初四数学6-1圆的基本概念和性质知识点、经典例题及练习题带答案

合集下载

初四数学-圆的基础知识点及基础题型-新课-11月

初四数学-圆的基础知识点及基础题型-新课-11月
3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。
4、三角形的内切圆:与三角形的三边都相切的圆。
5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。
知识点五、直线和圆的位置关系:相交、相切、相离
当直线和圆相交时,d<r;反过来,当d<r时,直线和圆相交。
当直线和圆相切时,d=r;反过来,当d=r时,直线和圆相切。
难点:使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系.
正多边形的中心:所有对称轴的交点;
正多边形的半径:正多边形外接圆的半径。
正多边形的边心距:正多边形内切圆的半径。
正多边形的中心角:正多边形每一条边所对的圆心角。
正n边形的n条半径把正n边形分成n个全等的等腰三角形,每个等腰三角形又被相应的边心距分成两个全等的直角三角形。
圆的知识点总结及题型分析
知识点一、圆的定义及有关概念
1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
120
已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠ACB的度数为( )
A..45°B.35°C.25°D.20°
【尝试】
.如图,半圆的直径 ,点C在半圆上, .
(1)求弦 的长;
(2)若P为AB的中点, 交 于点E,求 的长.
2.已知:如图,在 △ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
8

中考数学圆知识点总结

中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。

这个定点叫做圆心,这个定值叫做圆的半径。

1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。

1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。

圆心角:以圆心为顶点的角。

圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。

1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。

二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。

圆的周长等于圆的直径乘以圆周率π。

C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。

圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。

A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。

圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。

所以我们可以利用这个性质来求解圆的相关问题。

三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。

比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。

3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。

比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。

3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。

它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。

四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。

而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。

在平面几何中,圆与直线相交的问题也是经常出现的。

所以掌握圆的知识对于学生来说是非常重要的。

总之,圆是中考数学中的一个重要知识点。

(完整版)圆知识点总结与例题讲解

(完整版)圆知识点总结与例题讲解

一、圆的概念与周长1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

∆4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

△10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

☆11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

☆13.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

△14.圆是轴对称图形,直径所在的直线是圆的对称轴。

例题讲解:一、填空题△1、圆是()图形,()所在的直线是圆的(),圆有()条对称轴。

2、圆的周长是它的直径的()倍多一些,这个倍数是一个固定的数,我们把它叫(),常用字母()表示。

它是一个()小数,取两位小数是()。

《圆的概念及性质》 知识清单

《圆的概念及性质》 知识清单

《圆的概念及性质》知识清单一、圆的定义圆是平面内到一定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆可以看作是一个动点以一个定点为中心,以一定长度为距离旋转一周所形成的封闭曲线。

用数学语言描述:设点 O 为圆心,r 为半径,则圆上任意一点 P 满足|OP| = r 。

二、圆的方程1、标准方程以点(a, b) 为圆心,r 为半径的圆的标准方程为:(x a)²+(y b)²= r²。

例如,以原点(0, 0) 为圆心,半径为 5 的圆的标准方程为 x²+ y²= 25 。

2、一般方程圆的一般方程为 x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F > 0 。

通过配方可以将一般方程化为标准方程:\\begin{align}x²+ y²+ Dx + Ey + F &= 0\\x²+ Dx +\frac{D²}{4} + y²+ Ey +\frac{E²}{4} &=\frac{D²+ E² 4F}{4}\\(x +\frac{D}{2})²+(y +\frac{E}{2})²&=\frac{D²+ E² 4F}{4}\end{align}\此时圆心坐标为(\frac{D}{2},\frac{E}{2}),半径为\(\sqrt{\frac{D²+ E² 4F}{4}}\)。

三、圆的性质1、对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

2、弦、直径与弧连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是圆中最长的弦。

圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质 知识总结和例题圆的旋转定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示. 确定一个圆的要素:一是圆心,圆心确定其位置;二是半径,半径确定其大小. 同心圆:圆心相同,半径不同 等圆 : 圆心相同,半径不同圆的集合定义:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合. 弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径 注意:1.弦和直径都是线段.2. 直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.弧: 圆上任意两点间的部分叫做圆弧,简弧.以A 、B 为端点的弧记作 ,读作“圆弧AB ”或“弧AB ”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 劣弧与优弧:小于半圆的弧叫做劣弧. ;小于半圆的弧叫做劣弧. ; 等弧:等弧仅仅存在于同圆或者等圆中.1.一点和⊙O 上的最近点距离为4cm,最远的距离为10cm, 则这个圆的半径是2.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )A .0个B .1C .2个D .3个3 .如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上,求证:OB=OC.图4DB O NMAC图5DBONM AC(3) (4) (5) (6)4.如图,在扇形MON 中,=45MON ,半径MO=NO=10,,正方形ABCD 的顶点B 、C 、D 在半径上,顶点A 在圆弧上,求正方形ABCD 的边长5.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.6,如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

