传感实验指导书
智能传感技术实验指导书-程(1)
CSY10A 传感器系统实验仪实验指导书实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。
各款实验仪的传感器配置及布局是:(具体布局详见各款仪器工作台布局图)一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁,梁上装有应变式、热敏式、P -N 结温度式、热电式和压电加速度五种传感器。
平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符和表示。
其中六片为金属箔式片(BHF-350)。
横向所贴的两片为温度补偿片,用符号和表示。
片上标有“BY ”字样的为半导体式应变片,灵敏系数130。
热电式(热电偶):串接工作的两个铜一康铜热电偶(T 分度)分别装在上、下梁表面,冷端温度为环境温度。
分度表见实验指导书。
P-N 结温度式:根据半导体P-N 结温度特性所制成的具有良好线性范围的集成温度传感器。
实验工作台左边是由装于机内的另一副平行梁带动的圆盘式工作台。
圆盘周围一圈安装有电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。
电感式(差动变压器):由初级线圈Li 和两个次级线圈L 。
绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm 。
霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。
光电式传感器装于电机侧旁。
为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V 直流电源,打开加热开关即能加热,工作时能获得高于温度30℃左右的升温。
以上传感器以及加热器、激振线圈的引线端均位于仪器下部面板最上端一排。
实验工作台上还装有测速电机一组及控制、调速开关。
二、信号及仪表显示部分:位于仪器上部面板低频振荡器:1~30Hz 输出连续可调,Vp-p 值20V ,最大输出电流1.5A ,Vi 端插口可提供用作电流放大器。
音频振荡器:0.4KHz~10KHz 输出连续可调,Vp-p 值20V ,180°、0°为反相输出,Lv 端最大功率输出1.5A 。
传感器实验指导书
实验指导书实验一、箔式应变片的温度效应及补偿实验目的:1、认识环境温度变化对传感器输出的影响(零点漂移、灵敏度漂移);2、 掌握差动电桥电路对温漂的抑制;3、 了解差动电桥电路抗干扰能力。
实验原理:传感器输出不仅反映被测量,环境的其它物理量(温度、电磁、偏载等等)也会对传感器的输出产生影响,即产生干扰。
为了提高测量精度,需提高传感器抗干扰能力,即干扰补偿。
一种有效的补偿措施是差动传感器方法。
含干扰的传感器静态数学模型为:)(3210T f X a X a X a a Y n n +++++=若传感器采用差动方法则有:)()(2222155331T f T f X a X a X a Y -++++=式中,)(T f 为干扰量产生的输出,)(1T f 、)(2T f 为两差动转换元件产生的输出。
通常干扰为共模干扰,即)(1T f 、)(2T f 同号,这样差动传感器的干扰减小,若传感器转换元件完全对称,即)(1T f 、)(2T f 完全相等,则干扰输出为零。
由工艺原因,传感器结构不可能完全对称,即通过差动方法不能完全消除干扰,或是传感器不能采用差动结构,传感器的干扰通常还需采取其它补偿措施。
实验步骤:1、连接主机与模块电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路。
输出端接电压表2V 档。
开启主机电源,用调零电位器调差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。
2、 观察贴于悬臂梁根部的应变片的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R 为应变片(可选上梁或下梁中的一个工作片),图中每两个节之间可理解为实验连接线,注意连接方式,勿使直流电源激励电源短路。
将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。
3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。
传感器实验指导书【选
目录实验一金属箔式应变片——单臂电桥性能实验 (2)实验二电容式传感器的位移特性实验 (4)实验三霍尔转速传感器测速实验 (6)实验四压电式传感器测量振动实验 (7)实验五电涡流传感器位移特性实验 (8)实验六光纤传感器的位移特性实验 (10)实验七Cu50温度传感器的测温特性实验 (12)实验八湿敏传感器实验 (14)附录一温控仪表操作说明 (15)实验一 金属箔式应变片——单臂电桥性能实验一.实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二.基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压U O14/εEK =。
三.需用器件与单元CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。
四.实验步骤1.根据图1-1应变式传感器已装于应变传感器模块上。
传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。
加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。
2.实验模块接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将CGQ-001实验模块调节增益电位器Rw 1顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的电压表电压输入端Vi 相连,调节实验模块上调零电位器Rw 2,使电压表显示为零(电压表的切换开关打到2V 档)。
传感器实验指导书2023
传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。
二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。
电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。
电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。
压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。
磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。
传感器实验指导书
传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
传感器实验指导书
4 传感测试技术基础实验4.1概述传感器也称为探测器、变换器或变送器,是能够把自然界的各种物理量和化学量转变为电信号再经过电子电路、仪器仪表或计算机进行处理,从而对这些量进行检测和控制。
