黑龙江省大庆实验中学2020届高三综合训练(二)数学(理科)试题

合集下载

黑龙江省大庆实验中学2020届高三综合训练(四)数学(理)答案

黑龙江省大庆实验中学2020届高三综合训练(四)数学(理)答案

试题分析:(1)要证明线线垂直,先证明线面垂直,所以观察几何体,先证明
平面
,而
要证明线面垂直,先证明线与平面内的两条相交直线垂直,即证明
,
;
(2)法一,几何法,观察
,所以可选择在平面 DAE 内过点 D 作 DF⊥AE 于 F,连
结 BF,∠DFB 为二面角 D-AE-B 的平面角,或法二,采用空间向量的方法,以点 C 为原点,CD,
即a c b 或a b c.
17.详解:
因为an 是公差为 1,首项为 1 的等差数列,所以 an 1 n 1 n .
设bn的公比为 q,
(1)若选①,由 b3 a4 ,得 b3 a4 4, q 2, bn 2n1, cn n 2n1 ,
cn cn1
n 2n1 (n 1) 2n
CB,CP 所在的直线分别为 x,y,z 轴建立空间直角坐标系,分别求两个平面的法向量,

.
试题解析:(1)由三视图可知,四棱锥 P-ABCD 的底面是边长为 1 的正方形, 侧棱 PC⊥底面 ABCD,且 PC=2. 连结 AC,∵ABCD 是正方形, ∴BD⊥AC. ∵PC⊥底面 ABCD,且 BD⊂平面 ABCD, ∴BD⊥PC. 又∵AC∩PC=C,∴BD⊥平面 PAC. ∵AE⊂平面 PAC. ∴BD⊥AE. (2)解法 1:在平面 DAE 内过点 D 作 DF⊥AE 于 F,连结 BF.
2DF BF
2
∴∠DFB= ,即二面角 D-AE-B 的大小为
解法 2:如图,以点 C 为原点,CD,CB,CP 所在的直线分别为 x,y,z 轴建立空间直角坐标系.则 D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),
从而 =(0,1,0), =(-1,0,1), =(1,0,0), =(0,-1,1).设

精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)

精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)
所以目标函数 的最大值为 .
故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.

2014黑龙江省大庆实验中学高三高考模拟理科数学试题及答案

2014黑龙江省大庆实验中学高三高考模拟理科数学试题及答案

大庆实验中学2014届高三得分训练(二)数学(理)试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合⎭⎬⎫⎩⎨⎧=+=14922y x xM ,⎭⎬⎫⎩⎨⎧=+=123y x y N ,则=⋂N M ( ) A .∅ B .{})0,2(),0,3( C . ]3,3[- D .{}2,32. 已知复数iii i i z ++++++=11201432 ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若1)na的展开式中含3a 项,则最小自然数n 是( )A .2B .5C .7D .124.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( ) A .310cm B .320cm C .330cm D .340cm 5.在ABC ∆中(O 为坐标原点),(2cos ,2sin )OA αα=,(5cos ,5sin )OB ββ=.若5OA OB ⋅=-,则AOB ∆面积为( )A .3B .23 C .53 D .235 6.下列四个命题中真命题的个数是 ( )①若)(x f y =是奇函数,则|)(|x f y =的图像关于y 轴对称;②若03lo g 3lo g <<n m ,则10<<<n m ;③若函数)(x f 对任意x ∈R 满足1)4()(=+⋅x f x f ,则8是函数)(x f 的一个周期;④命题“在斜ABC ∆中,tan tan A B A B >>是成立的充要条件;⑤命题 “2,10x R x x ∈+-<存在”的否定是“2,10x R x x ∈+->任意” A .1 B .2 C .3 D .4 7.已知函数()f x 的图象如右图所示,则()f x 的解析式可能是( )A .()x x x f ln 22-=B .()x x x f ln 2-= C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=8.函数sin()(0)y x πϕϕ=+>的部分图象如右图所示,设P 是图象最高点,,A B 是图象与x 轴的交点,记APB θ∠=,则sin 2θ的值是( ) A .1665B .6365C .1663-D .1665- 9.已知半径为5的球O 被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为( )ABC .D .10.设集合21,0[=A ,]1,21[=B ,函数⎪⎩⎪⎨⎧∈-∈+=.),1(2,,21)(B x x A x x x f 若A x ∈0,且A x f f ∈)]([0,则0x 的取值范围是( )A .⎥⎦⎤ ⎝⎛41,0 B.⎪⎭⎫ ⎝⎛21,41 C.⎥⎦⎤ ⎝⎛21,41 D. ⎥⎦⎤⎢⎣⎡83,011. 设21,F F 分别为双曲线12222=-by a x )0,0(>>b a 的左、右焦点,P 为双曲线右支上任一点。

黑龙江省大庆市实验中学2020届高三5月综合训练(一)语文试题 Word版含解析

黑龙江省大庆市实验中学2020届高三5月综合训练(一)语文试题 Word版含解析

黑龙江省大庆市实验中学2020届高三5月综合训练(一)语文试题 Word版含解析请注意:此试卷分第I卷(选择题)和第II卷(非选择题)两部分,共12页。

满分135分,考试时间120分钟。

第I卷(选择题)注意事项:1. 答第I卷前,考生务必将自己的姓名、准考证号、座位号填写在答题卡上,并在规定位置粘贴考试条形码。

2. 选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What is the woman going to do?A. Clean the floor.B. Buy some cleaner.C. Go to the supermarket.2. Where does the conversation probably take place?A. At a hospital.B. At a gas station.C. At a hotel.3. What does the man think of the woman’s plan?A. Irresponsible.B. Practical.C. Difficult.4. What does the woman mean?A. She’s not interested in the party.B. She wants to leave the party.C. She enjoys the party.5. Who is arriving?A. The woman’s sister.B. The woman’s cousin.C. The woman’s aunt.第二节(共15小题;每小题1.5分,共22.5分)请听下面5段对话或独白。

2020届黑龙江省大庆市高三第二次教学质量检测数学(理)试题(解析版)

2020届黑龙江省大庆市高三第二次教学质量检测数学(理)试题(解析版)

2020届黑龙江省大庆市高三年级第二次教学质量检测数学(理)试题一、单选题1.已知集合{|1}A x x =<,{}2|0B x x x =->,则下列结论正确的是( ) A .{|0}A B x x =<I B .A B R =U C .{|1}A B x x =>U D .A B =∅I【答案】A【解析】先计算{}10B x x x =><或,计算{|0}A B x x =<I ,{|11}A B x x x =><U 或对比选项得到答案.【详解】{}{}2010B x x x x x x =-=><或,则{|0}A B x x =<I ,{|11}A B x x x =><U 或对比选项知:A 正确 故选:A 【点睛】本题考查了集合的运算,属于简单题.2.若复数z 满足()12i z i -=,则z z ⋅=( ) A .14B .12C .2D .4【答案】C【解析】计算得到211iz i i==-+-,再计算z z ⋅得到答案. 【详解】()()()()212121111i i i i z i z i i i i +-=∴===-+--+,故()()112z z i i ⋅=-+--= 故选:C 【点睛】本题考查了复数的运算和共轭复数,意在考查学生的计算能力. 3.给出如下四个命题:①若“p 且q ”为假命题,则p ,q 均为假命题②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-” ③命题“x R ∃∈,211x +<”的否定是“x R ∀∈,211x +≥” ④在ABC V 中,“A B >”是“sin sin A B >”的充要条件 其中正确的命题的个数是( ) A .1 B .2C .3D .4【答案】C【解析】依次判断每个选项的正误得到:p ,q 均为假命题或一真一假,①错误;根据否命题和命题否定的定义知②③正确;根据大角对大边知④正确,得到答案. 【详解】①若“p 且q ”为假命题,则p ,q 均为假命题或一真一假,①错误;②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”, ②正确; ③命题“x R ∃∈,211x +<”的否定是“x R ∀∈,211x +≥”, ③正确; ④在ABC V 中,“A B >”是“sin sin A B >”的充要条件A B >,则a b >故sin sin A B >;sin sin A B >,则a b >故A B >,④正确故选:C 【点睛】本题考查了命题的真假判断,涉及且命题,否命题,命题的否定,充要条件,意在考查学生的综合应用能力.4.已知||2a =r,向量a r 在向量b r 上的投影为,则a r 与b r的夹角为( ) A .6πB .3π C .23π D .56π 【答案】D【解析】根据投影定义得到cos a α=r cos 2α=-,计算得到答案.【详解】设夹角为α,则a r 在向量b r上的投影为5cos 2cos cos 26a παααα===-=r 故选:D 【点睛】本题考查了向量的投影和向量夹角,意在考查学生对于向量知识的掌握情况.5.函数的图象可能是A .B .C .D .【答案】A 【解析】由可得f(x)为奇函数,再由,>0,可判断出函数图像,可得答案. 【详解】 解:由题意得:,故f(x)为奇函数,故B 、C 项不符合题意,又,>0,故D 项不符合题意, 故选A. 【点睛】本题主要考查函数的图像与性质,根据函数的性质来判读图像是解题的关键.6.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若,m αββ⊥⊥,则//m α; B .若//,m n m α⊥,则n α⊥; C .若,//,m n m n αβ⊥⊥,则αβ⊥; D .若//,,m m n βααβ⊂⋂=,则//m n【答案】D【解析】在A 中,则//m α或m α⊂;在B 中,则n 与α相交、平行或n α⊂;在C 中,则α与β相交或平行;由线面平行的性质定理得//m n . 【详解】由m ,n 是两条不同的直线,α,β是两个不同的平面,知: 在A 中,若αβ⊥,m β⊥,则//m α或m α⊂,故A 错误;在B 中,若//m α,n m ⊥,则n 与α相交、平行或n α⊂,故B 错误; 在C 中,若m α⊥,//n β,m n ⊥,则α与β相交或平行,故C 错误; 在D 中,若//m β,m α⊂,n αβ⋂=,则由线面平行的性质定理得//m n ,故D 正确.故选D 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.7.已知各项均不为0的等差数列{}n a ,满足23711220a a a -+=,数列{}n b 为等比数列,且77b a =,则113b b ⋅=( ) A .16 B .8 C .4 D .2【答案】A【解析】化简得到27704a a =-,计算得到74a =,再利用等比数列的性质得到21137b b a ⋅=得到答案.【详解】各项均不为0的等差数列{}n a ,223711777240204a a a a a a -+=∴=∴-=221137716b b b a ⋅===故选:A 【点睛】本题考查了等差数列和等比数列的性质,意在考查学生对于数列性质的综合应用. 8.某组合体的三视图如图所示,外轮廓均是边长为2的正方形,三视图中的曲线均为14圆周,则该组合体的体积为( )A .283π-B .483π-C .246π-D .242π-【答案】B【解析】根据题意知:几何体为边长为2的正方体除去八个四八分之一半径为1的球形成的几何体,计算体积得到答案. 【详解】 根据三视图知:几何体为边长为2的正方体除去八个八分之一半径为1的球形成的几何体故3442833V ππ=-=- 故选:B 【点睛】本题考查了三视图和几何体体积,判断几何体的形状是解题的关键.9.函数()()πsin 0,2f x x ωφωφ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,若其图象向左平移π6个单位后得到的函数为奇函数,则函数()f x 的图象( )A .关于点7π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =-对称 D .关于直线7π12x =对称 【答案】C【解析】根据函数()f x 的最小正周期为π,求出ω,向左平移π6个单位后得到的函数为奇函数,求出ϕ,可得出()f x 的解析式,结合三角函数的性质可得出对称中心和对称轴,由此判断即可求得答案. 【详解】根据三角函数的图象与性质2||Tπω=,可得||2ω=,因为0>ω,所以2ω= 所以()sin(2)f x x ϕ=+ 设()f x 的图象向左平移6π个单位后得到的函数为()g x 则()sin 2sin 2263g x x x ϕππϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦若()g x 为奇函数,则(0)0g =,故3k πϕπ+=(k Z ∈),即(),3k k Z πϕπ=-+∈因为||2ϕπ<,所以3πϕ=-,所以()sin 23f x x π⎛⎫=- ⎪⎝⎭,由23x k ππ-=,(k Z ∈)解得62k x ππ=+,所以()f x 关于点,062k ππ⎛⎫+⎪⎝⎭,(k Z ∈)对称A 项,不存在整数k ,使得76212k πππ+=,故A 项错误;B 项,不存在整数k ,使得6212k πππ+=-,故B 项错误;由232x k πππ-=+(k Z ∈)解得5122k x ππ=+,所以()f x 关于直线5122k x ππ=+(k Z ∈)对称 C 项,当1k =-时,12x π=-,故()f x 关于直线12x π=-对称,故C 项正确;D 项,不存在整数k ,使得5712212k πππ+=,故D 项错误. 故选:C. 【点睛】本题主要考查了正弦函数的图象变换以及对称中心,对称轴的求法,涉及的知识点较多,综合性较强,属于中等题.10.已知数列{}n a 满足:6(3)3,7,7n n a n n a an ---≤⎧=⎨>⎩*()n N ∈,且数列{}n a 是递增数列,则实数a 的取值范围是( )A .9(,3)4B .9[,3)4C .(1,3)D .(2,3)【答案】D【解析】根据题意,a n =f (n )=()633,7,7n a n x an -⎧--≤⎨>⎩,n ∈N ,要使{a n }是递增数列,必有()86301373a a a a -⎧->⎪>⎨⎪-⨯-<⎩,据此有:3129a a a a <⎧⎪>⎨⎪><-⎩或,综上可得2<a <3.本题选择D 选项.11.已知点,O F 分别为抛物线21:4C y x =的顶点和焦点,直线314y x =+与抛物线交于,A B 两点,连接AO ,BO 并延长,分别交抛物线的准线于点,P Q ,则||||BP AQ +=( ) A .254B .174C .253D .193【答案】A【解析】联立方程得到11,4A ⎛⎫- ⎪⎝⎭,()4,4B ,则1:4AO y x =-,:BO y x =,计算得到()4,1P -,()1,1Q --,计算||||BP AQ +得到答案. 【详解】联立方程得到214314y x y x ⎧=⎪⎪⎨⎪=+⎪⎩解得4x =或1x =-,则11,4A ⎛⎫- ⎪⎝⎭,()4,4B则1:4AO y x =-,取1y =-得到4x =,故()4,1P -; 则:BO y x =,取1y =-得到1x =-,故()1,1Q --; 故525||||544BP AQ +=+= 故选:A 【点睛】本题考查了直线和抛物线相交问题,意在考查学生的计算能力. 12.设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC V 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为( )A.B.C.D.【答案】B【解析】利用正弦定理2sin ar A=得到r =max 6h R ==,再利用余弦定理和均值不等式得到36bc ≤,代入体积公式得到答案. 【详解】ABC V 中,6BC =,60BAC ∠=︒,则62sin sin 60a r r A ===∴=︒max 6h R ==222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤,1sin 2S bc A =≤当6a b c ===时等号成立,此时13V Sh ==故选:B 【点睛】本题考查了三棱锥的体积问题,综合了正弦定理,余弦定理,面积公式,综合性强,意在考查学生的空间想象能力和综合应用能力.二、填空题 13.1211e dx x +=-⎰______. 【答案】1【解析】直接利用定积分计算公式得到答案. 【详解】()1211ln 1ln ln1121e e dx x e x ++=-=-=-⎰故答案为:1 【点睛】本题考查了定积分的计算,意在考查学生的计算能力.14.已知定义域为R 的函数()f x ,满足()()3f x f x +=-,且当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x =,则()2020f =____.【答案】-1【解析】代换得到()()6f x f x +=得到函数周期为6,故()()()202041f f f ==-,代入函数计算得到答案. 【详解】()()()()()()3636f x f x f x f x f x f x +=-∴+=-+∴+=,函数周期为6 ()()()2020411f f f ==-=-故答案为:1- 【点睛】本题考查了求函数值,代换求出函数周期是解题的关键.15.已知O 是ABC V 的外心,45C ∠=︒,2,(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r,则2214m n +的最小值为____. 【答案】16【解析】根据45C ∠=︒得到0OA OB ⋅=u u u r u u u r ,平方2OC mOA nOB =+u u u r u u u r u u u r得到2241m n +=,变换()22222214414m n m n m n ⎛⎫+=+⎪⎭+ ⎝利用均值不等式计算得到答案. 【详解】()2222222244OC mOA nOB OC mOA nOBm OA n OB mnOA OB =+∴=+=++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r90045C AOB OA OB ∠=︒∴∠=︒∴⋅=u u u r u u u r故2241m n +=()2222222222414141644816m n n m m n mn m n ⎛⎫+=+=+++≥= ⎪⎭+⎝ 当222216n m m n=即2211,28n m ==时等号成立 故答案为:16 【点睛】本题考查了向量的运算,均值不等式,意在考查学生的综合应用能力和计算能力.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,且以A 为圆心,双曲线虚轴长为直径的圆与双曲线的一条渐近线相交于,B C 两点,若2,33BAC ππ⎡⎤∠∈⎢⎥⎣⎦,则双曲线C 的离心率的取值范围是__________.【答案】23⎡⎤⎢⎥⎣⎦【解析】如图所示:过点A 作AD BC ⊥于D,2b AD ⎡∈⎢⎣⎦,点(),0A a 到渐进线的距离为2ab b d c ⎡==∈⎢⎣⎦即112e ⎡∈⎢⎣⎦得到答案. 【详解】如图所示:过点A 作AD BC ⊥于D,则cos cos 222BAC b AD AC DAC b ⎡⎤∠=∠=∈⎢⎥⎣⎦一条渐近线方程为:by x a=,点(),0A a到直线的距离为,22ab b d c ⎡⎤==∈⎢⎥⎣⎦即11,2223e e ⎡⎡⎤∈∴∈⎢⎢⎥⎣⎦⎣⎦故答案为:2⎤⎥⎣⎦【点睛】本题考查了双曲线的离心率,计算得到3,22b b AD ⎡⎤∈⎢⎥⎣⎦是解题的关键.三、解答题17.已知等差数列{}n a 的公差0d >,其前n 项和为n S ,若36S =,且1a ,2a ,31a +成等比数列.(1)求数列{}n a 的通项公式; (2)若2na n nb a -=+,求数列{}n b 的前n 项和n T .【答案】(1)n a n =.(2)(1)1122nn n n T +⎛⎫=+- ⎪⎝⎭【解析】(1)根据等差数列公式得到()213212316a a a a a a ⎧⋅+=⎨++=⎩,计算得到答案.(2)12nn b n ⎛⎫=+ ⎪⎝⎭,利用分组求和法计算得到答案.【详解】(1)依题意,得()213212316a a a a a a ⎧⋅+=⎨++=⎩即()()2111121336a a d a d a d ⎧++=+⎪⎨+=⎪⎩,整理得220d d +-=.∵0d >,∴1d =,11a =.∴数列{}n a 的通项公式()11n a n n =+-= 即数列{}n a 的通项公式n a n =.(2)1222nna n n nb a n n --⎛⎫=+=+=+ ⎪⎝⎭,12n n T b b b =+++L 211221122nn ⎛⎫⎛⎫ ⎪=+++ +++⎪⎝⎭⎝⎭L , ()231111122222n n T n ⎡⎤⎛⎫⎛⎫⎛⎫=++++++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L L 11122(1)1212nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-11122(1)1212nn n ⎡⎤⎛⎫-⎢⎥⎪⎝⎭+⎢⎥⎣⎦=+-(1)1122n n n +⎛⎫=+- ⎪⎝⎭ 故(1)1122nn n n T +⎛⎫=+- ⎪⎝⎭.【点睛】本题考查了等差数列通项公式,分组求和法求前n 项和,意在考查学生对于数列公式方法的综合应用.18.已知函数21()cos sin 22f x x x x π⎛⎫=-++ ⎪⎝⎭,x ∈R . (1)若,0,2παβ⎛⎫∈ ⎪⎝⎭,且212f απ⎛⎫+= ⎪⎝⎭,26f βπ⎛⎫-= ⎪⎝⎭,求()sin αβ+的值;(2)在ABC V 中,角,,A B C 的对边分别为,,a b c ,满足c =()1f C =,求+a b的取值范围. 【答案】(1)2(2) 【解析】(1)化简得到()sin 26f x x π⎛⎫=-⎪⎝⎭,代入数据计算得到sin α,cos 5α=,cos 10β=,sin 10β=,再利用和差公式展开得到答案.(2)根据()1f C =得到3C π=,利用余弦定理得到()233a b ab =+-,再利用均值不等式得到答案. 【详解】(1)1cos(2)1()sin 2222x f x x π-+=-+1cos 21122cos 2222x x x x +=-+=-sin 26x π⎛⎫=- ⎪⎝⎭∵212f απ⎛⎫+=⎪⎝⎭,∴sin α=.∵0,2πα⎛⎫∈ ⎪⎝⎭,∴cos α=.∵2610f βπ⎛⎫-=-⎪⎝⎭,∴sin 210πβ⎛⎫-=- ⎪⎝⎭∴cos β=.∵0,2πβ⎛⎫∈ ⎪⎝⎭,∴sin 10β=.∴sin()sin cos cos sin 5105102αβαβαβ+=+=⨯+⨯=(2)∵()sin 26f C C π⎛⎫=-⎪⎝⎭,∴sin 216C π⎛⎫-= ⎪⎝⎭. ∵(0,)C π∈,∴112,666C πππ⎛⎫-∈- ⎪⎝⎭,∴262C ππ-=,即3C π=. ∵2222222cos ()3c a b ab C a b ab a b ab =+-=+-=+-,∴()233a b ab =+-∵22a b ab +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时取“=”. ∴2222313()3()()()44a b ab a b a b a b =+-≥+-+=+∴()212a b ≥+,即a b +≤a b =时取“=”.又∵a b c +>=∴+a b 的取值范围是. 【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,意在考查学生的综合应用能力. 19.如图,已知在矩形ABCD 中,E 为边AB 的中点,将ADE V 沿直线DE 折起到1A DE △(1A ∉平面ABCD )的位置,M 为线段1A C 的中点.(1)求证:BM ∥平面1A DE ;(2)已知222AB AD ==1A DE ⊥平面ABCD 时,求直线BM 与平面1A DC 所成角的正弦值.【答案】(1)证明见解析 (2)23015【解析】(1)延长CB 与DE 相交于点P ,连接1A P ,根据中位线证明1BM A P P ,得到证明.(2)证明1A O ON ⊥,以O 为原点,1,,ON OD OA 所在的直线分别为,,x y z 轴建立空间直角坐标系O xyz -,计算平面1A DC 的一个法向量为()1,1,1m =u r,根据夹角公式计算得到答案. 【详解】(1)延长CB 与DE 相交于点P ,连接1A P , ∵E 为AB 边的中点,四边形ABCD 为矩形, ∴BE CD ∥,12BE CD =,∴BE 为PCD V 的中位线,∴B 为线段CP 的中点, ∵M 为线段1A C 的中点,∴1BM A P P ∵BM ⊄平面1A DE ,1A P ⊆平面1A DE , ∴BM ∥平面1A DE .(2)∵2AB AD =,E 为边AB 的中点,∴AD AE =,即11A D A E =,取线段DE 的中点O ,连接1A O ,ON ,则由平面几何知识可得1AO DE ⊥,ON CE P , 又∵四边形ABCD 为矩形,2AB AD =,E 为边AB 的中点, ∴DE CE ⊥,DE ON ⊥,∵平面1A DE ⊥平面ABCD ,平面1A DE I 平面ABCD DE =,1AO DE ⊥, ∴1A O ⊥平面ABCD ,∵ON ⊆平面ABCD ,∴1A O ON ⊥,∴以O 为原点,1,,ON OD OA 所在的直线分别为,,x y z 轴建立空间直角坐标系O xyz -,则()1,2,0B -,()2,1,0C -,1(0,0,1)A ,111,,22M ⎛⎫- ⎪⎝⎭,(0,1,0)D ,310,,22BM ⎛⎫= ⎪⎝⎭u u u u r ,1(2,1,1)AC =--u u u r,()2,2,0DC =-u u u r , 设平面1A DC 的一个法向量为(,,)m x y z =u r ,则100m AC m DC ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即20220x y z x y --=⎧⎨-=⎩,不妨取1x =,则1y =,1z =,即()1,1,1m =u r,设直线BM 与平面1A DC 所成角为θ,则230sin |cos ,|15||||1032m BM m BM m BM θ⋅====⋅⨯u r u u u u ru r u u u u r u u r u u u u r ,∴直线BM 与平面1A DC所成角的正弦值为23015.【点睛】本题考查了线面平行和线面夹角,意在考查学生的空间想象能力和计算能力. 20.平面内有两定点()0,1A -,()0,1B ,曲线C 上任意一点(),M x y 都满足直线AM 与直线BM 的斜率之积为12-,过点()1,0F 的直线l 与椭圆交于,C D 两点,并与y 轴交于点P ,直线AC 与BD 交于点Q .(1)求曲线C 的轨迹方程;(2)当点P 异于,A B 两点时,求证:OP OQ ⋅u u u r u u u r为定值.【答案】(1)221(0)2x y x +=≠(2)证明见解析【解析】(1)根据题意得到1112AM BM y y k k x x +-⋅=⋅=-,化简得到答案. (2)设直线l 的方程为()1y k x =-,则()0,OP k =-u u u r,联立方程根据韦达定理得到212221224122212k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩将韦达定理代入1111y k y k +-=--+计算得到答案. 【详解】(1)由已知可得1112AM BM y y k k x x +-⋅=⋅=-, 化简得()22210x y +-=,即曲线C 的轨迹方程为:221(0)2x y x +=≠.(2)由已知直线l 的斜率存在,所以设直线l 的方程为()1y k x =-(0k ≠,且1k ≠,且1k ≠-),所以P 点的坐标为()0,k -,即()0,OP k =-u u u r,设()11,C x y ,()22,D x y ,则22(1)12y k x x y =-⎧⎪⎨+=⎪⎩, 联立削去y 得,()2222124220kxk x k +-+-=,所以212221224122212k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,122212221212k y y k ky y k -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩ 直线AC 的方程为1111y y x x ++=,直线BD 的方程为2211y y x x --= 将两方程联立消去x 得()()21121111x y y y x y ++=--,解得()()()()21121212111111x y y x y y x y x y +++==⨯---由题意可知()()22221112AD BD y y k k x x +-⋅=⨯=-,所以()()2222211y x y x +=--,所以,()()()()21121212111111x y y x y y x y x y +++==⨯---()()()()12121212121211y y y y x x x x +-+-++=⨯==()12121221y y y y x x ⎡⎤-⋅+++⎣⎦将韦达定理代入得1111y k y k +-=--+,解得1y k =-,所以Q 点的坐标为01,x k ⎛⎫- ⎪⎝⎭, 所以01(0,),1OP OQ k x k ⎛⎫⋅=-⋅-= ⎪⎝⎭u u u r u u u r ,OP OQ ⋅u u u r u u u r 为定值. 【点睛】本题考查了轨迹方程,定值问题,意在考查学生的计算能力和综合应用能力. 21.(1)已知()xf x xe =,x ∈R ,求函数()f x 的单调区间和极值;(2)已知0a <,不等式1ln 0a x x e a x +⋅+≥(其中e 为自然对数的底数)对任意的实数1x >恒成立,求实数a 的取值范围.【答案】(1)函数()f x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞.极小值1e-,无极大值.(2)[,0)e -【解析】(1)求导得到()()1xf x x e '=+根据导数的正负得到函数的单调区间,再计算极值得到答案.(2)变换得到()ln ln axx a xe x e --≥⋅,设()x f x xe =,等价于()()ln a f x f x -≥即minln x a x ⎛⎫-≤ ⎪⎝⎭,()ln x g x x =,根据函数的单调性得到最值得到答案. 【详解】(1)函数的定义域为R ,()()1xf x x e '=+,由()0f x '=得,1x =-,所以当(),1x ∈-∞-时,()0f x '<,当()1,x ∈-+∞时,()0f x '>, 所以函数()f x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞. 所以当1x =-时,()f x 取得极小值()11f e-=-,无极大值. (2)由1ln 0a x x e a x +⋅+≥得,()ln xaxe x a x -≥⋅-,即()()ln ln ln ax x a a a xe x x x e----≥⋅=⋅,设()x f x xe =,1x >,则不等式1ln 0a x x e a x +⋅+≥对于任意的实数1x >恒成立,等价于()()ln af x f x -≥,由(1)知,函数()f x 在区间()1,-+∞上为增函数, 所以ln a x x -≥,即ln x a x ≥-对任意的实数1x >恒成立, 因为1x >,所以ln 0x >,即ln xa x-≤对任意的实数1x >恒成立,即min ln x a x ⎛⎫-≤ ⎪⎝⎭.令()ln x g x x=,则2ln 1()(ln )x g x x '-=,由()0g x '=得,x e =, 所以当()1,x e ∈时,()0g x '<,函数()g x 在区间()1,e 上为减函数, 当(),x e ∈+∞时,()0g x '>,函数()g x 在区间(),e +∞上为增函数, 所以当x e =时,()g x 取得最小值()g e e =. 所以a e -≤,即a e ≥-.又由已知得0a <,所以,实数a 的取值范围是[,0)e -. 【点睛】本题考查了函数的单调性,极值,恒成立问题,将恒成立问题转化为函数的最值问题是解题的关键.22.已知直线l 过点()1,0,倾斜角为60︒,在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的方程为2262sin ρθ=+.(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于,A B 两点,设点()1,0F ,求11||||FA FB +的值. 【答案】(1)直线l的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的直角坐标方程为22132x y +=.(2【解析】(1)直接利用参数方程和极坐标方程公式化简得到答案.(2)将参数方程代入曲线C 的直角坐标方程,利用韦达定理得到12128111611t t t t ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩,再计算1216||||11FA FB t t ⋅=⋅=,12||||FA FB t t +=+=. 【详解】(1)∵直线l 过点()1,0,倾斜角为60︒∴可设直线l的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∵曲线C 的方程为2262sin ρθ=+ ∴2222sin 6ρρθ+=,∴()22226x yy++=,∴22236x y +=,∴曲线C 的直角坐标方程为22132x y +=.(2)由(1)知,直线l的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),,A B 两点所对应的参数分别为1t ,2t ,将l 的参数方程代入到曲线C 的直角坐标方程为22132x y +=中,化简得2118160t t +-=∴12128111611t t t t ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩,∵1216011t t ⋅=-<,∴1216||||11FA FB t t ⋅=⋅=, 1212||||FA FB t t t t +=+=-11===,∴11||||||||||||FA FB FA FB FA FB ++==⋅. 【点睛】本题考查了极坐标方程,参数方程,韦达定理,意在考查学生的计算能力,利用直线的参数方程可以简化运算,是解题的关键. 23.已知函数()|||21|f x x a x =+++,a R ∈. (1)当1a =时,求不等式()3f x ≤的解集;(2)设关于x 的不等式()|21|f x x ≤-的解集为M ,若11,2M ⎡⎤--⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1)51|33x x ⎧⎫-≤≤⎨⎬⎩⎭(2)51,2⎡⎤-⎢⎥⎣⎦【解析】(1)()|1||21|f x x x =+++,讨论1x ≤-,112x -<≤-和12x >-计算得到答案.(2)原题等价于当11,2x ⎡⎤∈--⎢⎥⎣⎦时,不等式()|21|f x x ≤-恒成立,化简得到22x a x --≤≤-+,代入数据计算得到答案.【详解】(1)当1a =时,()|1||21|f x x x =+++,则所求不等式可化为11213x x x ≤-⎧⎨----≤⎩,或1121213x x x ⎧-<≤-⎪⎨⎪+--≤⎩,或121213x x x ⎧>-⎪⎨⎪+++≤⎩, 解得153x x ≤-⎧⎪⎨≥-⎪⎩,或1123x x ⎧-<≤-⎪⎨⎪≥-⎩,或1213x x ⎧>-⎪⎪⎨⎪≤⎪⎩, ∴513x -≤≤-,或112x -<≤-,或1123x -<≤, ∴原不等式的解集为51|33x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)∵()|21|f x x ≤-的解集包含11,2⎡⎤--⎢⎥⎣⎦,∴当11,2x ⎡⎤∈--⎢⎥⎣⎦时,不等式()|21|f x x ≤-恒成立,∴|||21||21|x a x x +++≤-在11,2x ⎡⎤∈--⎢⎥⎣⎦上恒成立,∴||2112x a x x ---≤-,即||2x a +≤,∴22x a -≤+≤,∴22x a x --≤≤-+在11,2x ⎡⎤∈--⎢⎥⎣⎦上恒成立,∴max min (2)(2)x a x --≤≤-+,∴512a -≤≤,所以实数a 的取值范围51,2⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查了解绝对值不等式,根据解集求参数,解不等式转化为恒成立问题是解题的关键.。