初中关于圆知识点总结

初中关于圆知识点总结

初中关于圆知识点总结一、圆的基本概念1. 圆的定义圆是平面内到一个确定点的距离等于一个定值的所有的点的集合。

这个确定点叫做圆心,定值叫做半径。

2. 圆的符号表示圆通常用字母表示,如:圆O。

3. 圆的命名圆通常用字母表示,如:圆O。

根据文字意思可知,下列做法是错误的(1) 把⊙O用O或者⌒O表示(2) 把⊙AB用AB表示(3) 把⊙AB命名为圆OAB4. 圆的度量单位圆的周长与面积的度量单位通常有厘米和平方厘米。

5. 圆的直径经过圆心,且两端分别在圆上的线段叫做圆的直径。

直径是圆的周长和面积的两倍。

6. 圆的半径从圆心到圆上任意一点的线段叫做圆的半径。

任意一条直径等于圆周上任意一条弦的中垂线。

而任意一条弦等于两倍的半径。

7. 圆的周长圆的周长是圆内的短、圆周长度。

它等于圆周的长度,也等于圆的半径的周长的两倍。

一般用字母C表示。

8. 圆的面积圆的面积是圆内的各种图形的面积和。

它等于半径平方乘以π。

一般用字母S表示。

9. π的概念π是一个无理数,它的近似值为3.14159。

圆的周长等于直径的π倍,即C=πd;圆的面积等于半径的平方乘以π,即S=πr²。

10. 确定圆确定一个圆,通常需要知道它的圆心和半径。

11. 圆对称圆心对称、中心对称二、圆的基本性质1. 圆的直径等于半径的两倍,即 d=2r。

2. 圆的周长等于直径乘以π,即C=πd。

3. 圆的面积等于半径的平方乘以π,即S=πr²。

三、圆的相关定理1. 圆心角定理(1)圆心角的度数等于其所对的弧所对的圆周角度的一半(2)圆心角的度数等于所对弧上的两部分的圆周角度的和的一半2. 弧的性质(1)圆周角等于对应的弧中心角度的两倍(2)在同一个圆上,或者在同一个圆周角中,小弧所对的圆心角小;(3)圆内接四边形的四个角的度数之和等于360°3. 相交弦的性质(1)在同一个圆或同一相交弦两力对角等(2)相交弦的重合部分相等(3)相交弦中短的等于长的四、圆的应用1. 圆的切线如果一条直线恰好与圆有且只有一个交点,那么这条直线就是圆的切线。

圆的基本性质知识点及经典例题总复习

圆的基本性质知识点及经典例题总复习

圆的基本性质总复习(一)【知识理解】知识点一:圆的定义及相关概念1.圆:在同一平面内,线段OP绕它固定的一个端点 O旋转一周,另一端点P所经过的封闭曲线叫做圆,定点O叫做圆心,线段OP叫做圆的半径.记作“⊙O”.第二种定义:到定点O的距离等于定长r的点的集合.弦;直径;注:在同一个圆中,直径是最长的弦,一个圆中有无数条弦和直径.弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示.半圆;优弧;劣弧;等弧2. 等圆:半径相等的圆.同圆:同一个圆.同心圆:圆心相同,半径不相等的圆.知识点二:点与圆的位置关系设⊙O的半径为r,平面内任一点P到圆心的距离为d,则:⇔点在圆外⇔点在圆上⇔点在圆内知识点三:确定圆的条件不在同一条直线上的三个点确定一个圆知识点四:三角形的外接圆1、经过三角形的各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形.2、三角形的外心是三角形三条边的垂直平分线的交点注:一个三角形有且只有一个外接圆,而一个圆有无数个内接三角形知识点五:圆的对称性1、圆是轴对称图形,对称轴是直径所在的直线,每个圆都有无数条对称轴2、圆是中心对称图形,对称中心是圆心知识点六:图形的旋转由一个图形变为另一个图形,在运动的过程中,原图形上的所有点 都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转.这个固定的点叫做旋转中心.(1)旋转的三要素旋转中心、旋转方向、旋转角度(2)图形旋转的性质①图形经过旋转所得的图形和原图形全等;②对应点到旋转中心的距离相等;③任何一对对应点与旋转中心连线所成的角度等于旋转的角度.知识点七:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的弧.弦心距:圆心到圆的一条弦的距离叫做弦心距.垂径定理的逆定理:定理1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.总结: 如图, 对于一个圆和一条直线来说,如果在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.CD 是直径,CD ⊥AB, AM=BM,⌒AC =⌒BC ,⌒AD =⌒BD .知识点七:圆心角及圆心角定理圆心角:顶点在圆心的角叫做圆心角.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.知识点八:圆周角及圆心角定理圆周角:顶点在圆上,两边都和角相交的角.注:同一条弦所对的圆周角有2个圆周角定理:圆周角的度数等于它所对的弧上的圆心角度数的一半.推论1:半圆(或直径)所对的圆周角是直角●O A B C D M └推论2:90°的圆周角所对的弦是直径推论3:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.知识点九:圆的内接四边形圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.定理一:圆内接四边形的对角互补.定理二:圆内接四边形的外角等于它的内对角(内角的对角).判定定理:(1)定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).(2)推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.知识点十:正多边形各边相等、各内角也相等的多边形叫做正多边形.经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形叫做圆内接正多边形.任何正多边形都有一个外接圆.性质:(1)正n边形的内角度数的和为:,正n边形每个内角的度数为:;(2)任意正n边形的外角度数的和都为360°,正n边形每个外角的度数为;(3)正多边形是对称图形.当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点十一:弧长及扇形的面积1. 弧长公式半径为R的圆,周长公式为C=2πR半径为R的圆中,n°圆心角所对的弧长为:l=2. 扇形面积公式半径为R的圆,面积公式为S=πR2扇形半径为R,圆心角为n°,扇形弧长为l,扇形面积为S,则:S= =【知识应用】(例题)例1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。