传感器测试技术也称为非电量电测技术。
在机械量测量中,非电量被测参数主要有:位移、速度、加速度、力、压力、扭矩、转速、应力、应变、声音、振动等等。
传感器种类繁多,千差万别。
一种传感器可以用来测量多种被测量,一种被测量也可以用多种不同的传感器来测量。
通常传感器的分类可以用转换原理来分类,如电阻式传感器、电容式传感器、电感式传感器、磁电式传感器、压电式传感器、光电式传感器等等。
也可以按被测量来分类,如位移传感器、速度传感器、加速度传感器、力传感器、压力传感器、扭矩传感器等等。
无论何种传感器,它作为测量与控制系统的首要环节,应能达到快速、正确、可靠并且经济地实现信息采集和转换的基本要求。
即:(1)传感器要有足够的容量——传感器的工作范围或量程足够大,具有一定的过载能力;(2)传感器要与系统匹配性好,灵敏度高——输出量与被测量之间具有确定的线形关系;(3)传感器反应速度快,工作可靠性好;(4)传感器适用性和适应性强——对被测对象影响小,内部噪声小又不易受干扰;(5)传感器精度适当,稳定性好——静态、动态响应要满足要求;(6)使用经济——成本底、寿命长。
(7)工程中要综合考虑上述要求,使用时应尽量满足上述要求。
[1]4.2 CSY系列传感器系统综合实验台4.2.1 CSY系列传感器系统综合实验台简介CSY系列传感器系统综合实验台为完全模块式结构,分主机和实验模块二部分。
主机由实验平台,传感器系统,交、直流信号源,温控电加热源,位移机构、振动机构、仪表显示、电动气压源、数据采集处理和通信系统(RS232接口)等组成。
实验模块有13个,每个包含一种或一类传感器及实验所需的电路和执行机构。
实验时模块可按实验要求灵活组合,仪器性能稳定可靠,方便实用。
传感器实验指导书
传感与检测技术实验讲义实验一应变式称重传感器的应用一.实验目的:1.熟悉常用应变式力传感器的应用。
2.掌握应变片传感器的测量原理及电桥电路的应用。
二.实验仪器:稳压电源、万用表、实验箱、称重传感器模块等。
实验原理:应变式传感器是常用的测量力的传感器。
应变片式传感器是一种将测试件上的应变量转换成一种电信号的敏感器件。
当事件受力发生形变时,电阻应变片的阻值发生改变,从而使加在电阻上的电压发生变化,通常采用桥式电路,然后通过放大器放大实现。
三.实验内容及测试1.不同质量砝码重量测量应变片可以测量的重量范围为0~1Kg,额定灵敏度为1.0±0.15mv/g,R1~R4组成的电桥测量电路输入阻抗为1115±10%Ω,输出阻抗为1000±10%Ω,安全过载率为150%F.S,最大工作电压为15VDC。
满量程输出电压=激励电压×灵敏度。
U1A、U1B组成放大倍数可调的差分放大电路。
测量模块面板上共有4测试点,分别连接+12V,-12V,GND,输出点U0,连接电源和地线,用万用表直流电压档测量输出端电压。
1)不放任何砝码,用万用表测量输出端电压,调整RV1,RV2,使输出电压为0;2)将不同的砝码顺序放置在测量模块测量称盘上,用万用表测量输出端电压,并将电压值记录在2.实验报告1)整理实验数据,并绘制输入输出线性图;2)将数据填写在报告上。
实验二温度传感器的应用一、实验目的:熟悉常用温度传感器并掌握温度传感器的应用。
二、实验仪器:稳压电源、万用表、数字逻辑实验箱、Pt100热电阻、热敏电阻、集成电路等。
三、实验原理:温度传感器是将温度转换为电量输出的装置。
常用的温度传感器有热电阻、热敏电阻、热电偶、集成温度传感器等等。
热电阻主要是利用电阻随温度变化而变化这一特性来进行温度的测量、控制。
四、实验内容1、热电阻的测量:测量Pt 100热电阻、热敏电阻在不同温度下的电阻值。
2、热敏电阻的应用------------过热报警器热敏电阻在电路中常作为温度控制器件使用。
传感技术实验指导书(高联版)
CSY-3000系列传感器与检测技术实验台说明书一、实验台的组成CSY-3000系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。
1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;直流恒流源0.6mA-20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa(可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2、振动源:振动台振动频率1Hz-30Hz可调(谐振频率9Hz左右)。
转动源:手动控制0-2400转/分;自动控制300-2400转/分。
温度源:常温-150℃。
3、传感器:有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器、光照度探头、纯白高亮发光二极管、红外发光二极管、光敏电阻、光敏二极管、光敏三极管、硅光电池、反射式光电开关共二十六个(其中二个光源)。
4、实验模板:有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波模板、光电器件(一)、光开关共十二块模板。
二、使用方法1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到±2V档;其余旋钮都打到中间位置。
传感器原理实验指导书
传感器原理实验指导书实验一金属箔式应变片单臂、半桥、全桥性能比较一.实验目的掌握金属箔式应变片直流电桥的原理及使用。
比较单臂、半桥、全桥的输出特性。
二.实验设备CSY—998B传感器系统实验仪所需电路单元:直流稳压电源、电桥、差动放大器、测微头、V/F表、双平行梁测微头。
三.实验准备1.旋钮的初始位置直流稳压电源旋钮打到±4V档,V/F表打到20V档,差动放大增益旋钮打到最大处。
2.差动放大器调零用导线将正负输入端与地端连接起来,然后将输出端接到电压表的输入插口;开启主、副电源,调节差动放大器的增益到最大位置,调整差动放大器上的调零旋钮使表头在20V、2V都指示为零,关闭主副电源。
四.实验内容1.单臂电桥(1)按图接线,图中R4为金属箔式应变片,R1、R2和R3为电桥的固定电阻,r和W为调平衡电位器;(2)调整测微头使双平行梁处于水平位置(10—12mm);(3)将直流稳压电源打到±4V档,差动放大器增益旋钮往小旋转半圈,然后旋转W1使V/F表指示为零(需预热几分钟表头才能稳定下来)。
(4)向上旋转测微头,每0.5mm记录电压表读数,共记录10组数据填入下表。
2.半桥(1)调整测微头使双平行梁处于水平位置(10—12mm),保持放大增益不变。
(2)将R3换成与原应变片工作状态相反的另一应变片,形成半桥,旋转W1使表头指示为零。
(5)向上旋转测微头,每0.5mm记录电压表读数,共记录10组数据填入下表。
33.全桥(选做)(1)调整测微头,使梁处于水平位置,保持放大器增益不变。
(2)按上图接线,调好零点。
(3)向上旋转测微头,每0.5mm记录电压表读数,共记录10组数据填入下表。
五.实验报告画出单臂、半桥、全桥时的X---V曲线,计算三种情况的灵敏度。
4实验二差动变压器的综合实验一.实验目的了解差动变压器测量系统的组成和标定方法;了解差动变压器测量振动的方法。
二.实验设备CSY——998B传感器系统实验仪、双线示波器。
传感器技术实验指导书_3
