以把这些数据可视化,这样更容易理解。
它也可以用于求解非线性方程组,因为它可以将复杂的数据分解成多个易于理解的子问题。
此外,范达蒙行列式还可以用于拟合统计数据,如拟合正态分布、指数分布等等。
它可以帮助我们更好地理解数据,从而帮助我们做出更好的决策。
不完全的范达蒙行列式是指当拟合的函数不完全符合拟合的数据时,可以使用不完全的范达蒙行列式来拟合数据。
通常,
我们会先使用不完全的范达蒙行列式来拟合数据,然后再使用更精确的范达蒙行列式来拟合数据。
总之,范达蒙行列式是一种非常有用的数学工具,可以用来拟合复杂的函数形式,以及拟合统计数据,而不完全的范达蒙行列式则可以用来拟合不完全符合拟合数据的函数。
因此,范达蒙行列式和不完全的范达蒙行列式都是非常有用的数学工具,可以用来帮助我们更好地理解数据和做出更好的决策。
朗斯基行列式和范德蒙行列式
朗斯基行列式和范德蒙行列式朗斯基行列式和范德蒙行列式是线性代数中的两个重要概念,它们在数值计算、矩阵分析等领域有着广泛的应用。
一、朗斯基行列式朗斯基行列式(Wronski determinant)是线性代数中的一个重要概念,它是由两个线性无关的向量组构成的行列式。
定义:设向量组A和向量组B是线性无关的,且向量组A和向量组B的秩相等,则存在唯一的行列式值D,使得D = det(a1, a2, ..., an) * det(b1, b2, ..., bn)其中a1, a2, ..., an是向量组A的基,b1, b2, ..., bn是向量组B的基。
朗斯基行列式的性质:1. 朗斯基行列式是唯一确定的,即两个线性无关的向量组构成的朗斯基行列式相等当且仅当这两个向量组等价。
2. 朗斯基行列式的值是非零的,即向量组A和向量组B是线性无关的。
3. 朗斯基行列式的值可以用来判断一个线性方程组是否有唯一解。
二、范德蒙行列式范德蒙行列式(Vandermonde determinant)是线性代数中的一个特殊行列式,它是由给定的一组基构成的。
定义:设a1, a2, ..., an是线性空间V的一组基,则范德蒙行列式定义为D = det(a1, a2, ..., an)其中a1, a2, ..., an是V的一组基。
范德蒙行列式的性质:1. 范德蒙行列式的值是非零的,即这组基是线性无关的。
2. 范德蒙行列式的值可以用来计算一个多项式的根的个数和分布情况。
3. 范德蒙行列式可以用来计算一个多项式的导数和积分。
4. 范德蒙行列式可以用来解决一些特殊类型的线性方程组问题。
朗斯基行列式和范德蒙行列式是线性代数中的两个重要概念,它们在数值计算、矩阵分析等领域有着广泛的应用。
范德蒙行列式的证明及其应用
范德蒙行列式的证明及其应用work Information Technology Company.2020YEAR范德蒙德行列式的证明及其应用摘要:介绍了n阶范德蒙行列式的定义,用递推法和拉普拉斯定理两种方法证明了范德蒙行列式,辅以实例研究了它在高等代数中的一些应用.向量空间理论用来解决线性问题;在线性变换理论、多项式理论和微积分理论中,主要用它构造线性方程组,进而应用克拉默法则或相关定理判断根的情况;在行列式计算中,主要运用范德蒙行列式的结论简化n阶行列式的计算过程.探究范德蒙行列式的历史及相关应用,为更进一步钻研其相关性质与应用奠定了良好的基础.关键词:范德蒙德行列式;向量空间;线性变换;应用1引言行列式本身有着长远的历史发展过程.它的理论最早可追溯到十七世纪末,在十九世纪末,其理论体系已基本形成.1683年,定义行列式概念的是日本数学家关孝和.同一年,德国数学家莱布尼茨首先开始使用指标数的系数集合来表示有三个未知数的三个一次方程组的系数.他这种解决方程组的思维方式为行列式理论的深入研究工作打下了坚实地基础.1771年,范德蒙创造性的在深入研究行列式理论的基础上,尝试解线性方程组.他这种勇于创新、敢于探索的精神为大家所认可,被公认为行列式的奠基人.他以现在被大家所熟悉的拉格朗日著作中的相关知识为理论基础,进行了反复的钻研,为后来研究群的概念奠定了良好的基础.第一个阐述行列式的数学家便是范德蒙.他运用自己的聪明才智、活跃的思维、批判的科研态度给出了现代代数书中二阶子式及余子式的定义,经过推理,演绎这一系列严谨的过程,完善了行列式的概念,并给出了行列式的数学符号记录.1772年,皮埃尔-西蒙.拉普拉斯在范德蒙著作和自身灵感的启示下,思维方法发生了变化,得出了子类型的概念.自此起,人们对行列式展开了单独的研究.人们为了深入了解行列式理论的本质特征,在19世纪展开了更深层次的研究.柯西积极吸收前人的劳动成果的同时,首次给出了行列式的系统理论.包括双重组标记法、行列式的乘法定理等.1832年至1833年,问卡尔.雅可给出了一个特殊的行列式的计算结果.