第6章相似三角形复习

合集下载

苏科版九年级数学下册第6章《相似三角形》专题练习

苏科版九年级数学下册第6章《相似三角形》专题练习

《相似三角形》专题练习【小题热身】1.如图,已知∠1=∠2,添加下列条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠D C.∠C=∠AED D.=2.在正方形网格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,点A、B、C是4×4网格中的格点(每个小正方形的边长为1),在网格中画出一个与△ABC相似且面积最大的格点△DEF,△DEF的面积为.3.如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=4.如图,在△ABC中,点E、D分别为AB与AC边上两个点,请添加一个条件:,使得△ADE∽△ABC.5.如图,在平面直角坐标系中有两点A(6,0)、B(0,8),点C为AB的中点,点D在x轴上,当点D 的坐标为时,由点A、C、D组成的三角形与△AOB相似.6.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D 的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为.7.如图,在矩形ABCD中,AB=12,AD=10,E为AD中点,CF⊥BE,垂足为G,交BC边于点F,则CF的长为.8.如图,Rt△ABC中,∠C=90°,AC=4,BC=2,D、E、F分别为BC、AB、AC上的点,若四边形DEFC为正方形,则它的边长为.9.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=DC.若AB=16,BC=20,则图中阴影部分的面积是.10.如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是.11.如图:已知矩形ABCD中,AB=2,BC=3,F是CD的中点,一束光线从A点出发,通过BC边反射,恰好落在F点,那么反射点E与C点的距离为.12.如图,△ABC中,AB=6,AC=12,点D、E分别在AB、AC上,其中BD=x,AE=2x.当△ADE 与△ABC相似时,x的值可能是.【典型例题】1.(相似与二次函数)如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.2.(相似与圆)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.3.(一线三直角必有相似)(1)如图1,已知AB⊥l,DE⊥l,垂足分别为B、E,且C是l上一点,∠ACD =90°,求证:△ABC∽△CED;(2)如图2,在四边形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD 的长.4.(动态问题与相似)如图所示,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?5.(相似性质)如图,在Rt△ABC中,∠C=90°,BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.(1)设DE=x,则AD=(用含x的代数式表示);(2)求矩形DEFC的最大面积.6.(一线三直角)如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.(1)求FG的长;(2)直接写出图中与△BHG相似的所有三角形.7.(圆中相似计算)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是⊙O的切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.8.(圆中动态问题与相似计算)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.9.(相似与作图)如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?10.(遇到比例式问题处理)如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证:△ADC∽△BGC;(2)求证:CG•AB=CB•DG.11.(一线三等角与相似)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.(1)求证:△ABP∽△PCD;(2)求△ABC的边长.12.(动态问题中的相似计算)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P以2mm/s 的速度从A向B移动,(不与B重合),动点Q以4mm/s的速度从B向C移动,(不与C重合),若P、Q同时出发,试问:(1)经过几秒后,△PBQ与△ABC相似.(2)经过几秒后,四边形APQC的面积最小?并求出最小值.13.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?【作业】1.如图,△ABB1,△A1B1B2,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1:QB1的值为.2.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若BC=2AB,AD=2,CF=6,则BE的长为.3.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=.4.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC 的长.5.如图,正方形ABCD的边长为12,其内部有一个小正方形EFGH,其中E、F、H分别在BC,CD,AE 上.若BE=9,则小正方形EFGH的边长.6.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是.7.如图,在△ABC和△APQ中,∠P AB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是.8.如图,在平面直角坐标系中,点A,B的坐标分别为(0,1)和,若在第四象限存在点C,使△OBC和△OAB相似,则点C的坐标是.9.如图,在△ABC中,∠C=90°,AC=BC=1,P为△ABC内一个动点,∠P AB=∠PBC,则CP的最小值为.10.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=1,BD=2,则AC 的长.11.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.12.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q 从点B开始沿BC向C点以4cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒钟△PBQ 与△ABC相似?13.如图,已知等腰△ABC中,AB=AC=2,点D在边BC的反向延长线上,且DB=3,点E在边BC的延长线上,且∠EAC=∠D,设AD=x,BC=y.(1)求线段CE的长;(2)求y关于x的函数解析式,并写出定义域;(3)当AC平分∠BAE时,求线段AD的长.14.如图,已知△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在AB边上移动,动点F 在AC边上移动.(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,求BE的长;若不能,请说明理由;(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,并写出x的取值范围.15.如图,AB⊥BC,DC⊥BC,垂足分别为B、C,且AB=8,DC=6,BC=14,BC上是否存在点P使△ABP与△DCP相似?若有,有几个?并求出此时BP的长,若没有,请说明理由.16.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.17.学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足,或,两个直角三角形相似”.(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足的两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,.试说明Rt△ABC∽Rt△A′B′C′.。

第6章《图形的相似》知识讲练(学生版)

第6章《图形的相似》知识讲练(学生版)