实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验五直流激励时霍尔式传感器位移特性实验 (13)实验七光纤传感器的位移特性实验 (18)实验二直流全桥的应用――电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:电子秤实验原理为实验一,全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量纲(g)即成为一台原始电子秤。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码四、实验步骤:1、按实验一中2的步骤,将差动放大器调零,应变式传感器实验模板按全桥接线,合上主控台电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。
3、拿去托盘上的所有砝码,调节电位器R W4(零位调节)使数显表显示为0.0000V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。
成为一台原始的电子秤。
5、把砝码依次放在托盘上,填入下表2-1。
6、根据上表,计算误差与非线性误差。
五、思考题1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。
实验三电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
《传感技术》实验指导书
实验一金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器传感器实验箱(一)、应变片传感器模块、托盘、砝码、数显直流电压表、±15V、±5V 电源、万用表。
三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1图1-2通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压Uo=RR RR E ∆⋅+∆⋅211/4(1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR 。
四、实验内容与步骤 1.图1-1应变传感器上的各应变片已分别接到实验箱(一)右上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2.从实验台上接入±15V 直流电源到实验箱“直流电源”插座上,将应变式传感器的其中一个应变电阻(如R2)接入电桥与R5、R6、R7(已焊在线路板上)构成一个单臂直流电桥,见图1-2,接好调零电位器RW1,接上桥路电源±5V (从控制屏引入),电桥输出接到差动放大器的输入端Ui ,检查接线无误后,开启实验台电源,在应变片传感器托盘上不加砝码时,调节Rw3大约在中间位置,然后固定Rw3不动,用电压表2V 档测量桥路输出,调节Rw1,使桥路输出为零。
3.在应变片传感器托盘上放置一个砝码,读取电压表数值,保持Rw3不变,依次增加砝码和读取相应的电压表值,直到200g 砝码加完,记下实验结果,填入表1-1,关闭实验台电源。
传感器实验指导书(天煌)
传感器实验指导书(天煌)传感器实验指导书(天煌)一、实验目的本实验旨在帮助学生理解传感器的工作原理和应用场景,培养学生的实验操作能力和数据分析能力。
二、实验器材1:传感器模块 - 1个2: Arduino开发板 - 1个3:连接线 - 若干4:电阻 - 若干5: LED灯 - 若干6:温度计 - 1个三、实验步骤1:搭建电路连接:a:将传感器模块连接至Arduino开发板的数模转换口。
b:将Arduino开发板通过USB线与电脑连接。
c:根据传感器模块的数据手册接入合适的电源。
2:编写程序:a:在Arduino开发环境中创建新的项目。
b:导入传感器模块的库文件。
c:编写代码,初始化传感器模块并设置参数。
d:编写数据采集和数据处理的代码逻辑。
e:将编写好的代码烧录到Arduino开发板中。
3:实验数据采集:a:打开串口监视器,设定合适的波特率。
b:通过串口监视器输出传感器采集到的数据。
c:单独测试和观察每个传感器模块的输出。
d:记录实验数据。
4:数据处理和分析:a:根据传感器的特性和实验需求,对采集到的数据进行初步处理和筛选。
b:运用统计学方法对数据进行分析,计算平均值、标准差等统计量。
c:绘制数据分布直方图、折线图等可视化图表。
d:根据分析结果进一步讨论和解释实验现象。
四、实验注意事项1:在电路连接和编写程序时,务必参考传感器模块的数据手册,遵循正确的接线和设置流程。
2:实验过程中请注意安全,不得擅自改变电路接线或开关设置。
3:在实验数据采集时,应保持传感器模块与待测物理量之间的适当距离和相对位置。
4:在进行数据处理和分析时,遵循科学规范,严谨处理实验数据。
5:实验结束后,关闭所有设备,清理实验台面。
五、实验结果实验数据显示,传感器模块对待测物理量的测量准确性较高,且具有较好的稳定性。
通过数据分析,我们可以得出以下结论:::六、附件本文档涉及的附件包括:1:传感器模块数据手册2: Arduino开发板示例程序3:实验数据记录表七、法律名词及注释1:版权:著作权法规定的对具有独创性的文学、艺术和科技作品所享有的权利。
传感器试验指导书
传感器试验指导书信息工程系测控专业用实验一金属箔式应变片性能—实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
所需单元及部件:直流稳压电源、电桥、差动放大器Ⅰ、应变片传感器、砝码、电压表、电源。
旋钮初始位置:±4V,电压表打到20V挡,差动放大增益最大。
实验步骤:1.了解所需单元、部件在实验仪上的所在位置,观察应变片传感上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表面各贴二片受力应变片和一片补偿应变片。
2.将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与电压表的输入插口Ui 相连;开启电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使电压表显示为零,关闭电源。
根据图接线R1、R2、R3为电桥单元的固定电阻。
Rx为应变片;将稳压电源的调置±4V,电压置20V挡。
开启电源,调节电桥平衡网络中的W1,电压表显示为零,然后将电压表置2V挡,再调电桥W1(慢慢地调),使电压表显示为零。
图1原理图及接线参考图3.用手轻轻的按一下应变片传感器上的托盘,松开手后观察差动放大输出是否为0,如果不是,就还需要继续调节W,使输出为0。
反复操作这个步骤2-3遍就可以了。
将砝码逐个轻轻的放在应变片传感器的托盘上,放置砝码的时候不能碰到导线以及实验仪的其他部据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应电压表显示的电压相应变化)。
5.实验完毕,关闭电源,所有旋钮转到初始位置。
注意事项:1.电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。
2.为确保实验过程中输出指示不溢出,可先将砝码加至最大重量,如指示溢出,适当减小34.电位器W1、W2,在有的型号仪器中标为RD、RA问题:本实验电路对直流稳压电源和对放大器有何要求?实验二(A)金属箔式应变片:单臂、半桥、全桥比较实验目的:验证单臂、半桥、全桥的性能及相互之间关系。