2020届高三2月联考(线上)数学(理)试题)

2020届高三2月联考(线上)数学(理)试题)

2.
已知
i
为虚数单位,
a、b

R
,复数
1 2
i i

i

a

bi
,则
A. 1 2 i
B. 1 2 i
C. 2 1 i
D. 2 1 i
55
55
55
55


3. 已知 A (1, 2), B (2, 3), C (-1, m),若 BA BC BA BC ,则 AC2 =
(II)若 M , N 分别为曲线 C1 和曲线 C2 上的动点,求 MN 的最大值.
23. (本小题满分 10 分) 选修 4 —5:不等式选讲
已知函数 f x 2x 7 2x 5 (I )解不等式 f x 6 ;
(II)设函数
f
x 的最小值为 m
,已知正实数 a,
若所截的两个截面的面积恒相等,则这两个几何体的体积

相等.如图(1),函数
f

x


sin x , x 2, 0
2
的图象与 x

1 x 12 , x 0, 2
轴围成一个封闭区域 A(阴影部分),将区域 A A(阴影部分)沿 Z 轴的正方向上移
6 个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其
数学(理科)试題(第 1 页,共 6 页)
7. 已知点 G 在 ABC 内,且满足 2GA 3GB 4GC 0 ,现在 ABC 内随机取一点,此
点取自, GAB 、 GAC 、 GBC 的概率分别记为 P1、P2、P3 ,则
A.P1 P2 P3

黑龙江省大庆实验中学2020届高三综合训练(二)理科综合试题含答案

黑龙江省大庆实验中学2020届高三综合训练(二)理科综合试题含答案

6.小麦原产西亚,两河流域是世界.上最早栽培小麦的地区。学者推断在四千多年前小麦通过“丝绸之路”传入中国。
下列相关叙述正确的是
A.农田中小麦种群的空间特征可能呈镶嵌分布
B.将大豆与小麦轮作可以提高氮元素的利用率
C.麦田中的微生物可将有机物分解,释放的能量供小麦利用
D.拓荒种麦导致群落发生初生演替,改变了自然演替的速度和方向
A.吲哚的分子式为C8H6N B.苯甲醛中所有原子不可能全部共平面 C.可用新制氢氧化铜悬浊液区分苯甲醛和中间体 D.1 mol该中间体,最多可以与9 mol氢气发生加成反应
10.利用如图装置探究铜粉与下列试剂的反应,在试管中加入一定量铜粉,加入试剂后,立即塞上橡胶塞,实验
现象如下表所示,下列推断不.正.确.的是
致病基因。不考虑染色体变异和基因突变,下列叙述正确的是
第 1 页 共 16 页 11
A.I2和II3患病个体的基因型相同.
B. II1与II2再生一个孩子,患该病的概率为45% C.III6与一个表现型正常的男性婚配,后代均不会患该病 D.调查颅面骨发育不全症的发病率时应选择患者家系进行调查
5.除五大类植物激素外,植物体内还有一些天然物质 也在调节着植物的生长发育过程,如油菜素(甾体类化合物)可
A.若B为一种两性氢氧化物,则D可能是强酸,也可能是强碱 B.若A为固态非金属单质,D为O2, 则A可以为单质硫 C.若A为强碱,D为CO2,则B的溶解度一定大于C的溶解度 D.若A为18电子气态氢化物,D为O2,则A只能是C2H6
第 3 页 共 16 页 33
12.人工肾脏可用间接电化学方法除去代谢产物中的尿素[CO(NH2)2]。下列有关说法正确的是
A.a为电源的负极 B.电解结束后,阴极室溶液的pH与电解前相比将升高 C.除去尿素的反应为:CO(NH2)2+2Cl2+H2O== N2+CO2+4HCl D.若两极共收集到气体0.6mol,则除去的尿素为0.12mol(忽略气体溶解,假设氯气全部参与反应) 13.电导率是衡量电解质溶液导电能力大 小的物理量,根据溶液电导率变化可以确定滴定反应的终点。在一定温 度下,用0.1 mol/LKOH溶液分别滴定体积均为20 mL 、浓度均为0.1 mol/L的盐酸和醋酸溶液,滴定曲线如图所 示。下列有关判断正确的是 A.B点的溶液中有c(K+)>c(OH-)>c(CH3COO-)>c(H+) B.A点的溶液中有c(CH3COO-)+c(OH-)-c(H+)=0.1 mol/L C.C点水电离的c(OH -)大于A点水电离的c(OH-) D.A、B、C三点溶液均有Kw=c(H+)·c(OH-)=1.0×10-14 二、选择题:本题共 8 小题,每小题 6 分,共 48 分。在每小题给出的四个选项中,第 14-18 题只有一项

2020年5月黑龙江省大庆实验中学2020届高三下学期高考综合训练(三)数学试题答案详解

2020年5月黑龙江省大庆实验中学2020届高三下学期高考综合训练(三)数学试题答案详解
A. B. C. D.
【答案】B【详解】 作出 中在圆 内部的区域,如图所示,因为直线 , 的倾斜角分别为 , ,所以由图可得 取自 的概率为 .故选:B
6.马拉松是一项历史悠久的长跑运动,全程约 千米.跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步幅(一步的距离)一般略低于自身的身高,若某运动员跑完一次全程马拉松用了 小时,则他平均每分钟的步数可能为()
A.2或 B.3或 C.4或 D.5或 【答案】C
【详解】设直线的倾斜角为 ,则 ,
所以 , ,即 ,
所以直线 的方程为 .当直线 的方程为 ,
联立 ,解得 和 ,所以 ;
同理,当直线 的方程为 . ,综上, 或 .选C.
12.已知四棱锥 的四条侧棱都相等,底面是边长为 的正方形,若其五个顶点都在一个表面积为 的球面上,则 与底面 所成角的正弦值为()
(2)若曲线 上任意一点处的切线为 ,总存在 上一点处的切线 ,使得 ,则实数 的取值范围为________.
【答案】-2 【详解】(1) ,则曲线 在 处的切线的斜率 ,
在 处的切线的斜率 ,依题意有 ,即 ;
(2)曲线 上任意一点处的切线的斜率 ,则与 垂直的直线的斜率为 ,
而过 上一点处的切线的斜率 ,
A. , B. C. , D. ,
【答案】A【详解】根据题意为了计算7个数的方差,即输出的 ,
观察程序框图可知,应填入 , ,故选:A.
10.已知双曲线 : 的左、右两个焦点分别为 , ,若存在点 满足 ,则该双曲线的离心率为()
A.2B. C. D.5【答案】B
【详解】 .选B.
11.已知抛物线 : 的焦点为 ,过点 的直线 交抛物线 于 , 两点,其中点 在第一象限,若弦 的长为 ,则 ()

