概率论

合集下载

概率论全部

概率论全部
23.假設檢驗中可能犯的第Ⅰ類錯誤,也稱棄真錯誤,犯此類錯誤的概率是(D:P(拒絕Ho|Ho為真)
24.設正態總體X~N(μ,σ2),σ2未知, ,S2是樣本平均值和樣本方差,給定顯著性水準α,檢驗假設Ho:σ2= ,H1:σ2≠ 應使用的檢驗用統計量是(A: )。
11、設X~b(3,0.5),則P(X≥1)的值是(D:0.875)。
12、已知(X ,Y )的分佈律為
0
1
1
0
1/6
2
1/12
1/6
3
1/2
1/12
則X的邊緣分佈律為(C:
X
0
1
P
13、設連續型隨機變數X的分佈函數為F(x)= 則A的值為(C:0.5)。
14、設X的分佈律為
則E(X)=(C:0.8)
53.设X1,X2,…Xn是总体X的一个样本,g(X1,X2,…Xn)是X1,X2,…Xn的函数,若g是连续函数,且g中不含任何未知参数,则称g(X1,X2,…Xn)是一个统计量。
54.设A与 互为对立事件,则 。
55.若二维随机变量(X,Y)在平面区域D中的密度函数为 其中A为D的面积,则称(X,Y)在区域D上服从均匀分布。
19.设随机测得某化工产品得率的5个样本观察值为82,79,80,78,81,则样本平均值 80。
20.设总体X~N(μ,σ2),x1,x2,…,xn是来自总体X的样本,则σ2已知时,μ的1-a置信区间为 。
21.假设检验可能犯的两类错误是弃真错误和纳伪错误。
22.设总体X~N(μ,σ2),对假设 做假设检验时,所使用的统计量是 它所服从的分布是 。
X
0
1
P
0.2
0.8
15、已知X~b(n, 0.2)則E(X) =(D:0.2n)

概率论知识点

概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间:概率论术语。

我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。

样本空间的元素,即E的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。

互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。

互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。

§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学中研究随机事件的理论,它用于描述事件发生的可能性,并通过概率的计算和分析来预测、评估和决策。

下面给出一些概率论中常用的公式,帮助你更好地理解和运用概率论。

1.概率定义公式:P(A)=N(A)/N,表示事件A发生的概率,N(A)代表事件A发生的次数,N代表试验的总次数。

2.互补事件公式:P(A')=1-P(A),表示事件A的补事件发生的概率。

3.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),表示事件A或B发生的概率。

4.独立事件公式:P(A∩B)=P(A)*P(B),表示事件A和事件B同时发生的概率,当事件A和事件B相互独立时成立。

5.条件概率公式:P(A,B)=P(A∩B)/P(B),表示事件B已经发生时事件A发生的概率。

6.乘法公式:P(A∩B)=P(A,B)*P(B),也可以写作P(A∩B)=P(B,A)*P(A),表示事件A和事件B同时发生的概率。

7.全概率公式:P(A)=ΣP(A,Bᵢ)*P(Bᵢ),表示事件A发生的概率,Bᵢ代表一组互不相容且构成样本空间的事件。

8.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A),表示在事件A发生的条件下,事件B发生的概率。

9.随机变量的概率公式:P(X=x)≥0,表示随机变量X取值为x的概率非负。

10.随机变量期望公式:E(X)=ΣxP(X=x)*x,表示随机变量X的期望或均值。

11.随机变量方差公式:Var(X) = E[(X - µ)²],表示随机变量X的方差,其中µ为X的期望。

12.二项分布公式:P(X=k)=C(n,k)*p^k*q^(n-k),表示n次独立重复实验中,事件发生k次的概率,其中,C(n,k)为组合数,p为事件发生的概率,q为事件不发生的概率。

13.泊松分布公式:P(X=k)=e^(-λ)*(λ^k)/k!,表示单位时间或空间中,事件发生了k次的概率,λ为事件发生率。

概率的三大公式

概率的三大公式

概率的三大公式一、加法定理加法定理是概率论中最基本的公式之一,用于计算两个事件同时发生的概率。

假设A和B是两个事件,那么A和B同时发生的概率可以表示为P(A∪B),其中∪表示并集。

加法定理的公式如下:P(A∪B) = P(A) + P(B) - P(A∩B)其中P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和B同时发生的概率。

