一次函数解析式的求法及面积求法讲义

合集下载

19_2_5 一次函数的解析式的求法(教学设计)

19_2_5 一次函数的解析式的求法(教学设计)

人教版初中数学八年级下册19.2.5 一次函数的解析式的求法教学设计一、教学目标:1.理解待定系数法的意义.2.会用待定系数法求一次函数的解析式.二、教学重、难点:重点:用待定系数法求一次函数的解析式.难点:能从不同的条件下找出隐含条件求一次函数解析式.三、教学过程:复习回顾1.什么叫一次函数?一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b就变成了y=kx,所以说正比例函数是一种特殊的一次函数.2.一次函数y=kx+b(k,b是常数,k≠0)有什么性质呢?①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小.3.常数k和b是怎样影响函数图象的呢?①k的正负决定直线的方向.②b的正负决定直线与y轴交点在原点上方还是下方.画一画3x+3的图象.画出函数y=2x和y=-2知识精讲新知探究求下图中直线的函数解析式.①图(1)是经过_____的一条直线,因此是_______函数.②设它的解析式为_______.③将点________代入解析式求出______,从而确定该函数的解析式为_______.确定正比例函数的解析式需要___个条件.图(2)设直线的解析式是________,因为此直线经过点______和______,因此将这两个点的坐标代入可得关于k ,b 方程组,从而确定k ,b 的值,确定了函数解析式.确定一次函数的解析式需要___个条件.解:设直线的解析式为y=kx+b∵ 直线经过点(0,3)与(2,0)∴ ⎩⎨⎧=+=023b k b 解方程组得⎪⎩⎪⎨⎧=-=323b k∴ 这条直线的解析式为y=-23x+3典例解析例1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解:设这个一次函数的解析式为y=kx+b ←设∵ y=kx+b 的图象过点(3,5)与(-4,-9)∴ ⎩⎨⎧-=+-=+9453b k b k ←列解方程组得 ⎩⎨⎧-==12b k ←解 ∴ 这个一次函数的解析式为y=2x-1 ←代【归纳】像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.【针对练习】已知一次函数的图象经过点(9,0)和点(24,20),写出函数的解析式. 解:设这个一次函数的解析式为y=kx+b∵ y=kx+b 的图象过点(9,0)与(24,20)∴ ⎩⎨⎧=+=+202409b k b k 解方程组得 ⎪⎩⎪⎨⎧-==1234b k∴ 这个一次函数的解析式为y=34x-12例2.若一次函数的图象经过点A(2,0)且与直线y=-x+3平行,求其解析式.解:设这个一次函数的解析式为y=kx+b.∵一次函数的图象与直线y=-x+3平行∴k=-1把A(2,0)代入y=-x+b 中解得b=2∴一次函数的解析式为y=-x+2.例3.一次函数y=kx+b 的自变量的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,求这个函数的解析式.解:①当k>0时,y 随x 的增大而增大∴当x=-3时,y=-5,当x=6时,y=-2.把这两组值分别代入y=kx+b 中{-5=-3k+b -2=6k+b 解方程组得{k =13 b =−4∴一次函数的解析式为y=13x-4.②当k<0时,y 随x 的增大而减小当x=-3时,y=-2,当x=6时,y=-5把这两组值分别代入y=kx+b 中得到{−2=−3k +b −5=6k +b 解方程组得{k =−13b =−3∴一次函数的解析式为y=-13x-3综上所述,一次函数的解析式为y=13x-4或y=-13x-3例4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.分析:一次函数y=kx+b 与y 轴的交点是(0,b ),与x 轴的交点是(- b k ,0).由题意可列出关于k ,b 的方程.注意:此题有两种情况.解:设一次函数的解析式为y=kx+b(k ≠0)∵一次函数y=kx+b 的图象过点(0,2),∴b=2∵一次函数的图象与x 轴的交点是(-2k ,0),则1222,2k ⨯⨯-= 解得k=1或-1.故此一次函数的解析式为y=x+2或y=-x+2.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

一次函数解析式的常见求法

一次函数解析式的常见求法

一次函数解析式的常见求法一、求函数解析式的几种方法:方法一:利用待定系数法。

解析:( 1)建立关于x, y的一元二次方程: y^2=2×x^2-8x+42,当x=0时,得到一次函数的解析式。

2.(解析:令y为所求函数的自变量,根据题意列出含有x的方程组即可解决。

) 3.(解析:注意所求的解不能超过两个,这样可以保证方程组有唯一解。

) 4.(解析:此法仅限于当y为已知实数时使用,且在自变量取定后,函数式能唯一确定的情况下使用。

)4.(解析:将y=f(x)-4y, f=x-4作为未知数代入( 1)中,可得y=f(x)-4y,而根据“同一平面内,两个函数的图象关于y轴对称”可知,所求函数的自变量必须是该函数的奇函数,因此只需要再令f=x-4,即可解决。