基于此,1839年,卡塔兰发现了Jacobian行列式.范德蒙行列式整齐、完美的结构形式让我们体验到数学之美.简单探索它的应用,感悟数学的魅力.如果我们能够深入探索范德蒙行列式并灵活运用它,未来将更广泛的应用在数学各个领域.2范德蒙行列式的定义及证明2.1定义行列式1121121111---n nn n na a a a a a(1)称为n 阶的范德蒙(Vandermonde )行列式.由范德蒙行列式的定义,我们可以得出结论:对任意的(2)n n ≥阶范德蒙行列式等于n a a a ,,21这n 个数的所有可能的差)1(n i j a a j i ≤<≤-的乘积. 2.2范德蒙德行列式的证明 2.2.1用递推法证明12112211120011111221111a a a a a a a a a a D n n n n n n n n r a r r a r r a r n n n n n -----------−−−−−−→−---)()()()()()(12132312221133122123121a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n c ---------−−−→−---展开按上式112312)())((----=n n D a a a a a a仿上做法,有2224231)())((-----=n n n D a a a a a a D 再递推下去,直到11=D .故)()()())()(())((112242311312j i ni j n n n n n a a a a a a a a a a a a a a a a D -=-------=∏≤<≤-2.2.2用Laplace 定理证明已知在n 级行列式nnnjn in iji n j a a a a a a a a a D111111= 中,除第i 行(或第j 列)的元素ij a 以外,行列式中其余元素全是零,则由Laplace 定理得:此行列式等于ij a 与它的代数余子式ij A 的乘积ij ij A a D =,在113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D中,从最后一行开始,每一行减去它相邻前一行的1a 倍,得)()()(0)()()(0011111213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a D n n n n n n n n n ---------=---根据上述定理)()()()()()(1213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a D n n n n n n n n n ---------=---把每列的公因子提出来,得223223211312111)())((------=n nn n nn n a a a a a a a a a a a a D等式右边的第二个因子是1-n 阶行列式,用1-n D 表示,则上式中111312)())((----=n n n D a a a a a a D同样地,可以得到2224231)())((-----=n n n D a a a a a a D此处2-n D 是一个2-n 阶范德蒙行列式,一直继续下去,得)()())(())((122311312-------=n n n n n a a a a a a a a a a a a D)(1j i ni j a a -=∏≤<≤3范德蒙德行列式的应用3.1在向量空间理论中的应用在解析几何中,直观上我们经常认为一维、二维、三维向量空间是有意义的.当3>n 时,就没有直接的现实意义,但在高等代数这门课程中,n 维向量空间却是很常见的.当涉及线性相关问题时,通常我们通过构造同构映射的方法,将其转化为范德蒙行列式的问题,进而利用该行列式是否为零判断线性相关性.例 1.设V 是数域F 上的n 维向量空间,任给正整数n m ≥,则在V 中存m 个向量,其中任取n 个向量都线性无关]7[.证明:因为n F F ≅,所以只须在n F 中考虑.取)3,,3,3,1(121-=n a))3(,,3,1(2122-=n a))3(,,3,1(1m n m m a -= 令.1,)3()3(31)3()3(31)3()3(312112*********1m k k k D n k n k k k n k k k n k n nnnk≤≤≤≤≤=---121212)3()3(31)3()3(31)3()3(31222111---=n k k k n k k k n k k k n n n nD 是范德蒙行列式 且0≠n D ,所以n k k k a a a ,,,21 线性无关.3.2在线性变换中的应用线性变换是代数学中的一个重要概念,它的抽象性使我们在掌握这个概念时比较困难.