举个例子来说明加法定理的应用。

假设有一个袋子里有红球和蓝球,红球的数量为3个,蓝球的数量为2个。

现在我们从袋子中随机抽取一个球,求抽到红球或者蓝球的概率。

根据加法定理,我们可以计算出P(红球∪蓝球) = P(红球) + P(蓝球) - P(红球∩蓝球) = 3/5 + 2/5 - 0 = 1。

因此,抽到红球或者蓝球的概率为1。

二、乘法定理乘法定理是概率论中另一个重要的公式,用于计算两个事件同时发生的概率。

假设A和B是两个事件,那么A和B同时发生的概率可以表示为P(A∩B),其中∩表示交集。

乘法定理的公式如下:P(A∩B) = P(A) × P(B|A)其中P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率。

举个例子来说明乘法定理的应用。

假设有一个扑克牌的牌组,牌组中有52张牌。

现在我们从牌组中依次抽取两张牌,求第一张牌是红心的概率,且第二张牌是黑桃的概率。

根据乘法定理,我们可以计算出P(第一张牌是红心∩第二张牌是黑桃) = P(第一张牌是红心) × P(第二张牌是黑桃|第一张牌是红心) = 1/4 × 13/51 = 1/12。

因此,第一张牌是红心且第二张牌是黑桃的概率为1/12。

三、全概率公式全概率公式是概率论中用于计算复合事件概率的重要公式。

假设B1、B2、B3...是一组互不相容的事件,并且它们的并集构成了样本空间。

那么对于任意一个事件A,全概率公式的公式如下:P(A) = P(A|B1) × P(B1) + P(A|B2) × P(B2) + P(A|B3) × P(B3) + ...其中P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi发生的概率。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是一门研究随机现象的数学分支,它使用概率来描述和解释随机事件发生的规律性。

在实际应用中,我们常常需要使用一些基本概率公式来计算和分析各种随机现象。

以下是一些常见的概率论公式:1.概率的定义公式:P(A)=N(A)/N(S)其中P(A)表示事件A的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中发生的总次数。

2.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A∩B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A∩B)=P(A)某P(B,A)其中P(A∩B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.条件概率公式:P(A,B)=P(A∩B)/P(B)其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的概率。

5.全概率公式:P(A)=ΣP(A,Bi)某P(Bi)其中P(A)表示事件A的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有可能的事件Bi求和。

6.贝叶斯公式:P(Bi,A)=P(A,Bi)某P(Bi)/ΣP(A,Bj)某P(Bj)其中P(Bi,A)表示在事件A发生的条件下事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,P(A,Bj)表示在事件Bj发生的条件下事件A发生的概率,Σ表示对所有可能的事件Bj求和。

7.期望值的公式:E(X)=ΣXi某P(Xi)其中E(X)表示随机变量X的期望值,Xi表示随机变量X的可能取值,P(Xi)表示随机变量X取值为Xi的概率,Σ表示对所有可能的取值Xi求和。

8.方差的公式:Var(X) = E(X^2) - [E(X)]^2其中Var(X)表示随机变量X的方差,E(X^2)表示随机变量X的二阶矩,[E(X)]^2表示随机变量X的期望值的平方。