) 5.(解析:根据题目中已知条件,可列出关于x, y的一元二次方程,并对方程两边同时求导数。

当x=0时,二次函数的解析式为y=2x-6;当x=-3/2时,二次函数的解析式为y=-1/2-6/2。

利用待定系数法可得y=-x/2,或者直接根据两个函数的关系进行判断。

)6.(解析:设y为实际问题的一次函数,由已知条件知,二次函数与y有关,由待定系数法可知, y可取任意值。

)7.(解析:以点B为圆心, y=f(x)=kx-4为半径画圆,令f(y)与k是两个不同的自变量,则其图象关于y轴对称,即可解决问题。

)方法二:利用方程法。

解析:( 1)建立关于x, y的一元二次方程: y^2=2×x^2-8x+42,当x=0时,得到一次函数的解析式。

2.(解析:令y为所求函数的自变量,根据题意列出含有x的方程组即可解决。

) 3.(解析:注意所求的解不能超过两个,这样可以保证方程组有唯一解。

) 4.(解析:此法仅限于当y为已知实数时使用,且在自变量取定后,函数式能唯一确定的情况下使用。

) 5.(解析:根据题目中已知条件,可列出关于x, y的一元二次方程,并对方程两边同时求导数。

一次函数解析式的求法

一次函数解析式的求法
14
2021/5/27
3. 若直线y=3x+b与两坐标轴 所围成的三角形的面积是6个 面积单位,求b的值.
15
2021/5/27
4.一次函数的图象与直线x+y6=0交于A(5,m)点,且与直线 y=2x-3无交点,求一次函数的 解析式。
16
2021/5/27
6、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围 成的三角形的面积为6.25,求 该直线的解析式。 7、已知直线y=2x-4向左平移4 个单位后的解析式 8、判断点A(3,2)、B(-3,1)、 C(1,1)是否在一直线上?
为y_=__2_x_+__1___.
11
你会用所学知识解决生活中的问2021/5题/27 吗?
(4)生物学家研究表明: 某种蛇的长度y(cm)是其尾长x(cm)的一次函数; 当蛇的尾长为 14cm时, 蛇的长为105.5cm; 当蛇的尾长为6 cm时, 蛇的长为45.5 cm; 当蛇的尾长为10 cm时,这条蛇的长度是多少?
x -2 -1 0 1
y3
10
其中有一格不慎被墨汁遮住了,想想看, 该空格里原来填的数是多少?
13
2021/5/27
1、一次函数的图象经过点(0,2),且与 两坐标轴形成的三角形面积等于1.求 出一次函数的解析式. 2、一次函数y=2x-2(1)向下平移4 个单位得到的解析式(2)向右平移2 个单位后的解析式(3)直线l与一次 函数y=2x-2直线关于x轴对称,求解析 式。
3
1.用待定系数法求一次函数的解析式 (1)先设出函数解析式,再根据条件确定解析式中未知数的 ___系__数___,从而具体写出这个式子的方法,叫做待__定__系__数__法__. (2)探究:已知一次函数的图象经过(2,5)和(-4,2),求这个 一次函数的解析式.

一次函数完美讲义

一次函数完美讲义

一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量;常量:在一个变化过程中只能取同一数值的量;s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是例题:在匀速运动公式vt________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数;判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数1y=πx 2y=2x-1 3y=错误! 4y=2-1-3x 5y=x2-1中,是一次函数的有A4个 B3个 C2个 D1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域;4、确定函数定义域的方法:1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零;5实际问题中,函数定义域还要和实际情况相符合,使之有意义;例题:下列函数中,自变量x的取值范围是x≥2的是. D.A..函数y=x的取值范围是___________.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表表中给出一些自变量的值及其对应的函数值;第二步:描点在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来;8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;1.判定一次函数的方法:1)从表达式角度考虑:有三条件:自变量x为一次;因变量为一次,系数k≠0.三、考点知识梳理一一次函数的定义一般地,如果y=kx+bk、b是常数,k≠0,那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kxk是常数,k≠0,这时,y叫做x的正比例函数.1.由定义知:y是x的一次函数它的解析式是y=kx+b,其中k、b是常数,且k≠0.2.一次函数解析式y=kx+bk≠0的结构特征:1k ≠0;2x 的次数是1;3常数项b 可为任意实数.它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时,向上平移;当b<0时,向下平移3.正比例函数解析式y =kxk ≠0的结构特征:1k ≠0;2x 的次数是1;3没有常数项或者说常数项为0.温馨提示:正比例函数是一次函数,但一次函数(0)y kx b k =+≠不一定是正比例函数,只有当b=0时,它才是正比例函数;例1 已知y-3与x 成正比例,且x=2时,y=7.1写出y 与x 之间的函数关系式; 2当x=4时,求y 的值;3当y=4时,求x 的值.二一次函数的图象1.一次函数y =kx +bk ≠0的图象是经过点0,b 和-错误!,0的一条直线.2.正比例函数y =kxk ≠0的图象是经过点0,0和1,k 的一条直线.3.一次函数y =kx +bk ≠0的图象与k 、b 符号的关系:1k >0,b >0图象经过第一、二、三象限.2k >0,b <0图象经过第一、三、四象限.3k <0,b >0图象经过第一、二、四象限.4k <0,b <0图象经过第二、三、四象限.温馨提示:画一次函数的图像,只需过图像上两点作直线即可,一般取(0,)b ,(,0)b k-两点; 三一次函数图象的性质一次函数y =kx +b,当k >0时,y 随x 的增大而增大,1) 图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.k 的正负决定直线的倾斜方向:● 两直线k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.|k|=x y ∆∆● 增减性:当k>0时,y 随x 值的增加而增加,当k<0时,y 随x 值的增加而减小,● |k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大直线陡,|k|越小,直线与x 轴相交的锐角度数越小直线缓;增加的快慢由两点的纵坐标之差和横坐标之差的比值来决定,即由k 值的大小决定;点和直线的关系:点Px 0,y 0与直线y=kx+b 的图象的关系1如果点Px 0,y 0在直线y=kx+b 的图象上,那么x 0,y 0的值必满足表达式y=kx+b ;2如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点Px 0,y 0必在函数的图象上. 2) 直线和直线的关系:当平面直角坐标系中两直线平行时,这两个函数解析式中k 1=k 2,且b 1≠b 2.当平面直角坐标系中两直线重合时,这两个函数解析式中k 1=k 2,且b 1=b 2.当平面直角坐标系中两直线相时,这两个函数解析式中k 1≠k 2,.当平面直角坐标系中两直线垂直时,其函数解析式中K 值互为负倒数即两个K 值的乘积为-1● 直线b 1=k 1x+b 1与直线y 2=k 2x+b 2k 1≠0 ,k 2≠0的位置关系:① k 1≠k 2⇔y 1与y 2相交;其交点的横纵坐标分别是两直线表达式所联立的方程组的解; ② ⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点0,b 1或0,b 2; ③ ⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④ ⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合四一次函数的应用1.求一次函数解析式求一次函数解析式,一般是已知两个条件,设出一次函数解析式,然后列出方程,解方程组便可确定一次函数解析式.2.利用一次函数性质解决实际问题用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤答.温馨提示:1.题目中的条件在列等式、不等式时不能重复使用,要仔细寻找题目中的隐含条件;2.正确理解题目中的关键词语:盈、亏、涨、跌、收益、利润、赚、赔、打折、不大于、不小于;3.设未知数相关量要有依据,而代数式为多项式时要加括号,带上单位,列方程时相关量的单位要保持一致;类型一一次函数的图象与性质1已知一次函数y=-3x+2,它的图象不经过第________象限.2若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值A.增加4 B.减小4 C.增加2 D.减小23若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<04如图,一次函数y=-错误!x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a0<a<4且a≠2,过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是A.S1>S2B.S1=S2C.S1<S2D.无法确定点拨准确掌握一次函数的图象与性质是做对此类题的关键.答案1三2A3D4A类型二一次函数的解析式及应用1将直线y=错误!x向下平移3个单位所得直线的解析式为________.2我们知道,海拔高度每上升1千米,温度下降6 ℃,某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.①写出y与x之间的函数关系式;②已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃③此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米点拨一次函数解析式的确定需要明确两个点的坐标,从而求出系数k、b的值,一次函数的应用题需从题意中获取有用的信息.答案1y=错误!x-3.2①y=20-6xx>0;②500米=千米,y=20-60×=17℃;③令-34=20-6x,得x=9千米.五、易错题探究一次函数y=kx+bk为常数且k≠0的图象如图所示,则使y>0成立的x的取值范围为________.解析当y>0时,函数图象在x轴上方,此时x<-2.易错警示不清楚y>0指的是哪部分图象.一、选择题1.若正比例函数的图象经过点-1,2,则这个图象必经过点A.1,2 B.-1,-2 C.2,-1 D.1,-2解析:设y=kxk≠0把-1,2代入得k=-2,∴y=-2x,再把被选项代入验证,选D.2.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k和b的符号判断正确的是A.k>0,b<0 B.k>0,b<0C.k<0,b>0 D.k<0,b<03.若直线y=3x+b与两坐标轴围成的三角形面积为6,则b为A.6 B.-6 C.±6 D.±7二、填空题11.已知一次函数y=2x-6与y=-x+3的图象交于点P,则点P的坐标为________.12.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是________.三、解答题13.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P1,b.1求b的值;2不解关于x、y的方程组错误!请你直接写出它的解;3直线l3:y=nx+m是否也经过点P请说明理由.。