2023-2024学年苏科版数学九年级下册章节知识讲练知识点01:比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则b2=ac(b称为a、c的比例中项).定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即(此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.知识点02:相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.知识点03:相似三角形1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:ABAP AP PB此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.知识点04:图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O 叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•仪征市校级月考)如图,△ABC∽△ADE,S△ABC:S四边形BDEC=1:3,BC=,则DE的长为()A.B.C.D.2.(2分)(2023•靖江市一模)已知,则的值是()A.B.C.3 D.3.(2分)(2023•姑苏区校级一模)如图,在△ABC中,AB=4,,点D在AB的延长线上,∠A=∠BCD=45°,则△BCD的面积为()B.C.74.(2分)(2023•盐都区三模)小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若点A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.25.(2分)(2023•锡山区校级四模)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A′B′C′D′,若AB:A′B′=1:2,则四边形A′B′C′D′的外接圆的半径为()A.B.2 C.D.46.(2分)(2023•大丰区校级模拟)若4m=5n(m≠0),则下列等式成立的是()A.=B.=C.=D.=7.(2分)(2023•新吴区二模)如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PQ∥BC,且PQ=2,在下列结论中:①DE=CF;②AE2=FP•FC;③在运动过程中,线段AP最小值为;④当∠CBQ的度数最大时,BQ的长为,其中正确的结论有()A.1个B.2个C.3个D.4个8.(2分)(2023春•滨湖区期末)如图,矩形ABCD中,AB=6,BC=10,点E在边AD上,且AE=2,F为边AB上的一个动点,连接EF,过点E作EG⊥EF交直线BC于点G,连接FG,若P是FG的中点,则DP的最小值为()A.B.6 C.5 D.29.(2分)(2023•海州区校级三模)如图▱ABCD,F为BC中点,延长AD至E,使=,连结EF交DC于点G,则=()A.2:3 B.3:2 C.9:4 D.4:910.(2分)(2023•沛县校级模拟)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.连接AC,若AH平分∠CAD,且正方形EFGH的面积为3,则正方形ABCD的面积为()A.B.C.D.15二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•宝应县二模)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC=.12.(2分)(2023•青岛一模)如图,在平面直角坐标系中,△OAB的顶点分别为O(0,0),A(﹣3,0),B (﹣4,3),△ODC与△OAB是以原点为位似中心的位似图形,且位似比为1:3,则点C在第四象限的坐标为.13.(2分)(2023•姜堰区二模)如图,△AOB与△CDB关于点B位似,其中B(1,1),D(3,3),若S△AOB=2,则S△CDB=.14.(2分)(2023•梁溪区一模)如图,在平行四边形ABCD中,CE=ED,BE交AC于点F,则EF:FB的比值是.15.(2分)(2023•张家港市校级二模)如图,点A、B、C、D在网格中小正方形的顶点处,AD与BC相交于点O,小正方形的边长为1,则AO的长等于.16.(2分)(2023•泉山区校级三模)如图,在△ABC中,点D、E分别在边AC、BC上,且,△CDE与四边形ABED的面积的比为.17.(2分)(2023•玄武区二模)如图,在矩形ABCD中,AB=6,BC=8,E是边BC上的动点,连接AE,过点E作EF⊥AE,与CD边交于点F,连接AF,则AF的最小值为.18.(2分)(2023•阜宁县二模)如图,小明同学用自制直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,DE=40cm,测得边DF离地面的高度ACm,CD=12m,则树高AB=m.19.(2分)(2023•工业园区校级模拟)如图,正方形ABCD由16个边长为1的小正方形组成,形变后成为菱形A′B′C′D′,△AEF(E、F是小正方形的顶点)同时形变为△A′E′F′.当△AEF与△A′E′F′的面积之比等于2:时,则A′C′=.20.(2分)(2023•海安市一模)已知点D(2,a)为直线y=﹣x+3上一点,将一直角三角板的直角顶点放在D处旋转,保持两直角边始终交x轴于A、B两点,C(0,﹣1)为y轴上一点,连接AC,BC,则四边形ACBD面积的最小值为.三.解答题(共8小题,满分60分)21.(6分)(2023春•姑苏区校级期末)已知线段AB=2,点P是线段AB的黄金分割点(AP>BP).(1)求线段AP的长;(2)以AB为三角形的一边作△ABQ,使得BQ=AP,连接QP,若QP平分∠AQB,求AQ的长.22.(6分)(2023•沭阳县模拟)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF持水平,并且边DE与点B在同一直线上,已知纸板的两条边DFm,EFm,测得边DF离地面的高度ACm,CD=10m,求树高AB.23.(8分)(2023•滨湖区一模)如图,以AB为直径的⊙O经过△ABC的顶点C,D是的中点,连接BD、OD分别交AC于点E、F.(1)求证:△DEF∽△BEC;(2)若DE=2,BE=6,求⊙O的面积.24.(8分)(2023•江都区模拟)在数学活动课上,老师带领数学小组测量大树AB的高度.如图,数学小组发现大树离教学楼5m,大树的影子有一部分落在地面上,还有一部分落在教学楼的墙上,墙上的影子CD 长为2mm的竹竿在水平地面上的影子长1m,那么这棵大树高度是多少?25.(8分)(2023•海陵区校级二模)(1)如图1,在△ABC中,AB>AC,请用无刻度的直尺和圆规在AB上确定一点P,使得△ACP∽△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的条件下,若AC=6,AB=8,则AP的长为;(3)在如图2的正方形网格中,△DEF的三个顶点均为格点,请用无刻度的直尺,在边DF上确定一点M,使得DE2=DM⋅DF.(保留作图痕迹,不要求写作法)26.(8分)(2023•宿城区校级模拟)问题提出如图(1),在△ABC中,∠BAC=90°,∠ABC=30°,D是△ABC内一点,AD⊥CD,∠ACD=30°,若AD =1,连接BD,求BD的长.问题探究(1)请你在图(1)中,用尺规作图,在AB左侧作△ABE,使△ABE∽△ACD.(用直尺、圆规作图,保留作图痕迹,不写作法,不说明理由)(2)根据(1)中作图,你可以得到CD与BE的位置关系是;你求得BD的长为;问题拓展(3)如图(2),在△ABC中,∠BAC=90°,∠ABC=30°,D是△ABC内一点,若AD=,BD=2,CD=4,求BC的长.27.(8分)(2023•启东市二模)如图,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处.点E到地面的高度DEm,点F到地面的高度CFm,灯泡到木板的水平距离ACm,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、B、C、D在同一水平面上.(1)求BC的长.(2)求灯泡到地面的高度AG.28.(8分)(2023•邗江区校级模拟)定义:两个相似三角形共边且位于一个角的角平分线两边,则称这样的两个相似三角形为邻似三角形.(1)[初步理解]:如图1,四边形ABCD中,对角线AC平分∠BAD,∠BCD+∠BAD=180°,求证:△ACB和△ADC为邻似三角形;(2)[尝试应用]:在(1)的基础上,如图2,若CD∥AB,AD=4,AC=6,求四边形ABCD的周长;(3)[拓展应用]:如图3,四边形ABCD中,△ACB和△ADC为邻似三角形,对角线AC平分∠BAD,且∠ADC=∠ACB.若AB=9,AD=4,∠BAD=60°,求△BCD的面积.。

苏科版九年级下册数学 第6章 相似三角形的性质

苏科版九年级下册数学 第6章 相似三角形的性质

SS△△AA'BBC'C'=(BB'CC')2
16
3
知1-讲
知识点 2 相似三角形对应线段的性质
知2-讲
1. 定理相似三角形对应线段的比等于相似比.
2. ห้องสมุดไป่ตู้号语言
(1)相似三角形对应高的比等于相似比(k). 如图6.5-3所示,如果
△ABC∽△A′B′C′,AD,A′D′分别为对应边BC,B′C′上的
一题多解: 例2也可以用另一种方法求解,如:过点A′作A′D′⊥B′C′ 于D′,利用相似三角形的性质先求出△A′B′C′中B′C′边 上的高A′D′的长,再利用S△A′B′C′=B′C′·A′D′求面积.
1 2
解:S△ABC=1BC·AD=×61×4=12.
∵△ABC∽△2A′B′C′,∴,2 即∴即,S△△SA△1AA′2B'B′B′'CC′'=C′的(′64=1)面,22=×9积944为=13.6
12 3 A. 5 B. 4
16
15
C. 9 D. 4
知2-讲
解题秘方:首先根据相似三角形的判定得出
△EAD∽△CAB,进而得AD出,AF即可得出答
案.
AB=AG
知2-讲
特别警示: 利用相似三角形的性质求线段长度的前提是两个三
角形必须相似.如果已知条件没有相似,则先证明与已知 (或待求)的边有关的三角形相似,然后再运用相似三角形 的性质进行计算.
第6章图形的相似
6.5相似三角形的性质
1 课时讲解 相似三角形的性质
相似三角形对应线段的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 相似三角形的性质

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

第六章《图形的相似》知识点一:比例线段1.比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.比例的基本性质:(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=m n =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b+d …+n ≠0) 3.平行线分线段成比例定理:(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例1:把长为10cm 的线段进行黄金分割,那么较长线段长为 cm 。

