2020学年高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词学案 苏教版选修1-1

合集下载

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.

2.特称命题 “有些”“至少有一个”“有一个”“存在”等都有表示个别或一部分 的含义,这样的词叫作存在量词,含有存在量词的命题,叫作特称命 题. 【做一做2】 下列命题不是特称命题的是( ) A.有些实数没有平方根 B.能被5整除的数也能被2整除 C.存在x∈{x|x>3},使x2-5x+6<0 D.有一个m,使2-m与|m|-3异号 答案:B
题型一 题型二 题型三 题型四
解:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4. 要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可. 故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只 需m>-4. (2)不等式m-f(x)>0可化为m>f(x),若存在一个实数x,使不等式 m>f(x)成立,只需m>f(x)min.
【做一做 3】 给出下列命题:
①任意 x∈R, ������是无理数; ②任意������, ������∈R,若 xy≠0,则 x,y 中至少
有一个不为 0;③存在实数既能被 3 整除又能被 19 整除.
其中真命题为
.(填序号)
解析:①是假命题,例如 4是有理数;②是假命题,若 xy≠0,则 x,y
题型一 题型二 题型三 题型四
题型三 利用全称命题、特称命题求参数范围
【例3】 已知函数f(x)=x2-2x+5. (1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并 说明理由. (2)若存在一个实数x,使不等式m-f(x)>0成立,求实数m的取值范围. 分析:可考虑用分离参数法,转化为m>-f(x)对任意x∈R恒成立和 存在一个实数x,使m>f(x)成立.

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 对量词命题的否定的分类解析与疑点诠释素材

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 对量词命题的否定的分类解析与疑点诠释素材

对量词命题的否定的分类解析与疑点诠释一.知识梳理1.全称命题、存在性命题的否定一般地,全称命题P:∀ x∈M,有P(x)成立;其否定命题┓P为:∃x∈M,使P(x)不成立。

存在性命题P:∃x∈M,使P(x)成立;其否定命题┓P为:∀x∈M,有P(x)不成立。

用符号语言表示:P:∀∈M, p(x)否定为⌝ P: ∃∈M, ⌝ P(x)P:∃∈M, p(x)否定为⌝ P: ∀∈M, ⌝ P(x)在具体操作中就是从命题P把全称性的量词改成存在性的量词,存在性的量词改成全称性的量词,并把量词作用范围进行否定。

即须遵循下面法则:否定全称得存在,否定存在得全称,否定肯定得否定,否定否定得肯定.2.关键量词的否定二.命题的否定形式的分类解析与疑点诠释1. 全称命题的否定例1.写出下列全称命题的否定:(1)p:∀x∈R,x2+x+1>0;(2)任何实数x都是方程5x-12=0的根。