概率论 概念

概率论 概念

概率论概念一、什么是概率论概率论是一门研究随机现象的科学,主要探讨随机现象背后的数学规律和结构。

在概率论中,随机现象是指结果无法在事前确定的现象,它们的发生具有一定的不确定性。

而概率则是衡量随机事件发生可能性的数值表示。

二、概率论的发展简史概率论的发展始于17世纪,最初主要是用来解决赌博问题。

随着时间的推移,概率论的应用范围逐渐扩大,涉及到诸多领域,如统计学、经济学、生物学、物理学等。

在现代社会,概率论已经成为许多学科的重要基础。

三、概率论的基本概念1.样本空间与样本点:样本空间是指随机实验所有可能结果组成的集合,而样本点则是样本空间中的具体元素。

例如,在一次抛掷硬币的实验中,样本空间可以包含正面和反面两种结果,即{正面,反面},而每个结果则是样本点。

2.事件:事件是由样本空间中某些样本点组成的集合。

事件可以包含一个或多个样本点。

例如,在抛掷硬币的实验中,事件可以包括{正面}和{反面}两个集合。

3.概率:概率是一个描述随机事件发生可能性的数值,通常用P来表示。

根据定义,一个事件的概率P(A)满足以下三个条件:0≤P(A)≤1;对于不可能事件,P(A)=0;对于必然事件,P(A)=1。

4.条件概率:条件概率是指在某个已知条件下,某个事件发生的概率。

条件概率的公式为P(A|B)=P(A∩B)/P(B)。

5.独立性:如果两个事件A和B相互独立,则一个事件的发生不会影响到另一个事件的发生概率。

如果A和B相互独立,则P(A∩B)=P(A)P(B)。

6.随机变量:随机变量是用来描述随机实验结果的数学工具。

随机变量可以分为离散型和连续型两种类型。

离散型随机变量是在可数范围内取值的变量,而连续型随机变量则是取值范围无法列举完的变量。

7.分布函数:分布函数是用来描述随机变量取值概率的函数。

对于离散型随机变量,分布函数是所有可能取值的概率之和;对于连续型随机变量,分布函数则是一条连续曲线。

8.期望与方差:期望值是随机变量所有可能取值的加权平均值;方差则是描述随机变量取值分散程度的数值,方差越小说明随机变量的取值越集中。

(完整版)概率论公式总结

(完整版)概率论公式总结

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章 二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤b adx x f b X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kk k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。

概率论的公式大全

概率论的公式大全

概率论的公式大全1.基本概率公式:对于一个随机事件A,它发生的概率(记作P(A))等于A包含的元素数目除以样本空间中元素的总数目。

P(A)=个数(A)/个数(样本空间)2.条件概率公式:对于两个事件A和B,如果B已经发生,则A发生的概率记作P(A,B)。

P(A,B)=P(A交B)/P(B)3.全概率公式:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(A)=Σ(P(A,Bi)*P(Bi)),i=1到n4.贝叶斯定理:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(Bi,A)=(P(A,Bi)*P(Bi))/Σ(P(A,Bj)*P(Bj)),j=1到n5.独立事件公式:对于两个事件A和B,如果它们相互独立(即A的发生与B的发生没有任何关系),则它们的联合概率等于它们的乘积。

P(A交B)=P(A)*P(B)6.乘法公式:对于一系列独立事件A1,A2,...,An,它们的概率等于各个事件发生的概率的乘积。

P(A1交A2交...交An)=P(A1)*P(A2)*...*P(An)7.加法公式:对于两个事件A和B,它们的并集的概率等于各个事件发生的概率之和减去它们的交集的概率。

P(A并B)=P(A)+P(B)-P(A交B)8.期望值公式:对于一个随机变量X和它的概率分布P(X),它的期望值可以表示为:E(X)=Σ(Xi*P(Xi))9.方差公式:对于一个随机变量X和它的期望值E(X),它的方差可以表示为:Var(X) = Σ((Xi - E(X))^2 * P(Xi)),i为X的取值范围内的索引10.协方差公式:对于两个随机变量X和Y,它们的协方差可以表示为:Cov(X, Y) = E((X - E(X)) * (Y - E(Y)))11.相关系数公式:对于两个随机变量X和Y,它们的相关系数可以表示为:Corr(X, Y) = Cov(X, Y) / (σ(X) * σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差12.大数定律:对于独立同分布的随机变量序列X1,X2,...,Xn,当n趋向于无穷大时,它们的算术平均值逐渐接近它们的期望值。

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学的一个分支,研究随机事件发生的概率。

以下是概率论中常用的公式。

1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间中的有利结果数量,n(S)表示样本空间中的总结果数量。

2.加法公式:P(A或B)=P(A)+P(B)-P(A且B)其中,P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A且B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。

4.条件概率公式:P(A,B)=P(A且B)/P(B)其中,P(A,B)表示在事件B发生的条件下,事件A发生的概率。

5.全概率公式:P(A)=Σ(P(A,Bi)×P(Bi))其中,P(A)表示事件A的概率,Bi表示S的一个划分,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

6.贝叶斯公式:P(Bi,A)=(P(A,Bi)×P(Bi))/Σ(P(A,Bj)×P(Bj))其中,P(Bi,A)表示在事件A发生的条件下,事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

7.期望值公式:E(X)=Σ(Xi×P(Xi))其中,E(X)表示随机变量X的期望值,Xi表示X的取值,P(Xi)表示X取值为Xi的概率。

8.方差公式:Var(X) = Σ((Xi - E(X))^2 × P(Xi))其中,Var(X)表示随机变量X的方差,Xi表示X的取值,E(X)表示X 的期望值,P(Xi)表示X取值为Xi的概率。