传感器实验指导书
实验设备简介(一)传感器种类:金属箔应变片式传感器、半导体应变片、电容传感器、电涡流传感器、霍尔位移传感器、光电传感器、磁电传感器、温度传感器和湿度传感器等。
(二)实验台信号及显示部分1、气压装置:由气泵、气压表、流量计、储气箱组成。
2、低频振荡器:1~30Hz输出连续可调,V P-P值20V,Vi端插口可提供用作电流放大器。
3、音频振荡器:1~10kHz输出连续可调,V P-P值20V,180°为反相输出。
4、直流稳压电源:(1)±15V,提供仪器电路工作电源和温度实验时的加热电源,最大输出电流1.5A。
(2)±2V~±10V,档距2V,分五档输出,提供直流信号源,最大输出电流1.5A。
(3)2~24V可调直流电源5、数字式电压表:分20mv、2V、20V三档,由Vin接线口接出,在“显示选择”处显示。
6、频率/转速表:在Fin接线口接出。
(三)处理电路:由电桥电路、差动放大电路、光电变换电路等组成,具体见实验模板。
使用本仪器时打开电源开关,检查交、直流信号及显示仪表是否正常。
请注意,本仪器是实验性仪器,各电路完成的实验主要目的是对各种传感器测试电路做定性的验证,而非工程应用型的传感器定量测试。
传感器基础知识一、传感器的定义传感器(transducer 或senor)是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
合格的传感器应该满足:输出电量都应当不失真地复现输入量的变化。
这主要取决于传感器的静态特性和动态特性。
二、静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。
通常,要求传感器在静态情况下的输出—输入关系保持线性。
1、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F²S)输出值的百分比称为线性度。
非线性误差是以一定的拟合直线或理想直线为基准直线算出来的。
《传感技术综合实验单元》实验指导书1
《传感技术综合实验单元》实验指导书一、电子测量与检测实验须知传感技术综合实验的目的使学生在掌握各类传感器的理论及其检测技术、信号调理电路和光电检测技术基础上, 能合理选择和利用传感器测量各种工程上常见的物理量。
这是本专业本科学生必须掌握的基本技能。
要求学生通过实际操作, 培养独立思考、独立分析和独立实验的能力。
为使实验正确、顺利地进行, 并保证实验设备、仪器仪表和人身的安全, 在做检测与转换技术实验时, 需知以下内容。
1. 实验预习实验前, 学生必须进行认真预习, 掌握每次实验的目的、内容、线路、实验设备和仪器仪表、测量和记录项目等, 做到心中有数, 减少实验盲目性, 提高实验效率。
2.电源(1)实验桌上通常设有单相(或三相)交流电源开关和直流电源开关, 由实验室统一供电, 实验前应弄清各输出端点间的电压数值。
(2)实验桌(或仪器)上配有直流稳压电源, 在接入线路之前应调节好输出电压数值, 使之符合实验线路要求。
特别是在实验线路中, 严禁将超过规定电压数值的电源接入线路运行。
(3)在进行实验线路的接线、改线或拆线之前, 必须断开电源开关, 严禁带电操作, 避免在接线或拆线过程中, 造成电源设备或部分实验线路短路而损坏设备或实验线路元器件。
3. 实验线路(1)认真熟悉实验线路原理图, 能识图并能按图接好实验线路。
(2)实验线路接线要准确、可靠和有条理, 接线柱要拧紧, 插头与线路中的插孔的结合要插准插紧, 以免接触不良引起部分线路断开。
(3)线路中不要接活动裸接头, 线头过长的铜丝应剪去, 以免因操作不慎或偶然原因而触电, 或使线路造成意想不到的后果。
(4)线路接好后, 应先由同组同学相互检查, 然后请实验指导教师检查同意后, 才能接通电源开关, 进行实验。
4. 仪器仪表(1)认真掌握每次实验所用仪器仪表的使用方法、放置方式(水平或垂直), 并要清楚仪表的型号规格和精度等级等。
(2)仪器仪表与实验线路板(或设备)的位置应合理布置, 以方便实验操作和测量。
传感技术实验指导书文件.doc
传感技术实验指导书文件.doc传感技术实验指导书闽南理工学院2010年12月前言传感技术实验课程是实践教学中进行基本技能训练的重要环节,是机械制造及其自动化、测控技术与仪器等专业学生重要的技术基础课程。是培养学生理论联系实际、分析问题、解决问题,加强动手操作能力的一个重要手段。通过传感技术理论的基本性实验、综合设计性实验等实验教学,为培养学生拓展知识面、加强应用性及自学能力和创新意识,打下牢固的实践基础。开出的实验项目,任课教师可结合本专业的特点、学历层次的不同,开展相关的实验内容。本书分为第一章基本实验和附录两部分。基本实验重点强调通过实际操作,使学生掌握常用的各类传感器的基本性能,和各类传感器最基本的理论模型,对传感技术基础理论有进一步的加深和理解,巩固和拓展课堂上学过的理论知识。附录部分给出了实验仪器设备的使用说明及操作要求等,便于学生课前和课后的学习。本书在编写过程中得到王健教授、于雷老师,张琨英老师、何惜琴老师、王岳桦老师的大力支持,在此对他们表示衷心的感谢。由于编者水平有限,时间仓促,错误及欠缺之处,敬请读者批评指正。者2010年12月实验须知传感技术实验是传感课程的重要实践教学环节,是学生理论联系实际的重要手段,通过实验来验证所学过的理论知识,加深对各类传感器的理解,掌握实验操作技能,培养学生用理论知识解决实际问题的能力。同时,为培养学生建立实验安全意识,保证实验教学达到预期的目的,人身安全不出现问题,学生必须按下列要求去做。一、遵守实验室规则1、进入实验室不准大声喧哗、打闹;不准随地吐痰,乱抛纸屑杂物;不允许穿拖鞋进入实验室;保持实验室的环境卫生。2、使用仪器和设备时必须了解其性能、操作方法及注意事项,在使用时应严格遵守操作规程。认真填写《仪器设备使用登记表》,实验结束后要将仪器、仪表、工具等归位。3、必须遵守实验室制定的各项规章制度,听从指挥,做好实验前的准备工作,经指导教师检查后才允许实验。二、实验前预习1、实验前必须充分预习,参考实验指导书,认真填写《实验预习报告》。明确本次实验的目的、原理、使用的设备、实验内容及要求等。2、为了保证人身安全和仪器设备的完好,要认真阅读实验指导书中“实验注意事项”的内容。3、实验预习报告在实验前要经指导教师检查,没有预习报告的学生不准参加本次实验。三、实验操作过程1、实验接线时要认真检查,确定无误后,须经指导教师检查才能接通实验台的电源。2、整个实验操作过程中,要严格遵守“先接线后通电,先断电后拆线”的操作规程。3、实验时应注意观察,若发现有破坏性异常现象(异常声音、冒烟、发烫或有异味),应立即关断电源,保护现场,报告指导教师。找出原因、排除故障后,经指导教师验收后才可继续实验。4、实验过程中应仔细观察实验现象,认真记录实验数据。所记录的实验数据经指导教师审阅签字后再拆除实验线路。5、实验测试过程中,要独立操作完成实验内容。并将实验数据认真填写在实验预习报告中“实验数据记录”一栏中。四、实验报告的要求实验报告是对每次实验课程的全面总结,要求做完实验后,认真写出实验报告所要求的内容;主要有:1、数据处理及实验结论(包括计算、绘制实验要求的曲线、波形图等);2、实验总结;3、回答预习思考题;4、教师评语目录第一章基本实验实验一金属箔式传感器性能实验 (1)实验二电容传感器性能实验 (5)实验三电感式传感器—差动变压器性能实验 (8)实验四电涡流传感器—静态标定 (11)第二章附录附录1 CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪使用说明 (13)附录 2 双踪示波器的使用技巧 (17)2l l R A r ρρπ==实验一 金属箔式传感器性能实验一、实验目的1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。