第5章图像几何变换
数字图像处理第五章
系统失真是有规律的、能预测的;非系统失真则是随 机的。
当对图像作定量分析时,就要对失真的图像先进行精 确的几何校正(即将存在几何失真的图像校正成无几何失 真的图像),以免影响定量分析的精度。
几何校正方法
图像几何校正的基本方法是先建立几何校正的数学模型; 其次利用已知条件确定模型参数;最后根据模型对图像进行 几何校正。通常分两步: ①图像空间坐标变换;首先建立图像像点坐标(行、列 号)和物方(或参考图)对应点坐标间的映射关系, 解求映射关系中的未知参数,然后根据映射关系对图 像各个像素坐标进行校正; ②确定各像素的灰度值(灰度内插)。
因此还有
f ( x , y ) f ( x, y) ( x , y )
二维线性位移不变系统 如果对二维函数施加运算T[· ] ,满足 ⑴ T f1 x, y f 2 x, y T f1 x, y T f 2 x, y ⑵ T af x, y aT f x, y
但实际获取的影像都有噪声,因而只能求F(u,v)的估 ˆ (u, v) 。 计值 F
N (u, v) ˆ F (u, v) F (u, v) H (u, v)
再作傅立叶逆变换得
1 j 2 ( ux vy) ˆ ( x, y) f ( x, y) f N ( u , v ) H ( u , v ) e dudv
采用线性位移不变系统模型的原由: 1)由于许多种退化都可以用线性位移不变模型来近似, 这样线性系统中的许多数学工具如线性代数,能用于 求解图像复原问题,从而使运算方法简捷和快速。 2)当退化不太严重时,一般用线性位移不变系统模型来 复原图像,在很多应用中有较好的复原结果,且计算 大为简化。 3)尽管实际非线性和位移可变的情况能更加准确而普遍 地反映图像复原问题的本质,但在数学上求解困难。 只有在要求很精确的情况下才用位移可变的模型去求 解,其求解也常以位移不变的解法为基础加以修改而 成。
计算机图形学第五章图形变换
第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。
难 点:理解常用的平移、比例、旋转变换,特别是复合变换。
课时安排:授课4学时。
图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。
为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。
有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。
例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。
点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。
所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。
例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。
将通一地用矩阵乘法来实现变换的组合。
常笛卡尔坐标用齐次坐标表示时, W 的值取1。
采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。
图形变换平移变换图示如图所示,它使图形移动位置。
新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。
遥感原理与应用习题
遥感原理与应⽤习题遥感原理与应⽤习题第⼀章电磁波及遥感物理基础名词解释:1、遥感2、遥感技术3、电磁波4、电磁波谱5、绝对⿊体6、绝对⽩体7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、⼤⽓窗⼝12、发射率13、热惯量 14、热容量 15、光谱反射率16、光谱反射特性曲线填空题:1、电磁波谱按频率由⾼到低排列主要由、、、、、、等组成。
2、绝对⿊体辐射通量密度是和的函数。
3、⼀般物体的总辐射通量密度与和成正⽐关系。
4、维恩位移定律表明绝对⿊体的乘是常数2897.8。
当绝对⿊体的温度增⾼时,它的辐射峰值波长向⽅向移动。
5、⼤⽓层顶上太阳的辐射峰值波长为µm选择题:(单项或多项选择)1、绝对⿊体的①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。
2、物体的总辐射功率与以下那⼏项成正⽐关系①反射率②发射率③物体温度⼀次⽅④物体温度⼆次⽅⑤物体温度三次⽅⑥物体温度四次⽅。