圆的认识与性质知识点总结

圆的认识与性质知识点总结

圆的认识与性质知识点总结圆是几何学中常见的图形,具有独特的性质和特点。

在本文中,我们将对圆的基本概念、性质和相关定理进行总结和归纳。

一、圆的基本概念圆是由平面上距离一个固定点(圆心)相等的所有点组成的集合,这些点到圆心的距离称为半径。

以圆心为中心,半径为半径的线段称为半径线。

常用符号表示圆的半径为r,直径为d,周长为C,面积为S。

二、圆的性质1. 圆的直径和半径的关系:直径是圆中任意两点之间的最长线段,它等于半径的两倍,即d=2r。

2. 圆的周长和直径的关系:圆的周长是圆的一周的长度,它等于直径乘以π,即C=πd或C=2πr。

3. 圆的面积公式:圆的面积等于半径的平方乘以π,即S=πr²。

4. 圆的对称性:圆具有轴对称性和中心对称性,对圆上的任意一点P,以圆心O为对称中心,关于O对称的点P'也在圆上。

5. 圆的切线和法线:圆上一点的切线与半径垂直,并且切线的方向与该点对应的半径线相同,切线的两个端点都在圆上;圆上一点的法线与切线垂直。

三、圆的相关定理1. 弧度制:圆的度数制和弧度制是两种常用的角度制度。

弧度制是以弧长相等的圆心角所对应的圆心角的大小为单位。

一个圆的弧长等于半径长的弧所对应的圆心角的弧度数,即弧长L=rθ,其中θ是角度,L是弧长,r是半径。

2. 圆的圆心角和弧度的关系:一个圆的圆心角所对应的弧长等于半径长的弧所对应的圆心角的弧度数,即L=rθ,其中L是弧长,r是半径,θ是圆心角的角度,根据该定理,可以将角度和弧度进行相互转换。

3. 相交弧定理:在同一个圆或者等圆中,两条弦所对应的弧相等,两条切线所对应的弧相等。

4. 等弧的定理:在同一个圆或者等圆中,等长的弧所对应的圆心角相等。

5. 弧与切线的关系:一个角的顶点在圆上,角的一边是切线,另一边是割线,则这个角等于其所对应的弧所对应的圆心角的一半。

6. 弦切角的定理:两条切线所夹的角等于这两条切线所对应的弧之间的角的一半。

圆的综合知识点总结(初中数学)

圆的综合知识点总结(初中数学)

圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,rd d CBAO即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