二、原理说明电阻应变效应 导体或半导体材料在外界力的作用下,会产生机械变形,其电阻值也将随着发生变化,这种现象称为应变效应。 设有一长度为、截面积为A 、半径为r 、电阻率为ρ的金属单丝,它的电阻值R 可表示为 当沿金属丝的长度方向作用均匀拉力(或压力)时,上式中ρ、r 、l 都将发生变化,从而导致电阻值R 发生变化。 例如 (1)金属丝受拉时,l 将变长、r 变小,均导致R 变大; (2)某些半导体受拉时,ρ将变大,导致R 变大。 实验证明,电阻丝及应变片的电阻相对变化量∆R / R 与材料力学中的轴向应变εx 的关系在很大范围内是线性的,即 K —电阻应变片的灵敏度 εx — 称为电阻丝的轴向应变,也称纵向应变ε x 通常很小,常用10-6表示之,在应变测量中,也常将之称为微应变。 对于不同的金属材料,K 略微不同,一般为2 x R K R ε∆=左右。而对半导体材料而言,由于其感受到应变时,电阻率 会产生很大的变化,所以灵敏度比金属材料大几十倍本实验说明箔式应变片及直流电桥的原理和工作情况。应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。三、实验设备序号名称型号与规格数量备注1 直流稳压电源+4V12 应变式传感器实验模块13 贴于主机工作台悬臂梁上的箔式应变计14 螺旋测微仪 15 数字电压表 1四、实验内容1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。图1)2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为模块上的固定标准电阻,R为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的WD电位器,使桥路输出为零。4、将砝码依次放在托盘上,每放一个砝码,记录一个输出电压值,并记入下表:线,计算灵敏度S:S=X∆。V∆/5、在完成单臂桥实验的基础上,依次将图(1)中的固定电阻R1,换接应变计组成半桥、将固定电阻R2 、R3,换接应变计组成全桥。6、重复实验一中实验3-4步骤,完成半桥与全桥测试实验并记录数据。7、在同一坐标上描出V-X曲线,比较三种桥路的灵敏度,并做出定性的结论。五、实验注意事项1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。2、做单臂电桥实验时,由于应变片的零飘和蠕变现象的客观存在,桥路中的三个精密电阻与应变片的零飘值一致的可能性很小,如果没有采用补偿的话,单臂电桥测试电路必然会出现输出电压漂移现象,这是真实地反映了应变片的特性,但是只要采用了半桥或全桥测试电路,系统就会非常稳定,这是因为同一批次的应变片的飘移和蠕变特性相近,接成半桥和全桥形式后根据桥路的加减特性原理就起到了非常好的补偿作用,这也是应变片在实际应用中无一例外地采用全桥(或半桥)测试电路的原因。3、因为是小信号测试,所以调零后做实验时电压表应置2V档,实验中要尽量避免外界信号干扰。六、思考题1、什么是应变效应?2、灵敏度S计算公式是什么?七、实验报告1、根据表中所测数据在同一坐标上描出V-X曲线,计算灵敏度S。2、比较三组数据,分析之间的关系3、误差分析4、心得体会及其他实验二电容传感器性能实验一、实验目的1、了解变面积式和差动变面积式电容传感器的工作原理和工作情况,2、比较它们的灵敏度。二、原理说明电容器是电子技术的三大类无源元件(电阻、电感和电容)之一,利用电容器的原理,先将非电量转换成电容量,进而再将电容量转换成电量的转化器件或装置,称为电容式传感器,它实质上是一个具有可变参数的电容器。用两块金属平板作电极可构成平行板电容器,若忽略其边缘效应,其电容可用下式表示:C=ξ0ξr S/d=ξS/d式中,S为极板相互遮盖面积,单位为m2;d为两平行板极间的距离,单位为m;ξ为极板间介质的介电常数,ξr为极板间介质的相对介质常数;ξ0为真空的介电常数由式C=ξ0ξr S/d=ξS/d 可见,在ξr、S、d三个参量中,只要保持其中两个不变,改变其中一个均可使电容C改变。在应用中,一般可做成变面积式、变介电常数式、变板间距离式等三种类型的电容传感器。d或S的变化可以反映线位移或角位移的变化,也可以间接反映压力、加速度等的变化;ξr的变化则可反映液面高度、材料厚度等的变化。常应用于:压力测量:差压传感器、变面积传感器、荷重传感器水分检测:粮食、油液位测量加速度测量设计时,要注意减小环境温度、湿度等变化所产生的误差,温度变化使传感器内各零件的几何尺寸和相互位置及某些介质的介电常数发生改变,从而改变传感器的电容量,产生温度误差。湿度也影响某些介质的介电常数。因此必须从选材、结构、加工工艺等方面来减小温度等误差。尽量采用空气或云母等介电常数的温度系数近似为零的电介质(也不受湿度变化的影响)作为电容式传感器的电介质。若用某些液体如硅油、煤油等作为电介质,当环境温度、湿度变化时,它们的介电常数随之改变,产生误差。在可能的情况下,传感器内尽量采用差动对称结构,这样可以通过某些类型的测量电路(如电桥)来减小温度等误差。在本试验仪中,有两组平行板电容传感器C1和C2,既可做单片电容传感器实验,也可组合做差动式电容传感器。用空气(介电常数的温度系数近似为零)做电介质。三、实验设备序号名称型号与规格数量备注1 电容传感器 12 电容传感器实验模块13 测微仪 14 电压表 1四、实验内容图(2-1)1、观察电容传感器结构:传感器由一个动极与两个定级组成,连接主机与实验模块的电源线及传感器接口,按图(2-1)接好实验线路,增益适当。2、用测微仪带动传感器动极位移至两组定极中间,调整调零电位器,此时模块电路输出为零。3、前后位移动极,每次0.5mm,直至动静极完全重合为止,记录数据,作出V-X曲线,求出灵敏度。4、移开测微仪,在主机振动平台旁的安装支架上装上电容传感器,在振动平台上装好传感器动极,用手按动平台,使平台振动时电容动极与定极不碰擦为宜。5、开启“激振I”开关,振动台带动动极在定极中上下振动,用示波器观察输出波形。五、实验注意事项1. 电容动极须位于环型定极中间,安装时须仔细作调整,实验时电容不能发生擦片,否则电压信号会发生突变。2. 要请老师查看线路后才开电源3. 注意接线时应关闭电源。六、预习思考题1. 电容值的大小与什么有关?2. 什么是差动变面积式电容传感器?七、实验报告1. 计算线性度1、计算灵敏度。2、比较两组数据,分析之间的关系3、误差分析4、得体会及其他实验三电感式传感器—差动变压器性能实验一、实验目的了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。二、原理说明差动变压器主要由一个结框和一个铁心组成。在线框上绕有一组一次线圈作为输入线圈,在同一框架上另绕两组二次线圈作为输出线圈,并在线框中央圆柱孔中放入铁心,在一次线圈加以适当频率的电压激励时,根据变压器的作用原理,在两个二次线圈中就会产生感应电动势。