(3)对任意实数x,存在实数y,使x+y>0.(4)有些质数是奇数。

(5)∃x∈R,x2-x+1=0;解:(1)的否定:∀x∈R,x2+x+1>0;(2)的否定:存在实数x 不是方程5x-12=0的根。

(3)的否定:存在实数x,对所有实数y ,有x+y≤0。

(4)的否定:所有的质数都不是奇数。

(5)的否定:∀x ∈R ,x 2-x+1≠0.说明:解题中会遇到省略了“所有,任何,任意”等量词的简化形式,如“若x >3,则x 2>9”。

在求解中极易误当为简单命题处理;这种情形下时应先将命题写成完整形式,再依据法则来写出其否定形式.2. “若P 则q” 的形式的否定例2.写出下列命题的否定。

(1) 若x 2>4 则x >2.。

(2) 若m≥0,则x 2+x-m=0有实数根。

(3) 可以被5整除的整数,末位是0。

(4) 被8整除的数能被4整除。

(5) 若一个四边形是正方形,则它的四条边相等。

解(1)否定:存在实数0x ,虽然满足20x >4,但0x ≤2。

高中数学 第一章 常用逻辑用语 3 全称量词与存在量词学案 北师大版选修1-1-北师大版高二选修1-

高中数学 第一章 常用逻辑用语 3 全称量词与存在量词学案 北师大版选修1-1-北师大版高二选修1-

§3全称量词与存在量词[对应学生用书P8]全称量词与全称命题在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城.我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸.我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人.可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸.这就是著名的“罗素理发师悖论”问题.问题1:文中理发师说:“我将给所有的不给自己刮脸的人刮脸”.对“所有的”这一词语,你还能用其他词语代替吗?提示:任意一个,全部,每个.问题2:上述词语都有什么含义?提示:表示某个范围内的整体或全部.全称量词与全称命题(1)“所有”“每一个”“任何”“任意一条”“一切”都是在指定范围内,表示整体或全部的含义,这样的词叫作全称量词.(2)含有全称量词的命题,叫作全称命题.存在量词与特称命题观察语句①②:①存在一个x∈R,使3x+1=5;②至少有一个x∈Z,x能被2和3整除.问题1:①②是命题吗?若是命题,判断其真假.提示:是,都为真命题.问题2:①②中的“存在一个”、“至少有一个”有什么含义?提示:表示总体中“个别”或“一部分”.问题3:你能写出一些与问题2中具有相同意义的词语吗?提示:某些,有的,有些.存在量词与特称命题(1)“有些”“至少有一个”“有一个”“存在”都有表示个别或一部分的含义,这样的词叫作存在量词.(2)含有存在量词的命题,叫作特称命题.全称命题与特称命题的否定观察下列命题:①被7整除的整数是奇数;②有的函数是偶函数;③至少有一个三角形没有外接圆.问题1:命题①的否定:“被7整除的整数不是奇数”对吗?提示:不对,命题①是省略了量词“所有”的全称命题,其否定应为“存在被7整除的整数不都是奇数”.问题2:命题②的否定:“有的函数不是偶函数”对吗?提示:不对,应为每一个函数都不是偶函数.问题3:判断命题③的否定的真假.提示:命题③的否定:所有的三角形都有外接圆,是真命题.全称命题与特称命题的否定全称命题的否定是特称命题;特称命题的否定是全称命题.1.判断一个命题是全称命题还是特称命题时,首先要分析命题中含有的量词,含有全称量词的是全称命题,含有存在量词的是特称命题.2.要说明一个全称命题是错误的,只需找出一个反例即可,实际上就是说明这个全称命题的否定是正确的;要说明一个特称命题是错误的,就要说明所有的对象都不满足这一性质,即说明这个特称命题的否定是正确的.[对应学生用书P9]全称命题与特称命题的判断[例1] 判断下列命题哪些是全称命题,哪些是特称命题.(1)对任意x∈R,x2>0;(2)有些无理数的平方也是无理数;(3)正四面体的各面都是正三角形;(4)存在x=1,使方程x2+x-2=0;(5)对任意x∈{x|x>-1},3x+4>0成立;(6)存在a=1且b=2,使a+b=3成立.[思路点拨] 先观察命题中所含的量词,根据量词的意义来判断命题的类别.不含量词的命题要注意结合命题的语境进行分析.[精解详析] (1)(5)含全称量词“任意”,(3)虽不含有量词,但其本义是所有正四面体的各面都是正三角形.故(1)(3)(5)为全称命题;(2)(4)(6)为特称命题,分别含有存在量词“有些”、“存在”、“存在”.[一点通]判断一个命题是全称命题还是特称命题时,需要注意以下两点:(1)若命题中含有量词则直接判断所含量词是全称量词还是存在量词;(2)若命题中不含有量词,则要根据命题的实际意义进行判断.1.下列命题为特称命题的是( )A.奇函数的图像关于原点对称B.正四棱柱都是平行六面体C.棱锥仅有一个底面D.存在大于等于3的实数x,使x2-2x-3≥0解析:A,B,C中命题都省略了全称量词“所有”,所以A,B,C都是全称命题;D中命题含有存在量词“存在”,所以D是特称命题,故选D.答案:D2.下列命题中,全称命题的个数是( )①任意一个自然数都是正整数;②所有的素数都是奇数;③有的等差数列也是等比数列;④三角形的内角和是180°.A.0个B.1个C.2个D.3个解析:命题①②含有全称量词,而命题④可以叙述为“每一个三角形的内角和都是180°”,故有三个全称命题.答案:D全称命题与特称命题的真假判断[例2] 指出下列命题中,哪些是全称命题,哪些是特称命题,并判断其真假.(1)在平面直角坐标系中,任意有序实数对(x,y)都对应一点;(2)存在一个实数,它的绝对值不是正数;(3)对任意实数x1,x2,若x1<x2,都有tan x1<tan x2;(4)存在一个函数,既是偶函数又是奇函数.[思路点拨] 本题可由命题中所含量词的特点或命题的语境判断命题的类别,再结合相关知识判断真假.[精解详析] (1)(3)是全称命题,(2)(4)是特称命题.(1)在平面直角坐标系中,任意有序实数对(x,y)与平面直角坐标系中的点是一一对应的,所以该命题是真命题.(2)存在一个实数零,它的绝对值不是正数,所以该命题是真命题.(3)存在x1=0,x2=π,x1<x2,但tan 0=tan π,所以该命题是假命题.(4)存在一个函数f(x)=0,它既是偶函数又是奇函数,所以该命题是真命题.[一点通]1.要判断一个全称命题是真命题,必须对限定条件中的每一个元素x,验证命题成立.而要判断它是假命题,只要能举出限定条件中的一个x,使命题不成立即可.2.要判断一个特称命题是真命题,只要在限定条件中,至少能找到一个x,使命题成立即可,否则这一特称命题就是假命题.3.下列命题的假命题是( )A.有些不相似的三角形面积相等B.存在一个实数x,使x2+x+1≤0C .存在实数a ,使函数y =ax +b 的值随x 的增大而增大D .有一个实数的倒数是它本身解析:以上4个均为特称命题,A ,C ,D 均可找到符合条件的特例;对B ,任意x ∈R ,都有x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0.