圆的基本概念与性质知识点总结

圆的基本概念与性质知识点总结

圆的基本概念与性质知识点总结圆是几何学中的一个基本概念,广泛应用于数学、物理、工程等领域。

它具有许多独特的性质和特点,本文将为你总结圆的基本概念以及其相关的性质知识点。

1. 圆的定义圆是平面上一组距离相等的点的集合。

其中,距离相等的点叫做圆心;与圆心距离相等的线段叫做半径;连接圆上任意两点的线段叫做弦;通过圆心并且连接圆上某一点的线段叫做半径。

2. 圆的性质2.1 圆的半径性质- 圆上任意两点间的弦相等,并且等于半径的长度。

- 半径垂直于弦,并且平分弦。

- 圆上相等弧所对的弦相等。

- 以圆心为端点的弧叫做半圆,圆心角为180°。

2.2 圆的直径性质- 直径是圆上任意两点间的最长弦,等于半径的两倍。

- 直径的中点即为圆心。

- 圆上的半径与直径垂直,并且被直径平分。

2.3 圆的面积性质- 圆的面积公式为:A = πr²(其中,A表示面积,r表示半径)。

- 圆的面积只与半径有关,与圆心角和弦长无关。

2.4 圆的弧长性质- 弧长公式为:L = 2πr(其中,L表示弧长,r表示半径)。

- 弧长与圆心角成正比,即弧长等于圆心角度数与周长的比值。

3. 圆的相关定理3.1 切线定理- 切线是与圆相切的直线,切点在圆上。

- 切线与半径垂直。

3.2 弧度制与度制的转换- 弧度制是以半径等于1的圆的圆心角作为单位,记作rad。

- 度制是以圆心角为单位,记作°。

- 弧度制与度制的转换关系为:1° = π/180 rad。

4. 圆的应用领域- 在几何学中,圆被广泛运用于计算圆的面积、周长和弧长等。

- 在物理学中,圆被用于描述物体的运动轨迹和行星的绕轨道运动等。

- 在工程学中,圆被应用于建筑设计、机械制造和电路设计等。

综上所述,圆作为几何学中的基本概念,具有独特的性质和特点。

了解圆的基本概念和性质对于深入理解几何学、物理学和工程学等领域的知识有着重要的意义。

同时,圆的应用广泛,为我们解决问题和进行实践提供了重要的工具。

初中《圆》知识点及定理

初中《圆》知识点及定理

初中《圆》知识点及定理
《圆》知识点
一、定义
1、圆是平面上一种特殊的曲线,它满足以下两个条件:
(1)任意两点到圆心的距离相等;
(2)圆上的任意一点,可以以圆心为中心,过这一点作圆的圆周,且这个圆周上的任意一点都等距离圆心。

2、定义:圆:平面上一点为圆心,到圆心的距离一定的曲线叫圆,这个固定的距离叫圆的半径。

二、圆的相关概念
1、圆心:圆的中心点。

2、半径:指从圆心出发,连接圆上任意一点的线段的长度。

3、圆弧:圆上的一段弧形,可以看作是圆的一部分。

4、圆周:圆的一周的弧形,也叫圆的周长。

5、圆心角:圆上的任意两点连接的线段所形成的角,叫圆心角。

6、切线:切圆弧的线段,叫做切线。

7、圆心的夹角:圆上任意两条切线所成的夹角。

8、切点:切线与圆弧公共的一点,叫做切点。

三、圆的性质
1、任意一点到圆心的距离相等,半径r=OC=OD。

2、圆上,任意两点之间的距离相等。

3、圆上任意两点的连线,其长度都等于直径的2倍。

4、圆周的周长等于圆的直径的2倍乘以π,公式:C=2πr。

5、圆的面积A=πr²。

6、圆心角是任意一点到圆心的连线和圆的直径的线段的所成的角,它的度数与圆的弧长满足:圆心角的角度=弧长/半径。

四、圆的有关定理。

圆的基本性质知识点及典型例题

圆的基本性质知识点及典型例题

圆的基本性质一、知识点梳理★知识点一:圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。

2、有关概念:弦、直径; 弧、等弧、优弧、劣弧、半圆; 弦心距 ; 等圆、同圆、同心圆。

圆上任意两点间的部分叫做圆弧,简称弧。

连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

在同圆或等圆中,能够重合的两条弧叫做等弧。

★知识点二:平面内点与圆的位置关系:r 表示圆的半径, d 表示同一平面内点到圆心的距离,则有点在圆外;点在圆上;点在圆内。

例 1、如图,在Rt△ ABC中,直角边AB3,BC4,点E,F分别是BC ,AC的中点,以点 A 为圆心,AB的长为半径画圆,则点 E 在圆 A 的 _________ ,点F在圆 A 的 _________.例2、在直角坐标平面内,圆O的半径为,圆心O的坐标为 (1, 4) .试判断5点 P(3, 1) 与圆 O 的位置关系.例 3、下列说法中,正确的是。

(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定是直径;(3)半径相等的两个半圆是等弧;( 4)一条弦把圆分成两段弧中,至少有一段优弧。

例 4、有下列四个命题:( 1)直径相等的两个圆是等圆;( 2)长度相等的两条弧是等弧;( 3)圆中最大的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧,其中真命题是。

★知识点三:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论:平分弦()的直径垂直于这条弦,并且平分弦所对的弧。

平分弧的直径垂直平分弧所对的弦。

垂径定理最重要的应用是通过勾股定理来解决有关弦、半径、弦心距等问题例 1:下列语句中正确的是。

( 1)相等的圆心角所对的弧相等;( 2)相等的弧所对的弦相等;(3)平分弦的直径垂直于弦;(4)弦的垂直平分线必过圆心。

例 2、过⊙内一点 M的最长弦长为10cm,最短弦长为8cm,那么 OM的长为()( A) 3cm( B) 6cm( C)cm( D) 9cm例 3、如图所示 , 以为圆心的两个同心圆中 , 小圆的弦AB 的延长线交大圆于, 若AD BCO C =6,=1, 则与圆环的面积是OAB BC例 4、在半径为 5 厘米的圆内有两条互相平行的弦, 一条弦长为8 厘米 , 另一条弦长为 6 厘米 , 则两弦之间的距离为 _______.7 厘米或 1 厘米例 5、如图,矩形 ABCD与与圆心在 AB上的⊙ O交于点 G、 B、 F、 E, GB=8cm, AG=1cm,DE=2cm,则 EF=cm .例 6、如图所示,是一个直径为 650mm的圆柱形输油管的横截面,若油面宽 AB=600mm,求油面的最大深度。