3、⼤⽓窗⼝是指①没有云的天空区域②电磁波能穿过⼤⽓层的局部天空区域③电磁波能穿过⼤⽓的电磁波谱段④没有障碍物阻挡的天空区域。
4、⼤⽓瑞利散射①与波长的⼀次⽅成正⽐关系②与波长的⼀次⽅成反⽐关系③与波长的⼆次⽅成正⽐关系④与波长的⼆次⽅成反⽐关系⑤与波长的四次⽅成正⽐关系⑥与波长的四次⽅成反⽐关系⑦与波长⽆关。
5、⼤⽓⽶⽒散射①与波长的⼀次⽅成正⽐关系②与波长的⼀次⽅成反⽐关系③与波长⽆关。
问答题:1、电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,⼜有哪些共性?2、物体辐射通量密度与哪些因素有关?常温下⿊体的辐射峰值波长是多少?3、叙述沙⼟、植物和⽔的光谱反射率随波长变化的⼀般规律。
4、地物光谱反射率受哪些主要的因素影响?5、何为⼤⽓窗⼝?分析形成⼤⽓窗⼝的原因,并列出⽤于从空间对地⾯遥感的⼤⽓窗⼝的波长范围。
6、传感器从⼤⽓层外探测地⾯物体时,接收到哪些电磁波能量?第⼆章遥感平台及运⾏特点名词解释:1、遥感平台2、遥感传感器3、卫星轨道参数4、升交点⾚经5、轨道倾⾓6、近地点⾓距7、地⼼直⾓坐标系8、⼤地地⼼直⾓坐标系9、卫星姿态⾓10、开普勒第三定理 11、重复周期 12、近圆形轨道 13、与太阳同步轨道14、近极地轨道 15、偏移系数 16、GPS 17、ERTS_1 18、LANDSAT_1 19、SPOT 20、IRS 21、CBERS 22、ZY_1 23、Space Shuttle 24、MODIS 25、IKONOS 26、Quick Bird 27、Radarsat 28、ERS 29、⼩卫星填空题:1、遥感卫星轨道的四⼤特点。
第5章 图像的增强与变换
第五章图像的增强与变换§5.1 图像增强与变换§5.2 光谱增强§5.3 空间增强§5.4 多源信息的复合§5.1 图像增强与变换图像增强和变换为了突出相关的专题信息,提高图像的视觉效果,使分析者能更容易地识别图像内容,从图像中提取更有用的定量化信息。
按其作用的空间可分两种:光谱增强空间增强§5.2 光谱增强光谱增强对应于每个像元,与像元的空间排列和结构无关。
因此又叫点操作。
1. 彩色合成2. 对比度增强(直方图增强)3. 图像间运算为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。
单波段彩色变换(密度分割)多波段彩色变换(真彩色,假彩色)HLS变换:色调(hue)、明度(lightness)和饱和度(saturation)的色彩模式。
即RGB模式ÆHLS模式。
1. 彩色合成单波段彩色变换(密度分割)(1)求图像的极大值dmax 和极小值d min ;(2)求图像的密度区间ΔD=dmax -d min +1;(3)求分割层的密度差Δd=ΔD/n,其中n为需分割的层数;(4)求各层的密度区间;(5)定出各密度层灰度值或颜色。
1.彩色合成1.彩色合成多波段彩色变换真彩色合成真彩色图像上影像的颜色与地物颜色基本一致。
把红色波段的影像作为合成图像中的红色分量、把绿色波段的影像作为合成图像中的绿色分量、把蓝色波段的影像作为合成图像中的蓝色分量进行合成的结果。
如TM321分别用RGB合成的图像。
假彩色合成假彩色图像是指图像上影像的色调与实际地物色调不一致的图像。
遥感中最常见的假彩色图像是彩色红外合成的标准假彩色图像。
它是在彩色合成时,把近红外波段的影像作为合成图像中的红色分量、把红色波段的影像作为合成图像中的绿色分量、把绿色波段的影像作为合成图像中的蓝色分量进行合成的结果。
如TM432用RGB合成的图像为标准假彩色图像。
医学图像处理 第五章 图像复原
5.1 图像退化
• 退化:图像质量的变坏叫做退化。
改善图像质量的方法: 图像增强和图像复原
图像增强:图像增强是指按特定的需要突
出一幅图像中的某些信息,同时消弱或去 除某些不需要的信息的处理方法。经处理 后的图像更适合于人的视觉特性或机器的 识别系统。
图像复原:利用退化现象的某种先验知
用卷积形式表示:
g ( x, y )
f ( , )h( x , y )d d f ( x, y) * h( x, y )
考虑噪声的情况下,连续图像的退化模型 为:
g ( x, y)
f ( , )h( x , y )dd n( x, y)
识,建立退化现象的数学模型,再根据模 型进行反向的推演运算,以恢复原来的景 物图像。
图像增强和图像复原的区别: 图像增强:不考虑图像降质的原因,只将图 像中感兴趣的特征有选择的突出,而衰减 其不需要的特征,故改善后的图像不一定 要去逼近原图像。 图像复原:它需要了解图像降质的原因,一 般要根据图像降质过程的某些先验知识, 建立“降质模型”,再用降质模型,按照 某种处理方法,恢复或重建原来的图像。