一次函数解析式求法

一次函数解析式求法
一次函数定义
斜率 $k$ 的意义
截距 $b$ 的意义
解析式求法
表示函数图像的倾斜程度,$k > 0$ 时图像上升,$k < 0$ 时图像下降。
表示函数图像与 $y$ 轴交点的纵坐标。
通过已知的两个点坐标,利用两点式或点斜式求出一次函数的解析式。
关键知识点总结
忽视斜率 $k neq 0$ 的条件,将常数函数误认为一次函数。
已知斜率和一点坐标求解析式
已知一次函数的图像经过点 $(2, 3)$ 和 $(-1, -2)$,求这个一次函数的解析式。
例题
设一次函数解析式为 $y = kx + b$,根据已知条件列方程组

实际应用举例
$$begin{cases}
3 = 2k + b
2 = -k + b
实际应用举例
end{cases}$$
将求得的待定系数代回原解析式后,必须验证是否满足已知条件。
误区提示:常见的误区有以下几点
注意事项与误区提示
忽略了已知条件对解析式的限制;
在列方程或方程组时出现了错误;
在解方程或方程组时出现了计算错误;
没有验证求得的解析式是否满足已知条件。
01
02
03
04
注意事项与误区提示
04
解析式求法之图像法
创新思维在求解过程中运用
逆向思维
从问题的结论出发,逆向推导问题的条件,从而找到解决问题的新思路。
类比思维
将问题与其他类似问题进行类比,借鉴其他问题的解决方法,以启发新的解题思路。
转化思维
将问题转化为另一种形式或模型,以便利用已知的知识和方法进行求解。
06
总结回顾与拓展延伸

一次函数解析式的常见求法

一次函数解析式的常见求法

一次函数解析式的常见求法一次函数解析式的常见求法:⑴已知一次函数的图象和几个特殊点时,一般是求它的解析式。

⑵先画出一次函数y=ax+b的图象,确定自变量和因变量的位置,设出a、 b的值;然后由b的值确定a的值。

在此基础上,利用待定系数法或分离变量法确定y = ax+b的解析式。

⑶利用一次函数与几何图形的关系,列方程组解一次函数。

这是根据一次函数的单调性,求得最值的问题。

⑷若已知自变量和函数的表达式,则应根据具体情况确定二元一次方程的一个根。

⑸若已知解析式,可直接代入一次函数解析式求值,再检验或估计;若已知表达式,则应先化为标准形式,再根据方程组求得其中一个未知数。

(3)对于含有反比例函数,可根据一次函数的图象和一元二次方程进行讨论,通过解方程来解答,必要时还需求得一些表达式。

(4)当二次函数和原来函数相交时,二次函数的解析式即为原函数的解析式,但不一定正确,所以在用二次函数解析式解决实际问题时,必须注意它的适用范围。

(5)从一次函数图象上看,抛物线有三个特殊点。

(它们都是直线与x轴交点。

)如果直线与抛物线只有两个交点,则一次函数图象经过两个交点时抛物线开口向下。

(如果有三个交点,则抛物线与x轴的交点是坐标原点,也就是说抛物线开口向上)(6)在实际应用中,可能没有给出抛物线的解析式,而给出了几个点(包括与x轴的交点)这样就可以根据点与坐标原点连线的斜率大小来判断它在直线上的位置。

一般地,点P(x, y)取决于原点的位置,直线上点P的横坐标(x, y)等于该点所对应的一次函数解析式中的自变量的值。

当直线上点P的纵坐标(x, y)大于零时,点P(x, y)在直线上。

当直线上点P的横坐标(x, y)小于零时,点P(x, y)在直线上。

在某一直线上,其他的点都落在直线上。

一次函数在y=ax+b上有两个交点,其中, A点在第一象限内, B点在第三象限内,那么当直线上点的坐标大于0,并且点P的横坐标小于0时,点P(x, y)> 0。

函数解析式的求法

函数解析式的求法

函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。

其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。

2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。

常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。

例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。

(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。

3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。

4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。

用消元法消去f(1/x),即得f(x)的解析式。

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

一次函数面积问题——已知面积求解析式(一)

一次函数面积问题——已知面积求解析式(一)

l
在直线 l 上求两点 M、N(M 在左) ,使得 MN=a,并使 AM+MN+NB 最短。 将 A 向右平移 a 个单位到 A’,对称 A’到 A’’,连结 A’’B 与 l 交点即为 N, 左平移 a 个单位即为 M.
4.
L1
L2
在直线 L1、L2 上分别求点 M、N,使△PMN 周长最小。 分别将点 P 关于两直线对称到 P’、P’’,连结 P’P’’与两直线交点即为 M、 N. 5.
已知直线 PA : y x n(n 0) 与 x 轴交于 A, 与 y 轴交于 Q, 另一条直线
y 2 x m(m n)与x 轴交于 B,与直线的坐标(用 m 或 n 表示) 5 (2)若 AB=2,且 S 四边形 PQOB= ,求两个函数的解析式. 6
L1
L2
在直线 L1、L2 上分别求点 M、N,使四边形 PMNQ 周长最小。 将 P、Q 分别对称到 P’、Q’,连结 P’Q’与直线的交点即为 M、N. 6.
l
在直线 l 上求点 P,使|AP-BP|最大。 作直线 AB 与 l 的交点即为点 P. 7.
l
在直线 l 上求点 P,使|AP-BP|最大。 将点 B 对称到 B’,作直线 AB’与 l 的交点即为点 P. 8.
y A
y A
y A
O
B x
O
B x
O
B
x
① 点 A 坐标为_____________, P、 Q 两点相遇时交点的坐标为________________; ② 当 t=2 时, S△OPQ ____________;当 t=3 时, S△OPQ ____________; ③ 设△OPQ 的面积为 S,试求 S 关于 t 的函数关系式;