此时,我们可以应用线性变换的定义及性质,考虑构造新函数,运用方程思想解决此类问题.例 2.设数域F 上的n 维向量V 的线性变换σ有个互异的特征值n λλλ,,,21 ,则与σ可交换的V 的线性变换是12,,,,-n e σσσ 的线性组合,这里e 为恒等变换.证明:由题意,由于σ是n 维向量V 上的线性变换,由线性变换的定义得n i i i i ,,2,1,)( ==αλασ,假设{}F k k V i ∈=|αλ是δ的不变子空间.根据不变子空间的特点,δ是与σ可交换的线性变换.令112210--++++=n n x x x e x σσσδ 且n i k i i i ,,2,1,)( ==αασ,则有以下方程组⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=------111012121021111101n n n n nn n n n x x x k x x x k x x x k λλλλλλ (2) 由于线性方程组的系数矩阵的行列式)(j 1j i ni D λλ-∏=≤<≤,所以方程组(2)有唯一解,即就是12,,,,-n e σσσ 这n 个向量线性无关,题目得证. 3.3多项式理论中的应用在多项式理论中,许多题目涉及求根问题.一般情况下,我们可以用综合除法解决这类问题,但是在不知道多项式函数最高次项系数和常数项系数的条件下,我们可根据题意列出线性方程组.通过计算该线性方程组对应的系数矩阵的行列式是否为零判断根的情况,进而得出结论.例 3.设n n x c x c c x f +++= 110)(.若()f x 至少有1+n 个不同的根,则0)(=x f .证明:取121,,,+n x x x 为()f x 的1+n 个不同的根.则有由齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++++000121211022222101212110n n n n n nn n n x c x c x c c x c x c x c c x c x c x c c (3) 其中n c c c ,,,10 看作未知量.且0)(1≠-∏=≤<≤j i ni j x x D .由于该方程组的等式右端的数均为零,由变形后的定理得:此方程组的解全为零.从而010====n c c c .即)(x f 是零多项式. 3.4微积分中的应用例4.设)(y f 在],[b a 上连续,在),(b a 内存在2阶导数]2[.证明:在b x a <<上有)(21)()()()(''c a b a f b f a x a f x f f=-----.这里),(b a c ∈证明:在],[b a 上构造函数)(1)(1)(1)(1)(2222b f b bx f x x a f a a y f y y y F =是范德蒙行列式,而函数)(y F 满足中值定理条件: 因)()()(y F x F a F ==.由中值定理,在),(b a 内存在b x x x a <<<<21,使0)()(2''1''==x F x F .故存在),(21x x c ∈,使0)(''=c F .即就是0)(1)(1)(1)(200)(222''''==b f b b x f x x a f a ac f c F .按行列式定义展开,即得所证. 3.5行列式计算中的应用涉及行列式计算问题时,经常运用行列式的性质解决问题,但其复杂多变的形式给行列式的计算增加了难度.对于具体的行列式,我们可以根据它的性质和定义解决.但对于那些结构特殊的、抽象的行列式,可通过观察、归纳总结,我们可以用特殊的方法迅速解决问题. (1)用提取公因式计算行列式例5.计算nn n n n n n D 222333222111= 解:由观察得到:该行列式中每行元素都分别是同一个数的不同方幂,并且其方幂次数从左至右依次增加,但它的次数是由1递加至n ,由行列式的相关性质,得1212121333122211111321---⨯⨯⨯⨯=n n n n n n n n D仔细观察,我们在右边的行列式中,从第2行开始,每行的1都写成该行中这个自然数的零次幂的形式,则它为n 阶范德蒙行列式,故)]1([)2()24)(23)(1()13)(12(!--------=n n n n n D n!1!2)!2()!1(! --=n n n (2)对换行列式中每一行(或每一列)的次序例6.计算1111)()()1()1(1111n b b b n b n b b b b b D n n n n n nn ------=---+ 分析:遇到这类问题,我们经常考虑运用行列式的六条性质来解决.