9.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

10.二项分布的概率公式:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示组合数,p表示单次实验成功的概率,n表示试验重复的次数,k表示成功发生的次数。

概率论公式

概率论公式

概率论公式1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni i n i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k kB A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = p nk p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k e p p C kkn n k n k n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x x td 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ 9. 二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y = )()()(y f xf x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y fy x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X E X 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±=相关系数 )()(),cov(Y D X D Y X XY =ρ。

概率论知识

概率论知识

概率论知识概率论知识概率论是数学的一个分支,主要研究随机事件的规律性和统计规律。

它是一种量化分析随机现象的工具,被广泛应用于自然科学、社会科学、工程技术等领域。

一、基本概念1. 随机事件:指在一定条件下可能发生或不发生的事情,如掷骰子出现1点或2点等。

2. 样本空间:指所有可能发生的随机事件组成的集合,如掷骰子样本空间为{1, 2, 3, 4, 5, 6}。

3. 事件:指样本空间中一个或多个元素组成的集合,如掷骰子出现偶数为事件A={2, 4, 6}。

4. 概率:指某个事件发生的可能性大小,通常用P(A)表示。

概率的取值范围在0到1之间,且所有事件概率之和为1。

二、基本公式1. 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A∩B表示A和B同时发生的事件。

2. 条件概率公式:P(A|B)=P(A∩B)/P(B),其中A|B表示在B发生的条件下A发生的概率。

3. 乘法公式:P(A∩B)=P(B)×P(A|B),其中A∩B表示A和B同时发生的事件。

4. 全概率公式:P(A)=Σi=1nP(A|Bi)×P(Bi),其中Bi为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。

5. 贝叶斯公式:P(Bi|A)=P(A|Bi)×P(Bi)/Σj=1nP(A|Bj)×P(Bj),其中Bi 为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。

三、概率分布1. 离散型随机变量:指取有限个或可数个值的随机变量,如掷骰子点数就是一个离散型随机变量。

其概率分布可以用概率质量函数(PMF)表示,即p(x)=P(X=x),其中X是随机变量,x是它可能取到的值。

2. 连续型随机变量:指取无限多个可能值的随机变量,如身高、体重等。

其概率分布可以用概率密度函数(PDF)表示,即f(x),满足f(x)≥0且∫f(x)dx=1。

3. 期望:指随机变量的平均值,通常用E(X)表示。

概率论知识点

概率论知识点

概率论知识点概率论是数学的一个分支,它研究随机现象和不确定情况下的数学模型和分析方法。

在概率论中,我们通过数学方法来描述和分析事件发生的可能性。

下面是概率论中的一些重要知识点:1. 概率的基本定义:在概率论中,我们使用概率来描述事件发生的可能性。

概率的基本定义是:对于一个随机试验E,其可能的结果为S,事件A是S的一个子集,事件A发生的概率等于A中所有可能结果的概率之和。

2. 事件的性质:在概率论中,我们研究事件的性质和运算。

事件的运算包括并、交、差和补等。

并是指两个事件同时发生的情况,交是指两个事件都发生的情况,差是指一个事件发生而另一个事件不发生的情况,补是指一个事件不发生的情况。

3. 条件概率:条件概率是指在已知某事件发生的条件下,另一个事件发生的概率。

条件概率用P(A|B)表示,其中A和B分别为两个事件。

条件概率的计算方法是:P(A|B) = P(A∩B) /P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

4. 独立性:在概率论中,如果两个事件A和B的发生与对方无关,即事件B的发生对事件A的发生没有影响,我们称事件A和事件B是独立的。

当事件A和事件B是独立的时候,我们有P(A∩B) = P(A) * P(B)。

5. 随机变量:在概率论中,随机变量是一个函数,它把一个随机试验的结果映射到一个实数。

随机变量可以是离散型的,也可以是连续型的。

离散型随机变量的取值是有限个或可数个,连续型随机变量的取值是整个实数区间。

6. 概率分布函数:概率分布函数是描述随机变量概率分布的函数。

对于离散型随机变量X,概率分布函数是一个累积函数,它定义为P(X ≤ x)。

对于连续型随机变量X,概率分布函数是一个密度函数,它定义为f(x) = dF(x) / dx,其中F(x)是X的累积分布函数。

7. 期望值和方差:在概率论中,期望值是随机变量的平均值,方差是随机变量的离散程度的度量。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