当铁心向右移动时,在右边二次线圈内所穿过的磁通比左边二次线圈多些,所以互感也大些,感应电动势E2增加;另一个线圈的感应电动势E1随铁心向右偏离中心位置而逐渐减小,并减小到接近空心状态时的电动势E0。两个二次线圈的输出电压分别为U21和U22(空载时即为感应电动势E1和E2),如果输出接成反向串联,则此传感器的输出电压U2=U22-U21。因为两个二次线圈做得一样,因此当铁心在中央位置时U2=0,当铁心移动时,U2就随位移x成线性增加,呈V形特性。如果以适当方法测量U2,就可以得到X成比例的线性读数。三、实验设备四、实验内容1、按图(3-1)接线,差动变压器初级线圈必须从音频信号源LV功率输出端接入,二个次级线圈串接。双线示波器第一通道灵敏度500mv/格,第二通道10mv/格。2、打开主机电源,调整音频输出信号频率,输出V p-p值2V,以示波器第二通道观察到的波形不失真为好。3、前后移动改变变压器磁芯在线圈中位置,观察示波器第二通道所示波形能否过零翻转,否则改变接次级二个线圈的串接端序。4、用螺旋测微仪带动铁芯在线圈中移动,从示波器中读出次级输出电压V p-p值,同时注意初次级线圈波形相位。位移mm电压V p-p根据表格所列结果,作出V-X曲线,指出线性工作范围。5、仔细调节测微仪使次级输出波形无法再小时,即为差动变压器零点残余电压,提高示波器第二通道灵敏度,观察残余电压波形,分析其频率成分。图3-1图3-26、按图(3-2)接线,连接主机与实验模块电源,示波器接相敏检波器①、②端,电压表接低通滤波器输出端,差动放大器稍有增益(10倍左右)即可。7、打开主机电源,调节音频信号源输出频率,使次级线圈波形不失真,用手将中间铁芯移至最左端,然后调节移相器,当示波器两通道所示波形正好是同相或反相时,将铁心重新安装到位移装置上,用测微仪将铁芯置于线圈中部(可利用实验二十二、二十三的结果),调节电桥W D、W A电位器使系统输出电压为零。8、用测微仪分别带动铁芯向左和向右位移指出线性工作范围。五、实验注意事项1、观察相敏检波器①、②端波形时示波器各功能键及“触发”选择要正确,否则可能看不到正确的波形相位的变化。2 、此实验的关键是差动放大器增益和将铁氧体磁芯移动到左端时移相器的调节六、预习思考题1、怎样消除零点残余电压?2、差动变压器的两个二次线圈是正向串联还是反向串联?七、实验报告1、计算线性度;2、计算灵敏度;3、比较两组数据,分析之间的关系;4、误差分析;5、心得体会及其他。实验四电涡流传感器—静态标定一、实验目的1.了解电涡流效应2. 掌握电涡流式传感器的基本检测原理二、原理说明电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率,导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X 的单值函数。三、实验设备序号名称型号与规格数量备注1 电涡流传感器 12 电涡流传感器实验模块13 螺旋测微仪 14 电压表 15 示波器 1 四、实验内容1、连接主机与实验模块电源及传感器接口,电涡流线圈与涡流片须保持平行,安装好测微仪,涡流变换器输出接电压表20V档。2、开启主机电源,用测微仪带动涡流片移动,当涡流片完全紧贴线圈时输出电压为零(如不为零可适当改变支架中的线圈角度),然后旋动测微仪使涡流片离开线圈,从电压表有读数时每隔0.2mm记录一个电压值,将V、X数值填入下表,口,观察电涡流传感器的激励信号频率,随着线圈与电涡流片距离的变化,信号幅度也发生变化,当涡流片紧贴线圈时电路停振,输出为零。五、实验注意事项模块输入端接入示波器时由于一些示波器的输入阻抗不高(包括探头阻抗)以至影响线圈的阻抗,使输出V0变小,并造成初始位置附近的一段死区,示波器探头不接输入端即可解决这个问题。六、思考题什么叫做电涡流效应?七、实验报告1.根据实验数据,将V、X数值填入表格,作出V-X曲线2. 完成数据表格中的计算,指出线性范围,求出灵敏度。。3. 总结电涡流传感器的基本原理以及应用范围。4. 心得体会及其他。附录1 CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪使用说明CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。各款实验仪的传感器配置及布局是:(具体布局详见各款仪器工作台布局图)一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁,梁上装有应变式、热敏式、P-N结温度式、热电式和压电加速度五种传感器。平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符号和表示。其中六片为金属箔式片(BHF-350)。横向所贴的两片为温度补偿片,用符号和表示。片上标有“BY”字样的为半导体式应变片,灵敏系数130。(CSY10B型应变梁上只贴有半导体应变计。)热电式(热电偶):串接工作的两个铜一康铜热电偶(T分度)分别装在上、下梁表面,冷端温度为环境温度。分度表见实验指导书。(CSY10B型上梁表面安装一支K分度标准热电偶。)热敏式:上梁表面装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K 。P-N结温度式:根据半导体P-N结温度特性所制成的具有良好线性范围的集成温度传感器。压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。实验工作台左边是由装于机内的另一副平行梁带动的圆盘式工作台。圆盘周围一圈安装有(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。电感式(差动变压器):由初级线圈Li和两个次级线圈L。绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm。电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。MPX压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50K P。精度1%。(CSY10B) 湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH。气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm,灵敏度R O/R>5。光敏传感器:半导体光导管,光电阻与暗电阻从nMΩ至nKΩ双孔悬臂梁称重传感器:称重范围0~500g,精度1%。光电式传感器装于电机侧旁。CSY10B上热释电红外传感器装于旋转页轮前面。两副平行式悬臂梁顶端均装有置于激振线圈内的永久磁钢,右边圆盘式工作台由“激振I”带动,左边平行式悬臂梁由“激振II”带动。为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,工作时能获得高于温度30℃左右的升温。以上传感器以及加热器、激振线圈的引线端均位于仪器下部面板最上端一排。实验工作台上还装有测速电机一组及控制、调速开关。(CSY10B装有激振转换开关)两支测微头分别装在左、右两边的支架上。(CSY10B只有右边一支)二、信号及仪表显示部分:位于仪器上部面板低频振荡器:1~30Hz输出连续可调,Vp-p值20V,最大输出电流1.5A,Vi端插口可提供用作电流放大器。