2020届黑龙江省大庆实验中学高三综合模拟训练(二)数学(理)试题

2020届黑龙江省大庆实验中学高三综合模拟训练(二)数学(理)试题

大庆实验中学2020届高三综合训练(二)数学试卷注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟,答卷前,考生务必将自己的姓名、准考证号填写在答题卡的相应位置上.2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.第I 卷(选择题 共60分)一、单选题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}1A x x =<,{}21x B x =<,则A B =U ( )A .()1,0-B .()0,1C .()1,-+∞D .(),1-∞ 2.已知i 为虚数单位,若复数1ai z i -=+(a R ∈)的虚部为1-,则a = ( )A .2-B .1C .2D .1-3.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为1.160.5ˆ37yx =-,以下结论中不正确的为 ( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米,4.函数()2ln x f x x x=-的图象大致为 ( ) A . B . C . D .5.某几何体的三视图如图所示,则该几何体的体积为 ( )A .16163π-B .32163π-C .1683π-D .3283π- 6.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A ,B ,C 三人分配奖金的衰分比为20%,若A 分得奖金1000元,则B ,C 所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为 ( )A .20%,14580元B .10%,14580元C .20%,10800元D .10%,10800元7.若0m >,0n >,且直线()()1120m x n y +++-=与圆222210x y x y +--+=相切,则m n +的取值范围是 ( )A .)22,⎡++∞⎣B .)222,⎡++∞⎣C .(0,22D .(0,222⎤+⎦ 8.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积222221()42a b c S ab ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为 ( )A 2B .22C 6D .39.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为()ln x n x x≈的结论(素数即质数,lg 0.43429e ≈).根据欧拉得出的结论,如下流程图中若输入n 的值为100,则输出k 的值应属于区间 ( ) A .(15,20] B .(20,25] C .(25,30] D .(30,35]10.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为()1,0F c -、()2,0F c ,且双曲线C 与圆222x y c +=在第一象限相交于点A ,且123AF AF =,则双曲线C 的离心率是 ( )A 31B 21C 3D 211.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,28f π⎛⎫= ⎪⎝⎭02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是 ( )A .12ω=B .6282f π⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递减D .函数()f x 的图像关于点5,04π⎛⎫ ⎪⎝⎭对称12.定义在R 上的偶函数()f x 满足()()53f x f x -=+,且()224,012ln ,14x x x f x x x x ⎧-+≤<=⎨-≤≤⎩,若关于x 的不等式()()()210fx a f x a +++<在[]20,20-上有且仅有15个整数解,则实数a 的取值范围是( )A .(]1,ln 22--B .[)2ln33,2ln 22--C .(]2ln33,2ln 22--D .[)22ln 2,32ln3-- 第II 卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在大题卡相应位置上.13.二项式56x⎛ ⎝展开式中的常数项是__________. 14.已知向量(1,2)a =r ,(,1)b k =r ,且2a b +r r 与向量a r 的夹角为90°,则向量a r 在向量b r 方向上的投影为________.15.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ∠=o ,在球C 内任取一点,则该点落在三棱锥P EFG -内的概率为__________.16.已知数列{}n a 的各项都是正数,()2*11n n n a a a n N ++-=∈.若数列{}n a 各项单调递增,则首项1a 的取值范围是________;当123a =时,记1(1)1n n nb a --=-,若1220191k b b b k <+++<+L ,则整数k =________. 三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.若ABC V 的内角A ,B ,C 的对边为a ,b ,c ,且224()si sin n sin sin sin 3A B C B C -=-. (1)求cos A ;(2)若ABC V A 的角平分线AD 长的最大值.18.如图,四棱锥-中,SD CD SC AB BC ====,平面⊥底面ABC ∠=︒,是中点. (1)证明:直线AE 平面 (2)A B C DS E F18.如图,四棱锥S ABCD -中,22SD CD SC AB BC ====,平面ABCD ⊥底面SDC ,//AB CD ,90ABC ∠=︒,E 是SD 中点. (1)证明:直线//AE 平面SBC ; (2)点F 为线段AS 的中点,求二面角F CD S --的大小.19.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:2010:40~这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:209:40~记作区间[)20,40,9:4010:00~记作[)40,60,10:0010:20~记作[)60,80,10:2010:40~记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:2010:40~时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:2010:00~之间通过的车辆数为X ,求X 的分布列与数学期望; (3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布()2,N μσ,其中μ可用这600辆车在9:2010:40~之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数(结果四舍五入保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤≤=①;(22)0.9545P T μσμσ-<≤+=②;(33)0.9973P T μσμσ-<≤+=③.20.已知椭圆:C 22221(0)x y a b a b +=>>,焦距为2c ,直线0bx y -+=过椭圆的C 左焦点.(1)求椭圆C 的标准方程;(2)若直线20bx y c -+=与y 轴交于点,,P A B 是椭圆C 上的两个动点,APB ∠的平分线在y 轴上,PA PB ≠.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数()ln f x x ax b =--.(1)求函数()f x 的极值;(2)若不等式()f x ex ≤-恒成立,求b a e-的最小值(其中e 为自然对数的底数).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22121sin ρθ=+,射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点.(1)求曲线C 的直角坐标方程及直线l 的参数方程;(2)当直线l 倾斜角α为何值时,BP BQ ⋅取最小值,并求出BP BQ ⋅最小值.23.选修4-5:不等式选讲已知函数() 1.f x x =+(Ⅰ)解不等式()32f x x >-+;(Ⅱ)已知0,0a b >>,且2a b +=()f x x -≤。

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

大庆实验中学2020届高三综合训练(一)数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合M ={x |﹣1<x <3},N ={x |y =lg (x 2﹣1)},则M ∩N =( ) A .{x |﹣1<x <3}B .{x |﹣1<x <1}C .{x |1<x <3}D .{x |﹣1<x ≤1}2.已知复数z 满足z •(1+2i )=|3﹣4i |(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知a =0.40.3,b =0.30.3,c =0.30.4,则( ) A .a >c >bB .a >b >cC .c >a >bD .b >c >a4.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如图,不通过计算从图中数据的变化不能反映和比较的数字特征是( ) A .极差 B .方差 C .平均数 D .中位数 5.给出如下四个命题:①若“p 或q ”为假命题,则,p q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”; ③若,a b 是实数,则“2a >”是“24a >”的必要不充分条件; ④命题“若,x y =则sin sin x y =”的逆否命题为真命题.其中正确命题的个数是( ) A .3 B .2 C .1 D .06.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b cos C ﹣c cos B =2c •cos C ,则角C 的取值范围为( ) A .B .C .D .7.已知平面向量,,均为单位向量,若,则的最大值是( )A .B .3C .D .8.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的精美图案.如图所示的窗棂图案,是将边长为2R 的正方形的内切圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.若在正方形内随机取一点,则该点在窗棂图案上阴影内的概率为( ) A .B .C .D .9.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=2﹣|x +2|.若对任意的x ∈[﹣1,2],f (x +a )>f (x )成立,则实数a 的取值范围是( )A .(0,2)B .(0,2)∪(﹣∞,﹣6)C .(﹣2,0)D .(﹣2,0)∪(6,+∞)10.已知双曲线C:(a>0,b>0)的左、右顶点分别为A,B,左焦点为F,P为C上一点,且PF⊥x 轴,过点A的直线l与线段PF交于点M(异于P,F),与y轴交于点N,直线MB与y轴交于点H,若(O为坐标原点),则C的离心率为()A.2B.3C.4D.511.已知函数,在区间[0,π]上有且仅有2个零点,对于下列4个结论:①在区间(0,π)上存在x1,x2,满足f(x1)﹣f(x2)=2;②f(x)在区间(0,π)有且仅有1个最大值点;③f(x)在区间上单调递增;④ω的取值范围是,其中所有正确结论的编号是()A.①③B.①③④C.②③D.①④12.设函数恰有两个极值点,则实数t的取值范围是()A.∪(1,+∞)B.∪[1,+∞)C.D.[1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.二项式(﹣)5的展开式中x﹣2的系数是.14.在今年的疫情防控期间,某省派出5个医疗队去支援武汉市的4个重灾区,每个重灾区至少分配一个医疗队,则不同的分配方案共有种.(用数字填写答案)15.已知抛物线y2=4x的焦点为F,准线为l,过点F且斜率为的直线交抛物线于点M(M在第一象限),MN ⊥l,垂足为N,直线NF交y轴于点D,则|MD|=.16.在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,当四面体以AB为轴旋转时,直线EF与直线l夹角的余弦值的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.17.(12分)已知S n是公差不为零的等差数列{a n}的前n项和,S3=6,a3是a1与a9的等比中项.(1)求数列{a n}的通项公式;(2)设数列,数列{b n}的前2n项和为P2n,若,求正整数n的最小值.18.(12分)19.(12分)已知椭圆与抛物线D:y2=﹣4x有共同的焦点F,且两曲线的公共点到F的距离是它到直线x=﹣4(点F在此直线右侧)的距离的一半.(1)求椭圆C的方程;(2)设O为坐标原点,直线l过点F且与椭圆交于A,B两点,以OA,OB为邻边作平行四边形OAMB.是否存在直线l,使点M落在椭圆C或抛物线D上?若存在,求出点M坐标;若不存在,请说明理由.20.(12分)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X都在[70,100)内,在以组距为5画分数的频率分布直方图(设“”)时,发现Y满足,n∈N*,5n≤X<5(n+1).(1)试确定n的所有取值,并求k;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[95,100)的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A和B均参加了本次比赛,且学生A在第一阶段评为二等奖.(i)求学生B最终获奖等级不低于学生A的最终获奖等级的概率;(ii)已知学生A和B都获奖,记A,B两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.21.已知函数2()23()x x f x e ax a e a R −=−+∈,其中 2.71828...e =为自然对数的底数. (1)讨论()f x 的单调性;(2)当(0,)x ∈+∞时,222e ()3e 10()x x x a a x af x −−+−−+>恒成立,求a 的取值范围.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,曲线C 的方程为x 2﹣2x +y 2=0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)写出曲线C 的极坐标方程,并求出直线l 与曲线C 的交点M ,N 的极坐标; (2)设P 是椭圆上的动点,求△PMN 面积的最大值.[选修4-5:不等式选讲] 23.已知f (x )=x 2+2|x ﹣1|. (1)解关于x 的不等式:;(2)若f (x )的最小值为M ,且a +b +c =M (a ,b ,c ∈R +),求证:.大庆实验中学2020届高三综合训练(一)数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.解:N ={x |x 2﹣1>0}={x |x >1或x <﹣1},M ={x |﹣1<x <3}, ∴M ∩N ={x |1<x <3}. 故选:C .2.解:由z •(1+2i )=|3﹣4i |=5, 得,∴在复平面内复数z 对应的点的坐标为(1,﹣2),位于第四象限, 故选:D .3.解析:0.30.3>0.30.4,即b >c >0,而,即a >b ,∴a >b >c , 故选:B . 4.C由于极差反映了最大值与最小值差的关系,方差反映数据的波动幅度大小关系,平均数反映所有数据的平均值的关系,中位数反映中间一位或两位平均值的大小关系,因此由图可知,不通过计算不能比较平均数大小关系. 故选C . 5.【答案】B对于①,若 “p 或q ”为假命题,则p ,q 均为假命题,故①正确;对于②,命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2或y <3,则x +y <5”,故②错;对于③,因为2a <−时24a >,所以若a ,b 是实数,则“a >2”是“a 2>4”的充分不必要条件,故③错; 对于④,命题“若x y =,则sin sin x y =”为真命题,则其的逆否命题为真命题,故④正确. 故选:B .6.【分析】由已知利用正弦定理,两角差的正弦函数公式,二倍角的正弦函数公式可得sin (B ﹣C )=sin2C ,在锐角三角形中可求B =3C ,可得,且,从而解得C 的取值范围.【解答】解:∵b cos C ﹣c cos B =2c •cos C ,∴由正弦定理可得:sin B cos C ﹣sin C cos B =2sin C cos C , ∴sin (B ﹣C )=sin2C , ∴B ﹣C =2C , ∴B =3C ,∴,且,∴.故选:A.7.解:∵平面向量,,均为单位向量,(+)2=+2•+=3,故||=;∴=•+﹣(+)•=﹣()≤+|+|•|﹣|=+;当且仅当与反向时取等号.故选:C.8.解:连接A、B、O,得等边三角形OAB,则阴影部分的面积为S阴影=12×(×πR2﹣×R2×sin60°)=(2π﹣3)R2,故所求概率为.故选:B.9.解析:依题意作出f(x)的图象,y=f(x+a)的图象可以看成是y=f(x)的图象向左(a>0时)或向右(a <0时)平移|a|个单位而得,当a>0时,y=f(x)的图象至少向左平移6个单位(不含6个单位)才能满足f(x+a)>f(x)成立,当a<0时,y=f(x)的图象向右平移至多2个单位(不含2个单位)才能满足f(x+a)>f(x)成立(对任意的x∈[﹣1,2]),故x∈(﹣2,0)∪(6,+∞),故选:D.10.解:不妨设P在第二象项,|FM|=m,H(0,h)(h>0),由知N(0,﹣2h),由△AFM~△AON,得(1),由△BOH~△BFM,得(2)(1),(2)两式相乘得,即c=3a,离心率为3.故选:B.11.解析:∵x∈[0,π],∴,令,则由题意,在上只能有两解和∴,(*)因为在上必有,故在(0,π)上存在x1,x2满足f(x1)﹣f(x2)=2;①成立;对应的x(显然在[0,π]上)一定是最大值点,因对应的x值有可能在[0,π]上,故②结论错误;解(*)得,所以④成立;当时,,由于,故,此时y=sin z是增函数,从而f(x)在上单调递增.综上,①③④成立,故选:B.12.解:求导得有两个零点等价于函数φ(x)=e x﹣(2x+1)t有一个不等于1的零点,分离参数得,令,,h(x)在递减,在递增,显然在取得最小值,作h(x)的图象,并作y=t的图象,注意到h(0)=1,,(原定义域x>0,这里为方便讨论,考虑h(0)),当t≥1时,直线y=t与只有一个交点即φ(x)只有一个零点(该零点值大于1);当时在两侧附近同号,不是极值点;当时函数φ(x)=e x﹣(2x+1)t有两个不同零点(其中一个零点等于1),但此时在x=1两侧附近同号,使得x=1不是极值点不合.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.解:展开式通项,依题意,,得r=3,所以:x﹣2的系数是.故答案为:﹣80.14.解:根据题意,将5个医疗队分派到4个重灾区,每个重灾区至少分配一个医疗队,则其中有一个重灾区安排两个医疗队,剩下3个重灾区各安排一个医疗队,分2步进行分析:先选出一个重灾区分配有两个医疗队,有C41种分配法,再为剩下的3个重灾区各分配一个医疗队,有种分配法,所以不同的分配方案数共有.故答案为:240.15.解:设准线l与x轴交于E.易知F(1,0),EF=2,由抛物线定义知|MN|=|MF|,由于∠NMF=60°,所以△NMF为等边三角形,∠NFE=60°,所以三角形边长为|NM|==2|FE|=4,又OD是△FEN的中位线,MD就是该等边三角形的高,,故答案为:2.16.解:∵在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,∴AB⊥CD,又GE∥CD,GF∥AB,∴GE⊥GF,得EF=5.当四面体绕AB旋转时,由GF∥AB,即EF绕GF旋转,故EF与直线l所成角的范围为[90°﹣∠GFE,90°],∴直线EF与直线l夹角的余弦值的取值范围是.故答案为:[0,].三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必做题:60分.17.【分析】(1)设出等差数列的公差为d,且不为0,运用等比数列的中项性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(2)求得,再由数列的裂项相消求和,计算可得P2n,解不等式可得所求最小值.【解答】解:(1)公差d不为零的等差数列{a n},由a3是a1与a9的等比中项,可得,即a1(a1+8d)=(a1+2d)2,化为a1=d,又S 3=3a 1+3d =6,可得a 1=d =1,所以数列{a n }是以1为首项和公差的等差数列, 故综上;(2)由(1)可知, 所以=,所以,故n 的最小值为505. (2)法二:所以当n 为奇数时+11111+=21212123n n b b n n n n −++−+++-112123n n =+−+- ()()()21234212+++11111155743411=141n n nP b bb b b b n n n −=+++=−+−++−+−+−++ 所以,故n 的最小值为505. 18.19.解:(1)由题意知F(﹣1,0),因而c=1,即a2=b2+1,又两曲线在第二象限内的交点Q(x Q,y Q)到F的距离是它到直线x=﹣4的距离的一半,即4+x Q=2(﹣x Q+1),得,则,代入到椭圆方程,得.由,解得a2=4,b2=3,∴所求椭圆的方程为.(2)当直线AB的斜率存在且不为0时,设直线AB的方程为y=k(x+1),由,得(3+4k2)x2+8k2x+4k2﹣12=0,设M(x0,y0),A(x1,y1),B(x2,y2),则2122834kx xk−+=+,,由于OABM为平行四边形,得,故,若点M在椭圆C上,则,代入得,解得k无解;若点M在抛物线D上,则,代入得,解得k无解.当直线斜率不存在时,易知存在点M(﹣2,0)在椭圆C上.故不存在直线l,使点M落在抛物线D上,存在直线l,使点M(﹣2,0)落在椭圆C上.20.解:(1)根据题意,X在[70,100)内,按组距为5可分成6个小区间,分别是[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),∵70≤X<100,由5n≤X<5(n+1),n∈N*,∴n=14,15,16,17,18,19,每个小区间对应的频率值分别是P=5Y=.,解得k=,∴n的对值是14,15,16,17,18,19,k=.(2)(i)由于参赛学生很多,可以把频率视为概率,由(1)知,学生B的分数属于区间[70,75),[75,80),[80,85),[85,90),[90,95),[95,100)的概率分别是:,我们用符号A ij(或B ij)表示学生A(或B)在第一轮获奖等级为i,通过附加赛最终获奖等级为j,其中j≤i(i,j=1,2,3),记W=“学生B最终获奖等级不低于学生A的最终获奖等级”,则P(W)=P(B1+B21+B22A22+B32A22)=P(B1)+P(B21)+P(B22)P(A22)+P(B32)P(A22)=+=.(ii)学生A最终获得一等奖的概率是P(A21)=,学生B最终获得一等奖的概率是P()=,P (ξ=0)=(1﹣)(1﹣)=, P (ξ=1)=, P (ξ=2)=, ∴ξ的分布列为:E ξ==.21. (1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;(2)令()()221210x g x e x a x ax a =−−−+−+只需在()0,x ∈+∞使()min 0g x >即可,通过讨论a 的范围,求出函数的单调区间,求出函数的最值,从而确定a 的范围即可.解:(1)由题意可知,()22223'23x x x x x e ae a f x e a a e e −−−=−−= ()()3x x x e a e a e−+=, 当0a =时,()'0xf x e =>,此时()f x 在R 上单调递增; 当0a >时,令()'0f x =,解得()ln 3x a =,当()(),ln 3x a ∈−∞时,()'0f x <,()f x 单调递减;当()()ln 3,x a ∈+∞时,()'0f x >,()f x 单调递增;当0a <时,令()'0f x =,解得()ln x a =−,当()(),ln x a ∈−∞−时,()'0f x <,()f x 单调递减;当()()ln ,x a ∈−+∞时,()'0f x >,()f x 单调递增;综上,当0a =时,()f x 在R 上单调递增;当0a >时,()(),ln 3x a ∈−∞时,()f x 单调递减, ()()ln 3,x a ∈+∞时单调递增;当0a <时,()(),ln x a ∈−∞−时,()f x 单调递减, ()()ln ,x a ∈−+∞时单调递增.(2)由()()222310x x ex a a e x a f x −−+−−+>, 可得,()2212100x e x a x ax a −−−+−+>,令()()221210x g x e x a x ax a =−−−+−+,只需在()0,x ∈+∞使()min 0g x >即可,()()()()'1222x x x g x e x a e x a e x a =−−+−+=−−,①当0a ≤时,0x a −>,当0ln2x <<时,()'0g x <,当ln2x >时,()'0g x >,所以()g x 在()0,ln2上是减函数,在()ln2,+∞上是增函数,只需()()22ln22ln22ln 22ln280g a a =−+−−++>, 解得ln24ln22a −<<+,所以ln240a −<≤;②当0ln2a <<时,()g x 在()0,a 上是增函数,在(),ln2a 上是减函数,在()ln2,+∞上是增函数,则()()2000g ln g ⎧>⎪⎨≥⎪⎩,解得0ln2a <<, ③当ln2a =时,()'0g x ≥,()g x 在()0,+∞上是增函数,而()209ln2ln 20g =−−>成立, ④当ln2a >时,()g x 在()0,ln2上是增函数,在()ln2,a 上是减函数,在(),a +∞上是增函数,则()()2100090a g a e g a a ⎧=−>⎪⎨=−−≥⎪⎩,解得ln2ln10a <<. 综上,a 的取值范围为()ln24,ln10−.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.解:(1)曲线C 的方程为x 2﹣2x +y 2=0.转换为极坐标方程为:ρ=2cos θ.联立,得M (0,0),.(2)易知|MN |=1,直线.设点P (2cos α,sin α),则点P 到直线l 的距离.∴(其中). ∴△PMN 面积的最大值为.[选修4-5:不等式选讲]23.解:(1)当x<0时,等价于x2+2|x﹣1|>﹣2,该不等式恒成立,……(1分)当0<x≤1时,f(x)>等价于x2﹣2x>0,该不等式解集为ϕ,……(2分)当x>1时,等价于x2+2x﹣2>2,解得,………(3分)综上,x<0或,所以不等式的解集为.…………………(5分)证明:(2),易得f(x)的最小值为1,即a+b+c=M=1……………………………(7分)因为a,b,c∈R+,所以,,,所以≥2a+2b+2c=2,……………………(9分)当且仅当时等号成立.…………………………………………(10分)。