概率论知识点总结

概率论知识点总结

概率论知识点总结
概率论是有关概率事件发生及其后果的数学理论,是数理统计学的分支,也是概率统计理论基础。

概率论是一种统计理论,它是以定义、描述随机现象为主要内容的数学理论。

概率论可以用来处理日常生活中的各种问题,比如投骰子、抛硬币、抽奖等。

概率论的知识点总结可以分为以下几个方面:
1、定义和性质:概率是对某种情况发生或事件发生的可能性的衡量,它常用来表示出现某种特定结果的可能性。

概率的值介于0和1之间,当概率为1时,表示确定会发生,而概率为0时表示绝不会发生。

2、概率的组成:概率的三要素有性质空间、计数原理和独立性。

性质空间指的是一个事件发生的空间,它可以包含任意多个事件,称为概率空间。

计数原理指的是,在一个概率空间中,相关事件发生的次数可以被分为不同类别,比如有发生次数和未发生次数。

独立性是指,在一个概率空间中,某个事件发生或不发生,不影响另一个事件的发生或不发生。

3、概率的计算方法:概率的计算要综合考虑概率的三个要素,可以分为定义法,乘积法,加法法和条件概率法等。

定义法是从概率定义准备计算概率。

乘积法是将要计算概率的两个相关事件用乘法运算相乘,即概率乘积。

加法法是把概率的两个相关事件用加法运算相加,即概率和。

条件概率法是从已知条件概率出发,计算某一事件的发生概率。

4、概率的应用:概率论在现实生活中广泛应用,比如保险业、教育领域、决策科学等,它可以帮助人们做出更合理的决策,从而提高生活水平。

总之,概率论是一门基础而重要的理论,它不仅可以帮助我们理解许多自然现象,而且还可以为我们提供一个有力的工具,帮助我们进行正确的决策。

概率论公式

概率论公式

概率论公式
概率论中常用的公式有:
1. 总概率公式:对于事件A和B,如果A和B构成一个完备事件组,则P(A) = P(A|B)P(B) + P(A|B')P(B'),其中B'
表示事件B的补集。