故B 为假命题.答案:B4.判断下列命题的真假,并说明理由: (1)对任意x ∈R ,都有x 2-x +1>12成立;(2)存在实数α,β,使cos(α-β)=cos α-cos β成立; (3)对任意x ,y ∈N ,都有(x -y )∈N ; (4)存在x ,y ∈Z ,使2x +y =3成立.解:(1)法一:当x ∈R 时,x 2-x +1=(x -12)2+34≥34>12,所以该命题是真命题.法二:x 2-x +1>12 ⇔x 2-x +12>0,由于Δ=1-4×12=-1<0,所以不等式x 2-x +1>12的解集是R ,所以该命题是真命题. (2)当α=π4,β=π2时,cos(α-β)=cos(π4-π2)=cos(-π4)=cos π4=22,cos α-cos β=cos π4-cos π2=22-0=22,此时cos(α-β)=cos α-cos β,所以该命题是真命题.(3)当x =2,y =4时,x -y =-2∈/ N ,所以该命题是假命题.(4)当x =0,y =3时,2x +y =3,即存在x ,y ∈Z ,使2x +y =3,所以该命题是真命题.全称命题、特称命题的否定[例3] (1)三角形的内角和为180°; (2)每个二次函数的图像都开口向下; (3)有些实数的绝对值是正数; (4)某些平行四边形是菱形.[思路点拨] 先判断是全称命题还是特称命题,再对命题否定.[精解详析] (1)是全称命题且为真命题. 命题的否定:三角形的内角和不全为180°, 即存在一个三角形的内角和不等于180°. (2)是全称命题且为假命题.命题的否定:存在一个二次函数的图像开口不向下. (3)是特称命题且为真命题.命题的否定:所有实数的绝对值都不是正数. (4)是特称命题,且为真命题.命题的否定:每一个平行四边形都不是菱形. [一点通]1.全称命题的否定为特称命题,特称命题的否定为全称命题.2.写全称(特称)命题的否定时,先把全称(存在)量词改为存在(全称)量词,然后再否定结论.5.(湖北高考)命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:根据特称命题的否定是全称命题即可解答.“存在一个无理数,它的平方是有理数”的否定是“任意一个无理数,它的平方不是有理数”,故选B.答案:B6.若“对任意x ∈R ,ax 2-2ax -1<0”为真命题,则实数a 的取值范围是________. 解析:依题意,问题等价于对任意x ∈R ,ax 2-2ax -1<0恒成立.当a =0时,不等式显然成立;当a ≠0时,有⎩⎪⎨⎪⎧a <0,Δ=4a 2+4a <0,解得-1<a <0,故实数a 的取值范围是(-1,0]答案:(-1,0]7.判断下列命题是全称命题还是特称命题,并写出其否定形式. (1)对数函数都是单调函数;(2)至少有一个整数能被2整除且能被5整除;(4)对任意m∈Z,都有m2-3>0成立.解:(1)命题省略了全称量词“所有”,所以是全称命题;否定形式:有的对数函数不是单调函数.(2)命题含有存在量词“至少”,所以是特称命题;否定形式:所有整数不能被2整除或不能被5整除.(3)命题含有存在量词,所以是特称命题;否定形式:对任意x∈R,都有log2x≤0.(4)命题中含有全称量词“任意”,所以是全称命题;否定形式:存在m∈Z,使m2-3≤0成立.1.判断命题是全称命题还是特称命题主要是看命题中含有的量词.有些命题没有明显的量词或省略了量词,可以根据命题的实际含义作出判断.2.对含有一个量词的命题的否定要注意以下几个问题:(1)确定命题类型,是全称命题还是特称命题;(2)改变量词;(3)否定结论;(4)无量词的全称命题要先补上量词再否定.[对应课时跟踪训练三]1.将命题“x2+y2≥2xy”改写成全称命题为( )A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立解析:本题中的命题仅保留了结论,省略了条件“任意实数x,y”,改成全称命题为:对任意实数x,y,都有x2+y2≥2xy成立.答案:A2.“关于x的不等式f(x)>0有解”等价于( )A.存在x∈R,使得f(x)>0成立C .对任意x ∈R ,使得f (x )>0成立D .对任意x ∈R ,f (x )≤0成立解析:“关于x 的不等式f (x )>0有解”等价于“存在实数x ,使得f (x )>0成立”,故选A.答案:A3.下列命题为真命题的是( ) A .对任意x ∈R ,都有cos x <2成立 B .存在x ∈Z ,使log 2(3x -1)<0成立 C .对任意x >0,都有3x>3成立 D .存在x ∈Q ,使方程2x -2=0有解解析:A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∈/ Q ,所以D 是假命题,故选A.答案:A4.给出四个命题:①末位数字是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x ,使x >0;④对于任意实数x,2x +1都是奇数.下列说法正确的是( )A .四个命题都是真命题B .①②是全称命题C .②③是特称命题D .四个命题中有两个假命题解析:①④为全称命题;②③为特称命题;①②③为真命题;④为假命题. 答案:C5.下列命题中全称命题是__________;特称命题是________. ①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①③是全称命题,②④是特称命题. 答案:①③ ②④6.命题“偶函数的图像关于y 轴对称”的否定是________.解析:本题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图像关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图像关于y 轴不对称”.答案:有些偶函数的图像关于y 轴不对称 7.写出下列命题的否定并判断其真假. (1)有的四边形没有外接圆; (2)某些梯形的对角线互相平分; (3)被8整除的数能被4整除.解:(1)命题的否定:所有的四边形都有外接圆,是假命题. (2)命题的否定:任一个梯形的对角线不互相平分,是真命题. (3)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题.8.(1)若命题“对于任意实数x ,不等式sin x +cos x >m 恒成立”是真命题,求实数m 的取值范围;(2)若命题“存在实数x ,使不等式sin x +cos x >m 有解”是真命题,求实数m 的取值范围.解:(1)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≥-2,又∵任意x ∈R ,sin x +cos x >m 恒成立, ∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2). (2)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2]. 又∵存在x ∈R ,使sin x +cos x >m 有解,∴只要m <2即可,∴所求m 的取值范围是(-∞,2).。