2020年黑龙江省大庆实验中学高考数学综合训练试卷(四) (含答案解析)

2020年黑龙江省大庆实验中学高考数学综合训练试卷(四) (含答案解析)

2020年黑龙江省大庆实验中学高考数学综合训练试卷(四)一、选择题(本大题共12小题,共60.0分) 1. 已知复数z =3+2i ,则|2−3i z|=( )A. 1B. √13C. √1313D. 132. 已知集合A ={x|x >−2},B ={x|x ≤1},则A ∩B =( )A. {x|x >−2}B. {x|−2<x ≤1}C. {x|x ≤−2}D. {x|x ≤1}3. 若a <0,则下列不等式成立的是( )A. 2a >(12)a>(0.2)a B. (12)a>(0.2)a >2a C. (0.2)a >(12)a>2a D. 2a >(0.2)a >(12)a4. 若函数f(x)=cos 2x ,g(x)=sin (2x −π6),则( )A. 曲线y =g(x)向右平移π6个单位长度后得到曲线y =f(x)+g(x) B. 曲线y =g(x)向左平移π6个单位长度后得到曲线y =f(x)+g(x) C. 曲线y =g(x)向右平移π12个单位长度后得到曲线y =g(x) D. 曲线y =g(x)向左平移π12个单位长度后得到曲线y =g(x)5. 我国古代的“割圆术”相当于给出已知圆的半径r ,计算其面积S 的近似值,进一步计算圆周率的近似值,根据π=3.14159……判断,下列近似公式最接近π的是( ). A. r ≈√50S157B. r ≈√S 3C. r ≈√7S 22D. r ≈√8S 276. 椭圆C 的长轴长是短轴长的3倍,则C 的离心率为( )A. √63B. √23C. √33D. 2√237. 若等差数列{a n }中,a 3=3,则{a n }的前5项和S 5等于( )A. 10B. 15C. 20D. 308. 已知tanα=12,则sinαcosα的值为( )A. 15B. 25C. 35D. −259. 设,若a −|b| >0,则下列不等式中正确的是( )A. b −a >0B. a 3+b 3<0C. b +a >0D. a 2−b 2<010. 如图所示,在△ABC 中,BD =2CD ,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,则AD ⃗⃗⃗⃗⃗⃗ =( )A. 23a ⃗ +13b ⃗ B. 23a ⃗ −13b ⃗ C. 13a ⃗ +23b ⃗ D. 23a ⃗ −23b ⃗ 11. 已知a ,b ,c 为△ABC 的三个角A ,B ,C 所对的边,若3bcosC =c(1−3cosB),sin C :sinA =( ) A. 2:3B. 4:3C. 3:1D. 3:212. 已知双曲线C:x 216−y 248=1的左、右焦点分别为F 1,F 2,P 为C 上一点,F 1Q ⃗⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ ,O 为坐标原点,若|PF 1|=10,则|OQ|=( )A. 10B. 1或9C. 1D. 9二、填空题(本大题共4小题,共20.0分) 13. 已知x ,y 满足约束条件{y ≤xx +y ≤4y +2≥0,则z =2x +y 的最大值为________. 14. 已知四棱锥的三视图(如图所示),则该四棱锥的体积为______,在该四棱锥的四个侧面中,面积最小的侧面面积是______.15. 将函数y =sinx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向右平行移动2π3个长度单位,所得图象的函数解析式是______ .16.已知函数f(x)=−x2−2x,g(x)={x+14x,x>0x+1,x⩽0.若函数y=g[f(x)]−a有4个零点,则a的取值范围是_____________.三、解答题(本大题共7小题,共84.0分)17.如图,四棱锥E−ABCD中,底面ABCD是平行四边形,M,N分别为BC,DE中点.(1)证明:CN//平面AEM;(2)若△ABE是等边三角形,平面ABE⊥平面BCE,CE⊥BE,BE=EC=2,求三棱锥N−AEM的体积.18.已知数列{a n}为等差数列,且32,3,a4,a10成等比数列.(Ⅰ)求a n;(Ⅱ)求数列{2a n(a n+n)}的前n项和S n.19. 甲、乙两人参加知识竞赛活动,组委会给他们准备了难、中、易三档题,其中容易题2道,分值各10分,中档题1道,分值20分,难题1道,分值40分,两人需分别从这4道题中随机抽取1道题作答(甲、乙两人所选题目可以相同). (1)求甲、乙所选题目分值相同的概率;(2)求甲所选题目分值大于乙所选题目分值的概率.20. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√53,设其左、右焦点分别为F 1,F 2,上顶点为B 1,且F 2到直线B 1F 1的距离为4√53.(Ⅰ)求椭圆的方程;(Ⅱ)过点(2,0)作直线与椭圆交于A ,B 两点,O 是坐标原点,是否存在这样的直线,使得|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ |=|OA ⃗⃗⃗⃗⃗ −OB⃗⃗⃗⃗⃗⃗ |?若存在,求出直线的方程,若不存在,试说明理由.21. 已知函数f(x)=alnx −x 2.(1)当a =2时,求函数y =f(x)在[12,2]上的最大值;(2)令g(x)=f(x)+ax ,若y =g(x)在区间(0,3)上为单调递增函数,求a 的取值范围;(3)当a=2时,函数ℎ(x)=f(x)−mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又ℎ′(x)是ℎ(x)的导函数.若正实数α,β满足条件α+β=1,β≥α.证明:ℎ′(αx1+βx2)<0.22.在极坐标系中,曲线C的极坐标方程为p=2cosθ+2sinθ(0≤θ<2π),点M(1,π2),以极点O为原点,以极轴为x轴的正半轴建立平面直角坐标系,已知直线l:{x=√32ty=1+12t(t为参数)与曲线C交于A,B两点.(Ⅰ)若P(ρ,θ)为曲线C上任意一点,求ρ的最大值,并求出此时点P的极坐标;(Ⅱ)求1|MA|+1|MB|的值.23.已知函数f(x)=|x−1|+|x−2|.(1)解不等式:f(x)≤x+3;(2)若不等式|m|·f(x)≥|m+2|−|3m−2|对任意m∈R恒成立,求x的取值范围.-------- 答案与解析 --------1.答案:A解析:【分析】把复数z=3+2i代入|2−3iz|,再由商的模等于模的商求解.本题考查复数模的求法,是基础的计算题.【解答】解:∵z=3+2i,∴|2−3iz |=|2−3i3+2i|=|2−3i||3+2i|=1.故选:A.2.答案:B解析:【分析】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.利用交集定义直接求解.【解答】解:∵集合A={x|x>−2},B={x|x≤1},∴A∩B={x|−2<x≤1}.故选B.3.答案:C解析:【分析】本题主要考查了不等式的大小比较,指数函数,幂函数,考查学生的计算能力,难度适中.根据指数函数和幂函数的性质即可判断,或者利用特殊值法.【解答】解:∵a<0,假设a=−1,∴(12)−1=2,(0.2)−1=5,2a=−2,∴(0.2)a>(12)a>2a,故选C.4.答案:B解析:【分析】本题考查三角函数y=Asin(ωx+φ)的图象与性质,以及函数图象的平移变换的应用,属于基础题.通过函数图象的平移得到函数解析式的变化,化简得到结果.【解答】解:∵曲线g(x)=sin(2x−π6)向左平移π6,得到,曲线y=f(x)+g(x)=sin(2x−π6)+cos2x=sin2xcos π6−cos2xsinπ6+cos2x=√3sin2x+1cos2x=sin(2x+π6).故选B.5.答案:C解析:【分析】本题考查了阅读能力及简单的合情推理,属基础题.先阅读理解题意,再通过运算进行简单的合情推理即可得解.【解答】解:由圆的面积公式得:S=πr2,所以r=√Sπ,对于选项A,π=15750=3.14,对于选项B,π=3,对于选项C,π=227≈3.14285,对于选项D,π=278≈3.375,3.14285−3.14159=0.00126,3.14159−3.14=0.00159,0.00126<0.00159即最接近π=3.1415926....的值为3.14285,故选C.6.答案:D解析:【分析】本题考查椭圆的简单几何性质,先根据长轴长是短轴长的2倍确定a与b的关系,进而根据椭圆a,b,c的关系a2=b2+c2可表示出c,再由e=ca得到答案.【解答】解:不妨设椭圆C的方程为x2a2+y2b2=1(a>b>0),则2a=2b×3,即a=3b.所以a2=9b2=9(a2−c2).即c 2a2=89, 所以e =c a=2√23, 故选D .7.答案:B解析: 【分析】本题考查了等差数列的通项公式及其性质与求和公式,考查了推理能力与计算能力,属于中档题,利用等差数列的通项公式及其性质与求和公式即可得出. 【解答】解:∵a 1+a 5=2a 3,∴S 5=5(a 1+a 5)2=5a 3=5×3=15.故选B .8.答案:B解析: 【分析】本题主要考查同角三角函数的基本关系的应用,属于基础题. 利用同角三角函数的基本关系,求得sinαcosα的值. 【解答】解:∵tanα=12,则sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=1214+1=25,故选:B .9.答案:C解析: 【分析】由题意可以令a =1,b =0分别代入A ,B ,C ,D 四个选项进行一一排除.此题利用特殊值进行代入逐一排除错误选项,方法简洁、直观,为基础题. 【解答】解:利用赋值法:令a =1,b =0 b −a =−1<0,故A 错误; a 3+b 3=1>0,故B 错误; a 2−b 2=1>0,故D 错误; 排除A ,B ,D , 故选C .10.答案:C解析:解:AD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +13(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =13a ⃗ +23b ⃗ , 故选:C .根据向量的三角形的法则和向量的加减的几何意义即可求出. 本题考查了向量的加减混运算和向量的数乘运算,属于基础题11.答案:C解析: 【分析】本题考查了正弦定理、两角和的正弦公式、诱导公式,属于基础题.由3bcosC =c(1−3cosB),利用正弦定理可得3sinBcosC =sinC(1−3cosB),化简整理即可得出. 【解答】解:由正弦定理asinA =bsinB =csinC =2R , ∵3bcosC =c(1−3cosB), ∴3sinBcosC =sinC(1−3cosB), 化简可得 sinC =3sin(B +C), 又A +B +C =π, ∴sinC =3sinA ,∴因此sin C :sinA =3:1. 故选C .12.答案:D解析: 【分析】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力. 利用双曲线的定义,结合已知条件,转化求解|OQ|即可. 【解答】 解:双曲线C :x 216−y 248=1可得a =4,b =4√3,c =8, c −a =4,由双曲线的定义可知:||PF 1|−|PF 2||=2a =8, 因为|PF 1|=10,所以|PF 2|=18或|PF 2|=2(舍去), P 为C 上一点,F 1Q ⃗⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ ,所以Q 为线段PF 1的中点, 所以|OQ|=12|PF 2|=9. 故选:D .13.答案:10解析: 【分析】本题主要考查了线性规划等知识点,在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解. 【解答】解:根据x ,y 约束条件画出可行域如图所示:三角形ABC即为可行域,A(2,2),B(6,−2),C(−2,−2);由图易得当x=6,y=−2时,z=2x+y的最大值为z max=2×6−2=10,故答案为10.14.答案:2;1解析:【分析】本题考查空间几何体的三视图,棱锥的体积的求法,考查计算能力,属于基础题.根据三视图正确还原几何体,画出图形,利用三视图的数据,求解即可.【解答】解:由题意可知:该几何体为如图所示的四棱锥:该四棱锥的底面是下底为2,高为2,上底为1的梯形,四棱锥的高为2,所以该四棱锥的体积为:13×2×12×(1+2)×2=2.面积最小的侧面面积是:12×1×2=1.故答案为:2;1.15.答案:y=sin(12x−π3)解析:【分析】本题考查三角函数图象变换,属基础题.由函数图象变换规律逐步变形可得.【解答】解:由函数图象变换规律可得:将函数y=sinx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin12x的图象,再将图象向右平行移动2π3个长度单位得到y=sin[12(x−2π3)]的图象,化简可得y=sin(12x−π3).故答案为:y=sin(12x−π3).16.答案:[1,54)解析:【分析】本题主要考查了函数的零点,考查了数形结合思想,画出图象进行分析即可,属于中档题.【解答】解:由题意可得函数y=g[f(x)]与函数y=a有4个交点,当f(x)=−x2−2x>0,即−2<x<0时,y=g[f(x)]=−(x+1)2+1+14[−(x+1)+1];当f(x)=−x2−2x≤0,即x≤−2或x≥0时,y=g[f(x)]=−(x+1)2+2.画出函数y=g[f(x)]与函数y=a的图象如图所示:,.结合图象可得1≤a<54).故答案为[1,5417.答案:(1)证明:取AE中点F,连接MF、FN,∵△AED中,F、N分别为EA、ED的中点,∴FN=//1AD,2又∵四边形ABCD是平行四边形,∴BC=//AD,又M是BC中点,∴MC=//1AD,∴FN=//MC,2∴四边形FMCN是平行四边形,∴CN//MF,又CN⊄平面AEM,MF⊂平面AEM,∴CN//平面AEM;(2)解:取BE中点H,连接AH,如图,则AH ⊥BE ,因为△ABE 是等边三角形,BE =EC =2, 所以AH =√3,∵平面ABE ⊥平面BCE ,平面ABE ∩平面BCE =BE ,AH ⊂平面ABE , ∴AH ⊥平面BCE , 由(1)知CN//平面AEM ,∴V N−AEM =V C−AEM =V A−MEC=13×12×12×2×2×√3=√33, ∴三棱锥N −AEM 的体积为√33.解析:本题考查线面平行的证明,考查三棱锥的体积的求法,考查推理论证能力、空间想象能力,是中档题.(1)取AE 中点F ,连接MF 、FN ,推导出四边形FMCN 是平行四边形,从而CN//MF ,由此能证明CN//平面AEM .(2)取BE 中点H ,连接AH ,则AH ⊥BE ,得出AH ⊥平面BCE ,利用等体积法即可得解.18.答案:解:(Ⅰ)∵32,3,a 4,a 10成等比数列.∴公比为332=2.∴a 4=32×22=6,a 10=32×23=12.设等差数列{a n }的公差为d ,则{a 1+3d =6a 1+9d =12,解得{a 1=3d =1,于是a n =3+(n −1)=n +2. (Ⅱ)由(Ⅰ)可知:2an (a n +n)=2(n+2)(2n+2)=1n+1−1n+2,于是S n =(12−13)+(13−14)+⋯+(1n+1−1n+2)=12−1n +2=n2n+4.解析:本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.(Ⅰ)由32,3,a 4,a 10成等比数列.可得公比为2.再利用等比数列与等差数列的通项公式即可得出. (Ⅱ)由(Ⅰ)可知:2an (a n +n)=2(n+2)(2n+2)=1n+1−1n+2,利用“裂项求和”即可得出.19.答案:解:(1)设容易题用A ,B 表示,中档题用C 表示,难题用D 表示,两人从中随机抽取一道题作答结果共16种, 它们是(A,A),(A,B),(A,C),(A,D), (B,A),(B,B),(B,C),(B,D), (C,A),(C,B),(C,C),(C,D), (D,A),(D,B),(D,C),(D,D),甲、乙所选题目分值相同的基本事件有(A,A),(A,B),(B,A),(B,B),(C,C),(D,D),共6个, ∴甲、乙所选题目分值相同的概率为616=38;(2)由(1)知甲所选题目分值大于乙所选题目分值的基本事件有: (C,A),(C,B),(D,A),(D,B),(D,C),共5个, ∴甲所选题目分值大于乙所选题目分值的概率为516.解析:本题考查古典概型及其概率公式,列举是解决问题的关键,属基础题.(1)设容易题用A ,B 表示,中档题用C 表示,难题用D 表示,列举可得总的基本事件数为16,其中甲、乙所选题目分值相同的基本事件有6个,由古典概型的概率公式可得答案; (2)甲所选题目分值大于乙所选题目分值的基本事件共5个,由概率公式可得结果.20.答案:解:(Ⅰ)直线B 1F 1的方程为x −c +yb =1,即bx −cy +bc =0,由F 2到直线B 1F 1的距离为4√53,得√b 2+c2=2bc a=4√53, 又ca=√53,所以b =2,a =3,…(4分)所以椭圆的方程为x 29+y 24=1.…(5分)(Ⅱ)由|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ |=|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗⃗ |,得:OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0, 若直线的斜率不存在,直线的方程为x =2由{x =2x 29+y 24=1,得{x =2y =±2√53, 所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =169与OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0矛盾,故直线的斜率存在,…(7分) 设直线的方程为y =k(x −2),由{y =k(x −2)x 29+y 24=1,得(9k 2+4)x 2−36k 2x +36(k 2−1)=0, 由题意△>0恒成立,设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=36k 29k 2+4,x 1x 2=36(k 2−1)9k 2+4,…(9分)由OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,得x 1x 2+y 1y 2=0, 所以x 1x 2+y 1y 2=x 1x 2+k 2(x 1−2)(x 2−2)=(1+k 2)x 1x 2−2k 2(x 1+x 2)+4k 2=0, 把x 1+x 2=36k 29k 2+4,x 1x 2=36(k 2−1)9k 2+4,代入得(1+k 2)⋅36(k 2−1)9k 2+4−2k 2⋅36k 29k 2+4+4k 2,解得k =±32,…(13分)所以直线的方程为y =±32(x −2),即3x −2y −6=0或3x +2y −6=0.…(14分)解析:(Ⅰ)直线B 1F 1的方程为bx −cy +bc =0,由已知得2bc a=4√53,ca=√53,由此能求出椭圆的方程. (Ⅱ)由|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ |=|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗⃗ |,得:OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,设直线的方程为y =k(x −2),由{y =k(x −2)x 29+y 24=1,得(9k 2+4)x 2−36k 2x +36(k 2−1)=0,由此利用根的判别式、韦达定理,结合已知条件能求出满足条件的直线方程.本题考查椭圆方程的求法,考查满足条件的直线是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.21.答案:(1)解:∵函数f(x)=alnx −x 2,可得当a =2时,f ′(x)=2x −2x =2−2x 2x,故函数y =f(x)在[12,1]是增函数,在[1,2]是减函数, ∴f(x)max =f(1)=2ln1−12=−1.(2)解:∵g(x)=alnx−x2+ax,∴g′(x)=ax−2x+a.∵g(x)在区间(0,3)上不单调,∴g′(x)=0在(0,3)上有实数解,且无重根,由g′(x)=0,有a=2x2x+1=(x+1)2−2(x+1)+1x+1=2(x+1+1x+1)−4∈(0,92),(x∈(0,3)),综上可得,a∈(0,92).(3)证明:由题意可得,ℎ′(x)=2x−2x−m,又f(x)−mx=0有两个实根x1,x2,∴{2lnx1−x12−mx1=02lnx2−x22−mx2=0,两式相减,得2(lnx1−lnx2)−(x12−x22)=m(x1−x2),∴m=2(lnx1−lnx2)x1−x2−(x1+x2).于是ℎ′(αx1+βx2)=2αx1+βx2−2(αx1+βx2)−2(lnx1−lnx2)x1−x2+(x1+x2)=2αx1+βx2−2(lnx1−lnx2)x1−x2+(2α−1)(x2−x1),∵β≥α,∴2α≤1,∴(2α−1)(x2−x1)≤0.要证:ℎ′(αx1+βx2)<0,只需证:2αx1+βx2−2(lnx1−lnx2)x1−x2<0,只需证:x1−x2αx1+βx2−ln x1x2>0(∗).令x1x2=t∈(0,1),∴(∗)化为1−tαt+β+lnt<0,只证u(t)=lnt+1−tαt+β<0即可.∵u′(t)=1t +−(αt+β)−(1−t)α(αt+β)=1t−1(αt+β)=(αt+β)2−tt(αt+β)=α2(t−1)(t−β2α2)t(αt+β),又∵β2α2≥1,0<t<1,∴t−1<0,∴u′(t)>0,∴u(t)在(0,1)上单调递增,故有u(t)<u(1)=0,∴lnt+1−tαt+β<0,即x1−x2αt+β+ln x1x2<0,∴ℎ′(αx1+βx2)<0.解析:本题主要考查利用导数研究函数的单调性,利用函数的单调性求函数在闭区间上的最值,用分析法证明不等式,体现了转化的数学思想,属于难题.(1)当a =2时,利用导数的符号求得函数的单调性,再根据函数的单调性求得函数y =f(x)在[12,2]上的最大值;(2)先求得g′(x)=ax −2x +a ,因为g(x)在区间(0,3)上不单调,所以g′(x)=0在(0,3)上有实数解,且无重根.由g′(x)=0,求得a =2x 2x+1=2(x +1+1x+1)−4∈(0,92),由此可得a 的范围; (3)由题意可得,f(x)−mx =0有两个实根x 1,x 2,化简可得m =2(lnx 1−lnx 2)x 1−x 2−(x 1+x 2).可得ℎ′(αx 1+βx 2)=2αx1+βx 2−2(lnx 1−lnx 2)x 1−x 2+(2α−1)(x 2−x 1),由条件知(2α−1)(x 2−x 1)≤0,再用分析法证明ℎ′(αx 1+βx 2)<0.22.答案:解:(Ⅰ,∴当θ=π4时,ρ取得最大值2√2, 此时P 的极坐标为(2√2,π4)(2√2,π4). (Ⅱ)由ρ=2cosθ+2sinθ, 得ρ2=2ρcosθ+2ρsinθ, ∴x 2+y 2−2x −2y =0,将l :{x =√32t y =1+12t {x =√32ty =1+12t ,代入x 2+y 2−2x −2y =0, 并整理得:t 2−√3t −1=0, ∴{t 1+t 2=√3t 1t 2=−1. 由t 的几何意义得1|MA|+1|MB|=|t 1−t 2||t 1t 2|=√(t 1+t 2)2−4t 1t 2|t 1t 2|=√7.解析:本题考查的知识要点:极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于一般题型. (Ⅰ)利用转换关系,把极坐标方程转换为直角坐标方程.(Ⅱ)利用(Ⅰ)的结论,进一步利用一元二次方程根和系数关系的应用求出结果.23.答案:解:(1)∵f(x)≤x +3,∴|x −1|+|x −2|≤x +3, ①当x ≥2时,,第21页,共21页 ②当1<x <2时,,③当x ≤1时,, 由①②③可得x ∈[0,6];(2)①当m =0时,0≥0,∴x ∈R ; ②当m ≠0时,即f(x)≥|2m +1|−|2m −3|对m 恒成立,|2m +1|−|2m −3|≤|(2m +1)−(2m −3)|=4, 当且仅当2m ≥3,即0<m ≤23时取等号,∴f(x)=|x −1|+|x −2|≥4,由x ≥2,2x −3≥4,解得x ≥72;1<x <2,x −1+2−x ≥4,解得x ∈⌀;x ≤1时,3−2x ≥4,解得x ≤−12;综上可得x ∈(−∞,−12]∪[72,+∞).解析:(1)分别讨论x ≥2,1<x <2,x ≤1时,去掉绝对值,解不等式求并集可得;(2)讨论m =0,m ≠0,由绝对值不等式的性质可得f(x)≥4,再讨论x ≥2,1<x <2,x ≤1时,解不等式求并集可得范围.本题考查绝对值不等式的解法和绝对值不等式的性质,考查分类讨论思想方法和转化思想、运算能力,属于中档题.。