圆中的基本概念及定理(讲义与习题)含答案

圆中的基本概念及定理(讲义与习题)含答案

圆中的基本概念及定理(讲义与习题)含答案圆中的基本概念及定理(讲义)课前预习在⼩学的时候,我们知道“⼀中同长”表⽰的是圆,中⼼称为______,固定的线段长称为_______,还知道半径为r的圆的周长为_________,⾯积为__________.在七年级我们学习了圆的另外⼀种说法:平⾯上,⼀条线段绕着它固定的⼀个端点旋转⼀周,另⼀个端点形成的图形叫做圆.固定的端点O称为圆⼼,线段OA称为半径.⼀条弧AB和经过这条弧的两条半径OA,OB所组成的图形叫做扇形.顶点在圆⼼的⾓叫做圆⼼⾓.知识点睛1.平⾯上到_____的距离等于_____的所有点组成的图形叫做圆,其中,_____称为圆⼼,_____称为半径;圆O记作_____.2.圆中概念:弧:_________________________,弧包括______和_______;弦:_______________________________________________;圆周⾓:___________________________________________;圆⼼⾓:___________________________________________;弦⼼距:___________________________________________.3.圆的对称性:圆是轴对称图形,其对称轴是_________________________;圆是中⼼对称图形,其对称中⼼为_______.4.圆中基本定理:*(1)垂径定理:___________________________________________________________________________________;推论:_______________________________________________________________________________________;总结:知⼆推三①_______________________________,②_____________________,③____________________,④_____________________,⑤____________________.(2)四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有⼀组量相等,那么它们所对应的其余各组量都分别相等.(3)圆周⾓定理:___________________________________.推论1:________________________________________.推论2:________________________________________,_______________________________________________推论3:_______________________________________.(4)三点定圆定理:_________________________________.三⾓形的三个顶点确定⼀个圆,这个圆叫做三⾓形的_______,三⾓形叫做圆的___________,外接圆的圆⼼是____________________,叫做三⾓形的___________.精讲精练1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂⾜为M ,下列结论不⼀定成⽴的是()A .CM =DMB .CB ︵=BD ︵C .∠ACD =∠ADC D .OM =MB第1题图第2题图2. 如图,⊙O 的弦AB 垂直平分半径OC ,若AB ,则⊙O 的半径为_________.3. ⼯程上常⽤钢珠来测量零件上⼩圆孔的宽⼝,假设钢珠的直径是10 mm ,测得钢珠顶端离零件表⾯的距离为8 mm ,如图所⽰,则这个⼩圆孔的宽⼝AB 的长度为__________mm .A BC DR第3题图第4题图4. 如图,圆拱桥桥拱的跨度AB =12 m ,桥拱⾼CD =4 m ,则拱桥的直径为__________.5. 如图,在⊙O 中,直径CD 垂直于弦AB ,垂⾜为E ,连接OB ,CB .已知⊙O 的半径为2,AB=,则∠BCD =_______.ABO ECB第5题图第6题图6. 如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =________.7. ⼀个圆形⼈⼯湖如图所⽰,弦AB 是湖上的⼀座桥,已知桥AB 长100 m ,测得圆周⾓∠ACB =45°,则这个⼈⼯湖的直径AD 为________.第7题图第8题图8. 如图,E 为正⽅形ABCD 的边CD 的中点,经过A ,B ,E 三点的⊙O 与边BC 交于点F ,P 为AB ︵上任意⼀点.若正⽅形ABCD 的边长为4,则sin ∠P 的值为__________.9. 如图,∠AOB =100°,点C 在⊙O 上,且点C 不与A ,B 重合,则∠ACB 的度数为() A .50° B .80°或50°C .130°D .50°或130°10. 如图,点D 为边AC 上⼀点,点O 为边AB 上⼀点,AD =DO .以O 为圆⼼,OD 长为半径作半圆,交AC 于另⼀点E ,交AB 于F ,G 两点,连接EF .若∠BAC =22°,则∠EFG =______.BOAA DFE CO G B第10题图第11题图11.如图,已知四边形ABCD内接于⊙O,如果它的⼀个外⾓∠DCE=64°,那么∠BOD的度数为__________.12.如图,在5×5的正⽅形⽹格中,⼀条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆⼼是点________.13.⼩明不慎把家⾥的圆形玻璃打碎了,其中四块碎⽚如图所⽰,为配到与原来⼤⼩⼀样的圆形玻璃,⼩明带到商店去的⼀块玻璃碎⽚应该是()A.第①块B.第②块C.第③块D.第④块第13题图第14题图14.如图,⊙O的两条弦AB,CD互相垂直,垂⾜为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是__________.15.