(该公式可以推广到多个事件的情况)
2. 乘法公式:对于事件A和B,P(A∩B) = P(A|B)P(B) =
P(B|A)P(A)。

3. 加法公式:对于不互斥的事件A和B,P(A∪B) = P(A)
+ P(B) - P(A∩B)。

4. 条件概率公式:对于事件A和B,如果P(B) > 0,则
P(A|B) = P(A∩B) / P(B)。

5. 贝叶斯公式:对于事件A和B,如果P(A) > 0和P(B) > 0,则P(A|B) = P(A)P(B|A) / P(B)。

6. 期望值公式:对于一个离散型随机变量X,其期望值E(X) = ΣxP(X=x),其中x为X的所有可能取值。

7. 方差公式:对于一个离散型随机变量X,其方差Var(X) = E[(X-E(X))^2] = Σ(x-E(X))^2P(X=x),其中E(X)为X的期望值。

请注意,以上公式只是概率论中的一部分常用公式,还有
许多其他公式可根据具体概率问题的性质和假设来使用。

概率论知识点

概率论知识点

概率论知识点概率论是数学的一个分支,研究的是随机事件的发生规律和概率性质。

在现实生活中,概率论的应用广泛,涵盖了统计学、经济学、计算机科学等各个领域。

本文将介绍概率论的一些基本概念和常见应用。

一、基本概念1. 随机事件:随机事件是指在一次试验中可能发生的事件,具有不确定性和不可预测性。

例如,抛一枚硬币的正反面结果就是一个随机事件。

2. 样本空间:样本空间是指一次随机试验中所有可能结果的集合。

以掷一枚骰子为例,样本空间就是{1, 2, 3, 4, 5, 6}。

3. 事件:事件是样本空间的一个子集,表示一些可能的结果的集合。

例如,掷一枚骰子得到的结果是偶数的事件就是{2, 4, 6}。

4. 概率:概率是描述事件发生可能性大小的数值,范围在0到1之间。

概率越大,事件发生的可能性越高。

例如,正常情况下抛一枚硬币出现正面和反面的概率都是1/2。

二、常见应用1. 条件概率:条件概率是指在一定条件下,某一事件发生的概率。

以抽取一张扑克牌为例,已知抽到一张红心牌的条件下,再次抽到红心牌的概率就是条件概率。

条件概率的计算公式为P(A|B) = P(A∩B) /P(B),其中A和B为事件。

2. 独立事件:独立事件是指两个事件之间互不影响,一个事件的发生与另一个事件的发生无关。

例如,抛一枚硬币与掷一颗骰子的结果无关。

若事件A和B是独立事件,那么P(A∩B) = P(A) × P(B)。

3. 期望值:期望值是对某个随机变量的平均数的度量。

在离散型随机变量的情况下,期望值的计算公式为E(X) = Σ(x×P(X=x)),其中x为可能的取值,P(X=x)为该取值的概率。

4. 正态分布:正态分布是概率论中最重要的分布之一,也称为高斯分布。

在统计学中,很多现象都符合正态分布,例如人的身高、智商等。

正态分布的概率密度函数为f(x) = 1 / (σ√(2π)) × exp(-(x-μ)² / (2σ²)),其中μ为均值,σ为标准差。

概率论公式大全

概率论公式大全

1概率论与数理统计一、随机事件和概率加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式 ∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式)∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P二、随机变量及其分布1、离散型随机变量分布名称 分布律数学期望方差0–1分布),1(p B1,0,)1()(1=-==-k p p k X P kkp)1(p p - 二项分布),(p n B n k p p C k X P k n kk n,,1,0,)1()( =-==- np)1(p np - 泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ2、连续型随机变量分布名称 密度函数数学期望 方差均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f2ba + 12)(2a b -指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλλ121λ正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπμ2σ三、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E =; )()(X CE CX E =; )()()(Y E X E Y X E ±=± (2)若XY 相互独立,则:)()()(Y E X E XY E = 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D )()(2X D a b aX D =±(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立,则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立,则:0),(=Y X Cov 6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++四、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-, 或2)(1})({ξξX D X E X P -≥<-. 2、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:⎰∞--+∞→Φ==≤--xt n x x dt ex p np npP )(21})1({lim 22πη。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 填空题(共8小题,每小题满分2分,共16分)1.设()0.3,()0.5,()0.7P A P B P A B === ,则(|) .P A B = 2.设C B A ,,是三个事件,,41)()()(===C P B P A P 1()(),8P AB P BC == ()0P AC =.则C B A ,,至少有一个发生的概率为 。