黑龙江大庆实验中学2011届高三上学期期中考试(数学理)

黑龙江大庆实验中学2011届高三上学期期中考试(数学理)

高三期中数学试题命题人:卢伟峰一.选择题(每题5分)1.“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“,,a b c 三数成等比数列的充要条件是2b a c=”;“,,a b c 三数成等差数列的充要条件是2b a c=+”,以上四个命题中,正确的个数为( ).1A 个 .2B 个 .3C 个.4D 个2.设集合{}|10Pm m =-<≤,{2|440Qm R m x m x =∈+-<对任意实数x 恒成立},则下列关系中成立的是( ).A PQ.BQ P.C P=Q.D P Q=Q3.(sin 40ta n 10︒︒-的值为( ).1A .1B -C.D -4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ).13A 项 .12B 项 .11C 项 .10D 项 5.在A B C ∆中,对于任意的实数m ,都有B C m B A C A-≥,则A B C ∆的形状是( ).A 锐角三角形 .B 直角三角形 .C 钝角三角形 .D 等腰直角三角形 6.已知向量(c o s ,2),(s in ,1)a b αα=-=且a ∥,b 则ta n 4πα⎛⎫-⎪⎝⎭等于( ).3A .3B -1.3C 1.3D -7.设a ∈R ,若函数()3a xy ex x R =+∈有大于零的极值点,则( ).3A a >-.3B a <-1.3C a >-1.3D a <-8.已知函数(1)()14s in () (1)32x f x x x ππ⎧>⎪=⎨-≤≤⎪⎩,则()f x 的最小值为 ( ).2A -.2BC.4D9.若函数3()3f x x x a=--,当[]0,3x ∈时,()m fx n≤≤恒成立,则n m-的最小值为( ).2A .4B .18C .20D10. 方程lg 3x x +=的解所在区间为( ).A ()0,1 .B ()1,2 ().2,3C [).3,D +∞11. 若函数|1|2x ym-=+的图象与x 轴有公共点,则m 的取值范围是( ).1A m ≤-.10B m -≤<.1C m ≥ .01D m <≤12. 若直线y x =是曲线322yx x a x=-+的切线,则a =( ).1A .2B .1C - .1D 或2二.填空题(每题5分) 13.220c o s xd x π=⎰_________.14.若三角形的三边为连续的三个自然数,且最大角是最小角的2倍,则三角形的面积为______; 15.若()lg f x x=,0a b<<且()()f a fb =,则2ab+的取值范围是________;16.已知P 是A B C ∆内任一点,且满足()()()21,,A P x y AB y AC x y R =-+-∈则x 的取值范围是_________;y 的取值范围是_______. 三.解答题(写出必要的文字说明) 17.(本题10分) 已知定义在R 上的函数()yfx =的图象如右图所示.(Ⅰ)写出函数的周期;(Ⅱ) 确定函数()y fx =的解析式.18.(本题12分)已知函数||1()22xx f x =-.(Ⅰ)若()2f x =,求x 的值;(Ⅱ)若2(2)()0tf t m f t +≥对于[12]t ∈,恒成立,求实数m 的取值范围. 19.(本题12分)已知O 为坐标原点,()0,2A ,()4,6B ,12O M t O A t A B=+.(Ⅰ) 求点M 在第二或第三象限的充要条件; (Ⅱ) 求证:当11t =时,不论2t 为何实数,A B M 、、三点都共线;(Ⅲ) 若21t a=,O MA B⊥,12A B MS ∆=,求a 的值.20.(本题12分)设函数()()*sin co s ,2,nnn f n k k Nθθθ=+=∈(Ⅰ)求()4f θ的单调增区间及对称中心;y(Ⅱ)证明:()()()()4422642co ssin co ssin f f θθθθθθ-=--;(Ⅲ)对任意给定的正偶数n ,求函数()n f θ的取值范围.21.(本题12分)数列{}n a 的通项222(c o s sin)33n n n a n ππ=-,其前n 项和为n S .(Ⅰ) 求n S ; (Ⅱ) 3,4n n nS b n =⋅求数列{n b }的前n 项和n T .22.(本题12分)设函数322()f x x a x a x m =+-+ (0)a >(Ⅰ)若1a =时函数()f x 有三个互不相同的零点,求m 的范围; (Ⅱ)若函数()f x 在[]1,1-内没有极值点,求a 的范围;(Ⅲ)若对任意的[]3,6a ∈,不等式()1f x ≤在[]2,2x ∈-上恒成立,求实数m 的取值范围.答案一.选择题: B B B C A A D A C B A B 二.填空题:4π4()3,+∞;()()2,4,1,2三.解答题: 17.(1)2T =---------------------------------5分 (2)()2,f x x k k Z=-∈------------------5分 18.(1)当0x<时,()0;f x =---------------2分当0x ≥时,()122xxf x =-.由条件可知,122,2xx-= 即222210,xx-⋅-=解21x=±∵(220,lo g 1xx >∴=+--------------------------6分(2)当[1,2]t ∈时,2211222022t tt t t m ⎛⎫⎛⎫-+-≥ ⎪ ⎪⎝⎭⎝⎭即 ()()242121.ttm -≥--()22210,21.ttm ->∴≥+ -----------------------10分()2[1,2],12[17,5],tt ∈∴-+∈--故m 的取值范围是[)5,-+∞ ----------------------------12分19.解:12212(4,24)O M t O A t A B t t t =+=+当点M 在第二或第三象限时,有⎪⎩⎪⎨⎧≠+<04204212t t t故所求的充要条件为:20t <且1220t t +≠ ---------------4分(2)证明:当11t =时,由(1)知22(4,42)O M t t =+∵ )4,4(=-=OA OB AB 且AB t t t t OA OM AM 2222)4,4()4,4(===-= ∴ ,,A B M 三点都共线-------------------8分 (3)解:当21t a=时,2224,42)O M t t a +=(又(4,4),A B =且O M A B⊥∴22222144(42)40;4t t a t a ⨯++⨯==-故),(22a a OM -= 24=点M 到A B l :20xy -+= 的距离|1|22|2|222-=+--=aa ad∵12=∆ABM S ∴|1|22421||212-⨯⨯=⋅ad AB解得 2±=a ----------------------------------12分20.解:(1)()()4441sin co s 3co s 44f θθθθ=+=+令242k k ππθπ-≤≤,则单调递增区间为(),242k k k Z πππ⎡⎤-∈⎢⎥⎣⎦令42k πθπ=+,则对称中心为(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭----------------------4分(2)证明: ()()()()66446422co s sin co ssin f f θθθθθθ-=+-+()()442244=2co s sin co s sin co ssin θθθθθθ+--+4422=co s sin 2co s sin θθθθ+-2=co s 2θ又()()44222co s sin co ssin co s2θθθθθ--=所以()()()()4422642co ssin co s sin f f θθθθθθ-=--成立--------8分(3)令2co s xθ=,2sin 1xθ=- 则[]0,1x ∈则()()()*1,kkn f g x x x k N θ==+-∈,则()()11'1k k g x kxk x --=--令()'0g x =,即12x=,则10,2⎛⎫ ⎪⎝⎭为减区间;1,12⎛⎫ ⎪⎝⎭为增区间则()()(){}11m ax 0,112k g x g g -≤≤=,所以()1112n k f θ-≤≤---------------12分21.解: (1) 由于222co s sinco s333n n n πππ-=,故()()()312345632313kk k kS a a a a a a a a a --=+++++++++()()()22222222232311245=363222k k k ⎛⎫-+-⎛⎫⎛⎫++ ⎪-++-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()211=13311859422k kk⎡+++-⎤=+⎣⎦则()231331=942k k k S S a kk-=--+;3231311=2k k k SS a k---=--;故()()()1 3236113 31634 36nnn k n n S n k n n n k ⎧--=-⎪⎪+-⎪==-⎨⎪⎪+=⎪⎩(*k N ∈)----------------------6分(2) 因为9424nnn b +=⋅211322942444n nn T +⎛⎫=+++ ⎪⎝⎭,112294413244n n n T -+⎛⎫=+++ ⎪⎝⎭两式相减:1332119994193138244422nn n n n n nT --++⎛⎫=+++-=-- ⎪⎝⎭故23218133322n n n n T -+=--⋅----------12分22.解:(1)当1a =时32()f x x x x m =+-+,因为()f x 有三个互不相同的零点,所以32()0f x x x x m =+-+=, 即32m x x x =--+有三个互不相同的实数根。

2020届黑龙江省大庆实验中学高三综合模拟训练(二)数学(理)试题

2020届黑龙江省大庆实验中学高三综合模拟训练(二)数学(理)试题

大庆实验中学2020届高三综合训练(二)数学试卷注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟,答卷前,考生务必将自己的姓名、准考证号填写在答题卡的相应位置上.2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.第I 卷(选择题 共60分)一、单选题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}1A x x =<,{}21xB x =<,则A B =U ( ) A .()1,0-B .()0,1C .()1,-+∞D .(),1-∞2.已知i 为虚数单位,若复数1aiz i-=+(a R ∈)的虚部为1-,则a = ( ) A .2-B .1C .2D .1-3.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为1.160.5ˆ37yx =-,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米,4.函数()2ln xf x x x=-的图象大致为 ( )A .B .C .D .5.某几何体的三视图如图所示,则该几何体的体积为 ( ) A .16163π-B .32163π-C .1683π-D .3283π- 6.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A ,B ,C 三人分配奖金的衰分比为20%,若A 分得奖金1000元,则B ,C 所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为 ( )A .20%,14580元B .10%,14580元C .20%,10800元D .10%,10800元7.若0m >,0n >,且直线()()1120m x n y +++-=与圆222210x y x y +--+=相切,则m n +的取值范围是 ( )A .)22,⎡++∞⎣B .)222,⎡++∞⎣C .(0,22⎤+⎦ D .(0,222⎤+⎦8.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积222221()42a b c S ab ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦.根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )A .2B .22C .6D .239.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为()ln xn x x≈的结论(素数即质数,,则输出k 的值应属于区间 ( ) 15,20B .20,25C .25,30D .30,3510.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为()1,0F c -、()2,0F c ,且双曲线C 与圆222x y c +=在第一象限相交于点A ,且123AF AF =,则双曲线C 的离心率是( )A .31+B .21+C .3D .211.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,28f π⎛⎫=⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是 ( )A .12ω=B .6282f π+⎛⎫-=⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递减D .函数()f x 的图像关于点5,04π⎛⎫⎪⎝⎭对称12.定义在R 上的偶函数()f x 满足()()53f x f x -=+,且()224,012ln ,14x x x f x x x x ⎧-+≤<=⎨-≤≤⎩,若关于x 的不等式()()()210f x a f x a +++<在[]20,20-上有且仅有15个整数解,则实数a 的取值范围是( )A .(]1,ln 22--B .[)2ln 33,2ln 22--C .(]2ln 33,2ln 22--D .[)22ln 2,32ln 3--第II 卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在大题卡相应位置上.13.二项式561x x x ⎛⎫+ ⎪⎝⎭展开式中的常数项是__________.14.已知向量(1,2)a =r ,(,1)b k =r ,且2a b +r r与向量a r 的夹角为90°,则向量a r 在向量b r 方向上的投影为________.15.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ∠=o ,在球C 内任取一点,则该点落在三棱锥P EFG -内的概率为__________.16.已知数列{}n a 的各项都是正数,()2*11n n n a a a n N ++-=∈.若数列{}n a 各项单调递增,则首项1a 的取值范围是________;当123a =时,记1(1)1n n nb a --=-,若1220191k b b b k <+++<+L ,则整数k =________.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.若ABC V 的内角A ,B ,C 的对边为a ,b ,c ,且224()si sin n sin sin sin 3A B C B C -=-. (1)求cos A ; (2)若ABC V 的面积为423,求内角A 的角平分线AD 长的最大值.18.如图,四棱锥-中,SD CD SC AB BC ====,平面⊥底面ABC ∠=︒,是中点. (1)证明:直线AE 平面 (2) A BC DSEF18.如图,四棱锥S ABCD -中,22SD CD SC AB BC ====,平面ABCD ⊥底面SDC ,//AB CD ,90ABC ∠=︒,E 是SD 中点. (1)证明:直线//AE 平面SBC ; (2)点F 为线段AS 的中点,求二面角F CD S --的大小.19.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:2010:40~这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:209:40~记作区间[)20,40,9:4010:00~记作[)40,60,10:0010:20~记作[)60,80,10:2010:40~记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:2010:40~时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:2010:00~之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布()2,N μσ,其中μ可用这600辆车在9:2010:40~之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数(结果四舍五入保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤≤=①;(22)0.9545P T μσμσ-<≤+=②;(33)0.9973P T μσμσ-<≤+=③.20.已知椭圆:C 22221(0)x y a b a b +=>>的离心率为22,焦距为2c ,直线20bx y a -+=过椭圆的C左焦点.(1)求椭圆C 的标准方程;(2)若直线20bx y c -+=与y 轴交于点,,P A B 是椭圆C 上的两个动点,APB ∠的平分线在y 轴上,PA PB ≠.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数()ln f x x ax b =--. (1)求函数()f x 的极值;(2)若不等式()f x ex ≤-恒成立,求ba e-的最小值(其中e 为自然对数的底数).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22121sin ρθ=+,射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点.(1)求曲线C 的直角坐标方程及直线l 的参数方程;(2)当直线l 倾斜角α为何值时,BP BQ ⋅取最小值,并求出BP BQ ⋅最小值.23.选修4-5:不等式选讲已知函数() 1.f x x =+(Ⅰ)解不等式()32f x x >-+;(Ⅱ)已知0,0a b >>,且22a b +=,求证()224.f x x a b -≤+。

黑龙江省大庆实验中学2020届高考数学综合训练试卷1(五) (含答案解析)

黑龙江省大庆实验中学2020届高考数学综合训练试卷1(五) (含答案解析)