知识点二 :相似三角形的性质与判定5. 相似三角形的判定:(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF. (2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. FE DC B A学 班级 姓名 考试号-----------------------------------------------------------密---------------------------------封----------------------------------线--------------------------------------(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质:(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例2:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为 .(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG= .【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?第六章《图形的相似》易错疑难易错点1 对黄金分割的概念理解不清而出现漏解AB ,点C是线段AB的黄金分割点,则AC的长为.1. 已知线段20易错点2 找不准三角形的对应关系2. 如图,ACD ∆和ABC ∆相似需具备的条件是() A.AC AB CD BC =; B. CD BCAD AC=C. 2AC AD AB =g ;D. 2CD AD BD =g易错点3 混淆相似三角形的性质,误认为相似三角形的面积比等于相似比 3. 如图,若ADE ABC ∆∆:,DE 与AB 相交于点D ,与AC 相交于点E ,2DE =,5BC =,20ABC S ∆=,求ADE S ∆的值.易错点4 不能区分“相似”写“:”的含义4. 如图,在矩形ABCD 中,10,4AB AD ==,点P 是边AB 上一点,连接,PD PC ,若APD ∆与BPC ∆相似,则满足条件的点P 有 个.第4题第5题5. 如图,ABC ∆中,90C ∠=︒,16BC =cm ,12AC =cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点,P Q 分别从点,B C 同时出发,设运动时间为t s ,当t = 时,CPQ ∆与CBA ∆相似. 疑难点1 相似三角形的判定和性质的综合应用1. 如图是一块含30°角的直角三角板,它的斜边8AB =8cm ,里面空心DEF ∆的各边与ABC ∆的对应边平行,且各对应边间的距离都是1 cm ,那么DEF ∆的周长是( )A. 5cm ;B. 6cm ;C. (63)-cm ;D. (33)+cm第1题第2题2. 如图,已知矩形ABCD ,2,6AB BC ==,点E 从点D 出发,沿DA 方向以每秒1个单位长度的速度向点A 运动,点F 从点B 出发,沿射线AB 以每秒3个单位长度的速度运动,当点E 运动到点A 时,,E F 两点停止运动.连接BD ,过点E 作EH BD ⊥,垂足为H ,连接EF ,交BD 于点G ,交BC 于点M ,连接,CF EC .给出下列结论:①CDE CBF ∆∆:;②DBC EFC ∠=∠;③DE HGAB EH=;④GH 10.上述结论正确的个数为( )A.1B. 2C. 3D. 4 疑难点2 相似图形中的规律探索3.如图,在平面直角坐标系中,矩形AOCB 的两边,OA OC 分别在x 轴和y 轴上,且2,1OA OC ==.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111A OC B ,再将矩形111A OC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ……依此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .第3题 第4题4.如图,已知正方形11ABC D 的边长为1,延长11C D 到1A ,以11A C 为边向右作正方形1122AC C D ,延长22C D 到2A ,以22A C 为边向右作正方形2233A C C D ……依此类推,若112A C =,且点12310,,,,,A D D D D …都在同一直线上,则正方形991010A C C D 的边长是 .疑难点3 相似三角形与函数等知识的综合5. 反比例函数y =的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OP A 为直角三角形,求出此时P 点的坐标.疑难点4 动态问题中的相似三角形6.如图,在直角坐标系中,点(0,4),(3,4),(6,0)A B C --,动点P 从点A 出发以1个单位长度/秒的速度在y 轴上向下运动,动点Q 同时从点C 出发以2个单位长度/秒的速度在x 轴上向右运动,过点P 作PD y ⊥轴,交OB 于点D ,连接DQ .当点P 与点O 重合时,两动点均停止运动.设运动的时间为t 秒.(1)当1t =时,求线段DP 的长;(2)连接CD ,设CDQ ∆的面积为S ,求S 关于t 的函数表达式,并求出S 的最大值; (3)运动过程中是否存在某一时刻,使ODQ ∆与ABC ∆相似?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由参考答案例1. 5(5-1);例 2.(1)9:4;(2)1:2 综合运用:1.分析:(1)根据平行四边形的性质可得AD ∥BC ,AB ∥CD ,即得∠ADF =∠CED ,∠B +∠C =180°,再由∠AFE +∠AFD =180°,∠AFE =∠B ,可得∠AFD =∠C ,问题得证; (2)根据平行四边形的性质可得AD ∥BC ,CD =AB =4,再根据勾股定理可求得DE 的长,再由△ADF ∽△DEC 根据相似三角形的性质求解即可. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD ∴∠ADF =∠CED ,∠B +∠C =180°∵∠AFE +∠AFD =180,∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC ; 解:(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4。

相似三角形详细讲义

相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

苏教版九年级上册数学第六章【5】相似三角形的性质

苏教版九年级上册数学第六章【5】相似三角形的性质

18m.现在的问题是:被削去的部分面积有多大?它的
A 周长是多少?
30m
D
E
18m
B
C
6.5 相似三角形的性质(1)
全等三角形 对应边相等 对应角相等 周长相等 面积相等
相似三角形 对应边的比等于相似比 对应角相等 周长的比等于相似比 面积的比等于相似比的平方
6.5 相似三角形的性质 (2)
6.5 相似三角形的性质(2)
A
B
C
如图,△ABC∽△A'B'C',
A′
△ABC与△A'B'C'的相似比是2:3,
则△ABC与△A'B'C'的面积比是
多少?你的依据是什么?
B′
C′
回顾“相似三角形的面积比
等于相似比的平方”这个结论
的探究过程,你有什么发现?
6.5 相似三角形的性质(2)
如图,△ABC∽△ A'B'C', △ABC与△ A'B'C'的 相似比是k,AD、A 'D'是对应高. A′
如图,△ABC∽△A′B′C′,△ABC与△A′B′C′的 相似比是k,AD、A′D′是对应高. A′
A
zxxkw
学科网
学 科网
B
DC
S ∵△ABC∽△A'B'C'
B′
∴∠B=∠B'
S ∵AD⊥BC, A'D′⊥B'C'
∴∠ADB=∠A′D′B'=90°
∴△ABD∽△A'B'D'
D′ 1C′
ABC =

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。

它是一门古老而崭新的科学,是整个科学技术的基础。

随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。

以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。

数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。

简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。

这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质基本性质:内项积等于外项积。

(比例=====等积)。

主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。

三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)知识讲解【学习目标】(1)了解比例的基本性质,了解线段的比、成比例线段的概念;(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,周长的比等于对应边的比,面积的比等于对应边比的平方;(3)了解两个三角形相似的概念,探索两个三角形相似的条件;(4)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题( 如利用相似测量旗杆的高度);(5)理解实数与向量相乘的定义及向量数乘的运算律。

【知识网络】【要点梳理】要点一、比例线段及比例的性质1。

比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一2。

比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3。

平行线分线段成比例定理(1)三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

苏教版九年级数学下册第6章图形的相似课件

苏教版九年级数学下册第6章图形的相似课件
1.2m 2.7m
13、皮皮欲测楼房高度,他借助一长5m的标竿,当 楼房顶部、标竿顶端与他的眼睛在一条直线上时, 其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面 1.6m。请你帮他算出楼房的高度。
F
E D
A
B
C
谢谢
AD CE
∴△ADE∽△ECF
∴∠1+ ∠3=90 ° ∴∠2+ ∠3=90°
∴∠1=∠2
∴ AE⊥EF
画一画
10、在方格纸中,每个小格的顶点叫做格点,以格点 为顶点的三角形叫做格点三角形。在如图4×4的格纸 中,△ABC是一个格点三角形。
(1)在右图中,请你画一个格点三 角形,使它与△ABC类似(类似比 不为1)。
S ADE AE2 25
∴ S EFC = AC2 = 121
∵ S△ADE=25 ∴S △ABC=121
25 E
36
C
7、在平行四边形ABCD中,AE:BE=1:2。
若S△AEF=6cm2 则S△CDF = 54 cm2
S △ADF=_1_8__cm2
D
C
F
A
E
B
8、如图(6), △ABC中,DE⁄⁄FG⁄⁄BC,AD=DF= FB,则S△ADE:S四边形DFGE:S四边形FBCG =_________。
4 位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换是以原点 为位似中心,类似比为k,那么位似图形对应点 的坐标的比等于k或-k。
复习题
1、如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,
则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB

相似三角形复习教案

相似三角形复习教案

设计意图:1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。

2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”;使学生熟练掌握基本题型。

3、通过变式训练让学生感受图形从一般到特殊的变化;感受到题目的多解性;提高培养学生分析问题、解决问题的能力。

4、通过拓展训练让学生感受图形从特殊到一般(“三垂直型”拓展到“三角相等型”);加强学生对图形的感觉。

5、通过课堂及作业训练学生会用分类思想解决问题;巩固“三垂直型”和“三角相等型”。

设计方案:一、情境:如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C. D.2(检查学生做的情况,大部分学生利用勾股定理计算。

)这道题目也可以利用相似三角形来计算。

有时利用相似三角形解决问题较简便。

今天我们复习相似三角形。

(出示课题)二、梳理相似三角形基本图形:在我们学习相似三角形这一章时同学们做了许多题目,今天我们来回顾一下,看看他们之间有没有联系,同时检验一下同学们对图形的感觉。

1、如图(1),已知CA=8,CB=6,AB=5,CD=4(1)若CE= 3,则DE=____(2) 如图(2)若CE= ,则DE=____.2、如图(3),在⊿ABC中,D为AC边上一点,∠DBC=∠A,BC= ,AC=3,则CD的长为()(A)1 (B)2 (C)(D)3、如图(4),∠ABC=90埃?SPAN>BD⊥AC于D,DC=4 ,AD=9,则BD的长为()(A)36 (B)16 (C) 6 (D)4、如图,F、C、D共线,BD⊥FD,EF⊥FD,BC⊥EC ,若DC=2 ,BD=3,FC=9,则EF的长为()(A)6 (B)16 (C) 26 (D)(这四道题目先留时间给学生在下面做,再让一个学生上黑板讲解。

)由这四条题目让学生感受图形从一般到特殊的变化。

相似三角形的判定和性质复习

相似三角形的判定和性质复习
2 0 0 6. 0 4 .2 0.
相似三角形复习(2)
——比例式、等积式的几种常见证明方法
许河中学 周美华
1.已知:如图, ∠ACB=90°,AD=DB,DE⊥AB 于D交AC于E,交BC的延长线于F,试说明: DC2=DE· DF
A
利用相似 三角形的 性质
D
E
F
C
B
2. 如图,在直角梯形ABCD中,AB∥CD, AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD, 过点E作EF∥AB交AD于F, 试说明 (1)AF=BE (2) AF2=AE· EC
培养基由于配制的原料不同,使用要求不同,而贮存保管方面也稍有不同。一般培养基在受热、吸潮后,易被细菌污染或分解变质,因此一 般培养基必须防潮、避光、阴凉处保存。对一些需严格灭菌的培养基(如组织培养基),较长时间的贮存,必须放在3-6℃的冰箱内。由于 液体培养基不易长期保管,均改制成粉末。
得到咯年总督壹行人明日抵京的消息,他才会选择今天去怡然居,给冰凝布下任务。可恶的冰凝,居然这么不上道,差点儿坏咯他精心设计 的计谋,弄得王爷以为她有咯啥啊警觉。从本质上来讲,他根本就不怕她的任何警觉!爷想要喜欢谁就喜欢谁,岂是壹各小小的年氏就能左 右得咯的事情?王爷担心的是玉盈姑娘,他担心玉盈因为顾及冰凝的感受,而对他退避三舍。他只要赢得咯玉盈姑娘的心,他就再也不用担 心冰凝咯。为咯确保玉盈能够来府里,他特意安排吟雪前往年府接人。假如还是像上次那样,由冰凝写信邀请,他担心玉盈姑娘起咯戒备之 心,不肯赴约。假如是吟雪亲自上门去请,壹方面玉盈肯定不会想到这是他的计谋,另壹方面,年大人和年夫人为咯知道冰凝的情况,也会 催促玉盈姑娘来府里陪她。对此,王爷有充足的把握。每壹步,他都计划周祥、谨慎行事,他要确保玉盈姑娘如他壹样,向他敞开她最真诚 的心扉。对玉盈,他也有充足的把,他知道玉盈姑娘的心中有他,她只是太善良,不忍心夺妹妹所爱。可是,假如玉盈姑娘知道她的妹妹对 她的夫君根本就不稀罕,而且千金难买她愿意之后,还会这么坚持吗?王爷简直就是天生的预言家,他的分析壹点儿错都没有!当玉盈得知 爹爹将要致休回京城的消息后,对于自己何去何从,她可是平生第壹次犯咯天大的愁。京城?四川?摆在她面前的,只有这么两条路。假如 没有他,玉盈不会有任何想法,她壹定会随着爹爹和娘亲回京城。在京城,她要为爹爹和娘亲恪尽孝道、养老送终;在京城,她还有最亲最 爱的凝儿!可是在京城,为啥啊还要有各他!他就那样毫无征兆地闯进咯她的生活,带给她,壹各全新的世界,让她知道,原来爱情就是这 各样子,原来爱人就是这各模样!可是为啥啊,他竟然是凝儿的夫君?假如除凝儿以外的任何壹各人,她会毫不犹豫地接受他的爱,也会把 自己那完完整整的壹颗心,毫无保留地奉献给他,因为她为他,早已迷失咯心志,因为她为他,早就着咯魔。可是凝儿,是她最亲爱的妹妹, 是对她有养育之恩的年家的掌上明珠,她怎么能够夺去凝儿的夫君?泪眼滂沱中的玉盈,打开曾经无数次地揣度端详过的那各红木匣,那里 面的信,早已经装得满满的,几乎都要合不上。每壹封信,她都按时间顺序,整整齐齐地码放着,不用拆开,她都知道里面的内容,因为她 已经看过无数遍,牢记在心间,镌刻在记忆里。第壹卷 第199章 式微就在玉盈苦苦挣扎、痛不欲生的日子里,她又收到咯他的来信,最后 壹封来信。还没有拆开,她早就泪流满面、泣不成声。翠珠也不知道丫鬟是因为啥啊事情而伤心难过成咯这各样子,不就是二丫鬟的壹封信 吗?二丫鬟说咯啥啊让丫鬟这