为此,我们可以调换该行列式的次序,将它化为标准形式.解:把1+n 行依次与上面的每一行交换至第1行,第n 行依次与上面的每一行交换至第2行,以此类推,由自然数排列的逆序原则,共经过2)1(12)2()1(+=+++-+-+n n n n n 次交换 得到1+n 阶范德蒙行nn nn n n n n n n b b b n b b b nb b b D)()1()()1(1111)1(1112)1(1-------=---++)]1([)]1(2)[()2)(1()1(2)1(--------------=+n b n b b b b n b b b b b n n !1k nk =∏=(3)用拆行(列)计算行列式n 阶行列式中的i 行(列)由两个互异元素构成,且任意相邻两行(列)都含有共同元素,那么我们可以利用行列式的初等变换原则,通过消去一些分行中某一元素的方法,巧妙运用范德蒙行列式结论.例7.计算4阶行列式3424332332223121244233222211432111111111a a a a a a a a a a a a a a a a a a a a D ++++++++++++=分析:观察此行列式,我们可以看出:该行列式满足拆项行(列)计算行列式的特点,因此我们可以用该方法来解决这个问题.解:消去此行列式第二行每一项中的数字1,得:342433233222312124423322221143211111a a a a a a a a a a a a a a a a a a a a ++++++++ (4) 消去行列式 (4)第三行中加号前的元素,得:34243323322231212423222143211111a a a a a a a a a a a a a a a a ++++ (5) 再从行列式(5)中消去第4行中与第三行一样的元素得:343332312423222143211111aaaaa a a aa a a a因为该行列式为4阶范德蒙行列式,故)(11114134333231242322214321j i i j a a a a a a a a a a a a a a -∏==≤<≤ (4)用加边法计算行列式行列式的各行(或列)有明显范德蒙行列式定义的特点,但共同元素的方幂并不是按连续的自然数的顺序依次增加,此时我们可以考虑用加边法.例8.计算4级行列式444422221111d c b a dcbad c b a D =分析:D 不是范德蒙德行列式,但具有该行列式的特点,可考虑构造5级的范德蒙德行列式,再利用范德蒙德行列式的结果,间接求出D 的值. 解:构造5阶范德蒙行列式按第五列展开得45534523525155x A x A x A x A A D ++++= 其中3x 的系数为D D A -=-=+5445)1(又利用范德蒙行列式的结果得))()()(())()()()()((5d x c x c d b x b d b c a x a d a c a b D ----⨯------= ])([))()()()()((34 ++++-⨯------=x d c b a x c d b d b c a d a c a b其中3x 的系数为))()()()()()((d c b a c d b d b c a d a c a b D +++------=故))()()()()()((d c b a c d b d b c a d a c a b D +++------=4结束语范德蒙德行列式还可以应用于数学其他科目上.例如:在数学分析中,我们可以用它来构造高阶无穷小量,在线性代数中,我们可以用它来解决向量组线性相关性的证明问题.范德蒙行列式广泛的作用更加激发了我们深入探索它的欲望.我们希望在掌握相关的基础课程和基本理论之上,研究范德蒙行列式,用科学技术指导实践,更好的服务社会,促进经济发展.参考文献:[1]范臣君.范德蒙行列式在构造高阶无穷小的应用[J].吉林师范大学学报,2015.2(1) [2]万勇,李兵.线性代数[M].上海:复旦大学出版社,2006. [3]何江妮.范德蒙德行列式的证明及其应用[J].科教文化.[4]Kenneth C .Louden .Compiler Construction Principles and Practice[M].北京:机械工业出版社,2002.4444433333222225a 11111x d c b a x dc b a xd c b a x d c b D =[5]徐杰.范德蒙行列式的应用[J].科技信息,2009(17).[6]SERGE Lang.Linear Algebra(2nd ed)[M].NeW York:Columbia University,1988.