• 所以:
g ( x, y ) H f ( x, y ) H f ( , ) ( x , y )dd
在线性和空间不变系统的情况下, 退化算子H 具有如下性质: (1)线性:设f1(x,y)和f2(x,y)为两幅输入图像, k1和k2为常数, 则 :
输出为:
M 1 m 0
ge ( x) f e ( x) he ( x) f e (m)he ( x m)
HALCON编程及工程应用第5章 HALCON图像预处理图文模板
5.2 直方图处理
将统计学中直方图的概念引入到数字图像处 理中,用来表示图像的灰度分布,称为灰度直方图。 在HALCON图像处理中,灰度直方图是一个简单有用的 工具,它可以描述图像的概貌和质量,采用修改直方 图的方法增强图像是一种实用而有效的处理方法。 HALCON编程基础与工程应用
HALCON编程基础与工程应用
仿射变换例程
图像变换处理前 后图(a-所画 region,b-变换 之后)
HALCON编程基础与工程应用
3、投影变换 把物体的三维图像表示转变为二维表示的过程称为投影变换。 hom_vector_to_proj_hom_mat2d( : : Px, Py, Pw, Qx, Qy, Qw, Method : HomMat2D) 作用:用于确定投影变换矩阵HomMat2D
HALCON编程基础与工程应用
5.3 几何变换
图像几何变换又称为图像空间变换,通过平移、转置、镜像、 旋转、缩放等几何变换对采集的图像进行处理,用于改正图像采 集系统的系统误差和仪器位置(成像角度、透视关系乃至镜头自 身原因)的随机误差。
此外,还需要使用灰度插值算法,因为按照这种变换关系进 行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。
HALCON编程基础与工程应用
2、局部统计法 灰度变换与直方图处理方法均是从图像的整体出发,进而 增强图像的对比度。除此之外,还可以从图像的局部着手进行 增强。局部统计法是由Wallis和Jong-Sen Lee提出的用局部均 值和方差进行对比度增强的方法。
HALCON编程基础与工程应用
3、空域平滑法
2、直方图规定化
直方图均衡化能自动增强整个图像的对比度,得到全 局均匀化的直方图。但在实际应用中,有时并不需要考虑图像 的整体均匀分布直方图,而是希望有针对性地增强某个灰度范 围内的图像,这时可以采用比较灵活的直方图规定化。
图像处理知识点
图像处理知识点第⼀章绪论1. 图像(Image):没有严谨的定义,⼀般有2个层次在可见光段有光束的反射,经反射到视觉系统,在视觉系统中感受到的物或物群的影像。
具有⼀定物理意义的在空间按⼀定顺序排列的2D/3D的数据。
2. 图像的类别可见光成像和不可见光成像彩⾊与⾮彩⾊图像动态图像与静⽌图像模拟图像与数字图像3.数字图像处理系统概述数字图像处理系统由硬件和软件组成。
采集:获取数字图像的设备即采集装置。
显⽰存储主机:以微机或⼯作站为主,配以图像卡和外设构成微型图像处理系统通信:图像通信就是把图像传送到远⽅终端。
图像处理软件:由系统管理、图像数据管理和图像处理模块三部分组成。
4. 颜⾊模型—各种表⽰颜⾊的⽅法模型:⾯向机器(显⽰器、摄像机、打印机等)在三维直⾓坐标系中,⽤相互垂直的三个坐标轴代表R、G、B三个分量。
颜⾊空间:R、G、B限定在[0,1]的单位正⽅体HIS模型:⾯向颜⾊处理、⼈眼视觉利⽤颜⾊的三个属性:H(hue)-⾊调I(intensity)-亮度S(saturation)-饱和度组成表⽰颜⾊的圆柱体5. 数字图像I=f(x, y, z, λ, t)运动、彩⾊或多光谱的⽴体图像静⽌图像:I=f(x, y, z, λ)灰度图像:I=f(x, y, z, t)平⾯图像:I=f(x, y, λ, t)平⾯的静⽌灰度图像:I=f(x, y)第⼆章图像采集1. ⼈眼视觉感知特性●主观亮度:S 主观亮度,B 实际亮度●对⽐度(会计算)马赫带效应(Mach Band):不同灰度的条带,各条带内部亮度是常数。
但实际观察到带有强烈的边缘效应。
原因:⼈眼对于图像中不同空间频率具有不同的灵敏度,⽽在空间频率突变处出现了“⽋调”或“过调”。
2. 采样和量化的过程就是图像数字化的过程。
采样(sampling):空间坐标的离散化称为空间采样。
确定图像的空间分辨率。
采样间隔越⼤→图像像素数越少,空间分辨率越低,图像质量越差,严重时出现像素呈块状效应;采样间隔越⼩→所得图像像素数越多,空间分辨率⾼,图像质量越好,但数据量⼤。
第五章 图像卷积PPT课件
结合律