音频振荡器:0.4KHz~10KHz输出连续可调,Vp-p值20V,180°、0°为反相输出,Lv端最大功率输出1.5A。直流稳压电源:±12V,提供仪器电路工作电源和温度实验时的加热电源,最大输出 1.5A。±2V~±10V,档距2V,分五档输出,提供直流信号源,最大输出电流1.5A。数字式电压/频率表:3 位显示,分2V、20V、12KHz、20KHz四档,灵敏度≥50mV,频率显示5Hz~20KHz。指针式直流毫伏表:测量范围500Mv、50mV 、5mV三档,精度2.5%。数字式温度计:K分度热电偶测温,精度±1℃。(CSY10B型)三、处理电路:位于仪器下部面板电桥:用于组成应变电桥,面板上虚线所示电阻为虚设,仅为组桥提供插座。R1、R2、R3为350Ω标准电阻,W D为直流调节电位器,W A为交流调节电位器。差动放大器:增益可调直流放大器,可接成同相、反相、差动结构,增益1-100倍。光电变换器:提供光纤传感器红外发射、接收、稳幅、变换,输出模拟信号电压与频率变换方波信号。四芯航空插座上装有光电转换装置和两根多模光纤(一根接收,一根发射)组成的光强型光纤传感器。电容变换器:由高频振荡、放大和双T电桥组成。移相器:允许输入电压20Vp-p,移相范围±40°(随频率不同有所变化)。相敏检波器:集成运放极性反转电路构成,所需最小参考电压0.5Vp-p,允许最大输入电压≦20Vp-p。电荷放大器:电容反馈式放大器,用于放大压电加速度传感器输出的电荷信号。电压放大器:增益5倍的高阻放大器。涡流变换器:变频式调幅变换电路,传感器线圈是三点式振荡电路中的一个元件。温度变换器(信号变换器):根据输入端热敏电阻值、光敏电阻及P-N结温度传感器信号变化输出电压信号相应变化的变换电路。低通滤波器:由50Hz陷波器和RC滤波器组成,转折频率35Hz左右。使用仪器时打开电源开关,检查交、直流信号源及显示仪表是否正常。仪器下部面板左下角处的开关控制处理电路的工作电源,进行实验时请勿关掉。指针式毫伏表工作前需输入端对地短路调零,取掉短路线后指针有所偏转是正常现象,不影响测试。请用户注意,本仪器是实验性仪器,各电路完成的实验主要目的是对各传感器测试电路做定性的验证,而非工程应用型的传感器定量测试。各电路和传感器性能建议通过以下实验检查是。
传感器课程实验指导书
传感器课程实验指导书实验⽬录实验⼀⾦属箔式应变⽚——单臂电桥性能实验··························(2) 实验⼆⾦属箔式应变⽚——半桥性能实验··································(7) 实验三⾦属箔式应变⽚——全桥性能实验··································(8) 实验四⾦属箔式应变⽚单臂、半桥、全桥性能⽐较实验 (9)实验五直流全桥的应⽤——电⼦秤实验.....................................(10) 实验六差动变压器的性能实验......................................................(11) 实验七电容式传感器的位移特性实验..........................................(15) 实验⼋直流激励时霍尔式传感器的位移特性实验 (16)实验九电涡流传感器的位移特性实验··········································(18) 实验⼗被测体材质对电涡流传感器的特性影响实验(选做)(20)实验⼗⼀光纤传感器的位移特性实验 (21)实验⼀⾦属箔式应变⽚——单臂电桥性能实验⼀、实验⽬的:了解⾦属箔式应变⽚的应变效应,并掌握单臂电桥⼯作原理和性能。
传感器实验指导书(实际版)
实验一 金属箔式应变片性能实验(一)金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK RR=∆式中RR∆为电阻丝电阻相对变化, K 为应变灵敏系数,ll ∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压41εEK U O =。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。
四、实验步骤:1.应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。
加热丝也接于模板上,可用万用表进行测量判别,Ω====3504321R R R R ,加热丝阻值为Ω50左右。
2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源。
3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好),接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。
检查接线无误后,合上主控箱电源开关。
调节1W R ,使数显表显示为零。
图1—2应变式传感器单臂电桥实验接线图4.在电子称上放置一只砝码,读取数显表数值,依次增加破码和读取相应的数显表值,直到500g (或200g )砝码加完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感实验指导书
长春工业大学人文信息学院
电子系
实验一金属箔式应变片性能—单臂电桥
实验目的:了解金属箔式应变片,单臂电桥的工作原理和工作情况
所需单元及部件:直流稳压电源,电桥,差动放大器,双平行梁,测微头,一片应变片,F/V 表,主,副电源。
旋钮初始位置:直流稳压电源打到2 档,F/V 表打到2V 档,差动放大增益最大。
实验步骤:
(1)了解所需单元、部件在实验一上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表面各贴受力二片应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、左、右调节。
(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F/V 表的输入端插口V i 相连;开启主,副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V 表显示为零,关闭主,副电源。
(3)根据图一接线。
R1 ,R2,R3 为电桥单元的固定电阻;Rx=R4 为应变片。
将稳压电源的切换开关置4V 档,F/V 档置20V 档。
调节测微头脱离双平行梁,开启主,副电源,调节电桥平衡网络中的W1 ,使F/V 表显示为零,然后将F/V 表置2V 档,再调电桥W1 (慢慢地调),使F/V 表显示为零。
图1
(4)在传感器托盘上放上一只砝码,记下此时的电压数值,然后每增加一只砝码记下一个数值并将这些数值填入下表。
根据所得结果计算系统灵敏度S =V/W ,并作出V-W 的关系曲线,V 为电压变化率,W 为相应的重量变化率。
注意事项:
(1)电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。
(2)为确保实验过程中输出指示不溢出,可先将砝码置最大重量,如指示溢出,适当减小差动
(3)做此实验时应将低频振荡器的幅度关至最小,以减小其对直流电桥的影响。
(4)电位器W1 ,W2 ,在有的型号仪器中标为RD,RA。
问题:
(1)本实验电路对直流稳压电源和对放大器有何要求?