2019-2020学年高中数学 第一章 常用逻辑用语 1.4.1-1.4.2 全称量词、存在量词教案 新人教A版选修2-1.doc

2019-2020学年高中数学 第一章 常用逻辑用语 1.4.1-1.4.2 全称量词、存在量词教案 新人教A版选修2-1.doc

2019-2020学年高中数学第一章常用逻辑用语 1.4.1-1.4.2 全称量词、存在量词教案新人教A版选修2-1思维品质,在练习过程中进行辩证唯物主义思想教育.能判断它的真假吗?(如x =2), x <3.(至少有一个x ∈R, x ≤3) 命题(4)是真命题。

事实上不存在某个x ∈Z,使2x +1不是整数。

二.发现、归纳 命题(3)(4)用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。

命题(3)(4)都是全称命题。

通常将含有变量x 的语句用p (x ),q (x ),r (x ),……表示,变量x 的取值范围用M 表示。

那么全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为:∀x M , p (x ),读做“对任意x 属于M ,有p (x )成立”。

对于以上命题(3)(4)有: (5)存在一个(个别、某些)实数x (如x =2),使x ≤3.(至少有一个x ∈R, x ≤3) (6),不存在某个x ∈Z使2x +1不是整数. 这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。

并用符号“∃”表示。

含有存在量词的命题叫做特称命题(或存在命题)命题(5),(6),都是特称命题(存在命题). 特称命题:“存在M 中一个x ,使p (x )成立”可以用符号简记为:,()x M p x ∃∈。

读做“存在一个x 属于M ,使p (x )成立”. 全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等. 三.巩固练习: (1)下列全称命题中,真命题是: A. 所有的素数是奇数; B. 2,(1)0x R x ∀∈-;x +五.课堂小结:学生总结归纳,教师指导补充。

高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文

高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文

第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断p q p∧q p∨q ﹁p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的元素x0,使p(x0)成立∃x0∈M,p(x0)命题命题的否定∀x∈M,p(x)∃x0∈M,﹁p(x0)∃x0∈M,p(x0)∀x∈M,﹁p(x)常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p ∨q ”的否定是“(﹁p )∧(﹁q )”,“p ∧q ”的否定是“(﹁p )∨(﹁q )”. (4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题. ( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反. ( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏常见误区| (1)全称命题或特称命题的否定出错; (2)不会利用真值表判断命题的真假; (3)判断命题真假时忽视对参数的讨论. 1.命题“正方形都是矩形”的否定是________. 答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③3.若p :∀x ∈R ,ax 2+4x +1>0是假命题,则实数a 的取值范围为________. 答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号) ①p 1∧p 4 ②p 1∧p 2 ③﹁p 2∨p 3④﹁p 3∨﹁p 4解析:方法一:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则由l 1∩l 2=A ,知l 1,l 2共面,设此平面为α,由B ∈l 2,l 2⊂α,知B ∈α,由C ∈l 1,l 1⊂α,知C ∈α,所以l 3⊂α,所以l 1,l 2,l 3共面于α,所以p 1是真命题.对于p 2,当A ,B ,C 三点不共线时,过A ,B ,C 三点有且仅有一个平面;当A ,B ,C 三点共线时,过A ,B ,C 的平面有无数个,所以p 2是假命题,﹁p 2是真命题.对于p 3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,﹁p 3是真命题.对于p 4,若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l ,所以p 4是真命题,﹁p 4是假命题.故p 1∧p 4为真命题,p 1∧p 2为假命题,﹁p 2∨p 3为真命题,﹁p 3∨﹁p 4为真命题.综上可知,真命题的序号是①③④.方法二:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C 三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p 为( )A .∀x ∉R ,2x -x 2<1 B .∃x 0∉R ,2x 0-x 20<1 C .∀x ∈R ,2x-x 2<1 D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( ) A .∃x 0∈(0,+∞),x 130=x 150 B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 130=x 150 D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1. (2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,所以-2≤sin x+cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0B .x >1是x 2>1的充分不必要条件 C .∀x ∈N ,x 3>x 2D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确;当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B .2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.答案:(-∞,-1]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)。