黑龙江省大庆实验中学2020届高考数学综合训练试卷1(五)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x>−1},B={x|x<2},则A∩B=()A. {x|x>−1}B. {x|x<2}C. {x|−1<x<2}D. ⌀2.已aR,若复数z=a2i1+i为虚数,则|+i|=()A. 10B. √10C. 5D. √53.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年增加了4750元,则该教师2018年的家庭总收入为(单位:元)A. 100000B. 95000C. 90000D. 850004.已知|a⃗|=2,b⃗ 为单位向量,a→·b→=1,则向量a⃗在b⃗ 方向上的投影是()A. −12B. 1 C. 12D. −15.某区要从参加扶贫攻坚任务的5名干部A,B,C,D,E中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A或B被选中的概率是()A. 15B. 25C. 35D. 7106.若tanα=13,tan(α+β)=12,则tanβ=()A. 17B. 16C. 57D. 567.已知函数f(x)=1ln(x+1)+x2,则y=f(x)的图象大致为()A. B.C. D.8.已知α终边上一点P(1,2),则cos2α=()A. −35B. −45C. 35D. 459.设抛物线C:y2=4x的焦点为F,直线l:y=23(x+2)与C交于M,N两点,则FM⃗⃗⃗⃗⃗⃗ ⋅FN⃗⃗⃗⃗⃗⃗ =()A. 5B. 6C. 7D.810.如图,在长方体ABCD−A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成角等于()A. 30∘B. 45∘C. 60∘D. 90∘11.若函数f(x)=(x2−ax+2)e x在R上单调递增,则a的取值范围是()A. (−∞,−2)∪(2,+∞)B. (−∞,−2]∪[2,+∞)C. (−2,2)D. [−2,2]12. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交椭圆于A 、B 两点,直线AF 2与椭圆的另一个交点为C ,若S △ABC =3S △BCF 2,则椭圆的离心率为( )A. √55B. √33C. √105D. 3√310二、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)={log 12x,x >0,3x,x ≤0,,则f(f(2))的值为___________14. 已知函数f (x )=2sin (ωx +φ)+1(ω>0,|φ|<π2)相邻的两个对称轴之间的距离为π2,f (x )的图象经过点(π3,1),则函数f (x )在[0,π]上的单调递增区间为______.15. 若三棱锥S −ABC 的底面是以AC 为斜边的等腰直角三角形,AC =2√3,SA =SB =SC =√7,则该三棱锥的外接球的表面积为______.16. 如图所示,这是一个正六边形的序列,则第n 个图形的边数为__________三、解答题(本大题共7小题,共82.0分)17. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,且△ABC 的面积为10√3,a +b =13,∠C =60°,求这个三角形的各边长.18.已知四棱锥E−ABCD的底面为菱形,且∠ABC=60∘,AB=EC=2,AE=BE=√2,O为AB的中点,N为BC的中点,M在BE上且BE=4BM.(1)求证:DE//平面OMN;(2)求证:EO⊥平面ABCD;(3)求点D到平面AEC的距离.19.已知椭圆E的方程为x2a2+y2b2=1(a>b>0)的离心率为√22,圆C的方程为(x−2)2+(y−1)2=203,若椭圆E与圆C相交于A,B两点,且线段AB恰好为圆C的直径.(1)求直线AB的方程;(2)求椭圆E的标准方程.20. 某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:(2)求出y 对x 的回归直线方程y ̂=b ̂x +a ̂;(3)若广告费为9万元,则销售收入约为多少万元? 参考公式:b =∑x i n i=1y i −n⋅x −⋅y−∑x i 2n i=1−nx−2,a =y −−bx −.21. 已知函数f(x)=x 3−6x 2+9x −3.(1)求函数f(x)的极值;(2)定义:若函数ℎ(x)在区间[s,t](s <t)上的取值范围为[s,t],则称区间[s,t]为函数ℎ(x)的“美丽区间”.试问函数f(x)在(3,+∞)上是否存在“美丽区间”?若存在,求出所有符合条件的“美丽区间”;若不存在,请说明理由.22. 在平面直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为{x =tcosαy =1+tsinα(其中t 为参数).在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线C :ρ(1+cos2θ)=λsinθ的焦点F 的极坐标为(1,π2). (Ⅰ)求常数λ的值;(Ⅱ)设l与C交于A、B两点,且|AF|=3|FB|,求α的大小.23.已知函数f(x)=|x|+|x+1|.(Ⅰ)解关于x的不等式f(x)≥2;(Ⅱ)若a,b,c∈R+,函数f(x)的最小值为m,若a+b+c=m,求证:ab+bc+ac≤1.3-------- 答案与解析 --------1.答案:C解析:本题主要考查集合交集运算,属于基础题. 解:因为集合A ={x|x >−1},B ={x|x <2}, 所以A ∩B ={x |−1<x <2}. 故选C .2.答案:D解析:解:∵z =a2i1+i =a−2i)1−i)(1+i)−i)=(a−)−(+2)i2为虚数,∴{a −20a+≠0,解得a =2, 故选:利复数形式的乘除运算化简z 由题意求出a ,则案可求.题考查复数代数形式乘除运算考查了纯虚数的概念,练了复数模求法,是.3.答案:D解析:本题主要考查折线图、条形图,属于基础题.根据折线图求出2017年就医花费,根据条形图求出2018年收入. 解:根据折线图可知,2017年就医花费80000×10%=8000元, 则2018年就医花费8000+4750=12750元, 根据条形图可知,2018年收入1275015%=85000元. 故选D .4.答案:B解析:解:由已知得到向量a ⃗ 在b ⃗ 方向上的投影是:a →⋅b →|b →|=1;故选B .根据平面向量的数量积公式解答即可.本题考查了平面向量的投影;利用了数量积的几何意义.5.答案:D解析:本题考查古典概型的计算,是基础题.基本事件总数n =C 52=10,A 或B 被选中的对立事件是A 和B 都没有被选中,由此能求出A 或B 被选中的概率.解:某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人, 赴区属的某贫困村进行驻村扶贫工作,基本事件总数n =C 52=10,A 或B 被选中的对立事件是A 和B 都没有被选中, 则A 或B 被选中的概率是P =1−C 32C 52=710.故选:D .6.答案:A解析:tanβ=tan[(α+β)−α]=tan(α+β)−tanα1−tan(α+β)tanα=12−131+12×13=17.7.答案:B解析:本题考查了函数图象变换,学会利用排除法解答,属于基础题. 分−1<x <0和x >0判断函数值的符号即可选出答案. 解:当−1<x <0时,可得ln(x +1)+x 2<0, ∴f(x)=1ln(x+1)+x 2<0,排除C ,D .当x >0时,可得ln(x +1)+x 2>0, ∴f(x)=1ln(x+1)+x 2>0,排除A . 故选:B .8.答案:A解析:本题主要考查任意角的三角函数的定义和二倍角公式,属于基础题.利用任意角的三角函数的定义,求得cosα的值,再利用二倍角公式即可得到答案. 解:因为P(1,2),所以r =|OP|=√5, 所以,。

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题理含解析

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题理含解析

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题 理(含解析)第Ⅰ卷(选择题共60分)一、单选题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅- 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( )A. {|1}x x ≥B. {|12}x x ≤<C. {}1D. {}0,1【答案】D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可.【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =.故选D.【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 3.已知焦点在x 轴上的椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( ) A. 221167x y +=B. 221716x y +=C. 2251162x y +=D.2212516x y += 【答案】A 【解析】由题意知,2a=8,∴a=4,又34e =,∴c=3,则b 2=a 2﹣c 2=7. 当椭圆的焦点在x 轴上时,椭圆方程为221167x y +=;故答案为221167x y +=.故答案为A .4.如图所示的2个质地均匀的游戏盘中(图①是半径为2和4的两个同心圆组成的圆盘,O 为圆心,阴影部分所对的圆心角为90︒;图②是正六边形,点Р为其中心)各有一个玻璃小球,依次摇动2个游戏盘后(小球滚到各自盘中任意位置都是等可能的)待小球静止,就完成了一局游戏,则一局游戏后,这2个盘中的小球至少有一个停在阴影部分的概率是( )A.116B.1124C.1324D.516【答案】B 【解析】【分析】根据几何概型面积型可分别计算出两个图中小球落在阴影部分的概率,由独立事件概率乘法公式和对立事件概率公式可求得结果.【详解】图①小球落在阴影部分的概率为:212213214464P πππ-⋅⋅=⋅=⋅ 图②小球落在阴影部分的概率:213P =∴至少有一个小球停在阴影部分的概率为31131111111632424⎛⎫⎛⎫--⨯-=-= ⎪ ⎪⎝⎭⎝⎭本题正确选项:B【点睛】本题考查几何概型概率问题的求解,涉及到独立事件概率乘法公式和对立事件概率公式的应用.5.在正方体1111ABCD A B C D -中,M N ,分别在是线段11AB BC ,的中点,以下结论:①直线BD 丄直线MN ;②直线MN 与直线AC 异面;③直线MN 丄平面11BDD B ;④122MN AA =,其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】 【分析】在平面ABCD 内作出MN 的平行直线EF ,根据中位线得到//EF AC ,由此得到②错误.根据AC ⊥平面11BDD B 得到①③正确,利用中位线及勾股定理证得④正确.由此得出正确的个数为3个.【详解】过M 作MF AB ⊥交AB 于F ,过N 作NE BC ⊥交BC 于E ,连接11,,,EF ACBD B D .由于,M N分别为11,AB BC 的中点,故1111//////22NE CC BB MF ,故四边形MNEF 为矩形,故//MN EF ,由于//EF AC ,故②判断错误.由于1,AC BD AC BB ⊥⊥,所以AC ⊥平面11BDD B ,所以MN BD ⊥且直线MN 丄平面11BDD B ,即①③正确.由勾股定理得12AC AA =,故11222EF AC AA ==,故④判断正确.综上所述,正确的个数为3个,故选C.【点睛】本小题主要考查空间两条异面直线垂直的判断,考查直线与直线平行的判断,考查线面垂直的证明,属于基础题.要判断两条异面直线垂直,往往是通过线面垂直来证明,要证明线线平行,可以考虑用中位线来证明,要证明线面垂直则需要证明垂直平面内两条相交直线来证明. 6.设2(sin 56cos56)2a =-,cos50cos128cos 40cos38b =+,cos80c =,则a b c ,,的大小关系是( )A. a b c >>B. b a c >>C. c a b >>D. a c b >>【答案】B 【解析】2(sin 56cos56)sin(5645)sin112a =-=-= ,cos(9040)cos(9038)cos 40cos38sin 40sin 38cos 40cos38cos 78sin12b =-++=-+== ,cos80sin10c == ,sin12sin11sin10,b a c >>∴>> ,选B.7.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =,1233OC OA OB =+,若M 是线段AB 的中点,则OC OM ⋅的值为( ). A. 3 B. 23C. 2D. 3【答案】D 【解析】 【分析】判断出OAB ∆是等边三角形,以,OA OB 为基底表示出OM ,由此求得OC OM⋅的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =,所以OAB ∆是等边三角形.由于M 是线段AB的中点,所以1122OM OA OB=+.所以OC OM⋅12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭22111623OA OA OB OB =+⋅⋅+21422cos603323=+⨯⨯⨯+=. 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.8.定义在R 上的可导函数()f x ,其导函数记为()f x ',满足()2(2)2f x x f x +=-+,且当1x ≤时,恒有()2f x x '+>.若3()(1)32f m f m m --≥-,则实数m 的取值范围是( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭B. (],1-∞C. [)1,+∞D. 1,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】 【分析】由()2f x x '+>,构造函数21()()22g x f x x x =+-,易得当1x ≤,()g x 为增函数,且由题设可得()(2)g x g x =-,所以函数()g x 的图象关于直线1x =对称,结合()g x 与()f x 的关系,函数的对称性与单调性性质,即可求解. 【详解】令21()()22g x f x x x =+-, 则()()2g x f x x ''=+-.∵当1x ≤时,恒有()2f x x '+>,即()0g x '>, ∴当1x ≤时,函数()g x 为增函数. 而21(2)(2)2(2)(2)2g x f x x x -=-+---, 21(2)(2)22g x f x x ∴-=--+——①(2)()22f x f x x -=+-——②把②代入①得:2(2)1()22f x xg x x +--= ∴()(2)g x g x =-.∴函数()g x 的图象关于直线1x =对称,∴函数()g x 在(],1-∞上为增函数,在[)1,+∞为减函数. 由3()(1)32f m f m m --≥-, 得2211()2(1)2(1)(1)22f m m m f m m m +-≥-+---, 即()(1)g m g m ≥-,∴|1||11|m m -≤--,解得12m ≥. ∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A【点睛】本题考查构造函数以及函数的导数、函数的对称性、单调性的综合运用,考查了理解辨析能力与运算求解能力,属于难题.9.已知函数()cos 33a x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,得到曲线()y g x =,则不等式()1g x ≤的解集是( )A. ()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ()3,124k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. ()37,84k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D. ()52,262k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】A 【解析】 【分析】把()f x 化为sin ,cos x x 的式子,然后由偶函数定义可求得a ,由图象平移变换得()g x ,再解不等式()1g x ≤即可.【详解】因为()11cos sin 22a x x x x f x ⎛⎫⎫=++ ⎪⎪ ⎪⎪⎝⎭⎭13cos sin 2222a x a x ⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭为偶函数,所以()()f x f x -=,0=,解得1a =-,所以()2cos f x x =-. 将曲线()2y f x =向左平移12π个单位长度后,得到曲线2cos 2()2cos 2126y x x ππ⎛⎫=-+=-+ ⎪⎝⎭, 则()2cos 26g x x π⎛⎫=-+⎪⎝⎭.由()1g x ≤,得2cos 216x π⎛⎫-+≤ ⎪⎝⎭,得1cos 262x π⎛⎫+≥- ⎪⎝⎭,则()22222363k x k k Z πππππ-≤+≤+∈,得()5124x k k k Z ππππ≤≤+∈-. 不等式()1g x ≤的解集是()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 故选:A.【点睛】本题考查三角函数的图象及其性质,考查两角和与差的正弦、余弦公式,考查图象变换,考查推理论证能力与运算求解能力. 10.已知过点(0,2)-与曲线323()62a f x x x x =-+-(0)x >相切的直线有且仅有两条,则实数a 的取值范围是( )A. {}2B. (2,)+∞C.)+∞D.【答案】C 【解析】 【分析】先设出切点坐标323,62a P t t t t ⎛⎫-+- ⎪⎝⎭(0)t >,再求出()f x 的导数,由导数的几何意义知,()f t '是切线的斜率,写出切线方程,因切线过点(0,2)-,将点(0,2)-代入切线方程整理后可得324340t at -+=,由题意知关于t 的方程有324340t at -+=两个不等的正实数根,设32()434h t t at =-+(0)t >,结合函数求零点的知识,即可求解.【详解】∵323()62a f x x x x =-+-, ∴2()336f x x ax '=-+-.设切点323,62a P t t t t ⎛⎫-+- ⎪⎝⎭(0)t >,则有2()336f t t at '=-+-,所以过点P 的切线方程为()32236336()2a y t t t t at x t ⎛⎫--+-=-+-- ⎪⎝⎭,又点(0,2)-在切线上,所以()322326336()2a t t t t at t ⎛⎫---+-=-+-- ⎪⎝⎭, 整理得324340t at -+=,由题意得方程324340t at -+=有两个不等的正实数根.设32()434h t t at =-+(0)t >,则2()1266(2)h t t at t t a '=-=-,要使32()434h t t at =-+(0)t >的图象与t 轴的正半轴有两个不同的交点,则需0a >. 所以函数()h t 在0,2a ⎛⎫⎪⎝⎭上单调递减, 在,2a ⎛⎫+∞⎪⎝⎭上单调递增, 所以3min()4024a a h t h ⎛⎫==-+< ⎪⎝⎭,解得a >.即实数a的取值范围是)+∞.答案:)+∞【点睛】本题考查导数几何意义的运用,考查过某点的曲线的切线方程及已知函数零点个数,求参数范围的问题,考查理解辨析能力及运算求解能力,属于中档题.11.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.12.设双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,右焦点为(c,0)F ,弦PQ 过F 且垂直于x轴,过点P 、点Q 分别作为直线AQ 、AP 的垂直,两垂线交于点B ,若B 到直线PQ 的距离小于2()a c +,则该双曲线离心率的取值范围是( ) A. 3)B. 3)C. (3,2)D.