第5章 热力学基础
第五章化学热力学基础
状态 (II)
U1
U2
U2 = U1 + Q + W
热力学第一定律数学表达式:
ΔU = U2 – U1 = Q + W (封闭体系) ●热力学第一定律: 能量具有不同的形式, 它们之间可以相互转化和传递,而且在转化 和传递过程中,能量的总值不变。
8
● Q与W的正负号:
体系从环境吸热,Q取+;体系向环境放热,Q取- 环境对体系做功,W取+;体系对环境做功,W取-
第五章 化学热力学基础
•热力学:研究体系状态变化时能量相互转换规律的科 学。 其基础是 热力学第一定律 (主要基础)
热力学第二定律 热力学第三定律 •化学热力学:将热力学原理和方法用于研究化学现象 以及与化学有关的物理现象。 •主要研究内容 化学反应进行的方向 化学反应进行的限度 化学反应的热效应
1
MnO(s) + CO(g) = Mn(s) + CO2(g)的反应热rHm。
解:
(1) Mn(s) + 1/2 O2(g) = MnO(s) rH1 = fHm(MnO)
(2) C(s) + 1/2 O2(g) = CO(g) rH2 = fHm(CO)
(3) C(s) + O2(g) = CO2(g)
§5.1 热力学第一定律
一、基本概念与术语
1、体系与环境
• 体系(系统):被划分出来作为研究对象的那 部分物质或空间。
• 环境:体系之外并与体系密切相关的其余部分。 体系可分为:• 敞开体系——体系与源自境之间既有物质交换又 有能量交换;
• 封闭体系——体系与环境之间没有物质交换只 有能量交换;
• 孤立体系——体系与环境之间既没有物质交换 也没有能量交换。
无机化学-第五章-化学热力学基础
注:①G为广度性质,与参与过程的物质的量成正 比。
②逆过程G与正过程的G数值相等,符号相反。 等于各③反如应果一G个之反总应和是。多个反应的和,总反应的rG
化学热力学的四个重要状态函数
判断一个反应进行的方向时,如果: rG<0反应自发进行 rG>0反应不自发进行 rG=0平衡状态 当rG<0时(产物的G<反应物的G)该反应就自动 向生成产物的方向进行,在反应中反应物不断减 小而产物不断增加,G为广度性质,当G反应物=G产 物即rG=0时反应就不再朝一个方向进行了,这就 是化学反应的限度,即化学平衡。
状态函数。
化学热力学的四个重要状态函数
二、焓(H) 设一封闭体系在变化中只做体积功,不做其它功, 则U=Q+W中W代表体积功:-pV(N/m2×m3)
W=Fl=pSl=-pV
V=V2-V1 若体系变化是恒容过程(体积不变),即没有体积功 则W=0,U=Qv Qv为恒容过程的热量,此式表示在不做体积功的 条件下体系在恒容过程中所吸收的热量全部用来增 加体系的内能。
我们可以从体系和环境间的热量传递来恒量体系 内部焓的变化。
如果化学反应的H为正值,表示体系从环境吸收 热能,称此反应为吸热反应。即:
∑H反应物<∑H生成物 ∑H(生成物-反应物)>0 如果化学反应的H为负值,则表示体系放热给环 境,称此反应为放热反应。即:
∑H反应物>∑H生成物 ∑H(生成物-反应物)<0
rG=-RTlnKa
此式只表示在等温下,rG与K平衡在数值上的关 系。
∴rG=-RTlnKa+RTlnJa
=RTln(Ja/Ka)
大学物理上册(第五版)重点总结归纳及试题详解第五章热力学基础
⼤学物理上册(第五版)重点总结归纳及试题详解第五章热⼒学基础第五章热⼒学基础⼀、基本要求1.掌握功、热量、内能的概念,理解准静态过程。
2.掌握热⼒学第⼀定律,能分析、计算理想⽓体等值过程和绝热过程中功、热量、内能的改变量。