专题51 一次函数的平行、垂直、面积问题(解析版)

专题51 一次函数的平行、垂直、面积问题(解析版)

模型介绍方法点拨☑知识点1两直线平行如图,直线b∥a,那么k b =k a ,若已知k a 及C 的坐标即可求出直线b 的解析式.☑知识点2两直线垂直如图,直线c⊥a,那么k c *k a =-1,若已知k a 及C 或B 的坐标即可求出直线c 的解析式.(针对这一性质,初中不要求掌握,一般用全等、相似的方法求解)例题精讲考点一:一次函数平行问题【例1】.一次函数y=kx+b与y=3x+1平行,且经过点(﹣3,4),则这个函数的表达式为y=3x+13.解:∵一次函数y=kx+b与y=3x+1平行,∴k=3,把(﹣3,4)代入y=3x+b得﹣9+b=4,解得b=13,∴所求一次函数解析式为y=3x+13.故答案为y=3x+13.变式训练【变1-1】.一条直线平行于直线y=2x﹣1,且与两坐标轴围成的三角形面积是4,则直线的解析式是()A.y=2x+4B.y=2x﹣4C.y=2x±4D.y=x+2解:∵所求直线与直线y=2x﹣1平行∴可设所求直线的解析式为y=2x+b令x=0可得直线在y轴的截距为b令y=0可得直线在x轴的截距为由题意可知:b××=4∴b=±4,故选:C.【变1-2】.一个一次函数图象与直线y=x+平行,与x轴、y轴的交点分别为A、B,并且过点(﹣1,﹣20),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有4个.解:因为一次函数的图象与直线y=x+平行,所以所求直线的斜率为,又因为所求直线过点(﹣1,﹣20),所以所求直线为5x﹣4y﹣75=0,所以此直线与x轴、y轴的交点分别为A(15,0)、B(0,﹣),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣20+5N,(N是整数).因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣20+5N≤0,解得:≤N≤4,所以N=1,2,3,4,故答案为:4.考点二:一次函数垂直问题【例2】.已知直线y=kx+b经过点A(3,8),并与直线y=2x﹣3垂直,则k=﹣;b=.解:∵已知直线y=kx+b与直线y=2x﹣3垂直,则k=﹣,∴y=x+b,将A(3,8)代入,8=+b,解得b=,故答案为﹣,.变式训练【变2-1】.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为(,).解:∵△AOB∽△CDB,∴∠CDB=∠AOB=90°,设直线CD的解析式为:y=2x+b,∵点C的坐标为(0,﹣8),∴b=﹣8,,解得,,则点D的坐标为:(,),故答案为:(,).【变2-2】.直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=﹣1]解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=x2,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴×=====﹣1,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).考点三:一次函数的面积问题【例3】.已知一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,则常数m=±2.解:令x=0,则y=2,令y=0,则x=﹣,∵一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,∴×2×|﹣|=1,解得m=±2.故答案为:±2.变式训练【变3-1】.已知直线y=(n为正整数)与坐标轴围成的三角形的面积为S n.则S1+S2+S3+…+S2020的值为()A.B.C.D.解:令x=0,则y=,令y=0,则=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2020=(+﹣+﹣+…+﹣)=(﹣)=.故选:B.【变3-2】.如图,正比例函数y=﹣3x的图象与一次函数y=kx+b的图象交于点P(m,3),一次函数图象经过点B(1,1),与y轴的交点为D,与x轴的交点为C.(1)求一次函数表达式;(2)求△COP的面积.解:(1)∵正比例函数y=﹣3x的图象过点P(m,3),∴3=﹣3m,解得:m=﹣1,∴P(﹣1,3),∵一次函数y=kx+b的图象过点P(﹣1,3),B(1,1),∴,解得:,∴一次函数表达式为y=﹣x+2;(2)由(1)知,一次函数表达式为y=﹣x+2,令y=0,﹣x+2=0,解得:x=2,∴C(2,0),∴OC=2,∴=3.1.两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则()A.k1≠k2,b1≠b2B.k1≠k2,b1=b2C.k1=k2,b1≠b2D.k1=k2,b1=b2解:两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则两直线与y轴的交点是同一点,在直线y1=k1x+b1中,令x=0,解得y=b1,与y轴的交点是(0,b1),同理直线y2=k2x+b2与y轴的交点是(0,b2),则b1=b2,若k1=k2,则两直线重合,因而k1≠k2.故选:B.2.若直线x+3y+1=0与ax+y+1=0互相垂直,则实数a的值为()A.﹣3B.﹣C.D.3解:直线x+3y+1=0的斜率为:﹣,直线ax+y+1的斜率为:﹣a,∵两直线垂直,∴﹣×(﹣a)=﹣1,∴a=﹣3,故选:A.3.已知一次函数y=x+2与y=﹣2+x,下面说法正确的是()A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行解:根据一次函数的性质,一次函数y=x+2与y=﹣2+x,分别与y轴相交于(0,2)和(0,﹣2)两点,因为x的系数,都为1,因此直线的方向是一样的,都与直线y=x平行.故选:D.4.如图,直线l1过原点,直线l2解析式为y=﹣x+2,且直线l1和l2互相垂直,那么直线l1解析式为()A.y=x B.y=x C.y=x D.y=x解:∵一次函数经过原点,∴设所求的一次函数为y=kx,∵一次函数的图象与直线y=﹣x+2垂直,∴k=,则直线l1解析式为y=x,故选:D.5.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选:C.6.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=﹣8.解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b得2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为﹣8.7.若平行于直线y=﹣2x的某直线y=kx+b与两坐标轴所围成的三角形面积为5,则b=.