[7]刘彦信.高等代数(第三版)[M].西北工业大学出版社,2004.[8]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].北京:高等教育出版社,2003.[9]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].北京:高等教育出版社,2003.Proof of Fandemengde Determinant and its ApplicationAbstract:This paper introduces the definition of n-order Vandermonde determinant. We proved Vandermonde determinant by recurisive method and Laplasse theorem , and explored its application in the higher algebra by some examples.Vector space theory is used to solve linear problem; It was used to structure linear equcations in linear transformation theory, polynomial theory and calculus theory , and judge the situation of root by Cramers rule or related theorem; In the calculation process of determinant calculation,It is maily used to simplify the n-order determinant. It laid a good foundation for further studying its properties and application by exploring the history of Vandermonde determinant and related applications.Keywords: fandemeng determinant; vectort space; linear trasformation; application- 10 -。
最小二乘法 范德蒙德行列式
最小二乘法是一种数学优化技术,它通过最小化预测值与实际观测值之间的平方误差和来寻找数据的最佳函数匹配。
在最小二乘法的应用中,范德蒙德行列式(Vandermonde's Determinant)是一个重要的工具。
范德蒙德行列式是线性代数中的一个概念,它表示一个n阶行列式,其元素是n个不同复数的幂。
范德蒙德行列式在多项式插值、最小二乘法等领域有重要应用。
在最小二乘法的背景下,范德蒙德行列式通常用于求解线性方程组。
给定一组数据点(x1, y1),(x2, y2),...,(xn, yn),我们希望找到一个多项式p(x),使得p(xi)≈yi对所有i都成立。
这可以通过最小二乘法来实现,其中范德蒙德行列式用于计算方程的解。
范德蒙德行列式的计算公式为:
V=∏(xi−xj)i≤j(i,j∈{1,2,...,n})V = \prod_{i=1}^{n} \prod_{j=1}^{i} (x_i -x_j)V=i=1∑nj=1(xi−xj)其中,xi是给定的n个不同的复数,n是这些数的数量。
通过最小二乘法和范德蒙德行列式,我们可以找到最佳拟合数据的多项式,这对于数据分析和科学计算等领域非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 然后, 将此 n+1 阶行列式第一行乘-a ( i=1, 2, …, n ) 加到第 i+1 行得
D=
例 2 计算 n 阶行列式 仿上做法有 Vn-1 (x2, …x) (x3-x) x4-x) (xn-x) (x3, … n = 2( 2 … 2 Vn-2 x) n 再递推下去, 直到 V1=1 故 V( x2, …x) (x2-x) x3-x) (xn-x) (x3-x) n x1, n = 1( 1 … 1· 2 (xn-x) (xn-xn-1 ) · 1= (xi-x) (x4-x) 2 … 2 … j 由以上的计算易得 定理 1n 阶 Vandermonde 行列式 V( x2, …x) n x1, n = (1 ) 解 此行列式貌似 Vandermonde 行列式, 只 x2, …, xn 为元素的第二行, 而又多了 是缺少以 x1, x2n, …, xnn 为元素的第 n 行, 可利用升阶法将 以 x1n, Dn 变为 n+1 阶 Vandermonde 行列式 Dn=