3.掌握循环过程和卡诺循环等简单循环效率的计算。
4.了解可逆过程和不可逆过程。
5.理解热⼒学第⼆定律及其统计意义,了解熵的玻⽿兹曼表达式及其微观意义。
⼆、基本内容1. 准静态过程过程进⾏中的每⼀时刻,系统的状态都⽆限接近于平衡态。
准静态过程可以⽤状态图上的曲线表⽰。
2. 体积功pdV dA = ?=21V V pdV A功是过程量。
3. 热量系统和外界之间或两个物体之间由于温度不同⽽交换的热运动能量。
热量也是过程量。
4. 理想⽓体的内能2iE RT ν=式中ν为⽓体物质的量,R 为摩尔⽓体常量。
内能是状态量,与热⼒学过程⽆关。
5. 热容定体摩尔热容 R i dT dQ C V m V 2)(,== 定压摩尔热容 R i dT dQ C p mp 22)(,+== 迈耶公式 R C C m V m p +=,, ⽐热容⽐ ,,2p m V mC i C iγ+==6.热⼒学第⼀定律A E Q +?=dA dE dQ +=(微分形式)7.理想⽓体热⼒学过程主要公式(1)等体过程体积不变的过程,其特征是体积V =常量。
过程⽅程: =-1PT 常量系统对外做功: 0V A =系统吸收的热量:()(),21212V V m iQ vC T T v R T T =-=-系统内能的增量:()212V iE Q v R T T ?==-(2)等压过程压强不变的过程,其特征是压强P =常量。
过程⽅程: =-1VT 常量系统对外做功:()()212121V P V A PdV P V V vR T T ==-=-?系统吸收的热量: (),2112P P m i Q vC T v R T T ??=?=+-系统内能的增量: ()212iE v R T T ?=-(3)等温过程温度不变的过程,其特征是温度T =常量。
[理学]化学热力学基础
a、等压膨胀: W=-p△V (推导见书208页)
b、自由膨胀:
p=0,W=0
c、分次膨胀:
W=- pi(△V)i (推导见书208页) i j d、可逆膨胀: 概念:每一次膨胀的外压总比上一次小无 限小量。
W=-nRTln(V终态/V始态)
12
Inorganic Chemistry
膨胀功大小的比较: 见书209页图5-3。 2、有用功: 理想(可逆)电池的有用功: W=-Q×E = -n×NA×e×E= -nFE F为摩尔电量(法拉第常数):96485C· mol-1。 5-2-8 过程和状态 状态:物质所处的状况。 状态可以用一些物理量来描述。
7
Inorganic Chemistry
温度相同,组分气体单独占据相同体积时:
p1V=n1RT,… pjV=njRT
则: p1V+ … + pjV= n1RT+ … +njRT
(p1+ … + pj)V= (n1+ … +nj)RT= nRT
得:p= (p1+ … + pj)=∑pj 分压定律:混合气体的总压等于其组分气 体的分压之和。 分压定律另一种形式:
例见书210页。
14
Inorganic Chemistry
判据:封闭体系中,体系发生的过程若具 有向环境做有用功的可能性,则该过程为自发 过程。反之则是非自发过程。
5-2-9 热力学标准态 气体:标准压力pθ。 固体或液体:处于标准压力的纯净物。 溶液:溶质浓度为1mol· dm-3。 5-2-10 状态函数 概念:由物质系统的状态决定的物理量。 状态函数的特点:
表达式:xj=(nj)/∑n
第五章 化学热力学基础
5-2 基本概念
5-2-1 系统与环境 5-2-2相 5-2-3状态与状态函数 5-2-4过程 5-2-5 热与功 5-2-6 热力学标准态