解:直线y=kx+b与直线y=﹣2x平行,因而k=﹣2,直线y=﹣2x+b与x轴的交点坐标是,与y轴的交点坐标是(0,b),∴||•|b|=5,即=5,解得:b=±2.8.如图,直线y=﹣x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=(x>0)恰好过点C、M,则k=.解:∵y=﹣x+2,∴x=0时,y=2;y=0时,﹣x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD是矩形,∴∠ABC=90°.设直线BC的解析式为y=2x+b,将B(0,2)代入得,b=2,∴直线BC的解析式为y=2x+2,设C(a,2a+2),∵矩形ABCD的对称中心为点M,∴M为AC的中点,∴M(,a+1).∵双曲线y=(x>0)过点C、M,∴a(2a+2)=(a+1),解得a1=,a2=﹣1(不合题意舍去),∴k=a(2a+2)=(2×+2)=.故答案为.9.在平面直角坐标系xOy中,已知直线AB与x轴交于点A(2,0),与y轴交于点B(0,1).(1)求直线AB的解析式;=2,求点C的坐标.(2)若x轴上有一点C,且S△ABC解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(2,0),B(0,1)代入,可得,解得,∴直线AB的解析式为y=﹣x+1;(2)∵x轴上有一点C,设点C(x,0),∴AC=|2﹣x|,=2,∵S△ABC∴×|2﹣x|×1=2,∴x=﹣2或x=6,∴C(﹣2,0)或C(6,0).10.如图,直线l1:y=x﹣3与x轴交于点A,与y轴交于点B,直线l2:y=kx+b与x轴交于点C(0.5,0),与y轴交于点D(0,2),直线l1,l2交于点E.(1)求直线l2的函数表达式.(2)试说明CD=CE.(3)若P为直线l1上一点,当∠POB=∠BDE时,求点P的坐标.解:(1)将C(0.5,0).D(0,2)代入y=kx+b得,,解得,∴直线l2的函数解析式为y=﹣4x+2;(2)当﹣4x+2=x﹣3时,∴x=1,∴E(1,﹣2),过点E作EF⊥x轴于F,∴EF=OD=2,∵∠ODC=∠CEF,∠DCO=∠ECF,∴△DOC≌△EFC(AAS),∴CD=CE;(3)∵∠POB=∠BDE,∴点P在l1上有两个位置,当点P在点B上方时,如图,∴OP∥DE,∴直线OP的函数解析式为y=﹣4x,∴﹣4x=x﹣3,∴x=,当x=时,y=﹣,∴P(,﹣),当点P在点B的下方时,设点P关于y轴的对称点为Q,连接OQ交l1为点P',∴Q(﹣),则直线OQ的函数解析式为y4,∴直线OQ与l1的交点为P'(﹣1,﹣4),综上所述:P(,﹣)或(﹣1,﹣4).11.如图,在平面直角坐标系中,将一块等腰直角三角板△ABC放在第三象限,斜靠在两坐标轴上,点C坐标为(0,﹣4),直角顶点B坐标为(﹣1,0),一次函数y=kx+b的图象经过点A、C交x轴于点D.(1)求点A的坐标;(2)求直线AC与坐标轴围成的三角形的面积.解:(1)作AE⊥x轴,垂足为E.∵∠AEB=90°,∴∠ABE+∠CBO=90°.在Rt△AEB中,∵∠ABE+∠EAB=90°,∴∠CBO=∠EAB,在△AEB和△BOC中,,∴△AEB≌△BOC(AAS).∴AE=BO=1,BE=OC=4,∴OE=OB+BE=1+4=5,∴A(﹣5,﹣1).(2)把A(﹣5,﹣1),C(0,﹣4)代入y=kx+b,得,解得,函数解析式为:y=﹣x﹣4,当y=0时,x=﹣,D(﹣,0).S△COD=××4=.12.如图,直线l1:y=x+3分别与直线l2:y=kx+b(k≠0)、直线l3:y=k1x+b1(k1≠0)交于A、B两点,直线l1交y轴于点E,直线l2与x轴和y轴分别交于C、D两点,已知点A的纵坐标为,B的横坐标为1,l2∥l3,OD=1,连BD.(1)求直线l3的解析式;(2)求△ABD的面积.解:(1)在y=x+3中,令y=,则x=﹣,∴A(﹣,),∵OD=1,∴D(0,﹣1),把点A,D的坐标代入l2:y=kx+b,可得,解得,∴l2:y=﹣x﹣1,在y=x+3中,令x=1,则y=4,∴B(1,4),∵l2∥l3,∴k1=﹣,把B(1,4)代入y=﹣x+b1可得,4=﹣+b1,∴b1=,∴直线l3的解析式为y=﹣x+;(2)在y=x+3中,令x=0,则y=3,∴E(0,3),∴DE=3+1=4,=DE(|x A|+|x B|)=(+1)=5.∴S△ABD13.如图,一次函数y=x﹣2的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,且点B的纵坐标为1.(1)求反比例函数y=(x>0)的表达式;(2)过点A作x轴的垂线交反比例函数y=(x>0)的图象于点C,平移直线y=x ﹣2得到过点C的直线l,l的函数表达式为y=mx+n,结合函数的图象,求>mx+n对应x的取值范围.解:(1)∵点B在一次函数y=x﹣2的图象上,且B的纵坐标为1,∴1=,∴x=6,∴B(6,1),∵反比例函数y=(x>0)的图象过点B,∴,∴k=6,∴反比例函数的表达式为(x>0);(2)∵一次函数y=x﹣2的图象与x轴交于点A,∴令y=0得,,∴x=4,∴A(4,0),∵CA⊥x轴,∴点C的横坐标为4,结合函数图象可知,要求>mx+n,即反比例函数y=的图象在一次函数y=mx+n的图象的上方,∴0<x<4.14.已知抛物线y=ax2﹣a(a>0).(1)求抛物线与x轴的交点坐标;(2)设C为抛物线上的一定点,抛物线和x轴交点为E、F,直线l:y=kx+2k+3与抛物线交于点A、B(点B与点C不重合),与y轴交于点P,直线BD垂直于直线y=﹣a,垂足为D,且△CEF为等腰直角三角形.①求点C的坐标和抛物线的解析式;②证明:对于每一个给定的实数k,都有DP∥AC.解:(1)在y=ax2﹣a中,令y=0,得ax2﹣a=0,∵a>0,∴x2﹣1=0,解得:x=﹣1或x=1,∴抛物线与x轴的交点坐标为(﹣1,0)和(1,0);(2)①∵y=ax2﹣a,∴E(﹣1,0),F(1,0),∵△CEF为等腰直角三角形,∴CE=CF,∠ECF=90°,∠CEF=∠CFE=45°,∵∠EOC=∠FOC=90°,OE=OF=1,∴OC=OE=1,∴C(0,﹣1),将C(0,﹣1)代入y=ax2﹣a中,则﹣a=﹣1,∴a=1,∴抛物线的解析式为y=x2﹣1;②由题意得:,解得:或,∴A(﹣2,3),B(k+2,k2+4k+3),且k+2≠0,∵直线BD垂直于直线y=﹣1,垂足为D,∴D(k+2,﹣1),在y=kx+2k+3中,令x=0,得y=2k+3,∴P(0,2k+3),设直线AC解析式为y=mx+n,则,解得:,∴直线AC解析式为y=﹣2x﹣1,设直线DP的解析式为y=m′x+n′,则,解得:,∴直线DP的解析式为y=﹣2x+2k+3,∴AC∥DP.15.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.