f (g h) ( f g) h
§5.2卷积运算的性质
■平滑性质 是指两个函数卷积的结果使得每个函数的精细结构都 会被平滑,一些尖峰和峡谷都趋于圆滑;
■扩散性质 指的是卷积结果的区间扩大性:两个只在有限区间有 定义的函数之卷积,卷积结果的区间线度等于两个函数区 间线度之和。若结果表示光能量分布的话,分布范围的增 加就意味着能量分布的扩散。
f (u, v)g(x u, y v)dudv
§5.1.1.5卷积定理的特例—相关定理
相关用 f (x)○ 表示,定义如下:
f
(x)g○(x)g(x)
f
(a)g(x
a)da
描述的是两个函数图形的相似程度, 当完全相同时,相关函数就会出现 一个相关峰值。
§5.1.1.5卷积定理的特例—相关
相关定理:
§5.3卷积的应用
■ 去卷积
我们可以用一个卷积去除另一个卷积影响的技术叫作去卷 积。即去除不需要的,但已对图像施加了的线性系统的影 响。一个实例即利用卷积恢复由于透镜系统或运动所造成 的模糊,这两种影响都认为是由线性系统带来的。
■ 去除噪声
即去掉线性叠加在图像上的噪声信号。
■ 特征增强 以消弱景物中的其它为代价来增强指定特征
(a)
g(2x1-)
(c)
(d)
f (x)* g(x)
1/ 2
-x1 0
1
x1 2x1 3x14x1 5x1
2
g(3x1-)
(e)
g(4x1-)
(f)
g(5x1-)
(g)
5
可编辑课件PPT
§5.1.1.3卷积的物理意义
线性系统
线性(linearity) 对同时作用的几个激励(输入)的响应(输出), 恒等于每个激励单独 引起的响应之和,这种现象称为线性。
《遥感原理与应用》习题答案
遥感原理与应用习题第一章遥感物理基础一、名词解释1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。
2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。
3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。
7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开)8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。
9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。
10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
11光谱反射率:物体的反射辐射通量与入射辐射通量之比。
12波粒二象性:电磁波具有波动性和粒子性。
13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。
问答题1黑体辐射遵循哪些规律?(1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。
(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。
(4 好的辐射体一定是好的吸收体。
(5 在微波段黑体的微波辐射亮度与温度的一次方成正比。
2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b. 微波、红外波、可见光3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。
数字图像处理(MATLAB版)(第2版)
目录分析
1.1数字图像处理的 发展
1.2数字图像的相关 概念
1.3数字图像处理的 内容
1.4数字图像处理的 方法
1
1.5图像数字 化技术
2
1.6图像的统 计特征
3
1.7数字图像 的应用
4
1.8 MATLAB 领略
5 1.9 MATLAB
图像处理应用 实例
小结
习题
1
2.1图像类型 的转换
2
2.2线性系统
数字图像处理(MATLAB版)(第2版)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
几何变换
技术
图像
基础
图像
特征
数字图像处理
版
数字图像
内容 小结
数字图像
第版
习题
边界
第章
图像增强
滤波
运算
内容摘要
本书主要内容包括:全书共10章,分别介绍了数字图像的相关论述、数字图像的处理基础、图像编码、图像 复原、图像几何变换、图像频域变换、图像几何变换、小波变换、图像增强、图像分割与边缘检测及图像特征描 述等内容。
10.8形态学重建 10.9特征度量