5-2-1 系统与环境
被人为划定的作为研究对象的物质叫 系
统(体系或物系) 系统(体系)以外的与系统有密切关系 的周围部分称为环境。
系统的分类
按照系统和环境之间的物质、能量的交换关系, 将系统分为三 类: (1)开放系统 体系和环境之间既有物质的交换又有能量的交换。
5-2-5 热与功
1. 定义:
热(Q)是体系与环境之间因温度差异而引起的能量传递 形式。即热不是物质,不是系统的性质,而是大量物质微 粒作无序运动引起的能量传递形式。 除热之外,体系与环境之间所有其他能量传递形式都叫功 (W)。 在热力学中又把功分为两大类,一类叫膨胀功(体积 功);另一类则是除膨胀功而外的 “其他功”,或叫“有 用功”,也叫非体积功。
非均相系统(或多相系统)
1、定义: 状态:由表征体系宏观性质的物理量所确定的体系存 在形式称为体系的状态。表征体系宏观性质的 物理量主要有P、V、T、n 、U 、H、S、G等。 状态函数: 确定体系状态的物理量, 如P、V、T、n 、U 、 H、S、G 等是状态函数。 2、状态函数的分类: (1)广度性质,也称容量性质:它的数值与体系中的 物质的数量成正比。在一定的条件下,具有加合性。 如V 、 n 、 m 、 U 、H、S、G等。 (2)强度性质:它的数值与体系中的物质的数量无 关,没有加合性,仅有体系中物质本身的特性所决定 的。如T、P、密度、粘度等性质, 无加合性, 称强度 性质的物理量。
注意:热力学标准态未对温度加以限定,所以任何温度 下都有热力学标态。环境状态:298K,101.325kPa;理 想气体标准状态:273K,101.325kPa。 一般情况下,如果未指定温度时,温度T=298.15K 。
大学物理课后答案第5章
第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。
(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为ghp gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
从氧气质量的角度来分析。
利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。
解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。
5第五章 热力学基础
热力学基础
第五章 热力学基础
5-1 热力学第一定律及应用
5-2 循环过程 卡诺循环
5-3 热力学第二定律
教学基本要求
一、理解准静态过程及其图线表示法. 二、理解热力学中功和热量的概念及功、热量和内能的微观意 义,会计算体积功及图示. 会计算理想气体的定压和定体摩 尔热容. 三、掌握热力学第一定律,能分析计算理想气体等体、等压、 等温和绝热过程中的功、热量和内能的改变量.
m i dQV dE RdT M 2
摩尔定容热容: 在体积不变的条件下, 1mol 的理想气体 温度升高(或降低)1K时吸收(或放出) 的热量. 1mol 理想气体 CV ,m
dQV dT
单位
J mol K
1
1
i 由 dQV CV ,mdT RdT 2 i 可得 CV ,m R 2 m 物质的量 为 的理想气体 M
以S表示活塞的面积,p表示气体的压强,dl Fdl pSdl
dW pdV
W
V2
1
p
dV
S
dl
V
pdV
p
1
功的大小等于在p-V图 中曲线下的面积.