科
技
论
坛
Van(佳木斯大学理学院, 黑龙江 佳木斯 154007 )
摘 要 :介绍了 Vandermonde 行列式及其在计算行列式等方面的应用。 关键词 :行列式; Vandermonde 行列式; 多项式; 微积分
行列式最早出现在 16 世纪关于线性方程组 的求解问题中,时至今日行列式理论的应用却远 不如此, 它在消元论、 矩阵论等诸多问题中都有广 泛的应用, 它是高等代数中的一个重点和难点, 是 矩阵、 向量空间和线性变换的基础。 线性方程组、 在行列式理论中, Vandermonde 行列式以其独特 的性质令人瞩目, 它构造独特、 形式优美、 应用广 泛, 因而成为一个著名的行列式。 这里主要介绍了 Vandermonde 行列式的定义、计算方法及其在各 个领域内的应用。 1 Vandermonde 行列式的定义
参考文献
由这个结果立即得出 (1 ) 为零的充分 定理 2 Vandermonde 行列式 x2,…xn 这 n 个数中至少有两个相 必要条件是 x1, 等。 3 Vandermonde 行列式的应用 3.1 Vandermonde 行列式在求解行列式中的 应用
将 Dn 看作关于 y 的多项式, 把 Dn+1 按最后一 2+n+1 列展开便知 y 的系数为 (-1 ) Dn 而由上式易知 y
形如
式 D= a1, …, an 的齐次线性方程组的系 这个关于 a0, 数行列式是 Vandermonde 行列式
的行列式,称为 x1, x2,…xn 的 n 阶 Vander- monde 行列式, 记作 V( x2, …x) n x1, n 。 2 Vandermonde 行列式的计算及性质 Vandermonde 行列式的解法有递推法和数学 2] ,下面以递推法为例介绍 Vander- 归纳法两种 [1, monde 行列式的计算: V( x2, …x) n x1, n
-51-
这个矛盾表明 ( f x ) 至 因此 a0=a1=a2=…=an=0, 多有 n 个互异根。 3.3 Vandermonde 行列式在微积分中的应用 例 4 设( f y ) 在[a, b]上连续, 在 (a, b ) 内存在 2 阶导数, 证明在 a<x<b 上有 fb ( fx ) -f (a ) ( ) -f (a ) x-a b-a 1 = f" (c ) , x-b 2 这里 c∈ (a, b ) 。 证 在[a, b]上构造函数 1 y y2 ( fy ) 1 a a2 ( fa ) F (y ) = 1 x x2 ( fx ) 1 b b2 ( fb ) 是 Vandermonde 行列式, 则F (y ) 在[a, b]上连 续, 在 (a, b ) 内存在 2 阶导数。因 F (a ) =F (x ) =F (b ) = 0, 则由中值定理存在 a<x1<x<x2<b, 使 F' (x) (x) 1 =F' 2 =0, 从而再由中值定理, 存在 c∈ (x1, x) 使 F" (c ) = 2 , 即 0, (c ) 0 0 2 f" 1 a a2 ( fa ) F" (c ) = =0, 1 x x2 ( fx ) 2 1 b b ( fb ) 展开行列式即得所证。
行列式的计算是线性代数的重点内容之一, …xn, 故有 在一些行列式求解问题中,常可见到 Vander- monde 行列式的踪影,此时提示我们可利用行列 式的性质或拆项、 升阶等方法, 将给定行列式转化 3.2 Vandermonde 行列式在多项式理论中的 为Vandermonde 行列式的形式,从而利用其结果, 应用 求出原行列式的值, 恰当灵活地运用 Vandermonde 例 3 证明一个 n 次多项式至多有 n 个互异 根。 行列式会大大简化某些复杂行列式的计算[3]。 例 1 计算 证 设( f x ) =a0+a1x+a2x2+…+anxn 有 n+1 个互异 x2, …, xn+1, 则有 的零点 x1, 2 n D= ( f x) 1≤i≤n+1。 i =a0+a1xi+a2x i+…+anx i=0, 即 解 将原 n 阶行列式升阶为一个 n+1 阶行列
n n-1 的系数为 (-1 ) σ
(xi-x) 其中 σ=Σx1…xi-1xi+1 j ,
i = 1
[1]张禾瑞, 郝炳新.高等代数[M].北京: 高等教育出 版社, 1999. 高等教育出 [2]北京大学数学系.高等代数[M].北京: 版社, 2003. 黑龙江教育出 [3]白述伟.高等代数选讲[M].哈尔滨: 1996. 版社,