已知O⊙的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB,CD 之间的距离为_________________.【参考答案】课前预习圆⼼,半径,2πr,πr2知识点睛1.定点;定长;定点;定长;⊙O2.圆上任意两点间的部分叫做圆弧;优弧;劣弧;连接圆上任意两点的线段叫做弦;顶点在圆上,并且两边都与圆相交的⾓叫做圆周⾓;顶点在圆⼼的⾓叫做圆⼼⾓;圆⼼到弦的距离叫做弦⼼距3.任意⼀条过圆⼼的直线;圆⼼4.(1)垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;①过圆⼼的直线;②垂直于弦;③平分弦;④平分优弧;⑤平分劣弧(2)同圆或等圆;两个圆⼼⾓;两条弧;两条弦;两个弦⼼距.(3)圆周⾓的度数等于它所对弧上的圆⼼⾓度数的⼀半;同弧或等弧所对的圆周⾓相等;直径所对的圆周⾓是直⾓;90°的圆周⾓所对的弦是直径;圆内接四边形对⾓互补(4)不在同⼀条直线上的三个点确定⼀个圆;外接圆;内接三⾓形;三⾓形三边垂直平分线的交点;外⼼.精讲精练1.D2.3.84.13 m5.30°6.40°7.m8.3 59.D10.33°11.128°12.Q13.B14.15. 7 cm 或17 cm圆中的基本概念及定理(习题)巩固练习1. ⼀条排⽔管的截⾯如图所⽰,已知排⽔管的截⾯圆半径OB 为10,截⾯圆圆⼼O 到⽔⾯的距离OC 为6,则⽔⾯宽AB 的长为() A .16B .10C .8D .6第2题图2. 如图,AB 是⊙O 的弦,OD ⊥AB 于点D ,交⊙O 于点E ,则下列说法不⼀定正确的是() A .AD =BD B .∠ACB =∠AOE C .AE ︵=BE ︵D .OD =DE3. 如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,若∠BOC =70°,则∠A 的度数为() A .70°B .35°C .30°D .20°AODCOCBA第3题图第4题图4. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦BC 的长为() A .1BC .2D .5. 如图,若AB 是⊙O 的直径,CD 是⊙O的弦,∠ABD =58°,则∠BCD =() A .116° B .32° C .58°D .64°CBAB6. 如图,A B 是半圆O 的直径,C ,D 是AB ︵上的两点,若∠ADC =120°,则∠BAC =________.A第6题图第7题图7. 如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =__________.8. 如图,点O 为优弧ACB 所在圆的圆⼼,∠AOC =108°,若点D 在AB 的延长线上,且BD =BC ,则∠D =_________.O DC A第8题图第9题图9. 如图,以原点O 为圆⼼的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,D 为第⼀象限内⊙O 上的⼀点,若∠DAB =20°,则∠OCD =_________. 10. 某蔬菜基地的圆弧形蔬菜⼤棚的剖⾯如图所⽰,已知AB =16 m ,半径OA =10 m ,则中间柱CD 的⾼度为______m .CDC第10题图第11题图11. 如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知⼤⼩,以锯锯之,深⼀⼨,锯道长⼀尺,问径⼏何.”⽤⼏何语⾔可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1⼨,AB =10⼨,则直径CD 的长为_________.12. 如图,若△ABC 的顶点都在⊙P 上,则点P 的坐标是________.OC BA第12题图第13题图13.⼩英家的圆形镜⼦被打碎了,她拿了如图所⽰(⽹格中每个⼩正⽅形的边长均为1)的⼀块碎⽚到玻璃店,配制成形状、⼤⼩与原来⼀致的镜⾯,则这个镜⾯的半径是__________.14.如图,点A,B,C,D在⊙O上,点O在∠D的内部,若四边形OABC为平⾏四边形,则∠OAD+∠OCD=______.第14题图第15题图15.如图,∠PAC=30°,在射线AC上顺次截取AD=3 cm,DB=10 cm,以DB为直径作⊙O,交射线AP于E,F两点,则线段EF的长是___________cm.思考⼩结1. 圆中处理问题的思路①找圆⼼,连半径,转移边;②遇弦,作垂线,垂径定理配合勾股定理建等式;③遇直径,找直⾓,由直⾓,找直径;④由弧找⾓,由⾓看弧.2. 中考数学中涉及“⼀半”的相关内容①直⾓三⾓形斜边中线等于斜边的⼀半;②30°所对的直⾓边等于斜边的⼀半;③三⾓形的中位线平⾏于第三边,且等于第三边的⼀半;④圆周⾓的度数等于它所对弧上圆⼼⾓度数的⼀半. 3. 阅读材料回答问题如图,在锐⾓△ABC 中,BC =a ,CA =b ,AB =c ,△ABC 的外接圆半径为R ,则2sin sin sin a b cR A B C===.证明:连接CO 并延长,交⊙O 于点D ,连接DB ,则∠D =∠A ∵CD 为直径,∴∠DBC =90°在Rt △BDC 中,sin 2BC aD DC R==∴sin 2a A R =,即2sin a R A =.同理可证2sin sin b cR B C ==∴2sin sin sin a b cR A B C ===.阅读前⾯的命题及证明,完成下⾯的①②两个⼩题.①前⾯的阅读材料中略去了“2sin b R B =”和“2sin cR C=”的证明过程,画出图形并证明2sin bR B=.②直接⽤前⾯阅读材料中的结论解题已知,在锐⾓△ABC中,BC CA ==∠A =60°,求△ABC 的外接圆半径R 及∠C 的度数.AC【参考答案】 ? 巩固练习1. A2.D3.B4.D5.B6.30°7.20°8.27°9.65°10.411.26⼨12.(-2,-1)13.14.60°15.6思考⼩结3.①证明略②R=1,∠C=75°。