3. 准静态微元过程能量关系
p
2
dQ dE pdV
O V dV 1
V2
V
功的图示
p
p1
I
m Q p C p ,m (T2 T1 ) M
( E2 E1 ) p(V2 V1 )
m m CV ,m (T2 T1 ) R(T2 T1 ) M M m (CV ,m R )( T2 T1 ) M
可得 C p,m CV ,m R
第五章化学热力学基础
例2:混合气体中有4.4 g CO2,14 g N2 和12.8 g O2 , 总压为2.026×105Pa,求各组分气体的分压。 解:n(CO2)=4.4 g/44 g· -1=0.10 mol mol n(N2) =14 g/28 g· -1=0.50 mol mol n(O2) =12.8 g/32 g· -1=0.40 mol mol n总= n(CO2)+ n(N2) +n(O2) =1 mol x(CO2)= n(CO2)/ n总=0.10 x(N2) = n(N2) /n总= 0.50 x(O2) = n(O2) /n总= 0.40 p(CO2)= 0.10 × 2.026×105Pa =2.0×104Pa p(N2) = 0.50 × 2.026×105Pa = 1.0×105Pa p(O2) = 0.40 × 2.026×105Pa = 8.1×104Pa
pB = nB RT/V
无机 化学精品课程
设有一混合气体,其中有i 个组分则:
pi = ni RT/V pT = p1 + p2 + p3 + p4 + pj =n1 RT/V +n2RT/V+n3RT/V+ …… + niRT/V =(n1+n2+……ni)RT/V =nTRT/V p1/pT =n1/nT; p2/pT = n2/nT…….pi/pT =ni/nT p1 =pT×x1; p2 =pT×x2……pi =pT×xi
无机 化学精品课程
2.注意:
在使用物质的量时,基本单元应指明,可以是原子,分 子,离子,电子或这些粒子的特定组合. 物质的量: 单位名称为 摩尔 单位符号为 mol ● 摩尔是用以计算系统物质中所含微观基本单元数目 多少的一个物质的量 ● 摩尔体积: 1 mol 物质的体积,符号Vm, 单位m3·mol-1或L·mol-1
第五章化学热力学基础
5-2-6、状态与状态函数
1、状态 由一系列表征体系性质的物理量
所确定下来的体系的一种存在形式,称为体
系的状态。 2、状态函数 态函数。 确定体系状态的物理量,称为状
例如某理想气体体系
n = 1 mol, p = 1.013 10 5 Pa, V = 22.4 dm 3 ,T = 273 K 这就是一种状态。是由 n、p、V、T 所确定下来的体系的一种
恒压反应热—在恒压反应中体系所吸收的热量, 全部 用来改变体系的热焓.即 Qp=ΔU+PΔV=U2-U1+P2V2-P1V1 =(U2+P2V2)-(U1+P1V1) 令H=U+PV,则Qp=ΔH (3)反应进度 设有化学反应 νAA+νBB=νGG+νHH 式中ν为各物质的计量数,反应未发生时各物质的物 质的量分别为n0,反应进行到t时刻,各物质的量分别为 n:则反应进度ξ定义为: ξ= [n0(A)-n(A)]/ νA=[n0(B)-n(B)]/ νB =[n0(G)-n(G)]/ νG=[n0(H)-n(H)]/ νH
5-3-3自由能
自发过程的方向性
所谓自发过程就是不需要任何外界作用 而自动进行的过程。例如热量由高温物体传向 低温物体就是一个自发过程,反之则不能自发 进行,这是人所共知的常识。机械能通过摩擦 转变为热能的过程也是一个自发过程,例如, 行驶中的汽车刹车时,汽车的动能通过摩擦全 部变成热能,造成地面和轮胎升温,最后散失 于环境。
5-2-2、相
系统中物理状态、物理性质与化学性质完全均匀的部分 称为一个相(phase)。 如:系统里的气体,无论是纯气体还是混合气体,总是 1个相。系统中若只有一种液体,无论这种液体是纯物质 还是溶液,也总是一个相。 相是系统里物理性质完全均匀的的部分。
第五章 化学热力学基础
吉布斯自由能 G,状态函数的改变量只与体系的始、终态有关,