解:(1)∵直线y=2x+1与y=kx﹣1互相垂直,∴2•k=﹣1,∴k=﹣;(2)设该直线的解析式为y=kx+b,∵直线y=kx+b与直线y=﹣x+3互相垂直,∴﹣k=﹣1,解得k=3,把A(2,3)代入y=3x+b得6+b=3,解得b=﹣3,∴该直线的解析式为y=3x﹣3.16.在平面几何中,我们学过两条直线垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们垂直的定义:设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k≠0)的图象为直线l2,若k1•k2=﹣1,我们就称直线l1与直线l2互相垂直,如直线y=3x﹣1与直线y=﹣x+1,因为3×(﹣)=﹣1,所以相互垂直.根据以上定义内容,解答下面的问题:(1)求过点P(1,2)且与已知直线y=0.5x﹣2垂直的直线l的函数表达式,并在如图所示的坐标系中画出直线l的图象.(2)求(1)问中的两条直线与y轴所围的三角形的面积;(3)已知点A(0,2),点B,C分别是(1)问中直线l和x轴上的动点,求出△ABC 周长的最小值.解:(1)设直线l的函数表达式为y=kx+b,∵直线l与直线y=0.5x﹣2垂直,∴k=﹣2,∵直线l过点P(1,2),∴﹣2×1+b=2,∴b=4.∴直线l的函数表达式为y=﹣2x+4;直线l的图象如图;(2)解方程组得,,∵直线y=0.5x﹣2与y轴的交点为(0,﹣2),直线l的函数表达式为y=﹣2x+4与y轴的交点为(0,4),∴两条直线与y轴所围的三角形的面积=×6×=;(3)∵点A(0,2)关于x轴的对称点为E(0,﹣2),关于直线l的对称点D(,),连接DE交直线l于B,交x轴于C,则此时,△ABC周长的值最小,△ABC周长的最小值=DE==.17.如图,在平面直角坐标系中,反比例函数的图象经过点A(﹣4,3),将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,点B恰好落在该函数的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,4),连接AD,BD,求△ABD的面积.解:(1)设反比例函数表达式为,把A(﹣4,3)代入得,3=,解得k=﹣4×3=﹣12.∴反比例函数的表达式为.∵将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,∴点B的坐标为(﹣2,y).当x=﹣2时,.∴点B的坐标为(﹣2,6).设直线AB的函数表达式为y=kx+b.由题意,得,解得.∴.∵当x=0时,y=9,∴点C的坐标为(0,9).(2)由(1)知CD=OC﹣OD=9﹣4=5.∴|x A|﹣=.18.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则42,解得:m=.则直线OA的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为(2,1)或(2,4)或(﹣2,8).19.如图1,平面直角坐标系中,直线y=x﹣2与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.点D的坐标为(t,﹣t+4).点E的坐标为(t,t﹣2);(均用含t的式子表示)(3)在(2)的条件下,当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.解:(1)令y=0,则x=4,∴点A的坐标为(4,0),令x=0,则y=﹣2,∴点B的坐标为(0,﹣2),将A(4,0)代入y=﹣x+b,得0=﹣4+b,解得b=4;(2)由(1)知,直线AC的表达式为y=﹣x+4,∵点P(t,0),∵PD⊥x轴,∴D(t,﹣t+4),E(t,t﹣2),故答案为(t,﹣t+4),(t,t﹣2);(3)存在t,使DE=OB,理由如下:∵点P在线段OA上,∴0≤t≤4,由(2)知D(t,﹣t+4),E(t,t﹣2),∴DE=﹣t+4﹣(t﹣2)=﹣t+6,∵B(0,﹣2),∴OB=2,∵DE=OB,∴﹣t+6=2,解得:t=,∴AP=4﹣t=4﹣=,=DE•AP=×2×=.∴S△ADE20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图象,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为2.解:(1)将点A(6,﹣)代入y2=中,∴y2=,∵B(,n)在y2=中,可得n=﹣6,∴B(,﹣6),将点A、B代入y1=kx+b,∴,解得,∴y1=x﹣;(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6),∴<x<6时,y1<y2;(3)在y1=x﹣中,令x=0,则y=﹣,∴C(0,﹣),∵直线AB沿y轴向上平移t个单位长度,∴直线DE的解析式为y=x﹣+t,∴F点坐标为(0,﹣+t),过点F作GF⊥AB于点G,连接AF,直线AB与x轴交点为(,0),与y轴交点C(0,﹣),∴∠OCA=45°,∴FG=CG,∵FC=t,∴FG=t,∵A(6,﹣),C(0,﹣),∵AB∥DF,=S△ACF,∴S△ACD∴×6×t=6,∴t=2,故答案为:2.21.如图,抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),点C是l上方的抛物线上的一动点,过C作CD⊥x轴于点D,交直线l于点E.连接AC、BC.(1)求抛物线的解析式;(2)设点C的横坐标为n,△的面积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得△PAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P的坐标;若不存在,简要说明理由.解:(1)∵抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),∴,解得,∴抛物线的解析式为y=﹣x2+6x;(2)易求直线l的解析式为y=﹣x+6.由题意,知C(n,﹣n2+6n),E(n,﹣n+6),∴EC=(﹣n2+6n)﹣(﹣n+6),即EC=﹣n2+7n﹣6.过A作AF⊥CD于F,则AF=n﹣1,DB=6﹣n,+S△BCE∴S=S△ACE=×EC×(n﹣1)+×EC×(6﹣n)=×EC×5=(﹣n2+7n﹣6),即S=﹣n2+n﹣15,配方得S=﹣(n﹣)2+.∵﹣<0,=;∴S有最大值,当n=时,S最大值(3)在抛物线上存在点P,能够使得△PAB是直角三角形,且始终满足AB边为直角边.分两种情况:①当∠PBA=90°时,∵∠ABO=45°,∴过点B且垂直于AB y=x﹣6,解方程组,得,,∵B(6,0),∴P1(﹣1,﹣7);②当∠PAB=90°时,∵过点A且垂直于AB的直线解析式为y=x+4,解方程组,得,,∵A(1,5),∴P2(4,8).综上所述,符合条件的P点坐标为P1(﹣1,﹣7),P2(4,8).。