(2)根据所给的差动放大器电路原理图,(见附录一) ,分析其工作原理,说明它既能作差动放大,又能作同相或反相放大器。
实验二金属箔式应变片:单臂、半桥、全桥比较器
实验目的:验证单臂、半桥、全桥的性能及相互之间关系。
所需单元和部件:直流稳压电源,差动放大器,电桥,F/V 表,测微头,双平行梁,应变片,主,副电源。
有关旋钮的初始位置:直流稳压电源打到2V 档,F/V 表打到2V 档,差动放大器增益打到最大。
实验步骤:
(1)按实验一方法将差动放大器调零后,关闭主、副电源。
(2)按图接线,图中R4=Rx 为工作片,r 及W1 为电桥平衡网络
(3)调整测微头使双平行梁处于水平位置(目测),将直流稳压电源打到±4V档。
选择适当的放大增益,然后调整电桥平衡电位器W1,使表头显示零(需预热几分钟表头才能稳定下来)。
(4)旋转测微头,使梁移动,每隔0.5mm读一个数,将测得数值填入下表,然后关闭主、副电源;
(5)保持放大器增益不变,将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调整测微头使梁到水平位置(目测),调节电桥W1使F/V表显示
(6)保持差动放大器增益不变,将R1,R2两个固定电阻换成另两片受力应压片(R1换成↑,
R2换成↓,)组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出。
接成一个直流全桥,调节测微头使梁到水平位置,调节电桥W1同样使
(7)在同一坐标纸上描出X—V曲线,比较三种接法的灵敏度。
注意事项:
(1)在更换应变片时应将电源关闭。
(2)在实验过程中如有发现电压表发生过载,应将电压量程扩大。
(3)在本实验中只能将放大器接成差动形式,否则系统不能正常工作。
(4)直流稳压电源±4V不能打的过大,以免损坏应变片或造成严重自然效应。
实验三差动变面积式电容传感的静态及动态特性
实验目的:了解差动面积式电容传感器的原理及其特性。
所需单元及部件:电容传感器、电压传感器、低通滤波器、F/V表、激振器、示波器
有关旋钮的初始位置:差动放大器增益旋钮置于中间,F/V表置于2V档。
实验步骤:
(1)按图28接线
(2)F/V表打到20V,调节测微头,使输入为零。
(3)转动测微头,每次0.1mm,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片覆盖面积最大为止。
退回测微头至初始位置。
并开始以相反方向旋动。
同上法,记下X(mm)及V(mv)值。
(4)计算系统灵敏度So。
S=∆V/∆X(式中∆V为电压变化,∆X为相应的梁端位移变化),并作出V-X关系曲线。
(5)卸下测微头,断开电压表,接通激振器,用示波器观察输出波形。
实验四电涡流式传感器的静态标定
实验目的:了解电涡流式传感器的原理及工作性能
所需单元及部件:涡流变化器、F/V表、测微头、铁测片、涡流传感器、示波器、振动平台、主、副电源。
实验步骤:
(1)装好传感器(传感器对准铁测片安装)和测微头。
(2)观察传感器的结构,它是一个扁平线圈。
(3)用导线将传感器接入涡流变换器输入端,将输出端接
至F/V表,电压表置于20V档,见图17,开启主、副电源。
(4)用示波器观察涡流变换器输入端的波形。
如发现没有
振荡波形出现,再将传感器远离被测体。
可见,波形为波形,示波器的时基为
us/cm,故振荡频率约为。
(5)调节传感器的高度,使其与被测铁片接触,从此开始读数,记下示波器及电压表的数值,填入下表:
建议每隔0.10mm读数,到线性严重变坏为止。
根据实验数据。
在坐标纸上画出V-X曲线,指出大致的线性范围,求出系统灵敏度。
(最好能用误差理论的方法求出线性范围内的线性度、灵敏度)。
可见,涡流传感器最大的特点是,传感器与被测体间有一个最佳初始工作点。
这里采用的变换电路是一种。
实验完毕关闭主、副电源。
注意事项:
被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。
实验五霍尔式传感器的特性一直流激励
实验目的:了解霍尔式传感器的原理与特性。
所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、F/V表、直流稳压电源、测微头、振动平台、主、副电源。
有关旋钮初始位置:差动放大器增益旋钮打到最小,电压表置20V档,直流稳压电源置2V档,主、副电源关闭。
实验步骤:
(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号。
霍尔片安装在实验仪的振动圆盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔传感器。
(2)开启主、副电源将差动放大器调零后,增益置最小,关闭主电源,根据图21接线,W1、r 为电桥单元的直流电桥平衡网络。
图21
(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。
(4)开启主、副电源,调整W1使电压表指示为零。
(5)上下旋动测微头,记下电压表的读数,建议每0.1mm读一个数,将读数填入下表:
作出V-X曲线指出线性范围,求出灵敏度,关闭主、副电源。
可见,本实验测出的实际上是磁场情况,磁场分布为梯度磁场与磁场分布有很大差异,位移测量的线性度,灵敏度与磁场分布有很大关系。
(6)实验完毕不能过大,以免损坏霍尔片。
注意事项:
(1)由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。
(2)一旦调整好后,测量过程中不能移动磁路系统。
(3)激励电压不能过大,以免损坏霍尔片。
实验六霍尔式传感器的应用
实验目的:了解霍尔式传感器在静态测量中的应用。
所需单元及部件:霍尔片、磁路系统、差动放大器、直流稳压电源、电桥、砝码、F/V表(电压表)、主、副电源、振动平台。
有关旋钮初始位置:直流稳压电源置 2V档,F/V表置2V档,主、副电源关闭。
实验步骤:
(1)开启主、副电源将差动放大器调零,关闭主、副电源。
(2)调节测微头脱离平台并远离振动台。
(3)按图21接线,开启主、副电源,将系统调零。
(4)差动放大器增益调至最小位置,然后不再改变。
(5)在称重平台放上砝码,填入下表:
(6)在平面上放一个未知重量之物,记下表头读数。
根据实验结果作出V-W曲线,求得未知重量。