苏科版九年级下册数学第6章 与判定三角形相似有关的应用及三角形的重心

苏科版九年级下册数学第6章 与判定三角形相似有关的应用及三角形的重心

【点拨】①∠B=∠AED,∠A=∠A,则可判断△ ADE
∽△ACB,故①符合题意; ②DE∥BC,则△ ADE∽△ABC,故②不符合题意; ③AADC=AAEB,且夹角∠A=∠A,能确定△ ADE∽△ACB, 故③符合题意;
④由 AD·BC=DE·AC 可得AADC=DBCE,此时不确定 ∠ADE=∠ACB,故不能确定△ ADE∽△ACB,故④ 不符合题意,故选 B.
∴AE=BE=12AB=32.
②当∠CDE=90°时,如图②, ∵△ADE、△BEC、△EDC 两两相似, ∴∠CEB=∠CED=∠AED=60°. ∴∠BCE=∠DCE=∠ADE=30°. ∵∠A=∠B=90°, ∴BE=ED=2AE. ∵AB=3,∴AE=1.
综上,AE 的值为32或 1.
11 【2020·上海】已知:如图,在菱形ABCD中,点E、F分 别在边AB、AD上,BE=DF,CE的延长线交DA的延长 线于点G,CF的延长线交BA的延长线于点H. (1)求证:△BEC∽△BCH;
【2020秋·苏州市月考】已知,在△ABC中,G是三角形的 3 重心,AG=5,GC=12,AC=13,则BG=__1_3_____.
【点拨】如图,延长 BG 交 AC 于 H. ∵AG2+GC2=52+122=169,AC2=132=169, ∴AG2+GC2=AC2.∴∠AGC=90°. ∵G 是三角形的重心,∴H 是 AC 的中点. 在 Rt△AGC 中,H 是 AC 的中点,∴GH=12AC=6.5. ∵G 是三角形的重心,∴BG=2GH=13.
9 如图,在矩形ABCD中,AD=2,AB=5,P为 CD边上ห้องสมุดไป่ตู้动点,当DP=__1_或__4_或__2_.5_时,△ADP 与△BCP相似.

九年级数学下册第6章图形的相似6.4探索三角形相似的条件6.4.4利用三边证相似同步练习2新版苏科版

九年级数学下册第6章图形的相似6.4探索三角形相似的条件6.4.4利用三边证相似同步练习2新版苏科版

[6.4 第4课时利用三边证相似]一、选择题1.△ABC的三边长分别为2,6,2,△A1B1C1的两边长为1,3,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为( )A. 2B.22C.62D.332.在△ABC与△A′B′C′中,有下列条件:①ABA′B′=BCB′C′;②BCB′C′=ACA′C′;③∠B=∠B′;④∠C=∠C′.如果从中任取两个条件组成一组,那么能判定△ABC∽△A′B′C′的共有( )A.1组 B.2组 C.3组 D.4组3.如图K-18-1,在边长为1的格点图形中,与△ABC相似的是链接听课例2归纳总结( )图K-18-1图K-18-24.如图K-18-3所示,若A,B,C,P,Q,甲、乙、丙、丁都是方格纸上的格点,为使△ABC ∽△PQR,则点R应是甲、乙、丙、丁4点中的( )图K-18-3A.甲B.乙C.丙D.丁二、填空题5.若一个三角形的三边长之比为3∶5∶7,与它相似的三角形的最长边的边长为21 cm,则其余两边长的和为________cm.6.如图K-18-4,在△ABC和△DEF中,已知ABDE=BCEF,再添加一个条件:________________________________________________________________________,使得△ABC∽△DEF.图K-18-47.正方形ABCD中,E是CD的中点,点F在BC边上,BF=3CF.则下列结论:(1)△ABF∽△AEF;(2)△ECF ∽△ADE ;(3)△AEF ∽△ADE ;(4)△ABF ∽△ADE ;(5)△ECF ∽△AEF .其中正确的有________(填写序号).8.如图K -18-5,在7×12的正方形网格中有一只可爱的小狐狸,观察画面中由黑色阴影组成的五个三角形,则相似三角形有________对.链接听课例2归纳总结图K -18-5三、解答题9.根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.(1)∠B =30°,AB =3 cm ,AC =4 cm ,∠B ′=30°,A ′B ′=6 cm ,A ′C ′=8 cm ;(2)AB =4 cm ,BC =6 cm ,AC =5 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=15 cm.链接听课例1归纳总结10.如图K -18-6所示,在每个小正方形的边长为1个单位的网格中,△ABC ,△DEF 的顶点都在格点上,那么△ABC 与△DEF 相似吗?试说明理由.链接听课例1归纳总结图K -18-611.已知AD 和A 1D 1分别是△ABC 和△A 1B 1C 1的中线,且AB A 1B 1=AC A 1C 1=AD A 1D 1. 试判断△ABC 与△A 1B 1C 1是否相似,并说明你的理由.12.如图K -18-7,在△ABC 中,AD 为边BC 上的高,E ,F 分别为AB ,AC 的中点,△DEF 与△ABC 相似吗?说明你的理由. 图K -18-713.如图K -18-8,在△ABC 和△ADE 中,AB AD =BC DE =AC AE,点B ,D ,E 在一条直线上. 求证:△ABD ∽△ACE.图K -18-8类比思想学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到:“满足____________________________的两个直角三角形相似”.请结合下列所给图形,写出已知、求证,并完成说理过程.图K -18-9详解详析 [课堂达标]1.[解析] A 设第三边长为x ,分类讨论:(1)21=63=2x ,则x =2;(2)2x =21≠63,故不成立;(3)21≠23=6x,故不成立. 2.[解析] D 根据相似三角形的判定方法,知①②,②④,③④,①③满足条件,故选D .3.[解析] A 根据勾股定理求出△ABC 的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.已知给出的三角形的各边分别为2,2,10,所以△ABC 的三边之比为2∶2∶10=1∶2∶ 5.A 项,三角形的三边分别为1,2,5,三边之比为1∶2∶5,故A 选项正确;B 项,三角形的三边分别为2,5,3,三边之比为2∶5∶3,故B 选项错误;C 项,三角形的三边分别为1,5,2 2,三边之比为1∶5∶2 2,故C 选项错误;D 项,三角形的三边分别为2,5,13,三边之比为2∶5∶13,故D 选项错误.故选A .4.[解析] C 记方格纸上每一小格的边长为1,记甲、乙、丙、丁4点为X ,Y ,Z ,W.则AB =2,BC =AC =10,PQ =4.若△ABC ∽△PQR ,则PR =2 10.而PX ,PY ,PZ ,PW 中只有PZ 的长为2 10,所以R 应是丙点.5.[答案] 24[解析] 设另两边长分别为x cm ,y cm (x<y).则x 3=y 5=217,所以x =9,y =15,所以x +y =24. 6.答案不唯一,如∠B =∠E 或AB DE =AC DF7.(2)(3)(5)8.[答案] 2 [解析] 如图,设一个小正方形的边长为1,则计算各个小三角形的各边长如下:△ABC 的各边分别为2,2,2;△CDF 的各边分别为2,5,3;△EFG 的各边分别为5,5,10;△HMN 的各边分别为1,2,5; △HPQ 的各边分别为2,2 2,2 5; 可以得出△ABC 与△EFG ,△HMN 与△HPQ 的各边对应成比例,所以这两组三角形相似.故答案为2. 9.解:(1)不一定相似.理由:∵AB A′B′=36=12,AC A′C′=48=12, ∴AB A′B′=AC A′C′, 但∠B 不是边AB ,AC 两边的夹角,∠B ′不是边A′B′,A ′C ′的夹角,不满足三角形相似的条件,∴△ABC 与△A′B′C′不一定相似.(2)相似.理由:∵AB A′B′=412=13,BC B′C′=618=13,AC A′C′=515=13,∴AB A′B′=BC B′C′=AC A′C′, ∴△ABC ∽△A ′B ′C ′.10.解:不相似.理由:在△ABC 中,AC =4,由勾股定理,求得BC =AB =20=2 5.在△DEF 中,由勾股定理,得DF =2,DE =EF =5,∴DE AB =EF BC =52 5=12, 而DF AC =24≠12,∴DE AB =EF BC ≠DF AC,∴△ABC 与△DEF 不相似.11.解:相似.理由:如图,等倍延长中线AD 和A 1D 1至M 和M 1,连接BM 和B 1M 1,则AM =2AD ,A 1M 1=2A 1D 1.易证△ADC ≌△MDB ,△A 1D 1C 1≌△M 1D 1B 1,则BM =AC ,B 1M 1=A 1C 1.∵AB A 1B 1=AC A 1C 1=AD A 1D 1, ∴AB A 1B 1=BM B 1M 1=AM A 1M 1, ∴△ABM ∽△A 1B 1M 1,∴∠BAM =∠B 1A 1M 1,∠M =∠M 1.由△ADC ≌△MDB ,得∠DAC =∠M ,由△A 1D 1C 1≌△M 1D 1B 1,得∠D 1A 1C 1=∠M 1,∴∠DAC =∠D 1A 1C 1,∴∠BAC =∠B 1A 1C 1.又∵AB A 1B 1=AC A 1C 1, ∴△ABC ∽△A 1B 1C 1.12.[解析] 根据三角形的中位线性质可得EF =12BC ,再根据直角三角形斜边上的中线等于斜边的一半可得DE =12AB ,DF =12AC ,所以有EF BC =DE AB =DF AC =12,可证得△DEF 与△ABC 相似. 解:△DEF ∽△ABC.理由:∵E ,F 分别为AB ,AC 的中点,∴EF =12BC. ∵AD 为边BC 上的高,E ,F 分别为AB ,AC 的中点,∴DE =12AB ,DF =12AC , ∴EF BC =DE AB =DF AC =12,∴△DEF ∽△ABC. 13.[解析] 在△ABC 和△ADE 中,由AB AD =BC DE =AC AE,可证得△ABC ∽△ADE ,即可证得∠BAD =∠CAE ,又由AB AD =AC AE,即可证得△ABD ∽△ACE. 证明:∵在△ABC 和△ADE 中,AB AD =BC DE =AC AE,∴△ABC ∽△ADE , ∴∠BAC =∠DAE ,∴∠BAD =∠CAE.∵AB AD =AC AE ,∴AB AC =AD AE,∴△ABD ∽△ACE. [素养提升]解: 斜边和一条直角边对应成比例已知:Rt △ABC 和Rt △A ′B ′C ′,且BC B′C′=AB A′B′. 求证:Rt △ABC ∽Rt △A ′B ′C ′.证明:设BC B′C′=AB A′B′=k(k >0), 则BC =k·B′C ′,AB =k·A′B′.∵AC =AB 2-BC 2=(k·A′B′)2-(k·B′C′)2=k A′B′2-B′C′2=k·A′C′,∴AC A′C′=k ,从而BC B′C′=AB A′B′=AC A′C′=k , ∴Rt △ABC ∽Rt △A ′B ′C ′.。