高一数学专题复习课件:函数解析式的求法

高一数学专题复习课件:函数解析式的求法
高一数学专题复习课 件:函数解析式的求

目录
• 函数解析式的基本概念 • 一次函数的解析式 • 二次函数的解析式 • 分式函数的解析式 • 三角函数的解析式
01
函数解析式的基本概念
函数解析式的定义
பைடு நூலகம்
函数解析式是表示函数关系的数学表达式,它包含了函 数的自变量和因变量之间的关系。
函数解析式通常由代数式、分式、根式等数学符号组成 ,可以表示函数的值域、定义域和对应关系。
详细描述
分式函数的标准形式是分式函数中最简单的一种形式,其特 点是分子是一次多项式,分母是线性因子。这种形式的函数 在解决实际问题中经常出现,如速度、加速度等物理量的计 算。
分式函数的真分式形式
总结词
分式函数的真分式形式是指形如 f(x)=a*(x-b)/(x-c) 的函数,其中 a、b、c 是常 数且 a ≠ 0。
三角函数的辅助角公式
01 辅助角公式的定义
通过三角函数的加、减、乘、除等运算,将一个 复杂的三角函数式化为一个单一的、易于处理的 三角函数形式。
02 辅助角公式的应用
在解决三角函数的求值、化简、证明等问题时, 辅助角公式是一个非常有用的工具。它可以简化 复杂的三角函数表达式,使其更容易处理。
03 常见的辅助角公式
详细描述
分式函数的真分式形式是分式函数的一种特殊形式,其特点是分子和分母都是一 次多项式。这种形式的函数在解决实际问题中也有应用,如路程、时间、速度的 关系等。
分式函数的假分式形式
总结词
分式函数的假分式形式是指形如 f(x)=a*(x+b)/(x^2+c) 的函数,其中 a、b、c 是常数 且 a ≠ 0。
$sin(x + frac{pi}{2}) = cos x$,$cos(x + frac{pi}{2}) = -sin x$,$tan(x + frac{pi}{2}) = cot x$等。

求一次函数的解析式的方法

求一次函数的解析式的方法

求一次函数的解析式的方法
一次函数是形如y=ax+b的函数,其中a和b为常数。

求一次函数的解析式的方法如下:
1.通过已知的点求解析式
如果已知一次函数经过某个点(x1, y1),那么可以将这个点代入函数中,得到一个方程:y1=ax1+b,其中a和b为未知数。

此时可以再通过另一个点(x2, y2)来构建另一个方程:y2=ax2+b。

解这个方程组即可得到a和b的值。

2.通过斜率和截距求解析式
一次函数的斜率就是a,截距就是b。

如果已知斜率和截距,那么可以将它们代入y=ax+b中,得到函数的解析式。

3.通过两个点的坐标差求解析式
如果已知一次函数经过两个点(x1, y1)和(x2, y2),那么可以求出两点的坐标差Δx和Δy。

由于a表示函数的斜率,因此有a=Δy/Δx。

将a和其中一个点的坐标代入y=ax+b中,再解出b的值,即可得到函数的解析式。

总之,求一次函数的解析式需要从已知条件入手,通过方程求解的方法得到函数的斜率和截距,进而得到函数的解析式。

- 1 -。

一次函数中的面积问题ppt课件

一次函数中的面积问题ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
3、已知一次函数y=2x+6与两坐标轴围成的三 角形面积被一正比例函数分成面积的比为1:2 的两部分,求这个正比例函数的解析式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
yБайду номын сангаас
A x
BO
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
1、如图,已知直线y=-x+2与x轴,y轴分别相 交于A、B两点,另一直线y=kx+b经过B和点 C,将△AOB面积分成相等的两部分,求k和 b的值.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
基础问题
1.直线y=3x-6与坐标轴围成的三角形的面
积为
.
2.已知两条直线y=2x-3和y=5-x,求出这 两条直线与x轴围成的三角形的面积.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
形状变式
如图所示:直线y=kx+b经过点B( 0 ,3 ) 与点C(-
2
1,3),且与x轴交与点A,经过点E(-2,0)的 直线

一次函数中的面积问题

一次函数中的面积问题

一次函数中的面积问题学情分析:本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。

文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。

文章还提供了三个典型例题,以帮助读者更好地理解。

研究目标与考点分析:研究目标:1、关于一次函数的面积问题利用面积求解析式;2、利用解析式求面积以及对于动点问题学会熟练的解决。

考点分析:1、一次函数的解析式与面积的充分结合。

研究重点:1、一次函数与面积的综合结合与运用;2、对于动点问题与一次函数的熟练结合与把握。

研究方法:讲练结合练巩固。

研究内容与过程:一、本节内容导入本节内容主要介绍了一次函数相关的面积问题,包括规则图形和不规则图形的求解方法,以及含参数问题的求解方法。

文章强调了在求解过程中,需要注意坐标的正负和线段的非负性。

二、典例精讲本节提供了三个典型例题,分别介绍了如何利用面积求解析式,如何求解含参数问题的面积,以及如何求解四边形的面积。

文章强调了在解题过程中,需要注意分类讨论和建立方程的思想。

本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。

文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。

文章还提供了三个典型例题,以帮助读者更好地理解。

在研究过程中,需要注意分类讨论和建立方程的思想。

同时,需要注意坐标的正负和线段的非负性。

通过讲练结合练,可以更好地巩固所学知识。

1、已知直线y=-x+2与x轴、y轴分别交于A点和B点,另一条直线y=kx+b(k≠0)经过点C(1,m),且将△AOB分成两部分。

1)若△AOB被分成的两部分面积相等,则k=-2,b=2.2)若△AOB被分成的两部分面积比为1:5,则k=-5,b=7.2、已知一次函数y=-2/3x+3的图像与y轴、x轴分别交于点A、B,直线y=kx+b经过OA的三分之一点D,且交x轴的负半轴于点C,如果S△AOB=S△DOC,求直线y=kx+b的解析式。

一次函数解析式的求法

一次函数解析式的求法

第14讲确定一次函数表达式(A)【知识回顾】1、一次函数的形式:(其中k、b是常数,);当b=0时,一次函数 ( )叫做正比例函数;正比例函数是特殊的一次函数.2、一次函数的图像是一条。

正比例函数的图像是必定过的一条直线.3、一次函数(),如果几个一次函数的k相同b不同则这几个一次函数的图像(直线);如果几个一次函数的k不同b相同则这几个一次函数的图像(直线)与轴相交于同一点(,)【基础知识精讲】一、待定系数法:1、我们要画出一次函数的图像只要知道2个点的坐标就可以确定,利用一次函数关系式可以求出来;反过来如果知道一次函数y=kx+b的2个点的坐标或者2组x和y 的值,那么就可以用待定系数法求解出一次函数关系式。