小结 10.10查表操作
习题
作者介绍
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,暂无该书作者的介绍。
读书笔记
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的心得。
精彩摘录
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的精彩内容摘录。
计算机图形学习题参考答案(完整版)
计算机图形学习题参考答案第1章绪论1、第一届ACM SIGGRAPH会议是哪一年在哪里召开的?解:1974年,在Colorado大学召开了第一届SIGGRAPH年会。
2、计算机图形学之父是谁?解:Sutherland3、列举一些计算机图形学的应用领域(至少5个)。
解:计算机辅助设计、图示图形学、计算机艺术、娱乐、教学与培训、可视化、图像处理、图形用户界面等。
4、简要介绍计算机图形学的研究内容。
解:(1)图形的输入。
如何开发和利用图形输入设备及相关软件把图形输入到计算机中,以便进行各种处理。
(2)图形的处理。
包括对图形进行变换(如几何变换、投影变换)和运算(如图形的并、交、差运算)等处理。
(3)图形的生成和输出。
如何将图形的特定表示形式转换成图形输出系统便于接受的表示形式,并将图形在显示器或打印机等输出设备上输出。
5、简要说明计算机图形学与相关学科的关系。
解:与计算机图形学密切相关的学科主要有图像处理、计算几何、计算机视觉和模式识别等。
计算机图形学着重讨论怎样将数据模型变成数字图像。
图像处理着重研究图像的压缩存储和去除噪音等问题。
模式识别重点讨论如何从图像中提取数据和模型。
计算几何着重研究数据模型的建立、存储和管理。
随着技术的发展和应用的深入,这些学科的界限变得模糊起来,各学科相互渗透、融合。
一个较完善的应用系统通常综合利用了各个学科的技术。
6、简要介绍几种计算机图形学的相关开发技术。
解:(1)OpenGL。
OpenGL是一套三维图形处理库,也是该领域事实上的工业标准。
OpenGL独立于硬件、操作系统和窗口系统,能运行于不同操作系统的各种计算机,并能在网络环境下以客户/服务器模式工作,是专业图形处理、科学计算等高端应用领域的标准图形库。
以OpenGL为基础开发的应用程序可以十分方便地在各种平台间移植;OpenGL与C/C++紧密接合,便于实现图形的相关算法,并可保证算法的正确性和可靠性;OpenGL使用简便,效率高。
《智能视觉技术及应用》课件第5章
第5章 图像预处理技术
1.图像表达 一幅2D图像可以用一个2D数组来表示,常将一幅2D图像 写成一个2D的 M ×N 矩阵(其中 M 和N 分别为图像像素的 总行数和总列数):
上式就是图像的矩阵表达形式,矩阵中的每个元素对应一个 像素。
第5章 图像预处理技术
2.图像显示 图像的显示和表达是密切相关的,图像显示是图像的可 视表达方式。对2D图像的显示可以采取多种形式,其基本思 路是将2D图像看作在2D空间中的一种幅度分布。根据图像 的不同,采取的显示方式也不同。对于二值图像,在每个空间 位置的取值只有两个,可用黑白来区分,也可用0和1来区分。
第5章 图像预处理技术
5.2 图像的表达、 显示与存储
5.2.1 图像的表达与显示 根据应用领域的不同,可以有多种不同的方法来表达和
表示图像,或将图像以一定的形式显示出来。图像表达是图 像显示的基础,而图像显示是机器视觉系统的重要模块之一。
第5章 图像预处理技术
要对图像进行表达和显示,需要对图像的各个单元进行 表达和显示。图像中的每个基本单元叫作图像元素,用 Picture表示图像时称为像素(PictureElement)。对于2D 图像, 英文里常用 Pixel代表像素。对于3D图像,英文里常用 Voxel 代表其基本单元,简称体素(VolumeElement)。
第5章 图像预处理技术
TIFF格式支持任意大小的图像,文件可分为:二值图像、 灰度图像、调色板彩色图像和全彩色图像四类。一个 TIFF 文件中可以存放多幅图像,也可存放多份调色板数据。
第5章 图像预处理技术
4.JPEG格式 JPEG 格式源自对静止灰度或彩色图像的一种压缩标准 JPEG,在使用有损压缩方式时可节省相当大的空间,目前数码 相机中均使用这种格式。JPEG 标准只是定义了一个规范 的编码数据流,并没有规定图像数据文件的格式。Cube Microsystems公司定义了一种JPEG 文件交换格式 (JPEGFileInterchangeFormat,JFIF),JFIF图像是一种使用灰度 来表示或使用 Y、Cb、Cr分量彩色表示的JPEG 图像,它包含 一个与JPEG 兼容的文件头。一个JFIF文件通常包含单个图 像,该图像可以是灰度的(其中的数据为单个分量),也可以 是彩色的(其中的数据是 Y、Cb、Cr分量)。