苏科版九年级数学下册第六章《图形的相似》(相似三角形的性质)

苏科版九年级数学下册第六章《图形的相似》(相似三角形的性质)

第六章《图形的相似》(相似三角形的性质)一.选择题1.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:22.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.24.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.5.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:257.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.8.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE 分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC =4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个9.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.10.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1 B.2 C.3 D.411.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别是PB 、PC (靠近点P )的三等分点,△PEF 、△PDC 、△PAB 的面积分别为S 1、S 2、S 3,若AD=2,AB=2,∠A=60°,则S 1+S 2+S 3的值为( )A .B .C .D .412.如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m ,水平部分线段长度之和记为n ,则这三个多边形中满足m=n 的是( ) A .只有② B .只有③ C .②③ D .①②③二.填空题13.如图,已知△ADE ∽△ABC ,若∠ADE=37°,则∠B= °.14.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若S△DEC=3,则S △BCF = .15.如图,AC ⊥BC ,AC=BC ,D 是BC 上一点,连接AD ,与∠ACB 的平分线交于点E ,连接BE .若S △ACE =,S △BDE =,则AC= .16.如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .17.如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,AB=12,EF=9,则DF 的长是 .18.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2:3,AD=4,则DB= .19.如图,已知△ABC 、△DCE 、△FEG 、△HGI 是4个全等的等腰三角形,底边BC 、CE 、EG 、GI 在同一直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,则QI= .20.如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,若AD ⊥BC ,BC=3,AD=2,EF=EH ,那么EH 的长为 .21.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =S △FGH ;④AG +DF=FG . 其中正确的是 .(把所有正确结论的序号都选上)三.解答题22.如图,在平面直角坐标系xOy 中,直线y=﹣x +3与x 轴交于点C ,与直线AD 交于点A(,),点D 的坐标为(0,1) (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.23.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD 为底边的等腰三角形,求完美分割线CD的长.24.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.25.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.26.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.28.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.29.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.30.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.参考答案与解析一.选择题1.(2016•临夏州)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.2.(2016•重庆)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.3.(2016•淄博)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【分析】根据题意得出△PAM ∽△QBM ,进而结合勾股定理得出AP=3,BQ=,AB=2,进而求出答案.【解答】解:连接AP ,QB , 由网格可得:∠PAB=∠QBA=90°, 又∵∠AMP=∠BMQ , ∴△PAM ∽△QBM , ∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan ∠QMB=tan ∠PMA===2.故选:D .【点评】此题主要考查了勾股定理以及相似三角形的判定与性质以及锐角三角函数关系,正确得出△PAM ∽△QBM 是解题关键.4.(2016•兰州)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为,则△ABC 与△DEF 对应中线的比为( )A .B .C .D .【分析】根据相似三角形的对应中线的比等于相似比解答.【解答】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的相似比为,∴△ABC 与△DEF 对应中线的比为, 故选:A .【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.5.(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.6.(2016•随州)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比是( )A .1:3B .1:4C .1:5D .1:25【分析】根据相似三角形的判定定理得到△DOE ∽△COA ,根据相似三角形的性质定理得到=, ==,结合图形得到=,得到答案.【解答】解:∵DE ∥AC ,∴△DOE ∽△COA ,又S △DOE :S △COA =1:25, ∴=,∵DE ∥AC , ∴==, ∴=,∴S △BDE 与S △CDE 的比是1:4,故选:B .【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7.(2016•泸州)如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A.B.C.D.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.8.(2016•丹东)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC =4S△ADF.其中正确的有()A.1个B.2 个 C.3 个 D.4个【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC =2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC =2S△ABD=4S△ADF.④正确;故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的判定与性质;本题综合性强,有一定难度,证明三角形相似和三角形全等是解决问题的关键.9.(2016•台湾)如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.【分析】由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【解答】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:AE=,将AE=代入②,得:,解得:BN=,故选:D.【点评】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.10.(2016•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB :S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A .1B .2C .3D .4【分析】由正方形的性质得出∠FAD=90°,AD=AF=EF ,证出∠CAD=∠AFG ,由AAS 证明△FGA ≌△ACD ,得出AC=FG ,①正确;证明四边形CBFG 是矩形,得出S △FAB =FB •FG=S 四边形CBFG ,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD ∽△FEQ ,得出对应边成比例,得出D •FE=AD 2=FQ •AC ,④正确.【解答】解:∵四边形ADEF 为正方形,∴∠FAD=90°,AD=AF=EF ,∴∠CAD +∠FAG=90°,∵FG ⊥CA ,∴∠C=90°=∠ACB ,∴∠CAD=∠AFG ,在△FGA 和△ACD 中,,∴△FGA ≌△ACD (AAS ),∴AC=FG ,①正确;∵BC=AC ,∴FG=BC ,∵∠ACB=90°,FG ⊥CA ,∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF=90°,S △FAB =FB •FG=S 四边形CBFG ,②正确;∵CA=CB ,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.11.(2016•日照)如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,=3,∴S2+S3=S△PBC又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,=×3=,∴S△PEF即S1=,∴S1+S2+S3=+3=,故选A.【点评】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题.12.(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二.填空题13.(2016•宁德)如图,已知△ADE∽△ABC,若∠ADE=37°,则∠B=37°.【分析】根据相似三角形的对应角相等,可得答案.【解答】解:由△ADE∽△ABC,若∠ADE=37°,得∠B=∠ADE=37°,故答案为:37.【点评】本题考查了相似三角形的性质,熟记相似三角形的性质是解题关键.14.(2016•梅州)如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若S △DEC =3,则S △BCF = 4 .