(3,)+∞【答案】B 【解析】【详解】由题意,B 在x 轴上,22,,,b bP c Q c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∴2AQ b a k a c=-, ∴22BPa ack b-=-, 直线BQ 的方程为()222b a acy x c a b--=--, 令y =0,可得()42b xc a a c =+-, ∵B 到直线PQ 的距离小于2(a +c ),∴()()422b a c a a c -<+-,∴b <,∴c <,∴e < ∵e >1,∴1e <<故选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在大题卡相应位置上. 13.已知随机变量X 服从正态分布()24,N σ,()60.78P X <=,则()2P X ≤=__________.【答案】0.22. 【解析】 【分析】正态曲线关于x =μ对称,根据对称性以及概率和为1求解即可. 【详解】()()2160.22P X P X ≤=-<=【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题. 14.已知()f x 是定义在R 上的偶函数,且在区间( , 0]-∞上单调递增,若实数a 满足3log (2)(a f f >,则a 的取值范围是___.【答案】( 【解析】 【分析】根据函数的奇偶性以及在区间(],0-∞上的单调性确定出()0,∞+上的单调性,再根据函数值之间的关系,将其转化为自变量之间的关系,求解出a 的范围即可.【详解】因为()f x 是R 上的偶函数且在(],0-∞上递增,所以()f x 在()0,∞+上递减, 又因为()(3log 2af f >,所以3log 20a a ⎧<⎪⎨>⎪⎩, 所以31log 2220a a ⎧⎪<⎨⎪>⎩,所以31log 20a a ⎧<⎪⎨⎪>⎩,所以(a ∈.故答案为:(.【点睛】本题考查根据函数的单调性和奇偶性求参数范围,难度一般.已知函数值的大小关系,可通过函数的单调性将其转变为自变量之间的关系.15.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.=,则222a cb ac +-的取值范围为______.【答案】()()0,2【解析】 【分析】把已知式用正弦定理化边为角,由两角和的正弦公式和诱导公式化简,可求得cos C ,即C 角,从而得B 角的范围,注意2B π≠,由余弦定理可得结论.=,所以()()2cos cos cos cos 0a C B B C =⋅≠,所以()2sin cos cos A B C C B =,即()2sin cos A C C B A =+=,又sin 0A >,所以cos 2C =, 则6C π=,因为cos 0B ≠,所以50,,226B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,而2222cos a c b B ac +-=,故()()2220,2a c b ac+-∈.故答案为:()()0,2.【点睛】本题考查正弦与余弦定理的应用,考查运算求解能力.本题是一个易错题,学生容易忽略cos B 不能等于0.16.如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积.若1(),2,2f M x y ⎛⎫= ⎪⎝⎭,且18a x y +≥恒成立,则正实数a 的最小值是_____【答案】642-【解析】 【分析】由垂直关系可知PC ⊥平面PAB ,进而求得三棱锥P ABC -体积,通过体积桥可得421x y +=;利用()1142a a x y x y x y ⎛⎫+=++ ⎪⎝⎭可构造出符合基本不等式的形式,得到14242aa a x y+≥++,由恒成立关系可得关于a 的不等式,解不等式求得最小值. 【详解】,,PA PB PC 两两垂直 PC ∴⊥平面PAB1113211332P ABC C PAB PAB V V S PC --∆∴==⋅=⨯⨯⨯⨯=,即1212x y ++= 421x y ∴+=()11242442424224242a a y ax y axx y a a a a x y x y x y x y⎛⎫∴+=++=+++≥++⋅=++ ⎪⎝⎭(当且仅当24y axx y=,即2y ax =时取等号) 又18ax y+≥恒成立,42428a a ∴++≥,解得:642a ≥- ∴正实数a 的最小值为642-【点睛】本题考查与立体几何有关的新定义运算中的最值问题的求解;关键是能够对“1”进行灵活应用,配凑出符合基本不等式的形式,利用基本不等式求得式子的最值,进而根据恒成立的关系得到不等式,从而求得结果.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤. (一)必考题:共60分.17.已知四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PB AD ⊥,PAD △是边长为2的正三角形底面ABCD 是菱形,点M 为PC 的中点(1)求证:PA 平面MDB ; (2)求二面角A PB C --的余弦值. 【答案】(1)见解析;(2)10【解析】 【分析】(1) 连结AC ,交BD 于O ,利用中位线定理证明MO PA ∥,结合线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用坐标求出平面PAB 和平面PBC 的法向量,即可求解. 【详解】(1)连结AC ,交BD 于O ,连接MO ,由于底面ABCD 为菱形,∴O 为AC 中点 又M 为PC 的中点,∴MO PA ∥,又MO ⊂面MDB ,PA ⊄面MDBPA ∴平面MDB(2)过P 作PE AD ⊥,垂足为E ,由于PAD ∆为正三角形,E 为AD 的中点.由于侧面PAD ⊥面ABCD ,由面面垂直的性质得PE ⊥面ABCD ,由AD PE AD PB ⊥⊥,,得AD PEB ⊥∴60AD EB EAB ︒⊥∴∠= 以E 为坐标原点,EP 为z 轴,EA 为x 轴,EB 为y 轴,建立空间直角坐标系.则(1,0,0),3,0),(3,0),3)A B C P -(3,0)AB =-,(1,0,3)PA =设平面PAB 的法向量为1111(,,)n x y z =,平面PBC 的法向量为2222(,,)n x y z = 由10n AB ⋅=及10n PA ⋅=得111100x x ⎧-+=⎪⎨=⎪⎩,取1x =PAB的一个法向量为)同理可求得平面PBC 的一个法向量(0,1,1),由法向量的方向得知所求二面角的余弦值为1212n n n n ⋅-=-=. 【点睛】本题主要考查了线面平行以及二面角,(2)问中关键是建立空间直角坐标系来求解二面角的余弦值,属于中档题.18.已知数列{}n a 满足112a =,121nn n a a a +=+()*N n ∈. (1)求数列{}n a 的通项公式; (2)证明:222212312n a a a a ++++<.【答案】(1)12n a n=;(2)详见解析 【解析】 【分析】 (1)由121n n n a a a +=+,两边取倒数可得1112n n a a +-=,可知数列1na 为等差数列,从而可求出1na 的表达式,进而可得到n a 的表达式;(2)利用放缩法,可得2211111441n a n n n ⎛⎫=⋅<- ⎪-⎝⎭(2n ≥,*N n ∈),进而可证明结论. 【详解】(1)由112a =,121nn na a a +=+,可知0n a >,对121n n n a a a +=+的等号两端同时取倒数得1112n n a a +=+,则1112n n a a +-=,所以数列1na 为等差数列,且首项为2,公差为2,故12n n a =, 所以12n a n=. (2)依题可知222111111111244141n a n nn n n n ⎛⎫⎛⎫==⋅<⋅⋅=- ⎪ ⎪--⎝⎭⎝⎭(2n ≥,*N n ∈), 所以222212311111111442231n a a a a n n ⎛⎫++++<+-+-++- ⎪-⎝⎭1111114424n n⎛⎫=+-=- ⎪⎝⎭, 故222212312n a a a a ++++<.【点睛】本题考查数列通项公式的求法,考查利用放缩法证明数列不等式,考查学生的计算能力与推理能力,属于中档题.19.设椭圆22221x x ab +=(a >b >0)的左焦点为F ,上顶点为B . 点A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQ AOQ PQ=∠(O 为原点) ,求k 的值. 【答案】(Ⅰ)22194x y +=;(Ⅱ)12或1128.【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a =3,b =2.则椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由题意可得5y 1=9y 2.由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,可得1y =.由方程组20y kx x y =⎧⎨+-=⎩,,可得221k y k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128.详解:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由4AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0, 由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+. 由5y 1=9y 2,可得5(k +1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.20.第七届世界军人运动会于2019年10月18日至2019年10月27日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会之后我国举办的规模最大的国际体育盛会.来自109个国家的9300余名军体健儿在江城武汉同场竞技、增进友谊.运动会共设置射击、游泳、田径、篮球等27个大项、329个小项.经过激烈角逐,奖牌榜的前6名如下:某大学德语系同学利用分层抽样的方式从德国获奖选手中抽取了9名获奖代表.(1)请问这9名获奖代表中获金牌、银牌、铜牌的人数分别是多少人?(2)从这9人中随机抽取3人,记这3人中银牌选手的人数为X,求X的分布列和期望;(3)从这9人中随机抽取3人,求已知这3人中有获金牌运动员的前提下,这3人中恰好有1人为获铜牌运动员的概率.【答案】(1)金牌人数为2人、银牌人数为3人、铜牌人数为4人;(2)分布列见解析,()1E X ;(3)47.【解析】【分析】(1)根据分层抽样的抽取规则,结台各奖牌的获奖人数,即可计算出这9名获奖代表中获金牌、银牌、铜牌的人数;(2)随机变量X的可能取值分别为0,1,2,3,分别计算出对应概率,列出分布列,求期望即可;(3)依题意,可分为2金1铜和1金1银1铜两种情况讨论,再结合条件概率公式,即可求解.【详解】(1)由题意可知,德国获奖运动员中, 金牌、银牌、铜牌的人数比为2:3:4,所以这9名获奖运动员中金牌人数为2人、银牌人数为3人、铜牌人数为4人; (2)X 的可能取值为0,1,2,3,则:3639C 205(0)C 8421P X ====,123639C C 4515(1)C 8428P X ====,213639C C 183(2)C 8414P X ====,33391(3)84C P X C ===,X 的分布列为:1531()1231281484E X ∴=⨯+⨯+⨯=. (3)记事件A 为“3人中有获金牌运动员”, 事件B 为“这3人中恰好有1人为获铜牌运动员”,37397()112C P A C =-=,()2111223439C C C 1()C 3C P AB +==,()4(|)()7P AB P B A P A ==. 【点睛】本题考查了分层抽样,考查了离散型随机变量的概率分布列和数学期望及条件概率,主要考查分析解决问题和解决问题的能力及运算求解能力,属于中档题.21.已知a R ∈,函数()ln xa e f x a x x-=+.(1)讨论函数()f x 的单调性;(2)若1a =,且()()()2111x e F x x mx f x x ⎛⎫-=-+-- ⎪⎝⎭在()0,2m ∈时有极大值点()001x x ≠,求证:()01F x >.【答案】(1)见解析;(2)见解析【解析】【分析】(1)对()f x 求导,分1a ≤,1a e <<,a e >,a e =进行讨论,可得函数()f x 的单调性;(2)将1a =代入()F x ,对()F x 求导,可得()2(1)ln F x x m x '=--,再对()2(1)ln F x x m x '=--求导,可得函数()F x 有唯一极大值点101,x x x =,且0000002(1)()2(1)ln 0(01)ln 2x m F x x m x m x x -'=--=⇒=<<<. 可得222000000000222()1(2ln )ln ln x x x F x x x x x x --=-+=--,设2()2ln h x x x =--,对其求导后可得0()1F x >.【详解】解:(1)222()(1)(1)(1)()()x x x x a e x a e a x e x x a e f x x x x x -⋅---+---'=+==, 又0x ,1x e ∴>,1a ∴≤时,0x a e -<,所以可解得:函数()f x 在(0,1)单调递增,在(1,)+∞单调递减;经计算可得,1a e <<时,函数()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增,(1,)+∞单调递减;a e >时,函数()f x 在(0,1)单调递减,(1,ln )a 单调递增,(ln ,)a +∞单调递减; a e =时,函数()f x 在(0,)+∞单调递减.综上:1a ≤时,函数()f x 在(0,1)单调递增,(1,)+∞单调递减;1a e <<时,函数()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增,(1,)+∞单调递减; a e =时,函数()f x 在(0,)+∞单调递减;a e >时,函数()f x 在(0,1)单调递减,(1,ln )a 单调递增,(ln ,)a +∞单调递减.(2)若1a =,则221()(1)(1())(1)(1ln )x e F x x mx f x x mx x x -=-+--=-+-, ()2(1)ln F x x m x '∴=--,设()2(1)ln ,(0)H x x m x x =-->,则()2m H x x '=-, 当(0,)2m x ∈时,()0()H x H x '<⇒单调递减,即()F x '单调递减, 当(,)2m x ∈+∞时,()0()H x H x '>⇒单调递增,即()F x '单调递增. 又因为02,01,2m m <<∴<<由(1)0F '=可知:()02m F '<, 而2222()2(1)ln 20m m m m F e em e e ----'=--=⋅>,且201m e e -<=, 21(,)2m m x e -∴∃∈,使得1()0F x '=,且1(0,)x x ∈时,()0,()F x F x '>单调递增, 1(,1)x x ∈时,()0,()F x F x '<单调递减,(1,)x ∈+∞时,()0,()F x F x '>单调递增, 所以函数()F x 有唯一极大值点101,x x x ∴=, 且0000002(1)()2(1)ln 0(01)ln 2x m F x x m x m x x -'=--=⇒=<<<. 220000000002(1)()(1)(1ln )(1)(1ln )ln x x F x x mx x x x x -∴=-+⋅-=-+⋅- 220000221ln x x x x -=-+. 所以222000000000222()1(2ln )ln ln x x x F x x x x x x --=-+=--, 设2()2ln h x x x =--(01x <<),则22212()0x h x x x x -'=-=>, ()h x ∴在(0,1)单调递增,()(1)0h x h ∴<=,0()0h x ∴<,又因为0ln 0x <, 0()10F x ∴-> 0()1F x ∴>.【点睛】本题主要考查导数、函数的单调性等知识,考查方程与函数、分类与整合的数学思想,考查学生的推理论证能力与运算求解能力.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.选修4—4:坐标系与参数方程22.[选修4-4:坐标系与参数方程]以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为12sin cos ρθθρ⎛⎫=++ ⎪⎝⎭. (1)写出曲线C 的参数方程;(2)在曲线C 上任取一点P ,过点P 作x 轴,y 轴的垂直,垂足分别为A ,B ,求矩形OAPB 的面积的最大值.【答案】(1)12cos 12sin x y θθ=+⎧⎨=+⎩.(2)max 3S =+.【解析】分析:(1)先根据222,cos ,sin x y x y ρρθρθ=+==将曲线C 的极坐标方程化为直角坐标方程,再写出圆的参数方程,(2)根据题意得()()12cos 12sin S θθ=++,再根据同角三角函数关系得213222S t ⎛⎫=+- ⎪⎝⎭,sin 4t cos πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,最后根据二次函数性质求最值.详解:(1)由12sin cos ρθθρ⎛⎫=++ ⎪⎝⎭得()22sin cos 1ρρθρθ=++,所以22222x y x y +=++,即()()22114x y -+-=,故曲线C 参数方程1212x cos y sin θθ=+⎧⎨=+⎩(θ为参数); (2)由(1)可设点P 的坐标为()12cos ,12sin θθ++,[)0,2θπ∈,则矩形OAPB 的面积为()()12cos 12sin S θθ=++ 12sin 2cos 4sin cos θθθθ=+++.令sin 4t cos πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,212sin t cos θθ=+, 22131222222S t t t ⎛⎫=++-=+- ⎪⎝⎭,故当t =时,max 3S =+点睛:利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.椭圆参数方程:cos (sin x a y b θθθ=⎧⎨=⎩为参数), 圆参数方程:cos (sin x r y r θθθ=⎧⎨=⎩为参数),直线参数方程:00cos (sin x x t t y y t θθ=+⎧⎨=+⎩为参数) 选修4—5:不等式选讲23.已知函数()|1|||f x x x a =+-+.(1)若1a =-,求不等式()1f x -的解集;(2)若“x R ∀∈,()|21|f x a <+”为假命题,求a 的取值范围.【答案】(1)1,2⎡⎫-+∞⎪⎢⎣⎭(2)[]2,0-【解析】【分析】 (1))当1a =-时,将函数()f x 写成分段函数,即可求得不等式的解集. (2)根据原命题是假命题,这命题的否定为真命题,即“x R ∃∈,()21f x a +”为真命题,只需满足()max |21|f x a +即可.【详解】解:(1)当1a =-时,()2,1,112,11,2, 1.x f x x x x x x -≤-⎧⎪=+--=-<<⎨⎪≥⎩ 由()1f x -,得12x.故不等式()1f x -的解集为1,2⎡⎫-+∞⎪⎢⎣⎭.(2)因为“x R ∀∈,()21f x a <+”为假命题,所以“x R ∃∈,()21f x a +”为真命题,所以()max |21|f x a +.因为()|1||||(1)()||1|f x x x a x x a a =+-++-+=-,所以()max |1|f x a =-,则|1||21|a a -+,所以()()22121a a -+, 即220a a +≤,解得20a -,即a 的取值范围为[]2,0-.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