遥感教案-5第五章-遥感图像的几何处理
使其值最大的坐标位置就是两个图像相匹配的位置
2绝对差值法 该方法是用模块在搜索图像的搜索区内逐个像元地移动并运用下式进行计算
在搜索区内,使d(m,n)为最小值的坐标位置(m,n)就是Ti和Si匹配最好的位置。
二 数字图像的镶嵌 当你感兴趣的研究区域在不同的图像文件时,需要对不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,这就是图像镶嵌。通过图像镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不同时间同一传感器获得,也可以是不同时间不同传感器获得,但要求镶嵌的图像之间要有一定的重叠度。
四 地球曲率引起的图像变形
地球曲率引起的像点位移与地形起伏引起的像点位移类似。只要把地球表面(把地球表面看成球面)上的点到地球切平面的正射投影距·离看做是一种系统的地形起伏,就可以利用前面介绍的像点位移公式来估计地球曲率所引起的像点位移,如图所示。
五 大气折射引起的图像变形
六 地球自转的影响
一 遥感图像的精加工处理 遥感图像的精校正是指消除图像中的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像的过程。它包括两个环节:一是像素坐标的变换;二是对坐标变换后的像素亮度值进行重采样。常用的纠正方法有多项式法,共线方程法,
多 项 式 法
1 基本思路 校正前的图像看起来是由行列整齐的等间距像元点组成的,但是实际上,由于某种几何畸变,图像中像元点对应的地面距离并不相等。校正后的图像也是由等间距的网格点组成的,且以地面为标准,符合某种投影的均匀分布。
).当外方位元素偏离标准位置而出现变动时,就会使图像产生变形.这种变形一般 由地物点图像的坐标误差来表达,并可以通过传感器的构像方程推出.
二 传感器外方位元素变化的影响
三 地形起伏引起的像点位移
第5章_数字图像处理技术(上)
三维色彩空间
图像处理中的色彩学知识
• 色彩模型:色彩空间是三维的,作为色彩空间
三维坐标的三个独立参数可以是色彩心理的三 属性,用不同的三个色彩参数就代表不同的色
彩模型
图像处理中的色彩学知识
• 色域
–一个色彩系统能够显示或打印的色彩范围 –色域由宽到窄的顺序: 人眼所看到的色谱 Lab色域
RGB色域
– RGB模式是一种发光屏幕的加色模式,CMYK 模式是一种颜色反光的印刷减色模式。而Lab 模式既不依赖光线,也不依赖于颜料,它是 CIE组织确定的一个理论上包括了人眼可以看
见的所有色彩的色彩模式。Lab模式弥补了
RGB和CMYK两种色彩模式的不足。
图像处理中的色彩学知识
④ LAB模型
– Lab模式由三个通道组成,但不是R、G、B通道。它的 一个通道是亮度,即L。另外两个是色彩通道,用A和
音频类似,数字图像的数据量一般都比较
大,在存储时会占用大量的空间,因此需
要对图像进行压缩编码。
数字图像处理概述
• 现代图像的范围
① 可见光范围内的图像,不可见光范围内的图 像(红外成像技术) ② 可见图像和不可见图像 – 可见图像:照片、图、画
– 不可见图像:主要是物理图像,如温度、气 压、地势图等,还包括医学影像
图像数字化的途径 特点
扫描仪扫描 数码相机拍摄 网上搜索并下载 抓图工具抓拍 方便快捷,需用扫描仪 方便快捷,需用数码相机 方便快捷 方便快捷
利用图像编辑软件 专业性强,较慢 自己加工或创作
图像处理中的色彩学知识
1. 色彩
– 单色光:通过三棱镜也不会再分解为其它 的色光
– 由单色光所混合的光称为复色光
图像处理中的色彩学知识
数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理试题集(终版)剖析
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为_像素_。
2. 数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是_从图像到非图像的一种表示_,如图像测量等。
3. 数字图像处理可以理解为两个方面的操作:一是_从图像到图像的处理_,如图像增强等;二是从图像到非图像的一种表示,如图像测量等。
4. 图像可以分为物理图像和虚拟图像两种。
其中,采用数学的方法,将由概念形成的物体进行表示的图像是虚拟图像_。