【分析】根据平行四边形的性质得到AD ∥BC 和△DEF ∽△BCF ,由已知条件求出△DEF 的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∴, =()2,∵E 是边AD 的中点,∴DE=AD=BC , ∴=,∴△DEF 的面积=S △DEC =1,∴=,∴S △BCF =4;故答案为:4.【点评】本题考查的是平行四边形的性质、相似三角形的判定和性质;掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.15.(2016•遵义)如图,AC ⊥BC ,AC=BC ,D 是BC 上一点,连接AD ,与∠ACB 的平分线交于点E ,连接BE .若S △ACE =,S △BDE =,则AC= 2 .【分析】设BC=4x ,根据面积公式计算,得出BC=4BD ,过E 作AC ,BC 的垂线,垂足分别为F ,G ;证明CFEG 为正方形,然后在直角三角形ACD 中,利用三角形相似,求出正方形的边长(用x 表示),再利用已知的面积建立等式,解出x ,最后求出AC=BC=4x 即可.【解答】解:过E 作AC ,BC 的垂线,垂足分别为F ,G ,设BC=4x ,则AC=4x ,∵CE 是∠ACB 的平分线,EF ⊥AC ,EG ⊥BC ,∴EF=EG ,又S △ACE =,S △BDE =, ∴BD=AC=x ,∴CD=3x ,∵四边形EFCG 是正方形,∴EF=FC ,∵EF ∥CD ,∴=,即=,解得,EF=x ,则×4x ×x=,解得,x=,则AC=4x=2,故答案为:2.【点评】本题考查的是相似三角形的性质、角平分线的性质,掌握相似三角形的对应边的比相等、角的平分线上的点到角的两边的距离相等是解题的关键.16.(2016•山西)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为3﹣.【分析】根据AB=CD=4、C为线段AB的中点可得BC=AC=2、AD=2,再根据EH⊥DC、CD⊥AB、BE⊥AB得EH∥AC、四边形BCGH为矩形,BC=GE=2,继而由AE是∠DAB 的平分线可得∠DAE=∠HEA即HA=HE,设GH=x得HA=2+x,由△DHG∽△DAC得=,列式即可求得x.【解答】解:∵AB=CD=4,C为线段AB的中点,∴BC=AC=2,∴AD=2,∵EH⊥DC,CD⊥AB,BE⊥AB,∴EH∥AC,四边形BCGH为矩形,∴∠HEA=∠EAB,BC=GE=2,又∵AE是∠DAB的平分线,∴∠EAB=∠DAE,∴∠DAE=∠HEA,设GH=x,则HA=HE=HG+GE=2+x,∵EH∥AC,∴△DHG∽△DAC,∴=,即=,解得:x=3﹣,即HG=3﹣,故答案为:3﹣.【点评】本题主要考查勾股定理、平行线的性质和判定、等腰三角形的判定与性质、矩形的判定与性质及相似三角形的判定与性质等知识点,根据相似三角形的性质得出对应边成比例且表示出各边长度是关键.17.(2016•舟山)如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是7.【分析】根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长.【解答】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等,∵AB∥DE,∴△CEF∽△CBA,∵EF=9,AB=12,∴EF:AB=9:12=3:4,∴△CEF和△CBA的面积比=9:16,设△CEF的面积为9k,则四边形AFEB的面积=7k,∵△CDF与四边形AFEB的面积相等,∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=7k:9k,∴DF=7.故答案为:7.【点评】此题考查了相似三角形的判定与性质,解题的关键是会用割补法计算面积.18.(2016•乐山)如图,在△ABC中,D、E分别是边AB、AC上的点,且DE∥BC,若△ADE与△ABC的周长之比为2:3,AD=4,则DB=2.【分析】由DE∥BC,易证△ADE∽△ABC,由相似三角形的性质即可求出AB的长,进而可求出DB的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的周长之比为2:3,∴AD:AB=2:3,∵AD=4,∴AB=6,∴DB=AB﹣AD=2,故答案为:2.【点评】此题主要考查的是相似三角形的性质:相似三角形的一切对应线段(包括对应边、对应中线、对应高、对应角平分线等)的比等于相似比,面积比等于相似比的平方.19.(2016•黄冈)如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.【分析】由题意得出BC=1,BI=4,则=,再由∠ABI=∠ABC,得△ABI∽△CBA,根据相似三角形的性质得=,求出AI,根据全等三角形性质得到∠ACB=∠FGE,于是得到AC∥FG,得到比例式==,即可得到结果.【解答】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=4BC=4,∴==,=,∴=,∵∠ABI=∠ABC,∴△ABI∽△CBA;∴=,∵AB=AC,∴AI=BI=4;∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故答案为:.【点评】本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD ∥EF,AC∥DE∥FG是解题的关键.20.(2016•安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.21.(2016•安徽)如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =S △FGH ;④AG +DF=FG .其中正确的是 ①③④ .(把所有正确结论的序号都选上)【分析】由折叠性质得∠1=∠2,CE=FE ,BF=BC=10,则在Rt △ABF 中利用勾股定理可计算出AF=8,所以DF=AD ﹣AF=2,设EF=x ,则CE=x ,DE=CD ﹣CE=6﹣x ,在Rt △DEF中利用勾股定理得(6﹣x )2+22=x 2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG ,易得∠2+∠3=45°,于是可对①进行判断;设AG=y ,则GH=y ,GF=8﹣y ,在Rt △HGF 中利用勾股定理得到y 2+42=(8﹣y )2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D 和≠,可判断△ABG 与△DEF 不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴∠1=∠2,CE=FE ,BF=BC=10,在Rt △ABF 中,∵AB=6,BF=10,∴AF==8,∴DF=AD ﹣AF=10﹣8=2,设EF=x ,则CE=x ,DE=CD ﹣CE=6﹣x ,在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6﹣x )2+22=x 2,解得x=,∴ED=,∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠3=∠4,BH=BA=6,AG=HG ,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF ﹣BH=10﹣6=4,设AG=y ,则GH=y ,GF=8﹣y ,在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8﹣y )2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D , ==, =,∴≠,∴△ABG 与△DEF 不相似,所以②错误;∵S △ABG =•6•3=9,S △FGH =•GH •HF=×3×4=6,∴S △ABG =S △FGH ,所以③正确;∵AG +DF=3+2=5,而GF=5,∴AG +DF=GF ,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三.解答题22.(2016•广州)如图,在平面直角坐标系xOy 中,直线y=﹣x +3与x 轴交于点C ,与直线AD 交于点A (,),点D 的坐标为(0,1)(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.23.(2016•宁波)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD 为底边的等腰三角形,求完美分割线CD的长.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.24.(2016•泰州)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD平分∠CAE,∴∠DAG=∠CAG,∵AB=AC,∴∠B=∠ACB,∵∠CAG=∠B+∠ACB,∴∠B=∠DAG,∴AD∥BC;(2)解:∵CG⊥AD,∴∠AFC=∠AFG=90°,在△AFC和△AFG中,,∴△AFC≌△AFG(ASA),∴CF=GF,∵AD∥BC,∴△AGF∽△BGC,∴GF:GC=AF:BC=1:2,∴BC=2AF=2×4=8.【点评】此题考查了等腰三角形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意证得△AGF∽△BGC是关键.25.(2016•怀化)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【分析】(1)根据EH∥BC即可证明.(2)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得=,列出方程即可解决问题.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B ,∠AHE=∠C ,∴△AEH ∽△ABC .(2)解:如图设AD 与EH 交于点M .∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x ,∵△AEH ∽△ABC , ∴=, ∴=,∴x=,∴正方形EFGH 的边长为cm ,面积为cm 2.【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.26.(2016•杭州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且.(1)求证:△ADF ∽△ACG ;(2)若,求的值.【分析】(1)欲证明△ADF ∽△ACG ,由可知,只要证明∠ADF=∠C 即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.27.(2016•大庆)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.【分析】根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F=∠FCD,在△ADG与△CDG中,,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴,∴AG2=GE•GF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.28.(2016•梅州)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.【分析】(1)由已知条件得出AB=10,.由题意知:BM=2t,,,由BM=BN得出方程,解方程即可;。