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

1.2 简单的逻辑联结词(不作要求)1.3 全称量词与存在量词1.3.1 量词1.3.2 含有一个量词的命题的否定学习目标核心素养1.理解全称量词与存在量词的意义,能准确地利用全称量词和存在量词叙述简单的数学内容.(重点)2.能判定全称命题和存在性命题的真假.(难点)3.了解对含有一个量词的命题的否定的意义,能正确地对含有一个量词的命题进行否定.(易错点)1.通过对含有量词的命题的否定,培养逻辑推理素养.2.借助含量词的命题的真假求参数问题,提升数学运算素养.1.全称量词和全称命题全称量词“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词符号表示∀全称命题含有全称量词的命题称为全称命题符号表示∀x∈M,p(x)存在量词“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词符号表示∃存在性命题含有存在量词的命题称为存在性命题符号表示∃x∈M,p(x)写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是存在性命题还是全称命题?请改写成相应命题的形式.[提示] (1)是存在性命题,可改写为“∃x∈R,使ax2+2x+1=0”(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.全称命题和存在性命题的否定1.下列命题中为全称命题的是( ) A .至少有一个自然数是2的倍数 B .存在小于零的整数 C .方程3x =2有实数根 D .无理数是小数D [D 中“无理数”指的是所有的无理数.] 2.下列语句是存在性命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .x >7D .∀x ∈M ,p (x )成立B [B 选项中有存在量词“存在”,故B 项是存在性命题,A 和C 不是命题,D 是全称命题.]3.下列四个命题中的真命题为( ) A .∃x ∈Z,1<4x <3 B .∃x ∈Z,5x +1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0D [当x ∈R 时,x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0,故选D.]4.已知命题p :∀x ∈R ,sin x ≤1,则命题p 的否定是________.∃x ∈R ,sin x >1 [命题p 是全称命题,其否定应为存在性命题,即綈p :∃x ∈R ,sinx >1.]两种命题的概念及真假判断【例1(1)∀x ∈N,2x +1是奇数;(2)存在一个x ∈R ,使1x -1=0; (3)能被5整除的整数末位数是0; (4)有一个角α,使sin α>1[解] (1)是全称命题,因为∀x ∈N,2x +1都是奇数,所以该命题是真命题. (2)是存在性命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题. (4)是存在性命题,因为∀α∈R ,sin α∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是存在性命题的方法 (1)分析命题中是否含有量词; (2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断. 2.全称命题与存在性命题真假的判断方法(1)要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x ,使得p (x )不成立,那么这个全称命题就是假命题.(2)要判定存在性命题“∃x ∈M ,p (x )”是真命题,只需在集合M 中找到一个元素x ,使p (x )成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题就是假命题.1.(1)以下四个命题既是存在性命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B [A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是存在性命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.](2)下列命题中,真命题是( ) A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1 C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x B [(1)对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.]含有一个量词的命题的否定x x 2x A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠x D .∃x ∈R ,x 2=x(2)写出下列命题的否定,并判断其真假: ①p :∀x ∈R ,x 2-x +14≥0;②p :所有的正方形都是菱形; ③p :至少有一个实数x ,使x 3+1=0.[思路探究] 先判定命题是全称命题还是存在性命题,再针对不同的形式加以否定. (1)D [原命题的否定为∃x ∈R ,x 2=x ,故选D.] (2)[解] ①綈p :∃x ∈R ,x 2-x +14<0,假命题.因为∀x ∈R ,x 2-x +14=⎝ ⎛⎭⎪⎫x -122≥0恒成立.②綈p :至少存在一个正方形不是菱形,假命题. ③綈p :∀x ∈R ,x 3+1≠0,假命题. 因为x =-1时,x 3+1=0.对全称命题和存在性命题进行否定的步骤与方法1.确定类型:是存在性命题还是全称命题.2.改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词. 3.否定结论:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.提醒:无量词的全称命题要先补回量词再否定.2.(1)命题“∃x ∈(0,+∞),ln x =x -1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x ∈(0,+∞),ln x 0≠x 0-1 D .∃x ∉(0,+∞),ln x 0=x 0-1A [存在性命题的否定是全称命题,故原命题的否定是∀x ∈(0,+∞),ln x ≠x -1.] (2)写出下列命题的否定,并判断其真假.①p :不论m 取何实数,方程x 2+x -m =0必有实数根; ②q: 存在一个实数x ,使得x 2+x +1≤0; ③r :等圆的面积相等,周长相等; ④s :对任意角α,都有sin 2α+cos 2α=1.[解] ①这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有 实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0时,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题.②这一命题的否定形式是綈q :“对所有的实数x ,都有x 2+x +1>0”,利用配方法可以证得綈q 是真命题.③这一命题的否定形式是綈r :“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知綈r 是假命题.④这一命题的否定形式是綈s :“存在α∈R ,sin 2α+cos 2α≠1”,由于命题s 是真命题,所以綈s 是假命题.由命题的真假确定参数的范围1.若含参数的命题p 是假命题,如何求参数的取值范围? 提示:先求綈p ,再求参数的取值范围.2.全称命题和存在性命题与恒成立问题和存在性问题有怎样的对应关系?提示:全称命题与恒成立问题对应,存在性命题与存在性问题对应.【例3】 (1)若命题p “∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.(2)已知命题p :∃x ∈R,9x -3x-a =0,若命题p 是真命题,求实数a 的取值范围. [思路探究] (1)先求綈p ,再求参数的取值范围. (2)令3x=t ,看作一元二次方程有解问题.(1) [-22,22] [綈p :∀x ∈R,2x 2-3ax +9≥0为真命题. 则Δ=9a 2-72≤0,解得-22≤a ≤22] (2)解:设3x=t ,由于x ∈R ,则t ∈(0,+∞),则9x-3x-a =0⇔a =(3x )2-3x⇔a =t 2-t ,t ∈(0,+∞),设f (t )=t 2-t ,t ∈(0,+∞),则f (t )=⎝ ⎛⎭⎪⎫t -122-14,当t =12时,f (t )min =-14,则函数f (t )的值域是⎣⎢⎡⎭⎪⎫-14,+∞,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,+∞.母题探究:1.若将本例题(2)条件“∃x ∈R ”,改为“∃x ∈[0,1]”,其他不变,试求实数a 的取值范围.[解] 设3x=t ,x ∈[0,1],∴t ∈[1,3].a =t 2-t ,∵t 2-t =⎝ ⎛⎭⎪⎫t -122-14,∴a =t 2-t 在t ∈[1,3]上单调递增.∴t 2-t ∈[]0,6.即a 的取值范围是[]0,6.2.将本例题(2)换为“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m 是真命题”,试求m 的最小值.[解] 由已知可得m ≥tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4恒成立.设f (x )=tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4,显然该函数为增函数,故f (x )的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m ≥1,即实数m的最小值为1.应用两种命题求参数范围的两类题型1.全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以利用代入体现集合中相应元素的具体性质中求解;也可以根据函数等数学知识来解决.2.存在性命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.4.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是存在性命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等分别改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.1.判断(正确的打“√”,错误的打“×”)(1)命题“对数函数都是单调函数”是全称命题.( )(2)命题“有些菱形是正方形”是全称命题.( )(3)命题:∀x∈R,x2-3x+3>0的否定是∀x∉R,x2-3x+3≤0.()[答案] (1)√(2)×(3)×2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数D[全称命题的否定为相应的存在性命题,即将“所有”变为“存在”,并且将结论进行否定.]3.命题p:∃x∈R,x2+2x+5<0是________(填“全称命题”或“存在性命题”),它是________命题(填“真”或“假”),它的否定为綈p:________.存在性命题假∀x∈R,x2+2x+5≥0[命题p:∃x∈R,x2+2x+5<0是存在性命题.因为x2+2x+5=(x+1)2+4>0恒成立,所以命题p为假命题.命题p的否定为:∀x∈R,x2+2x+5≥0.]4.判断下列命题是全称命题还是存在性命题,并判断其真假;(1)对某些实数x,有2x+1>0;(2)∀x∈{3,5,7},3x+1是偶函数;(3)∃x∈Q,x2=3[解] (1)命题中含有存在量词“某些”,因此是存在性命题,真命题.(2)命题中含有全称量词的符号“∀”,因此是全称命题.把3,5,7分别代入3x+1,得10,16,22,都是偶数,因此,该命题是真命题.(3)命题中含有存在量词的符号“∃”,因此是存在性命题.由于使x2=3成立的实数只有±3,且它们都不是有理数,因此,没有一个有理数的平方等于3,所以该命题是假命题.。