而与变化的途径无关。 4. 掌握化学热力学的主要应用:判断化学反应方向和限度,利 用盖斯定律计算反应焓、反应熵和反应自由能,吉布斯-亥姆 霍兹方程,范特霍夫等温方程等。
5-1 化学热力学的研究对象
化学热力学:用热力学的定律、原理和方法研究化学 过程的能量变化、过程的方向与限度。
R---气体常量,其取值(包括单位)随p和V单位不同
而变化,使用时要注意正确取值。R= 8.314L∙kPa∙mol-1∙K-1
= 8.314 m3∙Pa∙molБайду номын сангаас1∙K-1 = 8.314 J∙mol-1∙K-1 。
理想气体状态方程式的应用:
(1) 计算p,V,T,n四个物理量之一 (例5-3, 5, 6)
示。指溶质的质量和溶液的质量之比。 浓度是强度量,不具有加和性,与溶液的取量无关。
5-2-4 气体
气体的最基本特征:具有可压缩性和扩散性。可分为
实际气体和理想气体。理想气体被假设为分子之间没有相
互作用力,气体分子本身没有体积。当实际气体的压力不 大,温度又不低时,可当作理想气体来处理。 1. 理想气体状态方程式 pV = nRT
5-3 化学热力学的四个重要状态函数
5-3-1 热力学能(内能)
1、热力学能(U):系统内各种形式的能量的总和,包括分子的 动能,分子内电子运动的能量、原子核内的能量、分子间作用 能……等等。 ①U是状态函数,任何系统在一定状态下内能是一定的。 ②内能的绝对值无法确定;
③始态、终态一定,热力学能的变化量U一定。
1) 开放体系
2) 封闭体系 3) 孤立体系
既有能量交换,又有物质交换;
第5章 化学热力学基础
5.3.2 焓 (enthalpy ) 5.3.2.1 焓和焓变 (Enthalpy & enthalpy changes) 等压热效应——体系在等温等压条件下的热效应。
19
U Qp pex V U 2 U 1 Q p pex V2 V1 U 2 U 1 Q p p2V2 p1V1 Qp (U 2 p2V2 ) U 1 p1V1
5
(五) 热力学四大定律 热力学第一定律 —— 能量守恒与转化定律 或第一类永动机是不可能造成的。 热力学第二定律 ——凡是自发过程都是不可逆的 或第二类永动机是不可能造成的。 热力学第三定律 ——绝对零度不可达到但可以无限趋 近 热力学第零定律 ——如果两个热力学系统中的每一 个都与第三个热力学系统处于热平衡(温度相同),则 它们彼此也必定处于热平衡。热力学第零定律是进行 体系测量的基本依据 。 6
焓
H U pV
焓变 Q H H H p 2 1
吸热反应:ΔH>0 放热反应:ΔH<0
20
在恒压过程中为什么定义焓的原因:
其变化量可以测定(等于等温等压工程不做其他功时的热
效应);具有实际应用价值(通常的化学反应都是在等压 下进行的)。
Qp H 2 H1 H
2H 2 g O 2 g 2H 2O g
θ m
2H 2 (g) O2 (g) 2H 2O (l)
-1
θ r H m 298.15K 571.66 kJ mol-1 r H 298.15K 483.64kJ mol
1 H 2 g O2 g H 2O g 2 θ r H m 298.15K 241.82kJ mol-1
大学化学热力学基础课件
大学化学热力学基础课件一、教学内容本节课的教学内容选自人教版《大学化学》的第五章热力学基础。
该章节主要内容包括热力学第一定律、热力学第二定律和熵的概念。
具体讲解如下:1. 热力学第一定律:能量守恒定律,指出在一个封闭系统中,能量不会凭空产生也不会凭空消失,只会从一种形式转化为另一种形式,系统的内能变化等于系统所吸收的热量减去系统对外做的功。
2. 热力学第二定律:熵增定律,指出在自然过程中,一个孤立系统的总熵不会减少,即自然界的过程总是向着熵增加的方向进行。
3. 熵的概念:熵是衡量系统无序程度的物理量,是一个系统在热力学平衡状态下的状态函数。
二、教学目标1. 理解热力学第一定律和第二定律的基本概念和原理。
2. 掌握熵的概念及其在热力学中的应用。
3. 能够运用热力学基本定律分析实际问题,提高解决实际问题的能力。
三、教学难点与重点重点:热力学第一定律和第二定律的基本概念和原理,熵的概念及其在热力学中的应用。