……外…………○……学校:___……内…………○……绝密★启用前 黑龙江省大庆实验中学2020届高三综合训练(二)数学(理科)试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知{}1A x x =<,{}21x B x =<,则A B =( ) A .()1,0- B .()0,1 C .()1,-+∞ D .(),1-∞ 2.已知i 为虚数单位,若复数1ai z i -=+(a R ∈)的虚部为1-,则a =( ) A .2- B .1 C .2 D .1- 3.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为 1.160.5ˆ37y x =-,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米……○…………订…………○…………线…………※※装※※订※※线※※内※※答※※题※※ ……○…………订…………○…………线…………4.函数()32ln x x f x x -=的图象大致为( ) A . B . C . D .5.某几何体的三视图如图所示,则该几何体的体积为( )A .16163π- B .32163π-C .1683π- D .3283π-6.《九章算术》第三章“衰分”介绍比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.如:已知A ,B ,C 三人分配奖金的衰分比为20%,若A 分得奖金1000元,则B ,C 所分得奖金分别为800元和640元.某科研所四位技术人员甲、乙、丙、丁攻关成功,共获得单位奖励68780元,若甲、乙、丙、丁按照一定的“衰分比”分配奖金,且甲与丙共获得奖金36200元,则“衰分比”与丁所获得的奖金分别为( )A .20%,14580元B .10%,14580元C .20%,10800元D .10%,10800元7.若0m >,0n >,且直线()()1120m x n y +++-=与圆222210x y x y +--+=相切,则m n +的取值范围是( )…………○…………装…………○……学校:___________姓名:___________班级:_…………○…………装…………○……8.我国古代数学家秦九韶左《数书九章》中记述了了“一斜求积术”,用现代式子表示即为:在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =()cos 3cos 0c B b a C ++=,且222 4c a b --=,则ABC 的面积为( ) A B .C D .9.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为n (x )≈x ln x 的结论(素数即质数,lg e ≈0.43429).根据欧拉得出的结论,如下流程图中若输入n 的值为100,则输出k 的值应属于区间( ) A .(15,20] B .(20,25] C .(25,30] D .(30,35] 10.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为()1,0F c -、()2,0F c ,且双曲线C 与圆222x y c +=在第一象限相交于点A ,且12AF AF =,则双曲线CA 1B 1CD 11.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,8f π⎛⎫= ⎪⎝⎭02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是( ) A .12ω= B .82f π⎛⎫-= ⎪⎝⎭ C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递减 D .函数()f x 的图像关于点5,04π⎛⎫ ⎪⎝⎭对称12.定义在R 上的偶函数()f x 满足()()53f x f x -=+,且()224,012ln ,14x x x f x x x x ⎧-+≤<=⎨-≤≤⎩,若关于x 的不等式()()()210f x a f x a +++<在[]20,20-上有且仅有15个整数解,则实数a 的取值范围是( )A .(]1,ln 22--B .[)2ln33,2ln 22--C .(]2ln33,2ln 22--D .[)22ln 2,32ln3--第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.若65(x +的展开式的常数项是__________.14.已知向量(1,2)a =,(,1)b k =,且2a b +与向量a 的夹角为90°,则向量a 在向量b 方向上的投影为________.15.已知P ,E ,F 都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG ===,120EGF ︒∠=,在球C 内任取一点,则该点落在三棱锥P ﹣EFG 内的概率为_____.三、双空题…………装…………○校:___________姓名:___________班…………装…………○16.已知数列{}n a 的各项都是正数,()2*11n n n a a a n N ++-=∈.若数列{}n a 各项单调递增,则首项1a 的取值范围是________;当123a =时,记1(1)1n n n b a --=-,若1220191k b b b k <+++<+,则整数k =________. 四、解答题 17.若ABC 的内角A ,B ,C 的对边为a ,b ,c ,且224()si sin n sin sin sin 3A B C B C -=-. (1)求cos A ; (2)若ABC A 的角平分线AD 长的最大值. 18.如图,四棱锥S ﹣ABCD 中,SD =CD =SC =2AB =2BC ,平面ABCD ⊥底面SDC ,AB ∥CD ,∠ABC =90°,E 是SD 中点. (1)证明:直线AE //平面SBC ; (2)点F 为线段AS 的中点,求二面角F ﹣CD ﹣S 的大小. 19.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.…线…………○………线…………○……(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布()2,Nμσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T Nμσ~,则()0.6827P Tμσμσ-<≤+=,()220.9545P Tμσμσ-<≤+=,()330.9973P Tμσμσ-<≤+=.20.已知椭圆:C22221(0)x ya ba b+=>>,焦距为2c,直线bx y-+=过椭圆的C左焦点.(1)求椭圆C的标准方程;(2)若直线20bx y c-+=与y轴交于点,,P A B是椭圆C上的两个动点,APB∠的平分线在y轴上,PA PB≠.试判断直线AB是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数()lnf x x ax b=--.(1)求函数()f x的极值;(2)若不等式()f x ex≤-恒成立,求b的最小值(其中e为自然对数的底数).22.在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2212,1sin ρθ=+射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点. (1)求曲线C 的直角坐标方程及直线l 的参数方程; (2)当直线l 倾斜角α为何值时, |BP |·|BQ |取最小值, 并求出|BP |·|BQ |最小值. 23.选修4-5:不等式选讲已知函数() 1.f x x =+ (Ⅰ)解不等式()32f x x >-+; (Ⅱ)已知0,0a b >>,且2a b +=()f x x -≤参考答案1.D【解析】【分析】分别解出集合,A B 、然后求并集.【详解】 解:{}{}111A x x x x =<=-<<,{}{}210x B x x x =<=< A B =(),1-∞故选:D【点睛】考查集合的并集运算,基础题.2.C【解析】分析:先化简复数z,再根据复数z 的虚部为-1求a 的值. 详解:由题得1ai z i-=+=(1),1, 2.1(1)(1)22ai ai i a ai a a i i i ----==∴-=-∴=++- 故答案为C点睛:(1)本题主要考查复数的除法和复数的实部与虚部,意在考查学生对这些基础知识的掌握能力.(2)复数(,)z a bi a b R =+∈的实部是a,虚部是b ,不是bi.3.D【解析】【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确.【详解】A ,身高极差大约为25,臂展极差大于等于30,故正确;B ,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C ,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D ,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确.故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.4.A【解析】【分析】先求出函数的定义域,再判断奇偶性,然后由函数图像的变化趋势可得答案【详解】 解:函数的定义域为{}0x x ≠, 因为3322()ln ln ()()()x xx x f x f x x x -----===-,所以()f x 为偶函数,所以排除C,D,又因为当0x >时,322ln ln ()x x x f x x x x-==-, 当x →+∞时,()f x →+∞,所以排除B故选:A【点睛】此题考查了由函数关系式识别函数图像,利用了函数的奇偶性和函数值的变化趋势进行了辨别,属于基础题.5.D【解析】【分析】由三视图可知:该几何体为一个半圆柱挖取一个倒立的四棱锥. 【详解】解:由三视图可知:该几何体为一个半圆柱挖取一个倒立的四棱锥. ∴该几何体的体积2211244223V π=⨯⨯⨯-⨯⨯ 3283π=-. 故选D . 【点睛】本题考查了三棱台的三视图的有关知识、圆柱与四棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题. 6.B 【解析】 【分析】设“衰分比”为q ,甲获得的奖金为1a ,联立方程解得10.1,20000q a ==,得到答案. 【详解】设“衰分比”为q ,甲获得的奖金为1a ,则()()()23111111168780a a q a q a q +-+-+-=.()211136200a a q +-=,解得10.1,20000q a ==,故()31114580a q -=.故选:B . 【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力. 7.B 【解析】 【分析】首先由圆的标准方程求出圆心坐标和半径r ,利用直线与圆相切时,圆心到直线的距离等于圆的半径以及点到直线的距离公式列出关系式,整理后利用基本不等式变形,再设m n x +=,得到关于x 的不等式,解不等式即可. 【详解】由圆222210x y x y +--+=,得()()22111x y -+-=,得到圆心坐标为()1,1,半径1r =,∵直线()()1120m x n y +++-=与圆相切, ∴圆心到直线的距离1d ==,整理得:212m n m n mn +⎛⎫++=≤ ⎪⎝⎭,设()0m n x x +=>,则有214x x +≤,即2440x x --≥,解得:2x ≥+,则m n +的取值范围为)2⎡++∞⎣. 故选:B 【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,基本不等式,以及一元二次不等式的解法,是中档题. 8.B 【解析】 【分析】由已知结合正弦定理及和差角公式进行化简,求得cos C ,再结合已知及余弦定理,求得ab 的值,代入已知公式,即可求解. 【详解】由题意,因为()cos 3cos 0c B b a C ++=,所以()sin cos sin 3sin cos 0C B B A C ++=, 即sin()3sin cos 0B C A C ++=,又由sin()sin B C A +=,所以sin 3sin cos 0A A C +=,由因为(0,)A π∈,所以sin 0A >,所以13cos 0C +=,即1cos 3=-C , 因为2224c a b --=,由余弦定理可得22241cos 223a b c C ab ab +--===-,解得6ab =,则ABC 的面积为S ===故选:B. 【点睛】本题主要考查了正弦定理、余弦定理和两角和与差的正弦函数公式的化简求值的综合应用,意在考查推理与运算能力,属于中档试题. 9.B 【解析】 【分析】由流程图可知其作用为统计100以内素数的个数,将x =100代入n (x )≈x ln x可求得近似值,从而得到结果. 【详解】该流程图是统计100以内素数的个数由题可知小于数字x 的素数个数大约可以表示为n (x )≈x ln x则100以内的素数个数为n (100)≈100ln 100=1002ln 10=50lg10lge=50lge ≈22本题正确选项:B 【点睛】本题考查判断新定义运算的问题,关键是能够明确流程图的具体作用. 10.A 【解析】 【分析】运用双曲线的定义和条件,求得1AF ,2AF ,由直径所对的圆周角为直角,运用勾股定理和离心率公式,计算可得所求值. 【详解】双曲线C 与圆222x y c +=在第一象限相交于点A , 可得122AF AF a -=,由12AF AF =,可得(13AF a =+,(21AF a =,由12AF AF ⊥,可得2221212||||AF AF F F +=,即为((2221244a a c +++=,即有2221644c e a +===+即有1e =. 故选A . 【点睛】本题考查双曲线的离心率的求法,注意运用直径所对的圆周角为直角,以及双曲线的定义,考查化简运算能力,属于中档题. 11.B 【解析】 【分析】根据函数()f x ,在()0,π上是单调函数,确定 01ω<≤,然后一一验证, A.若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,由02f π⎛⎫= ⎪⎝⎭,得34πϕ=,但13sin 84822πππ⎛⎫⨯+≠ ⎛⎫= ⎪⎭⎪⎝⎭⎝f .B.由8f π⎛⎫= ⎪⎝⎭02f π⎛⎫= ⎪⎝⎭,确定()222sin 33π⎛⎫=+⎪⎝⎭f x x ,再求解8f π⎛⎫- ⎪⎝⎭验证.C.利用整体法根据正弦函数的单调性判断.D.计算54f π⎛⎫⎪⎝⎭是否为0. 【详解】因为函数()f x ,在()0,π上是单调函数, 所以2T ≥π ,即22ππω≥,所以 01ω<≤ ,若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,又因为02f π⎛⎫= ⎪⎝⎭,即1sin 0222ππϕ⎛⎫⎛⎫⨯+= ⎪⎝=⎪⎝⎭⎭f ,解得34πϕ=, 而13sin 84822πππ⎛⎫⨯+≠ ⎛⎫= ⎪⎭⎪⎝⎭⎝f ,故A 错误. 由2sin 022πωπϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭f ,不妨令2ωπϕπ+= ,得2πωϕπ=-由sin 882ππωϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭f ,得 2+84ππωϕπ⨯+=k 或32+84ππωϕπ⨯+=k 当2+84ππωϕπ⨯+=k 时,2=23k πω+,不合题意. 当32+84ππωϕπ⨯+=k 时,22=33k πω+,此时()222sin 33π⎛⎫=+⎪⎝⎭f x x所以222272sin 2sin 2sin 8383383122ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+=⨯-+== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭f ,故B 正确.因为22,,0,2333ππππ⎡⎤⎡⎤∈--+∈⎢⎥⎢⎥⎣⎦⎣⎦x x ,函数()f x ,在0,3π⎛⎫ ⎪⎝⎭上是单调递增,故C 错误. 525232sin 2sin 043432f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:B 【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题. 12.B 【解析】 【分析】由()()53f x f x -=+得函数图象关于直线4x =对称,又函数为偶函数,得函数是周期函数,且周期为8,区间[20,20]-含有5个周期,因此题中不等式在一个周期内有3个整数解,通过研究函数()f x 在[0,4]的性质,结合图象可得结论. 【详解】∵()()53f x f x -=+,∴函数图象关于直线4x =对称,又函数为偶函数,∴函数是周期函数,且周期为8,区间[20,20]-含有5个周期,关于x 的不等式()()()210f x a f x a +++<在[4,4]-上有3个整数解. [0,1)x ∈时,2()24f x x x =-+是增函数, [1,4]x ∈时,()2ln f x x x =-,2()1f x x'=-,12x ≤<时,()0f x '<,()f x 递减,24x <≤时,()0f x '>,()f x 递增,2x =时,()f x 取得极小值(2)22ln 2f =-,(1)1f =,(3)32ln 31f =-<,利用偶函数性质,作出()f x 在[4,4]-上的图象,如图. 由()()()210fx a f x a +++<得[()1][()]0f x f x a ++<,若0a -≤,则原不等式无解,故0a ->,1()f x a -<<-,要使得不等式1()f x a -<<-在[4,4]-上有3个整数解, 则22ln 232ln3a -<-≤-,即2ln332ln 22a -≤<-. 故选:B .【点睛】本题考查不等式的整数解问题,考查了函数的奇偶性、对称性、周期性,用导数研究函数的单调性、极值等,考查的知识点较多,对学生的分析问题解决问题的能力、转化与化归能力要求较高,属于难题. 13.5 【解析】二项式56x⎛ ⎝展开式的通项公式:1530652155r r r r rr T C x C x --+==()令153002r -=,解得4r =. ∴常数项455C == 即答案为514【解析】 【分析】由题可知()20a b a +⋅=,依据数量积的坐标公式可求出k ,即求出向量b ,从而得到向量a 在向量b 方向上的投影为cos ,a b a a b b⋅⋅<>=.【详解】因为向量(1,2)a =,(,1)b k =, 则2(2,5)a b k +=+,又2a b +与向量a 的夹角为90°, 所以()20a b a +⋅=,即2100k ++=, 解得12k =-,即(12,1)b =-,因此向量a 在向量b 方向上的投影为cos ,145a b a a b b⋅⋅<>===,故答案为. 【点睛】本题综合考查了数量积的坐标运算及投影的求法,难度不大.15.32π【解析】 【分析】由题意画出图形,求出三棱锥外接球的半径,再分别求出三棱锥及其外接球的体积,由测度比为体积比得答案. 【详解】 如图,在EGF ∆中,由已知可得2EG GF ==,120EGF ︒∠=,可得EF =EFG ∆的外接圆的半径为r 2r =,可得2r,再设EGF ∆的外心为1G ,过1G 作底面EGF 的垂线1G O ,且使1122G O PE ==,连接OE ,则OE =OE 为三棱锥P EFG -的外接球的半径,则3433V π=⨯=球;11221204323P EGF V sin ︒-=⨯⨯⨯⨯⨯=, 由测度比为体积比,可得在球C 内任取一点,则该点落在三棱锥P ﹣EFG 内的概率为3=.. 【点精】本题考查球内接多面体及其体积、考查几何概型等基础知识,考查运算求解能力,属于中档题.16.(0,2) 4- 【解析】 【分析】本题根据正数数列{}n a 是单调递增数列,可列出211120n n n n a a a a +++-=-<,通过求出1n a +的取值范围,得到2a 的取值范围,逆推出1a 的取值范围;第二空主要是采用裂项相消法求出122019b b b ++⋯+的表达式,然后进行不等式范围计算,即可得到结果.【详解】由题意,正数数列{}n a 是单调递增数列,且211n n n a a a ++-=,∴211120n n n n a a a a +++-=-<,解得1(0,2)n a +∈,2(0,2)a ∴∈.∴21221[,2)4a a a =-∈-.10a >,102a ∴<<.又由211n n n aa a ++-=,可得:2111111111n n n n n a a a a a ++++==---. ∴111111n n n a a a ++=+-.1(1)1n n n b a --=-,∴122019123201911111111b b b a a a a ++⋯+=-+-⋯+---- 112232017201820182019111111111()()()()1a a a a a a a a a =-+++-⋯-+++- 1122320172018201820191111111111a a a a a a a a a =--++-⋯--++- 1120191111a a a =-+- 2019912a =-+.123a =,且数列{}na 是递增数列, 20192(,2)3a ∴∈,即2019113(,)22a ∈, 201991432a ∴-<-+<-.∴整数4k =-.故答案为:(0,2);-4. 【点睛】本题考查了数列递推关系、裂项相消法的应用和数列的周期性,考查了推理能力与不等式的计算能力,属于较难的中档题.17.(1)13;(2)3【解析】 【分析】(1)由正弦定理将已知式化角为边,再由余弦定理求出cos A ; (2)由(1)的结论1cos 3A =及ABCsin A =和4bc =.再由二倍角公式求出cos23A =.将ABC 拆分成两个三角形ABD △和ACD ,利用面积相等,求出AD ,再利用基本不等式求出其最大值. 【详解】解:(1)由正弦定理sin sin sin A B Ca b c==, 及224()si sin n sin sin sin 3A B C B C -=-, 可得224()3b c a bc -=-,即22223b c a bc +-=, ∴由余弦定理得:2221cos 23b c a A bc +-==;(2)由1cos 3A =,得sin A ,cos2A ==,1sin 2S ABC bc A ==,则4bc =, 由ABCABDACDS SS=+得111sin sin sin 22222A A AB AC A AB AD AC AD ⋅⋅=⋅⋅+⋅⋅,2cos2cos 22A Abc bc A AD b c ∴=≤==+, 当且仅当2b c ==时,等号成立,即maxAD=.【点睛】本题考查了正弦定理、余弦定理的应用,二倍角公式,基本不等式的应用,属于中档题. 18.(1)详见解析;(2)30°.【解析】【分析】(1)取SC中点G,连接BG,EG,推导出四边形AEGB为平行四边形,从而AE∥BG,进而AE∥平面SBC;(2)取CD中点O,连接OS,OA ,推导出四边形ABCD为矩形,AO⊥CO,AO⊥CD,以O为原点,OS所在直线为x轴,OC所在直线为y轴,OA所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣CD﹣S的大小.【详解】(1)证:如图,取SC中点G,连接BG,EG,∵EG为△SDC的中位线,∴EG∥CD,且EG12CD =,∵AB∥CD,且AB12CD=,∴EG∥CD,且EG=AB,∴四边形AEGB为平行四边形,∴AE∥BG,∵BG⊂平面SBC,AE⊄平面SBC,∴AE∥平面SBC;(2)解:设AB=1,则BC=1,CD=2,取CD中点O,连接OS,OA ,∴CO12CD AB ==,∵AB∥CD,∠ABC=90°,∴四边形ABCO为矩形,∴AO⊥CO,AO⊥CD,平面ABCD ∩平面SDC =CD ,∴AO ⊥平面SDC ,AO ⊥SO , ∵△SDC 为正三角形,∴SO ⊥CD ,以O 为原点,OS 所在直线为x 轴,OC 所在直线为y 轴,OA 所在直线为z 轴,建立如图所示的空间直角坐标系,A (0,0,1),S0,0),C (0,1,0),D (0,﹣1,0),F0,12),FC =(,1,12-),FD =(,﹣1,12-), 设平面FCD 的一个法向量m =(a ,b ,c ),则3102231022FC m x y z FD m x y z ⎧⋅=-+-=⎪⎪⎨⎪⋅=---=⎪⎩,取x =1,得m =(1,0,,由题意取平面SDC 的一个法向量n OA ==(0,0,1), 设二面角F ﹣CD ﹣S 的大小为θ,则3cos 2m n m nθ-⋅===, 由图可知,θ为锐角,∴θ=30°, ∴二面角F ﹣CD ﹣S 的大小为30°. 【点睛】本题主要考查线面平行的证明,考查二面角的求法,考查运算求解能力,属于中档题. 19.(1)10点04分(2)分布列见解析,()85E X =(3)819辆【解析】 【分析】(1)利用频率分布直方图和平均数的计算公式,即可求得这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值;(2)结合频率分布直方图和分层抽样的方法求得随机变量X 的可能取值0,1,2,3,4,求出相应的概率,得到X 的分布列,利用期望的公式,求得其数学期望;(3)由(1)可得64,18μσ==,得到()2,T N μσ~,得到概率,即可求解在9:46~10:40这一时间段内通过的车辆数. 【详解】(1)由题意,这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为()300.005500.015700.020900.0102064⨯+⨯+⨯+⨯⨯=,即10点04分.(2)结合频率分布直方图和分层抽样的方法可知:抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在[)2060,这一区间内的车辆数,即()0.0050.01520104-⨯⨯=,所以X 的可能取值为0,1,2,3,1.所以()46410C 10C 14P X ===,()3161410C C 81C 21P X ===,()2264410C C 32C 7P X ===, ()1364410C C 43C 35P X ===,()0464410C C 14C 210P X ===,所以X 的分布列为所以()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=. (3)由(1)可得64μ=,()()()()2222230640.150640.370640.490640.2324σ=-⨯+-⨯+-⨯+-⨯=,所以18σ=.估计在9:46~10:40这一时间段内通过的车辆数,也就是46100T <≤通过的车辆数, 由()2,T N μσ~,()()()226418642180.818622P T P T P T μσμσμσμσ-<≤+-<≤+-<≤+⨯=+=,所以,估计在9:46~10:40这一时间段内通过的车辆数为10000.8186819⨯≈辆. 【点睛】本题主要考查了离散型随机变量的分布列和数学期望的求解,以及正态分布及频率分布直方图的应用,其中解答中认真审题,正确求解相应的概率,得到其分布列,利用公式准确运算时解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20.(1)22184x y +=;(2)过定点(0,1)【解析】 【分析】(1)因为直线0bx y -+=过椭圆的左焦点,故令0y =,得x c ==-,又因为离心率为2,从而求出2b =,又因为222a b c =+,求出a 的值,从而求出椭圆C 的标准方程; (2)先求出点P 的坐标,设直线AB 的方程为y kx m +=,联立方程组,利用根与系数的关系,设()11,A x y ,()22,B x y ,得到1228(1)4k m k k m -+=-,又因为APB ∠的平分线在y 轴上,所以120k k +=,从而求出m 的值,得到直线AB 的方程为1y kx =+过定点坐标.【详解】解:(1)因为直线0bx y -+=过椭圆的左焦点,故令0y =,得x c b=-=-,2c a b ∴==,解得2b =.又2222212a b c b a =+=+,解得a =∴椭圆C 的标准方程为:22184x y +=.(2)由(1)得2c ==,∴直线20bx y c -+=的方程为240x y -+= 令0x =得,4y =,即(0,4)P .设直线AB 的方程为y kx m =+ 联立方程组22184y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得,()222214280k x kmx m +++-=设()11,A x y ,()22,B x y ,∴122421km x x k +=-+,21222821m x x k -=+ 则直线PA 、PB 的斜率111144y m k k x x --==+, 222244y m k k x x --==+ 所以()12122212(4)(4)(4)8(1)22284m x x m km k m k k k k x x m m -+---+=+=+=-- APB ∠的平分线在y 轴上,120k k ∴+=,即28(1)04k m m -=-又PA PB ≠,0k ∴≠,1m ∴=.即直线AB 的方程为1y kx =+,过定点(0,1). 【点睛】本题考查了椭圆的方程,考查了直线与椭圆的位置关系.求椭圆方程时,经常会用到222c a b =-,这里易错点就是和双曲线的222c a b =+ 进行混淆.求解直线和圆锥曲线问题时,一般要设出直线方程,与圆锥曲线方程进行联立,消元后韦达定理得到交点坐标的关系,再根据具体的题目往下做.21.(1)当0a ≤时,()f x 无极值;当0a >时,()f x 极大值为ln 1a b ---,无极小值 (2)-1 【解析】 【分析】(1)求出导函数()f x ',确定函数单调性,得极值,需分类讨论.(2)()0f x ex +≤恒成立,设()()h x f x ex =+,求出()h x 的最大值max ()h x ,由max ()0h x ≤得出,a b 满足的不等关系1ln()b a e ≥---,然后得1ln()()b a e a e a e a e +-≥->--,求得1ln()()()x e F x x e x e+-=->-的最小值即得结论. 【详解】 (1)解()11(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增,无极值. 当0a >时,由()0f x '>,得10x a <<,函数()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,由()0f x '<,得1x a>, 函数()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 极大值为11ln 1ln 1f b a b a a ⎛⎫=--=--- ⎪⎝⎭,无极小值.综上所述,当0a ≤时,()f x 无极值;当0a >时,()f x 极大值为ln 1a b ---,无极小值. (2)由()f x ex ≤-可得()ln f x x ax b ex =--≤-, 设()ln ()h x x e a x b =+--,所以1()h x e a x'=+-,0x >, 当a e ≤时,()0h x '>,()h x 在()0,∞+上是增函数,所以()0h x ≤不可能恒成立, 当a e >时,由1()0h x e a x '=+-=,得1x a e=-, 当10,x a e ⎛⎫∈ ⎪-⎝⎭时,()0h x '>,()h x 单调递增,当1,x a e ⎛⎫∈+∞⎪-⎝⎭时,()0h x '<,()h x 单调递减, 所以当1x a e =-时,()h x 取最大值,1ln()10h a e b a e ⎛⎫=----≤ ⎪-⎝⎭,所以ln()10a e b -++≥,即1ln()b a e ≥---,所以1ln()()b a e a e a e a e+-≥->--,令1ln()()()x e F x x e x e +-=->-,221()1ln()ln()()()()x e x e x e x e F x x e x e ------'=-=--, 当()1,x e ∈++∞时,()0F x '>,()F x 单调递增, 当(),1x e e ∈+时,()0F x '<,()F x 单调递减,所以当1x e =+时,()F x 取最小值,即()(1)1F x F e ≥+=-,所以ba e-的最小值为-1. 【点睛】本题考查用导数求函数的极值,用导数研究不等式恒成立问题.考查转化与化归思想.解题关键是把不等式恒成立转化为求函数的最值.本题对学生分析问题解决问题的能力、运算求解能力要求较高,属于难题.22.(1)曲线C 的直角坐标方程为221126x y +=;直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数))(2)当2πα=时,BP BQ ⋅取得最小值为92【解析】 【分析】(1)由222sin x y y ρρθ⎧=+⎨=⎩求得曲线C 的直角坐标方程;先求出曲线C 与直线l 的交点A 的坐标,即可得到OA 的中点B ,进而求解即可;(2)由(1),将直线l 的参数方程代入到曲线C 的直角坐标方程中,由参数的几何意义可得1222299cos 2sin 1sin BP BQ t t ααα⋅===++,进而求解即可. 【详解】(1)由题,因为22121sin ρθ=+,即()221sin 12ρθ+=, 因为222sin x y yρρθ⎧=+⎨=⎩, 所以22212x y y ++=,即22212x y +=,则曲线C 的直角坐标方程为221126x y +=,因为射线(0)4πθρ=≥交曲线C 于点A ,所以点A 的极坐标为4π⎛⎫ ⎪⎝⎭,则点A 的直角坐标为()2,2,所以OA 的中点B 为()1,1,所以倾斜角为α且过点B 的直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数).(2)将直线l 的参数方程1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数)代入曲线C 的方程221126x y+=中,整理可得()()222cos2sin 2cos 4sin 90t t αααα+++-=,设P 、Q 对应的参数值分别是1t 、2t ,则有12229cos 2sin t t αα-=+,则1222299cos 2sin 1sin BP BQ t t ααα⋅===++, 因为(]0,απ∈,当sin 1α=,即2πα=时,BP BQ ⋅取得最小值为92【点睛】本题考查极坐标方程与直角坐标方程的转化,考查直线的参数方程,考查最值问题. 23.(Ⅰ)()(),30,-∞-+∞; (Ⅱ)见解析.【解析】 【分析】(Ⅰ)整理()32f x x >-+得:123x x +++>,由绝对值的几何意义即可解不等式。

相关文档
最新文档