3.设随机变量X 服从参数为λ的泊松分布,且(1)(2)P X P X ===,则(1) .P X ≥=4.已知(1,9)X N ,那么(1) .P X ==5.已知随机向量(,)X Y 的密度函数为(34),0,0,(,)0,.x y ce x y f x y -+⎧>>=⎨⎩其它 那么常数 .c =6.设随机变量X 服从区间[1,3]上的均匀分布,则2() .E X =7.设随机过程()sin X t U t =,其中U 服从参数为λ指数分布,那么随机过程()X t 在6t π=处的状态是 . 8.某人不断地掷一枚骰子. 设n X 表示前n 次掷骰子后出现的最大点数,那么随机序列}1,{≥n X n 的状态空间是 ..2111311.; 2.; 3.1; 4.0; 5.12; 6.;7.;8.{1,2,3,4,5,6}.5232e U --说明:结果正确的2分,错误不得分.二、计算题(共8小题,每小题满分10分,共80分)1.某工厂有甲,乙,丙三个车间,它们生产同一种产品,每个车间产量分别占该工厂总产量的25%,35%,40%,每个车间的产品中次品的概率分别为0.05,0.04,0.03.现从该厂总产品中任取一件产品,结果是次品,求取出的这件次品是乙车间生产的概率.解:设A 表示次品,(1,2,3)i B i =分别表示甲,乙,丙三车间的产品;由已知1()0.25P B =, 2()0.35P B =,3()0.4P B =, 1(|)0.05P A B =,2(|)0.04P A B =,3(|)0.03P A B = …………………………(5分)由贝叶斯公式可得所求概率为22231(|)()(|)(|)()iii P A B P B P B A P A B P B ==∑ ……………………………………(4分)0.040.35280.050.250.040.350.030.477⨯==⨯+⨯+⨯ …………(1分)说明:未能正确表示概率扣1分,未能正确写出叶斯公式扣3分. 2.一袋中装有5个编号为1,2,3,4,5的乒乓球,从袋中同时取3只,以X 表示取出的3只乒乓球中的最大号码,写出随机变量X 的分布律和分布函数.解:随机变量X的所有可能取值为3,4,5. 而且35110P X C =1(=3)=,2335310C C P X C =11(=4)=,2435610C C P X C =11(=5)=. ………………(6分),3;0.1,34;()0.4,45;1, 5.x x F x x x <⎧⎪≤<⎪=⎨≤≤⎪⎪≥⎩ ……………………………………………………(4分)说明:未写出分布表不扣分.3.设随机变量12,R R 相互独立,它们的密度函数均为10,010,()500,xx f x -⎧≤≤⎪=⎨⎪⎩其他.试求随机变量12R R R =+的密度函数. 解:根据已知条件R 的密度函数为12()()()R R R f z f x f z x dx +∞-∞=-⎰, …………………………………(4分)易知仅当010010x z x ≤≤⎧⎨≤-≤⎩,亦即01010x z x z ≤≤⎧⎨-≤≤⎩时,上述积分的被积函数不等于零,即可得01010()(),010,()()(),1020,0,z R z f x f z x dx z f z f x f z x dx z -⎧-≤≤⎪⎪=-<≤⎨⎪⎪⎩⎰⎰其他.……………(4分) 将()f x 的表达式代入上式得2331(60060),010,15 0001()(20) ,1020,15 000,R z z z z f z z z ⎧-+≤≤⎪⎪⎪=-<≤⎨⎪⎪⎪⎩其他.………(2分)4.设随机变量X 的分布律为(1)0.4,(0)0.4,(1)0.2P X P X P X =-=====,求22(),(),(35),(2)E X E X E X D X +. 解:根据已知条件()10.400.410.2E X =-⨯+⨯+⨯=-. ……………………………(3分)2222()(1)0.400.410.20.6E X =-⨯+⨯+⨯= …………………………(2分) 22[35]3()5 6.8E X E X +=+=……………………………………………(2分)(2)4() 2.24D X D X ==5.某单位设置一电话总机,共有260部电话分机,设每时刻每部分机有4%的概率使用外线通话,并且每部电话分机是否使用外线通话是相互独立的,问总机需要多少条外线才能以不低于97.5%的概率保证每部电话分机使用外线时可供使用? (22(),x xx dx -Φ=⎰ (1.95)0.9744,(1.96)0.9751,(1.97)0.9756Φ=Φ=Φ=,3.15975≈)。

解:设总机需要m 条外线才能以不低于97.5%的概率保证每部电话分机使用外线时可供使用.令1,(1,2,)0,k k X k k ⎧==⎨⎩ 第部分机使用外线 ,260第部分机不使用外线,.,……(3分)26021,,,X X X 是260个相互独立的随机变量,且04.0)(==p X E k .12260X X X X =+++ 表示同时使用外线的分机数,根据题意应确定最小的m 使{}0.975P X m ≤≥成立.由中心及限定里有{}P X m P ⎧⎫≤=≤=Φ,…(5分) 查得(1.96)0.97510.0.9750Φ=> 1.96≥.于是260 1.962600.0416.5931m p ==⨯≈.也就是说,至少需要17条外线才能97.5%满足每部分机在使用外线时可供使用. ……………(2分)说明:结果不正确扣1分.6.设随机过程Z t tY X t W 2)(++=,其中Z Y X ,,是两两不相关的随机变量,且0)()()(===Z E Y E X E ,1)()()(===Z D Y D X D .试求)(t W 的均值函数、自相关函数、自协方差函数.解:均值函数[]0)()()()()(2=++==Z E t Y tE X E t W E t W μ, ………………………(4分)自相关函数2212121122(,)[()()][()()]W R t t E W t W t E X t Y t Z X t Y t Z ==++++)()()()()()()()()(222212212212212221212Z E t t YZ E t t t t Y E t t XZ E t t XY E t t X E ++++++++= …………………(3分)因为Z Y X ,,是两两不相关的随机变量,所以0)()()(==X E Y E XY E ,()()()0E XZ E X E Z ==,()()()0E YZ E Y E Z ==又因为[]22()()()1E X D X E X =+=,22()()1E Y E Z == …………………………………(1分)因此)(t W 的自相关函数222121211),(t t t t t t R W ++=, ………………………………………(1分) 而自协方差函数2221212121211)()(),(),(t t t t t t t t R t t C W W W W ++=-=μμ. …………(1分)7.设齐次马氏链}1),({≥n n X 的状态空间}2,1,0{=I ,一步转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/12/1003/23/16/13/12/1P 它的初始状态的概率分布为61}2)0({,32}1)0({,61}0)0({======X P X P X P ,试求概率}2)2(,0)1(,1)0({===X X X P ,说明此链具有遍历性并求其极限分布.解:(1) }2)2(,0)1(,1)0({===X X X P=}0)1(|2)2({}1)0(|0)1({}1)0({=====X X P X X P X P=271613132=⋅⋅. ……………………………………………(4分) (2)因为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==4112761181951876136173613)2(2P P 无零元,由遍历性定理知此齐次马氏链是遍历的。