5. 数字图像处理包含很多方面的研究内容。
其中,_图像重建_的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的5种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
4. 简述数字图像处理的至少5种应用。
①在遥感中,比如土地测绘、气象监测、资源调查、环境污染监测等方面。
②在医学中,比如B超、CT机等方面。
③在通信中,比如可视电话、会议电视、传真等方面。
④在工业生产的质量检测中,比如对食品包装出厂前的质量检查、对机械制品质量的监控和筛选等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆运算为
1 fx x0 y 0 0 1 0
0 1 fx 0
0 x 0 y 1 1
x0 i s y0 i s 规范化后,1
xi yi 将齐次坐标 s
xi yi 1 。由此可见,
当
s>1时,图像按比例缩小;当0<s<1时,整个图像按比例 放大;当s=1时,图像大小不变。
变换矩阵即可完成,即
1 3n
变换后的点集矩阵=变换矩阵T×变换前的点集矩阵 (图像上各点的新齐次坐标)(图像上各点的原齐次坐标)
设变换矩阵T为
a b p T c d q l m s
则上述变换可以用公式表示为
' ' ' Hx1 Hx2 Hxn x1 x2 xn ' ' ' Hy1 Hy2 Hyn T y1 y2 yn H H H 1 1 1 3n 3n
5.1.2 齐次坐标
对于2D图像几何变换及变换中心在坐标原点的比例缩
放、 反射、 错切和旋转等各种变换,都可以用2×2的 a b 矩阵表示和实现。但是一个2×2变换矩阵 T 却 c d 不能实现图像的平移以及绕任意点的比例缩放、反射、
错切和旋转等各种变换。因此,为了能够用统一的矩阵
规范化齐次坐标的前两个数是相应二维点的坐标, 没有变
化,仅在原坐标中增加了H=1的附加坐标。
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标
(x, y, 1),可按如下公式进行:
Hx x H
Hy y H
5.1.2 齐次坐标
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1的 平面上, 如果将XOY 平面内的三角形abc 的各顶点表示成 齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H=1平面
1 0 x P T P 0 0 1 y x x0 x 式 符合上述平移后的坐标位置。通常将2×3阶矩阵 y y0 y
扩充为3×3阶矩阵,以拓宽功能。由此可得平移变换矩阵为
5.1.2 齐次坐标 下面再验证一下点P (x, y)按照3×3的变换矩阵T平移
x
图5-1
点的平移
5.1.2 齐次坐标
而平面上点的变换矩阵
a b 中没有引入平移常量, T c d
无论 a、b、c、d 取什么值,都不能实现上述的平移变换。
因此,需要使用2×3阶变换矩阵,取其形式为 1 0 x
此矩阵的第一、二列构成单位矩阵,第三列元素为平移常
y ] T 中引入第三个元
素,增加一个附加坐标,扩展为3×1的列矩阵[x
y 1]T,
y, 1)表示二维空间点( x, y ),
x0 x0 x x y0 y0 y y 1
即采用一种特殊的坐标,可以实现平移变换,变换结果为
5.2
图像比例缩放
5.2.1 图像比例缩放变换 图像比例缩放是指将给定的图像在x轴方向按比例缩放
fx倍, 在y轴方向按比例缩放fy倍,从而获得一幅新的图像。
如果fx = fy, 即在 x 轴方向和 y 轴方向缩放的比率相同,称
这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的
比例缩放会改变原始图像的像素间的相对位置,产生几何畸
第五章 图像的几何变换
5.1 5.2 5.3 5.4 5.5 几何变换基础 图像比例缩放 图像平移 图像镜像 图像旋转
5.1 几何变换基础
我们知道,图像是对三维实际景物的 平面投影。为了观测需要,常常需要进 行各种不同的几何变换。图像的几何变 换是图像处理和图像分析的基础内容之 一。注意一点,实际上几何变换不改变 像素值,而是改变像素所在的位置。
变。设原图像中的点P0(x0,y0)比例缩放后,在新图像中的对
应点为P(x, y),则P0(x0,y0)和P(x, y)之间的对应关系如图 5-3所示。
5.2
放大后
图像比例缩放
(x , y) (x0 , y0 ) O x
缩放前 y
图5-3