2020版高中数学第一章常用逻辑用语章末复习学案新人教B版选修

2020版高中数学第一章常用逻辑用语章末复习学案新人教B版选修

第一章常用逻辑用语章末复习学习目标 1.理解全称量词、存在量词的含义,会判断全称命题、存在性命题的真假,会求含有一个量词的命题的否定.2.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.3.理解充分条件、必要条件的概念,掌握充分条件、必要条件的判定方法.4.理解命题及四种命题的概念,掌握四种命题间的相互关系.1.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任合”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.2.简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.(2)简单复合命题的真值表3.全称命题与存在性命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫存在性命题.4.命题的否定(1)全称命题的否定是存在性命题;存在性命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.5.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.6.四种命题及其关系(1)四种命题①原命题:如果p,则q;②逆命题:如果q,则p;③否命题:如果綈p,则綈q;④逆否命题:如果綈q,则綈p.(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.1.命题“若x>0且y>0,则x+y>0”的否命题是假命题.( √)2.“所有奇数都是质数”的否定“至少有一个奇数不是质数”是真命题.( √)3.命题“若p,则q”与命题“若綈p,则綈q”的真假性一致.( ×)4.已知命题p:∃x∈R,x-2>0,命题q:∀x∈R,x2>x,则命题p∨(綈q)是假命题.( ×)题型一命题及其关系例1 (1)有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”.其中是真命题的是( )A.①②③B.②③④C.①③④D.①③考点四种命题的概念题点判断四种命题的真假答案 D(2)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)考点四种命题的概念题点 四种命题定义的应用 答案 A解析 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题. 反思感悟 (1)互为逆否命题的两命题真假性相同.(2)“p 与綈p ”一真一假,“p ∨q ”一真即真,“p ∧q ”一假就假. 跟踪训练1 (1)命题“若x 2>1,则x <-1或x >1”的逆否命题是( ) A .若x 2>1,则-1≤x ≤1 B .若-1≤x ≤1,则x 2≤1 C .若-1<x <1,则x 2>1 D .若x <-1或x >1,则x 2>1 考点 四种命题的概念 题点 四种命题定义的应用 答案 B(2)已知命题p :4+2=5,命题q :3>2,则下列判断中错误的是( ) A .p 或q 为真,非q 为假 B .p 或q 为真,非p 为真 C .p 且q 为假,非p 为假D .p 且q 为假,p 或q 为真考点 “或”“且”“非”的综合问题 题点 判断复合命题的真假 答案 C解析 由p :4+2=5,可得p 是假命题,由q :3>2,可得命题q 是真命题,所以p 或q 为真,p 且q 为假,非p 为真,非q 为假,故选C. 题型二 充分条件与必要条件、充要条件的探究例 2 “m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案 B解析 当m =12时,两条直线的斜率分别为-53,35,-53×35=-1,所以两条直线相互垂直;反之,若两条直线相互垂直,需分三种情况:①当m =-2时,两条直线的方程分别为-6y +1=0,-4x -3=0,显然两直线相互垂直; ②当m ≠-2且m ≠0时,由-m +23m ×2-m m +2=-1,解得m =12;③当m =0时,两条直线的方程分别为2x +1=0,-2x +2y -3=0,两直线不垂直. 所以m =-2或12.故“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的充分不必要条件.反思感悟 若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件,即q 的充分条件是p ,p 的必要条件是q .如果将“必要条件”理解为“必然结果”,则可认为p 的必然结果是q ,q 是p 的必然结果. 则p ⇏q 易表述为以下几种说法:p 是q 的不充分条件,q 的不充分条件是p ; q 是p 的不必要条件,p 的不必要条件是q .跟踪训练2 (1)已知命题p :对任意x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧q D .p ∧(綈q )答案 D解析 p :∀x ∈R,2x>0为真命题;q :∵x >1⇏x >2,∴“x >1”不是“x >2”的充分条件, 又x >2⇒x >1,∴“x >1”是“x >2”的必要条件, ∴q 是假命题, ∴綈q 是真命题. ∴p ∧(綈q )为真命题.(2)“a =-1”是“函数f (x )=ax 2+2x -1只有一个零点”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案 B解析 ①∵a =-1⇒Δ=22-4a ×(-1)=0⇒f (x )=ax 2+2x -1只有一个零点, ∴“a =-1”是“函数f (x )=ax 2+2x -1只有一个零点”的充分条件. ②f (x )=ax 2+2x -1只有一个零点⇒a =-1或a =0⇏a =-1,∴“a =-1”不是“函数f (x )=ax 2+2x -1只有一个零点”的必要条件. 题型三 逻辑联结词与量词的综合应用例3 已知p :∃x ∈R ,mx 2+2≤0.q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m的取值范围是( ) A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]考点 简单逻辑联结词的综合应用题点 由含量词的复合命题的真假求参数的范围 答案 A解析 因为p ∨q 为假命题,所以p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假,得∀x ∈R ,mx 2+2>0,所以m ≥0.① 由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x ∈R ,x 2-2mx +1≤0, 所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.② 由①和②得m ≥1.反思感悟 解决此类问题首先理解逻辑联结词的含义,掌握简单命题与含有逻辑联结词的命题的真假关系.其次要善于利用等价关系,如:p 真与綈p 假等价,p 假与綈p 真等价,将问题转化,从而谋得最佳解决途径.跟踪训练3 已知m ∈R ,命题p :对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立;命题q :存在x ∈[-1,1],使得m ≤ax 成立. (1)若p 为真命题,求m 的取值范围;(2)当a =1时,p 且q 为假命题,p 或q 为真命题,求m 的取值范围. 考点 简单逻辑联结词的综合应用题点 由含量词的复合命题的真假求参数的范围 解 (1)对任意x ∈[0,1], 不等式2x -2≥m 2-3m 恒成立, 令f (x )=2x -2(x ∈[0,1]), 则f (x )min ≥m 2-3m ,当x ∈[0,1]时,f (x )min =f (0)=-2, 即m 2-3m ≤-2,解得1≤m ≤2.因此,当p 为真命题时,m 的取值范围是[1,2]. (2)当a =1时,若q 为真命题,则存在x ∈[-1,1],使得m ≤x 成立,所以m ≤1. 因此,当命题q 为真时,m ≤1.因为p 且q 为假命题,p 或q 为真命题, 所以p ,q 中一个是真命题,一个是假命题.当p 真q 假时,由⎩⎪⎨⎪⎧1≤m ≤2,m >1,得1<m ≤2;当p 假q 真时,由⎩⎪⎨⎪⎧m <1或m >2,m ≤1,得m <1.综上所述,m 的取值范围为(-∞,1)∪(1,2].1.设函数f (x )=x 2+mx (m ∈R ),则下列命题中的真命题是( ) A .对任意m ∈R ,y =f (x )都是奇函数 B .存在m ∈R ,使y =f (x )是奇函数 C .对任意m ∈R ,y =f (x )都是偶函数 D .存在m ∈R ,使y =f (x )是偶函数 答案 D解析 存在m =0∈R ,使y =f (x )是偶函数,故选D. 2.命题“如果α=π4,则tan α=1”的逆否命题是( )A .如果α≠π4,则tan α≠1B .如果α=π4,则tan α≠1C .如果tan α≠1,则α≠π4 D .如果tan α≠1,则α=π4答案 C解析 命题“如果α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”,故选C.3.已知α,β是两个不同的平面,直线a ⊂α,直线b ⊂β,p :a 与b 无公共点,q :α∥β,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 若α与β相交,设交线为c ,若a ∥c ,b ∥c ,则a ∥b ,此时a 与b 无公共点,所以p ⇏q ;若α∥β,则a 与b 的位置关系是平行或异面,a 与b 无公共点,所以q ⇒p .由此可知p 是q 的必要不充分条件,故选B.4.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q);④(綈p)∨q中,真命题是________.(填序号)答案②③解析当x>y时,-x<-y,故命题p为真命题,从而綈p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而綈q为真命题.由真值表知,①p∧q为假命题;②p∨q为真命题;③p∧(綈q)为真命题;④(綈p)∨q为假命题.5.分别写出由下列各组命题构成的“p或q”“p且q”“綈p”形式的复合命题,并判断它们的真假.(1)p:平行四边形的对角线相等,q:平行四边形的对角线互相平分;(2)p:方程x2-16=0的两个根的符号不同,q:方程x2-16=0的两个根的绝对值相等.考点“或”“且”“非”的综合问题题点判断复合命题的真假解(1)p或q:平行四边形的对角线相等或平行四边形的对角线互相平分.p且q:平行四边形的对角线相等且平行四边形的对角线互相平分.綈p:有的平行四边形的对角线不相等.因为p假q真,所以“p或q”为真,“p且q”为假,“綈p”为真.(2)p或q:方程x2-16=0的两个根的符号不同或方程x2-16=0的两个根的绝对值相等.p且q:方程x2-16=0的两个根的符号不同且方程x2-16=0的两个根的绝对值相等.綈p:方程x2-16=0的两个根的符号相同.因为p真q真,所以“p或q”为真,“p且q”为真,“綈p”为假.1.判断复合命题真假的步骤确定复合命题的构成形式⇒判断其中简单命题的真假⇒根据真值表判断复合命题的真假2.命题p∧q,p∨q,綈p的真假判断,如下表:3.含有一个量词的命题的否定。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词学案(含解析)2-1

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词学案(含解析)2-1

1.4 全称量词与存在量词全称量词和全称命题[提出问题]观察下列语句:(1)2x是偶数;(2)对于任意一个x∈Z,2x都是偶数.(3)所有的三角函数都是周期函数.问题1:以上语句是命题吗?提示:(1)不是命题,(2)(3)是命题.问题2:上述命题中强调的是什么?提示:(2)强调“任意一个x∈Z”,(3)强调“所有的三角形”.[导入新知]全称量词和全称命题全称量词所有的、任给、每一个、对一切符号∀全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立",可用符号简记为∀x∈M,p(x)[化解疑难]全称命题是强调命题的一般性,是对于某一个给定集合的所有元素是否具有某种性质来说的。