初三相似三角形知识点以及经典例题

初三相似三角形知识点以及经典例题

初三相似三角形知识点以及经典例题相似三角形是指形状相同但大小不同的三角形。

它是相似多边形中最简单的一种。

如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就是相似三角形。

相似三角形对应边长度的比叫做相似比或相似系数。

比例线段是指四条线段a、b、c、d中,如果a与b的比等于c与d的比,那么这四条线段就是成比例线段,简称比例线段。

需要注意的是,比例线段是有顺序的,而且有比例式的定义。

在比例式中,a、d叫比例外项,b、c叫比例内项,a、c叫比例前项,b、d叫比例后项。

如果b=c,即a:b=c:d,那么b叫做a、d的比例中项,此时有b=ad。

比例有一些基本性质和定理。

比如,a:b=c:d等价于ad=bc;a:b=b:c等价于b=ac/b;同时,比例的分母不能为0.还有更比性质、反比性质、合、分比性质等。

需要注意的是,由一个比例式只能化成一个等积式,而一个等积式共可化成八个比例式,如ad=bc,除了可化为a:b=c:d等。

比例线段也有一些相关定理,如三角形中平行线分线段成比例定理和平行线分线段成比例定理。

其中,三角形中平行线分线段成比例定理指的是平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例;而平行线分线段成比例定理指的是三条平行线截两条直线,所截得的对应线段成比例。

例题1:已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是18 cm,a+b与a-b的比例中项是3 cm。

例题2:若(a+b)/(b+c)=(a-c)/(c-a),则m=1.相似三角形是指对应角相等,对应边成比例的三角形。

用符号“∽”表示,读作“相似于”。

对应角和对应边可以通过对应顶点的字母来表示,这样更容易找到相似三角形的对应角和对应边。

相似三角形的对应边的比叫做相似比(或相似系数)。

相似三角形对应角相等,对应边成比例。

相似三角形有三个等价关系:反身性、对称性和传递性。

反身性是指任何三角形都与自己相似。

苏科版九年级下册数学教学课件 第6章 图形的相似 第5课时 三角形相似的判定及三角形的重心

苏科版九年级下册数学教学课件 第6章 图形的相似 第5课时 三角形相似的判定及三角形的重心

AD=6,GE=3,则AG= 4 ,BE= 9 .
【解析】如图,连接DE,由G为重心,可知
DE为中位线,则DE ∥AB,且 DE 1 AB ,
2
易得△DEG∽△ABG,
可得EG 1 BG, DG 1 AG ,

AG
2
2 AD
4
2
,BE=3GE=9.
3
B
A
E G
D
C
CONTENTS4Biblioteka 三角形相似 的判定及三 角形的重心
的外接圆于点E.△ABE与△CDE相似吗?为什么?
解:△ABE和△CDE相似.
A
∵AB=AC, ∴AB = AC, ∴∠AEB=∠AEC. 在△ABE和△CDE中,
O
B
D
C
E
∵∠AEB=∠DEC,∠BAE=∠DCE,
∴△ABE∽△CDE (两角分别相等的两个三角形相似) .
三角形相似的判定
判定两个三角形相似基本思路: (1)若已知一对等角,则可找另一对等角,或说明夹已知等角的两 边成比例. (2)若已知两边成比例,则可说明其夹角相等,或说明第三边也成 比例. (3)若出现平行线,则利用“平行于三角形一边 的直线与其他两边 (或两边的延长线)相交,所构成的三角形与原三角形相似”来判定.
三角形的重心与顶点的距离等于它与对边中 点距离的两倍.
同样可得△G'DE∞△G'AB,
G'E' 1 G'B'. 2
于是,点G'与点G重合,
三角形的三条中线相交于一点.
B
F
E
G'
D
C
三角形的重心
定 义:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、△ABC中,DE//BC,BE与CD交于点 O,图中有哪几对相似三角形?
Aபைடு நூலகம்D
O
E C
B
5、△ABC中, ∠APQ= ∠ACB, BQ与 CP交于点O,图中有哪几对相似三角形? 为什么? A Q P O
B
C
6、△ABC中,DE//BC,BE与CD交于点
O,连接AO并延长分别交DE、BC分别 于点M、N,求证:AM = OM AN ON A D M
A D B
C
2、△ABC中,AB =AC,且∠A=360, (1)过点B画直线BD交AC于D,使所截得 的三角形与△ABC相似; (2)求证:AD2=AC CD

A D B C
3、△ABC中,AB=3,AC=6,点P在AB 上,AP=2,过点P画直线交AC于点D, 使所截得的三角形与△ABC相似,则 1或4 AD=__________ 。 A D P ● D C B
第6章 相似三角形复习
概念区分
1、相似与全等之间有什么关系? 2、相似与位似之间有什么关系?
实战练习:
1、△ABC中,∠ABC>∠C,(1)过点B画直 线BD交AC于D,使截得的△ ABD与△ABC 相似;(2)若∠ABC=900,求证: AB2=AD●AC,BC2=CD ● CA ;(3)在(2) 条件下将AB2+BC2你有什么发现?
O
E
N
B
C
7、如图,∠ABC= ∠ACE = ∠CDE , AB=DE=2,BD=5,求BC。
A
E
B C 一线三等角
D
相似三角形中常见的基本图形
平移型
翻转型
旋转型
翻折型
一线三等角
相关文档
最新文档