比例缩放
5.2
图像比例缩放
x fx 0 0 x0 比例缩放前后两点P0(x0, y0)、P(x, y)之间的关系用矩 y 0 fx 0 y0 (5-1) 阵形式可以表示为 1 0 0 0 1
5.1.3 二维图像几何变换的矩阵
实现恒等、 比例、 反射、 T 错切、 旋转变换。
a b p c d q l m s
实现平移变换 实现全比例变换
实现透视变换 例如, 将图像进行全比例变换, 即
1 0 0 xi x0 i 0 1 0 y 0 i yi 0 0 s s 1
如图5-1所示。这个变换用矩阵的形式可以表示为
x 1 y 0
0 x0 x 1 y0 y
5.1.2 齐次坐标
x O P0 (x0 , y0 ) y0 y
P(x , y)
y
x0
变换的结果
1 P T P0 0 0
0 1 0
x y 1
x0 x0 x x y0 y0 y y 1 1 1
z 内的三角形a1b1c1的各顶点。 a1 b1 O b x H=1 c1
a c
y
齐次坐标在2D图像几何变换中的另一个应用是:如某点 S(60 000, 40 000)在16位计算机上表示则大于32 767的最
大坐标值, 需要进行复杂的操作。但如果把 S 的坐标形式变
成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。在齐次 坐标系中,设 H =1/2,则 (60 000,40 000)的齐次坐标为 (1/2x, 1/2y, 1/2) , 那 么 所 要 表 示 的 点 变 为 (30 000, 20 000, 1/2),此点显然在16位计算机上二进制数所能表示的范
1 fx x0 y0 0 1 0 0 1 fx 0 0 x 0 0 y0 1 1
公式(5-1) 的逆运算为
即
x x0 fx y y 0 fy
围之内。 因此,采用齐次坐标,并将变换矩阵改成3×3阶的
形式后, 便可实现所有2D图像几何变换的基本变换。
5.1.3 二维图像几何变换的矩阵
利用齐次坐标及改成3×3阶形式的变换矩阵,实现2D图 像几何变换的基本变换的一般过程是:将2×n阶的二维点集
x0i x0i 矩阵 表示成齐次坐标 的形式,然后乘以相应的 y0 i y0i 2n
前一种做法。实际上,这也是一种插值算法, 称为最邻近 插值法(Nearest Neighbor Interpolation)。
5.2
图像比例缩放
一般地,按比例将原图像放大k倍时,如果按照最近 邻域法则需要将一个像素值添在新图像的 k×k 的子块中,
如图6-9所示。显然,如果放大倍数太大, 按照这种方
比例缩放前后两点P0(x0, y0)、P(x, y)之间的关系用 矩阵形式可以表示为
x fx 0 0 x0 y 0 fy 0 y 0 1 0 0 0 1
x=fx x0 y=fy y0
5.2.1 图像比例缩放变换
法处理会出现马赛克效应。当fx≠fy(fx, fy>0)时,图 像在x方向和y方向不按比例放大, 此时, 这种操作由 于 x 方向和 y 方向的放大倍数不同,一定带来图像的几何 畸变。放大的方法是将原图像的一个像素添到新图像的
一个k1×k2的子块中去。
5.2.1 图像比例缩放变换
5.2.1 图像比例缩放变换
5.1 几何变换基础
5.1.1 概述 图像的几何变换,是指使用户获得或设计的原始图像, 按照需要产生大小、形状和位置的变化。从图像类型来分, 图像的几何变换有二维平面图像的几何变换和三维图像的
几何变换以及由三维向二维平面投影变换等。从变换的性
质分, 图像的几何变换有平移、比例缩放、旋转、反射和 错切等基本变换,透视变换等复合变换,以及插值运算等。
比例缩放所产生的图像中的像素可能在原图像中找不 到相应的像素点,这样就必须进行插值处理。插值处理常
用的方法有两种, 一种是直接赋值为和它最相近的像素值,
另一种是通过一些插值算法来计算相应的像素值。前一种 方法计算简单, 但会出现马赛克现象;后者处理效果要好
些,但是运算量也相应增加。在下面的算法中直接采用了
' ' ' x1 x2 xn 图像上各点的新齐次坐标 ' ' ' y1 y2 yn 规范化后的点集矩阵为 1 1 1 3n
引入齐次坐标后,表示2D图像几何变换的3×3矩阵的功 能就完善了,可以用它完成2D图像的各种几何变换。下面 讨论3×3阶变换矩阵中各元素在变换中的功能。几何变换 的3×3矩阵的一般形式为
从上式可以看出,引入附加坐标后,扩充了矩阵的第3 行, 并没有使变换结果受到影响。这种用 n +1维向量表 示n维向量的方法称为齐次坐标表示法。
5.1.2 齐次坐标 2D图像中的点坐标(x, y) 表示成齐次坐标(Hx, Hy, H)