存在量词与特称命题[提出问题观察下列语句:(1)存在一个x0∈R,使2x0+2=10;(2)至少有一个x0∈R,使x0能被5和8整除.问题1:以上语句是命题吗?提示:都是命题.问题2:上述命题有什么特点?提示:两命题中变量x0取值有限制,即“存在一个x0∈R”,“至少有一个x0∈R".[导入新知]存在量词和特称命题存在量词存在一个、至少有一个、有一个、对某个、有些符号表示∃特称命题含有存在量词的命题形式“存在M中的元素x0,使p(x0)成立",可用符号简记为∃x0∈M,p(x0)[化解疑难]特称命题是强调命题的存在性,是对于某一个给定集合的某些元素是否具有某种性质来说的.含有一个量词的命题的否定[提出问题]观察下列命题:(1)有的函数是偶函数;(2)三角形都有外接圆.问题1:上述命题是全称命题还是特称命题?提示:(1)是特称命题,(2)是全称命题.问题2:上述命题的量词各是什么?其量词的“反面”是什么?提示:有的;所有的.所有的;存在一个.[导入新知]含有一个量词的命题的否定[化解疑难]一般命题的否定通常是保留条件否定其结论,得到真假性完全相反的两个命题;含有一个量词的命题的否定,是在否定结论p(x)的同时,改变量词的属性,即全称量词改为存在量词,存在量词改为全称量词.全称命题与特称命题[例1] 判断下列语句是全称命题,还是特称命题.(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.[类题通法]判定命题是全称命题还是特称命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.[活学活用]用全称量词或存在量词表示下列语句:(1)不等式x2+x+1>0恒成立;(2)当x为有理数时,错误!x2+错误!x+1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立;(4)方程3x-2y=10有整数解.解:(1)对任意实数x,不等式x2+x+1>0成立.(2)对任意有理数x,错误!x2+错误!x+1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立.(4)存在一对整数x,y,使3x-2y=10成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 全称量词与存在量词1.3.1 量词1.3.2 含有一个量词的命题的否定学习目标:1.理解全称量词和存在量词的意义,能准确地利用全称量和存在量词叙述数学内容.(重点)2.能判定全称命题与存在性命题的真假.(难点)3.能正确地对含有一个量词的命题进行否定.(重点、易混点)[自主预习·探新知]1.全称量词与全称命题(1)“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,通常用符号“∀x”表示“对任意x”.(2)含有全称量词的命题称为全称命题,一般形式为:∀x∈M,p(x).2.存在量词和存在性命题(1)“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,通常用符号“∃x”表示“存在x”.(2)含有存在量词的命题称为存在性命题,一般形式为:∃x∈M,p(x).3.全称命题的否定4.1.判断正误:(1)“有些”“某个”“有的”等短语不是存在量词.( )(2)全称量词的含义是“任意性”,存在量词的含义是“存在性”.( )(3)全称命题一定含有全称量词,存在性命题一定含有存在量词.( )(4)∃x∈M,p(x)与∀x∈M,﹁p(x)的真假性相反.( )【解析】(1)×.“有些”“某个”“有的”都表示部分,是存在量词.(2)√.由全称量词与存在量词的定义可知(2)正确.(3)×.有些全称命题与存在性命题可能省略量词.(4)√.命题p与其否定﹁p真假性相反.【答案】(1)×(2)√(3)×(4)√2.命题“∀x∈R,|x|+x2≥0”的否定是________.【导学号:95902036】【解析】原命题为全称命题其否定为“∃x0∈R,|x0|+x20<0”.【答案】∃x0∈R,|x0|+x20<0[合作探究·攻重难](1)对任意实数α,有sin2α+cos2α=1;(2)存在一条直线,其斜率不存在;(3)对所有的实数a,b,方程ax+b=0都有唯一解;(4)存在实数x0,使得1x20-x0+1=2.[思路探究] 判断全称命题还是存在性命题→用符号“∀”或“∃”表示【自主解答】(1)是全称命题,用符号表示为“∀α∈R,sin2x+cos2α=1”,是真命题.(2)是存在性命题,用符号表示为“∃直线l,l的斜率不存在”,是真命题.(3)是全称命题,用符号表示为“∀a,b∈R,方程ax+b=0都有唯一解”,是假命题.(4)是存在性命题,用符号表示为“∃x0∈R,1x20-x0+1=2”,是假命题.[规律方法]1.有些命题不是典型的全称命题或存在性命题,却表达了相应的意义,这时可适当引入量词,用量词表示命题,准确体会命题的含义.2.用符号“∀”“∃”表示含有量词的命题时,将存在量词改为“∃”,全称量词改为“∀”,注意必要时需引入字母来表达命题的含义.[跟踪训练]1.用符号“∀”与“∃”表示下列命题:(1)实数的绝对值大于等于0;(2)存在实数对,使两数的平方和小于1;(3)任意的实数a,b,c满足a2+b2+c2≥ab+bc+ac.【导学号:95902037】【解】(1)∀x∈R,|x|≥0.(2)∃(x,y)∈R,x2+y2<1.(3)∀a,b,c∈R,a2+b2+c2≥ab+bc+ac.判断下列命题的真假:(1)若a >0且a ≠1,则∃x 0∈R ,ax 0>0; (2)∀x ∈R ,都有x 2-x +1>12;(3)∃x 0,y 0∈N ,使2x 0+y 0=3.[思路探究] 结合全称命题与存在性命题的含义及相关数学知识进行判断. 【自主解答】 (1)∵a >0,∴当x =1时,a x=a >0,成立,∴(1)为真命题. (2)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34>12,∴x 2-x +1>12恒成立,∴(2)是真命题.(3)当x 0=0,y 0=3时,2x 0+y 0=3满足题意,∴(3)是真命题. [规律方法] 全称命题与存在性命题真假判断的方法:对于全称命题“∀x ∈M ,p x:①要证明它是真命题,需对集合M 中每一个元素x ,证明 p x 成立; ②要判断它是假命题,只要在集合M 中找到一个元素x 0,使 p x 0不成立即可通常举反例存在性命题的真假判断要结合存在量词来进行,在限定的集合内,看能否找到相应的元素使命题成立,能找到,命题为真,否则为假.[跟踪训练]2.判断下列命题中的真假: (1) ∀x ∈R,2x -1>0 ;(2)∀x ∈N *,(x -1)2>0;(3)∃x 0∈R ,lg x 0<1 ;(4)∃x 0∈R ,tan x 0=2. 【解】 (1)命题“∀x ∈R,2x -1>0”是全称命题,易知2x -1>0恒成立,故是真命题;(2)命题“∀x ∈N *,(x -1)2>0”是全称命题,当x =1时,(x -1)2=0,故是假命题; (3)命题“∃x 0∈R ,lg x 0<1”是存在性命题,当x =1时,lg x =0,故是真命题; (4)命题“∃x 0∈R ,tan x 0=2”是存在性命题,依据正切函数定义,可知是真命题.