2、待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

例1:一次函数的图象经过点(3,3)和(1,-1).求它的函数关系式3、用待定系数法求函数的步骤:(1)设:设出函数一般形式;(2)列:代入特殊点的坐标,列出方程(组)(3)解:解方程(组),求出待定系数(4)写:写出函数关系式。

练习、1、一次函数的图像经过了点(2,3),并且与y轴相交于(0,6)。

求此一次函数的关系式。

2:一次函数的图像经过了点(2,3),并且与x轴相交于(6,0)。

求此一次函数的关系式。

二、直线的平移:函数y=kx+b由正比例函数y=kx上下平移得到【例2】1、把直线向上平移3个单位,就得到直线,它经过象限2、一次函数的图象过点(,),且与直线平行,则其解析式为()、、、、变式训练:把一次函数向平移个单位得到;【例3】、一次函数图像过点(3,7),并且与正比例函数y=2x图像平行,求一次函数关系式。

三、交点问题例4、1.直线与直线的交点在第象限。

2.若直线经过一次函数的交点,则的值是;3.一次函数图像与函数平行,并且与的交点是(,),请确定一次函数的函数关系式。

一次函数知识点讲解

一次函数知识点讲解
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
三、中考热点
一次函数知识是每年中考的重点知识,是每卷必考的主要内容.本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.因此,一次函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题
四、中考命题趋势及复习对策
一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力.
次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.
⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0)的一条直线,正比例函数y=kx的图
象是经过原点(0,0)的一条直线,如下表所示.
⑶.一次函数的性质:y=kx+b(k、b为常数,k≠0)当k>0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.
3.k,b与函数图像所在象限:

一次函数解析式求法

一次函数解析式求法

数学教学案例——一次函数解析式的求法大木初中张礼军在上八年级上《一次函数》这章内容时,常常要求一次函数解析式,根据不同的题型,结合本人的教学经验,现将一次函数解析式的求法归纳如下:一. 定义型(根据定义列方程或不等式组)例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。

如本例中应保证二. 一点型(只含一个待定系数)例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。

解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。

三. 两点型(含有两个待定系数)已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型(数型结合思想的运用)例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五. 平行型(两直线平行,k的值相等,b的值不等)例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线:;:。

当,时,直线与直线平行,。

又直线在y轴上的截距为2,故直线的解析式为六. 平移型(平移得到的直线与原直线平行,但b的值发生变化)例6. 把直线向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行直线在y轴上的截距为,故图像解析式为七. 实际应用型(一定要考虑自变量范围)例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数解析式的求法及面积求法讲义
(一)、用待定系数法求一次函数解析式
设y=kx+b 中的k ,b ,最终求得他们的值,叫做待定系数;用此方法求一次函数的解析式叫用待定系数法求一次函数的解析式。

(二)、一次函数图像与坐标轴围成的三角形的面积:
直线y=kx+b 与x 轴交点为(-b k
,0),与y 轴交点为(0,b ),且这两个交点与坐标原点构成的三角形面积为k b S 22
=
二、【典型例题剖析】
例1如图,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:求这个函数的解析式 .
y
x -16
4
B M
A
O
例2已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.
教师寄语:
成功并不是很复杂,热爱你所做的事,相信你的天分,每天你都应振奋精神,抛开过去,勇往直前,虽然人生并不总是公平的,但却总是
可以掌控的,关键在于态度和信心,遇到任何困难就应立刻想到:"这个
例3.已知,直线y=2x+3与直线y=-2x-1.
(1)求两直线交点C的坐标;
(2)求△ABC的面积.
三【分类型精讲】
(一)解析式的求法:
1.定义型
已知函数是一次函数,求其解析式。

(注意:利用定义求一次函数解析式时,要保证。

如本例中应保证)
2. 点斜型
已知一次函数的图像过点(2,-1),求这个函数的解析式。

3. 两点型
一次函数经过A(2,4)、B(0,2)两点,与x轴相交于C点。

求这个一次函数的解析式;
4. 图像型
. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

5. 斜截型 已知直线与直线平行,且在y 轴上的截距为2,则直线的解析式为
___________。

(知识解读:①与已知直线平行的直线斜率相同,即如果已知直线y=kx+b,则平行直线为y=kx+c;
②与已知直线垂直的直线斜率成负倒数,即如果已知直线y=kx+b,则垂直直线为y=-k
1x+c.) 6. 平移型
把直线
向下平移2个单位得到的图像解析式为___________。

(知识解读:
上下左右平移m 个单位
y=kx+b+m,y=kx+b-m,y=k(x+m)+b,y=k(x-m)+b.)
7、实际应用型
某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。

8. 开放型
一次函数的图像经过(-1,2)且函数y 的值随x 的增大而增大,请你写出一个符合上述条件的函数关系式
(二)与坐标轴围成的三角形的面积
直线21y x =+和直线2y x =-+与x 轴分别交与A 、B 两点,并且两直线相交与点C,那么△ABC 的面积是 .
四【课堂小测验】
1、已知一次函数的图像与直线y=-2x+1平行,且该图像经过点(3,4),则一次函数的解析式为 。

2、已知一次函数y=kx+b,当x=1时,y=-2, 当x=0时,y=-5,求其解析式.
1y
3、已知直线l1与l2相交于点P,l1的函数表达式为y=-2x+3,点P的横坐标为-1,且l2交y轴于点A(0,1).求直线l2的函数解析式.
4.已知直线过点(2,1),直线过点(5,0),y1与x轴交与A点,y2交y轴于点B,两直线交于C点,求:
(1)分别写出两直线的解析式
(2)求A, B,C三点的坐标
(3)求ΔABC的面积
5.直线x+2y-2=0分别交x,y轴于点A,B,求A,B两点的坐标及与坐标轴围成三角形的面积
五【快乐作业】
1.已知直线经过原点和P (-3,2),那么它的解析式为____________
2.若一次函数y=bx+2的图象经过点A (-1,1),则b=__________.
3.直线b kx y +=与直线23-=x y 平行,且过点(4,6),求它的解析式。

4.已知直线y=kx+b 与y=-3x+3平行,且与y=x-2.5相交于y 轴的同一点,
(1)求直线的解板式; (2)若点P(-3,m)在此直线上,求m 的值。

5.农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全部降价卖完,卖出的菠萝的吨数x 和他收入的钱数y (万元)的关系如图所示,结合图象回答下列问题:
(1)降价前每千克菠萝的价格是多少元?
(2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的
总收入是2万元,问他一共卖了多少吨菠萝?
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!
()
x 吨。

相关文档
最新文档