…………………………………………………(4分)设其极限分布)(321ππππ=,那么 121123213312311, 23121,33211,62 1.πππππππππππππ⎧+=⎪⎪⎪++=⎪⎨⎪+=⎪⎪⎪++=⎩ 解之得172,179,176321===πππ.…………………………………………………(2分) 8.设X t X =)(,+∞<<∞-t ,其中X 的概率分布为13{}P X i ==,3,2,1=i ,试讨论随机过程}),({+∞<<-∞t t X 的各态历经性.解:由于2][)]([)(===X E t X E t X μ,……………………………………(2分)3142][)]()([),(==+=+X E t X t X E t t R X ττ, 因此,}),({+∞<<-∞t t X 是平稳随机过程.又因为时间平均X Xdt Tdt t X Tt X TTT TTT ==>=<⎰⎰-+∞→-+∞→21lim)(21lim)(,………………………(2分)时间相关函数2221lim )()(21lim)()(X dt X Tdt t X t X T t X t X TTT TT T ==+>=+<⎰⎰-+∞→-+∞→ττ,(2分)由于{2}1P X ==和2143{}1P X ==不成立,故}),({+∞<<-∞t t X 不具有均值和相关函数的各态历经性. ……………………………………………………………(2分)三、解答题(本体满分4分)假设随机向量(,)X Y 的联合密度为()[]121,(,)(,)2f x y x y x y ϕϕ=+,其中1(,)x y ϕ和2(,)x y ϕ都是二维正态分布密度函数,且它们对应的二维随机变量的相关系数分别为13和13-,它们边缘密度函数所对应的随机变量的数学期望都是0,方差均是1,(1) 求随机变量X 和Y 概率密度()X f x 和()Y f y ;(2) 求随机变量X 和Y 的相关系数ρ;(3) 问随机变量X 和Y 是否独立?为什么? 解(1) 二维正态分布密度的两个边缘密度都是正分布态密度, 因此1(,)x y ϕ和2(,)x y ϕ的边缘密度都是标准正态分布密度函数.因此()121(,)d (,)d (,)d 2X f x f x y y x y y x y y ϕϕ+∞+∞+∞-∞-∞-∞⎡⎤==+⎢⎥⎣⎦⎰⎰⎰ 22222212x x x ---⎡⎤==⎥⎥⎦;……………………………(1分) 121()(,)d (,)d (,)d 2Y f y f x y x x y x x y x ϕϕ+∞+∞+∞-∞-∞-∞⎡⎤==+⎢⎥⎣⎦⎰⎰⎰22222212y y y ---⎡⎤==⎥⎥⎦.…………………………(1分) 于是X 和Y 分别服从标准正态分布.(2) 因为()()0,()()1E X E Y D X D Y ====,且()(,)E XY xyf x y dxdy +∞+∞-∞-∞=⎰⎰121[(,)(,)]2xy x y dxy xy x y dxy ϕϕ+∞+∞+∞+∞-∞-∞-∞-∞=+⎰⎰⎰⎰.因此,由相关系数的定义,知111)0 .233XY XY ρ⎡⎤⎛⎫===+-= ⎪⎢⎥⎝⎭⎣⎦E(………………………(1分)(3) 由题设22229292()()163163(,)]x xy y x xy y f x y ee--+-++=+,22222221()()2x y xy X Y f x f y eπ+---==,显然(,)()()X Y f x y f x f y ≠,因此随机变量X 和Y 不独立。

相关文档
最新文档