初中数学圆的基本概念和性质知识点、经典例题及练习题

初中数学圆的基本概念和性质知识点、经典例题及练习题

BC教 育 学 科 教 师 讲 义讲义编号: GE —ZBM 副校长/组长签字: 签字日期:【考纲说明】1、理解圆及其有关概念, 知道圆的对称性,了解弧﹑弦﹑圆心角的关系。

2、了解圆周角与圆心角的关系,了解直径所对的圆周角是直角,会在相应的图形中确定垂径定理的条件和结论。

3、本部分在中考中占5分左右。

【知识梳理】1.圆的基本概念定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离 等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。

4.直径:经过圆心的弦叫直径。

注:圆中有无数条直径5.圆弧:(1)圆上任意两点间的部分,也可简称为“弧”以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB ”.(2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。

如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). (4)大于半圆的弧叫做优弧,如记作ACB ⋂(用三个字母). 6.垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;(2)推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧。

垂径定理归纳为:一条直线,如果具有:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

这五条中可以“知二推三”7.垂径定理的推论:圆的两条平行弦所夹的弧相等. 8.圆心角:顶点在圆心的角叫圆心角;9.圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角; 10.弦心距:过圆心作弦的垂线,圆心与垂足之间的距离. 11.弧﹑弦﹑圆心角之间的关系(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

2024年中考数学复习-圆知识点复习讲义

2024年中考数学复习-圆知识点复习讲义

圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。

圆知识点归类及典例分析

圆知识点归类及典例分析

圆知识点归类及典例分析圆是初中数学中的重要内容,也是中考的热门考点。

它包含了丰富的概念、定理和公式,具有很强的综合性和实用性。

下面我们来对圆的知识点进行归类,并通过典型例题进行分析。

一、圆的基本概念1、圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆。

其中,定点称为圆心,定长称为半径。

2、圆的弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

4、圆心角顶点在圆心的角叫做圆心角。

5、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线;圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。

3、圆与圆的位置关系设两圆的半径分别为 R、r(R > r),圆心距为 d,则有:(1)两圆外离⇔ d > R + r;(2)两圆外切⇔ d = R + r;(3)两圆相交⇔ R r < d < R + r;(4)两圆内切⇔ d = R r;(5)两圆内含⇔ d < R r。

2024年初中数学圆知识点总结(2篇)

2024年初中数学圆知识点总结(2篇)

2024年初中数学圆知识点总结____年初中数学圆知识点总结一、圆的基本概念1. 圆的定义:平面上所有到一个固定点距离相等的点组成的集合叫做圆。

2. 圆心与圆的半径:圆心是到圆上所有点的距离相等的点,半径是圆心到圆上任意一点的距离。

3. 圆的直径:圆上任意两点连线并经过圆心的线段叫做圆的直径,直径等于半径的两倍。

4. 圆的弦:圆上任意两点连线叫做圆的弦。

5. 圆的弧:圆上两点之间的部分叫做圆的弧,半圆是一个特殊的弧。

6. 圆的周长和面积:圆的周长是圆的一周的长度,记作L,圆的面积是圆覆盖的平面上的面积,记作S。

二、圆的性质1. 圆心角和弧度:圆心角是圆心处的角,它所对应的圆周弧所夹的角叫做弧度。

圆心角的度数等于所对应的弧度乘以180°/π。

2. 弧度与弧长:弧度是圆周弧所占据的弧长和半径的比值,所以弧长等于弧度乘以半径。

3. 圆周角和扇形面积:圆周角是圆周的一部分,所对应的扇形面积等于圆周角的度数除以360°再乘以圆的面积。

三、圆的位置关系1. 相离:两个圆的圆心之间的距离大于两个圆的半径之和,两个圆没有公共点。

2. 相切:两个圆的圆心之间的距离等于两个圆的半径之和,两个圆有一个公共点。

3. 相交:两个圆的圆心之间的距离小于两个圆的半径之和,两个圆有两个不同的公共点。

4. 内切:一个圆是另一个圆内部的切圆,两个圆的圆心之间的距离等于两个圆的半径之差。

5. 外切:一个圆是另一个圆的外部的切圆,两个圆的圆心之间的距离等于两个圆的半径之和。

四、圆的性质定理1. 圆的内接四边形:内接四边形的对角线互相垂直,并且对角线的交点连线的中垂线与圆的圆心重合。

2. 【定理】切线与弦的性质:切线与弦的相交角等于所对应的弦的圆心角的一半。

3. 【定理】切线长线段的性质:切线长线段的平方等于切点到切线所引的弦的两个线段的乘积。

五、圆的计算1. 圆的周长公式:L=2πR,其中L表示圆的周长,R表示圆的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
C
环 球 雅 思 教 育 学 科 教 师 讲 义
讲义编号: GE —ZBM 副校长/组长签字: 签字日期:
【考纲说明】
1、理解圆及其有关概念, 知道圆的对称性,了解弧﹑弦﹑圆心角的关系。