(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x 0∈R ,x 20+2x 0+2≤0; (4)s :至少有一个实数x 0,使x 30+1=0.【导学号:95902038】[思路探究] 首先弄清楚所给命题是全称命题还是存在性命题,然后针对量词和结论两个方面进行否定. 【自主解答】 (1)﹁p :∃x 0∈R ,x 20-x 0+ 14<0,假命题.∵∀x ∈R ,x 2-x +14 =⎝ ⎛⎭⎪⎫x -122≥0恒成立,∴﹁p 是假命题.(2)﹁q :至少存在一个正方形不是矩形,假命题. (3)﹁r :∀x ∈R ,x 2+2x +2>0,真命题. ∵∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立, ∴﹁r 是真命题.(4)﹁s :∀x ∈R ,x 3+1≠0,假命题. ∵x =-1时,x 3+1=0,∴﹁s 是假命题. [规律方法]1.写一个命题的否定的步骤:首先判定该命题是“全称命题”还是“存在性命题”,并确定相应的量词,其次把命题中的全称量词改成存在量词,存在量词改成全称量词同时否定结论.2.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.[跟踪训练]3.写出下列命题的否定: (1)p :一切分数都是有理数; (2)q :有些三角形是锐角三角形; (3)r :∃x 0∈R ,x 20+x 0=x 0+2; (4)s :∀x ∈R,2x +4≥0.【解】 (1)﹁p :有些分数不是有理数; (2)﹁q :所有的三角形都不是锐角三角形; (3)﹁r :∀x ∈R ,x 2+x ≠x +2; (4)﹁s :∃x 0∈R,2x 0+4<0.[探究问题]1.(1)“∃x ∈R ,a =x 2”的含义是什么? (2)“∃x ∈[1,2] ,a =x 2”的含义是什么?若上述两个命题是真命题,试分别求出a 的取值范围.【提示】 (1)“∃x ∈R ,a =x 2”的含义是方程x 2-a =0有实数根,所以其判别式Δ=4a ≥0,解得a ≥0; (2)“∃x ∈[1,2],a =x 2”的含义是方程x 2-a =0在[1,2]内有实数根,也就是函数y =x 2,x ∈[1,2]和函数y =a 的图象有交点,因为x ∈[1,2],所以x 2∈[1,4],所以a 的取值范围是1≤a ≤4.2.(1)“∀x ∈[1,2],a <x 2”的含义是什么?(2)“∃x ∈[1,2],a <x 2”的含义是什么?若上述两个命题是真命题,试分别求出a 的取值范围. 【提示】 (1)“∀x ∈[1,2],a <x 2”的含义是对于所有的,一切在[1,2]内的x ,不等式a <x 2都恒成立,所以a 要小于x 2的最小值.因为x ∈[1,2],所以x 2∈[1,4],所以a <1;(2)“∃x ∈[1,2],a <x 2”的含义是在[1,2]内至少有一个x ,使不等式a <x 2成立,此时只要a 不大于x 2的最大值即可.因为x ∈[1,2],所以x 2∈[1,4],所以a ≤4.(1)若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a 恒成立”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=4|a |x -2a +1,若命题:“∃x 0∈(0,1)使f (x 0)=0”是真命题,则实数a 的取值范围是__________.【导学号:95902039】[思路探究] (1)由于此全称命题是真命题,所以可以推出a 的值,求出在x ∈[-1,+∞)时,f (x )min ≥a ,利用一元二次不等式与二次函数的关系解题.(2)由于f (x )是单调函数,在(0,1)上存在零点,再由4|a |>0应有⎩⎪⎨⎪⎧f <1f>0解不等式组求出a 范围.【自主解答】 (1)方法一:由对任意x ∈[-1,+∞),令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2可转化为对任意x ∈[-1,+∞),f (x )min ≥a 成立,即对任意x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2, a ≥-1+a 2+2-a 2, a <-1由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]方法二:由x 2-2ax +2≥a ,即x 2-2ax +2-a ≥0,令f (x )=x 2-2ax +2-a 所以全称命题转化为对任意x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2--a >0,a <-1,f -,即-2≤a ≤1或-3≤a <-2,所以a ∈[-3,1]. (2)由:“∃x 0∈(0,1),使f (x 0)=0”是真命题, 且由4|a |>0得⎩⎪⎨⎪⎧f <0f>0即⎩⎪⎨⎪⎧-2a +1<04|a |-2a +1>0解得a ∈⎝ ⎛⎭⎪⎫12,+∞.【答案】 (1)[-3,1] (2)⎝ ⎛⎭⎪⎫12,+∞[规律方法] 应用全称命题与存在性命题求参数范围的常见题型1.全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以代入,也可以根据函数等数学知识来解决.2.存在性命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.[跟踪训练]4.若存在x0∈R,使ax20+2x0+a<0,则实数a的取值范围是________.【导学号:95902040】【解析】当a≤0时,显然存在x0∈R,使ax20+2x0+a<0;当a>0时,必需Δ=4-4a2>0,解得-1<a<1,故0<a<1.综上所述,实数a的取值范围是a<1.【答案】a<1[构建·体系][当堂达标·固双基]1.下列命题是全称命题的是________.(1)有一个向量a,a的方向不能确定;(2)对任何实数a,b,c,方程ax2+bx+c=0都有解.【导学号:95902041】【解析】(1)中含有量词“有一个”,是存在性命题,(2)中含有量词“任何”,是全称命题.【答案】(2)2.下列全称命题:①实数都有倒数;②自然数都是正整数;③小数都是有理数;④无理数都是无限不循环小数.其中真命题的是________.【解析】由于0没有倒数,故①错误;由于0不是正整数,故②错误;由于无限不循环小数是无理数,故③错误,④正确.【答案】④3.已知命题p:∀x∈R,cos x≤1,则﹁p是________.【解析】p为全称命题,﹁p应为存在性命题.【答案】∃x0∈R,cos x0>14.若命题“∀x≥1,x2≥a”的否定为真命题,则实数a的取值范围为__________.【导学号:95902042】【解析】命题“∀x≥1,x2≥a”的否定为“∃x≥1,x2<a”为真命题,所以a∈(1,+∞).【答案】(1,+∞)5.将下列命题用量词符号“∀”或“∃”表示.(1)整数中1最小;(2)方程ax2+2x+1=0(a<1)至少存在一个负根;(3)对于某些实数x,有2x+1>0;(4)若l⊥α,则直线l垂直于平面α内任一直线.【解】(1)∀x∈Z,x≥1.(2)∃x0<0,ax20+2x0+1=0(a<1).(3)∃x0∈R,2x0+1>0.(4)若l⊥α,则∀a⊂α,l⊥a.。

相关文档
最新文档