2、了解圆周角与圆心角的关系,了解直径所对的圆周角是直角,会在相应的图形中确定垂径定理的条件和结论。

3、本部分在中考中占5分左右。

【知识梳理】
1.圆的基本概念
定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

固定点O 叫
做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离 等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性:
(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心.
(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。

4.直径:经过圆心的弦叫直径。

注:圆中有无数条直径
5.圆弧:
(1)圆上任意两点间的部分,也可简称为“弧”
以A,B 两点为端点的弧.记作AB ⋂
,读作“弧AB ”.
(2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。

如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ⋂
(用两个字母). (4)大于半圆的弧叫做优弧,如记作ACB ⋂
(用三个字母). 6.垂径定理及其推论:
(1)定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;
(2)推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧。

垂径定理归纳为:一条直线,如果具有:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所
对的劣弧。

这五条中可以“知二推三”
7.垂径定理的推论:圆的两条平行弦所夹的弧相等. 8.圆心角:顶点在圆心的角叫圆心角;
9.圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角; 10.弦心距:过圆心作弦的垂线,圆心与垂足之间的距离. 11.弧﹑弦﹑圆心角之间的关系
(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

(2)在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距,如果有一组量相等,那么它们所对应的其余各组量都分别相等. 12.圆周角定理及其推论
(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半; (2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

【经典例题】
【例1】下列判断中正确的是( )
A. 平分弦的直线垂直于弦
B. 平分弦的直线也必平分弦所对的两条弧
C. 弦的垂直平分线必平分弦所对的两条弧
D. 平分一条弧的直线必平分这条弧所对的弦 【例2】如果两条弦相等,那么( )
A .这两条弦所对的弧相等
B .这两条弦所对的圆心角相等
C .这两条弦的弦心距相等
D .以上答案都不对
【例3】如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.
B
A
D
【例4】(08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( ) A. 2个 B. 3个 C. 4个 D. 5个
【例5】如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠= ,则A D C ∠的
度数为 .
【例6】(08年江苏南京)如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是
65 .为了监控整个展厅,最少需在圆形边缘上共安装...
这样的监视器 台.
【例7】(2007重庆市)已知,如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,
∠BAC =450。

给出以下五个结论:①∠EBC =22.50
,;②BD =DC ;③AE =2EC ;④劣弧⋂
AE 是劣弧⋂
DE 的2倍;⑤AE =BC 。

其中正确结论的序号是 。

.
【例8】(08辽宁沈阳)如图所示,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. (1)若52AOD ∠= ,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.
【例9】(2007山东德州)如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 中AB ⋂
上一点,
延长DA 至点E ,

使CE CD =. (1)求证:AE BD =;
(2)若AC BC ⊥
,求证:AD BD +=.
【例10】(2006年金华市)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB =5,(1) 求sin ∠BAC 的值;
(2) 如果OE ⊥AC , 垂足为E ,求OE 的长; (3) 求tan ∠ADC 的值.(结果保留根号)
【例11】(2009山西省太原市)如图,AB 是半圆O 的直径,点P 从点O 出发,沿 OA AB BO --的路径运动一周.设OP
为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )
【课堂练习】
1. 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则等于 A. 60° B. 90° C. 120° D. 150°
2. 如图.AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD=BD ,∠C= 70°. 现给出以下四个结论:
①∠A=45°; ②AC=AB : ③ AE BE
=; ④CE ·AB=2BD 2
. 其中正确结论的序号是
A .①②
B .②③
C .②④
D .③④
3. 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180 ,70 ,30 ,则PAQ ∠的大小为(

A.10 B.20 C.30 D.40
4. 如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()
A. =
B. >
C. 的度数=的度数
D. 的长度=的长度
5.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()
A. 60°
B. 100°
C. 80°
D. 130°
【课后作业】
1.(2013•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()
2.(2013•滨州)如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()
3.(2012•黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()
4.(2012•鄂州)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是()
5.(2011•衢州)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()
6.(2012•德阳)已知AB、CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=()
7.(2011•重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()
8.(2011•玉溪)如图,已知,AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D为()
9.(2011•台湾)如图,△ABC的外接圆上,AB,BC,CA三弧的度数比为12:13:11.自劣弧BC上取一点D,过D 分别作直线AC,直线AB的平行线,且交于E,F两点,则∠EDF的度数为()
10.(2011•长春)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()
【课后反馈】
本次同学课堂状态:本次课后作业:
需要家长协助:
家长意见:。

相关文档
最新文档