难点:热力学定律在实际问题中的应用。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:以日常生活为例,如烧水、做饭等,引导学生思考这些现象背后所蕴含的热力学原理。
2. 知识讲解:讲解热力学第一定律、第二定律和熵的概念,通过举例和实例让学生理解这些基本原理。
3. 例题讲解:选取具有代表性的例题,讲解热力学定律在实际问题中的应用。
4. 随堂练习:为学生提供一些实际问题,让学生运用所学的热力学定律进行分析和解答。
5. 知识拓展:介绍热力学在现代科学技术中的应用,如热力学在能源、环境等领域的重要性。
六、板书设计板书内容主要包括热力学第一定律、第二定律和熵的概念,以及这些定律在实际问题中的应用。
板书设计要简洁明了,突出重点。
七、作业设计1. 请简述热力学第一定律和第二定律的基本概念和原理。
2. 请解释熵的概念及其在热力学中的应用。
3. 请举例说明热力学定律在实际问题中的应用。
课件:第五章 热力学基础-01
V2
解: A p dV
V1
(直线AB下的面积 A S )
P(1105 Pa)
A 2
1 O2
B
V (1103m3)
3
A 1 (1 2) 105 (3 2) 103 150 J 2
过程由 A B 膨胀,气体对外作正功 A 0
Beijing Information Science & Technology University
等于
这一过程中功的大小 (注意功的正负) (膨胀或者压缩)
P
P1 1 dA PdV
P2 O V1
2
V2 V
P
P1
1
A V2 PdV V1
P2 O V1
2
V2 V
Beijing Information Science & Technology University
第五章 热力学基础
讨论
等温过程
第五章 热力学基础
讨论
等容过程
等容过程中,系统吸收的热量
全部用于增加气体的内能,气
体不对外界做功。
A0 i
Q E2 E1 2 νR (T2 T1)
i 2
M M mol
R(T2 T1)
注意三个量的特征
恒
温 dV 0
热 源
P
P2
2
P1
1
O
V
Beijing Information Science & Technology University
dQ
2 νRdT
i
νRdT
2
P 1
P
O V1
2
V2 V
气体由状态 1变化到状态 2,温度由T1 变化到T2
5
第五章化学热力学基础5-1从手册查出常用试剂浓盐酸﹑浓硫酸﹑浓硝酸﹑浓氨水的密度和质量分数,计算它们的(体积)物质的量浓度(c)和质量摩尔浓度(m)。
5-2从手册查出常温下的饱和水蒸气压,计算当相对湿度为40%时,水蒸气压多大。
5-3化学实验事中经常用蒸馏水冲洗已用自来水洗净的烧杯。
设洗后烧杯内残留“水”为1ml,试计算,用30ml蒸馏水洗一次和洗两次,烧杯中残留的“自来水的浓度”分别多大?5-4计算 15℃,97kPa下15g氯气的体积。
5-5 20 ℃,97kPa下0.842g 某气体的体积为0.400 L ,求该气体的摩尔质量。
5-6测得 2.96g 氯化汞在 407℃的 1L 容积的真空系统里完全蒸发达到的压力为60 kPa ,求氯化汞蒸汽的摩尔质量和化学式。
5-7 在1000℃和 97kPa 下测得硫蒸汽的密度为0.5977 g.L-1,求硫蒸气的摩尔质量和化学式。
5-8 在25℃时将相同压力的5.0 L 氮气和15 L 氧气压缩到一个10.0 L 的真空容器中,测得混合气体的总压为150 kPa ,(1)求两种气体的初始压力;(2)求混合气体中氮和氧的分压;(3)将温度上升到 210 ℃,容器的总压。
5-9在25 ℃, 1.47MPa 下把氨气通入容积为1.00 L 刚性壁容器中,在350℃下催化剂使部分氨分解为氮气和氢气,测得总压为 5MPa ,求氨的解离度和各组分的摩尔分数和分压。
5-10 某乙烯和足量的氢气的混合气体的总压为 6930Pa ,在铂催化剂催化下发生如下反应:C2H4(g) +H2(g) === C2H6(g)反应结束时温度降至原温度后测得总压为4530Pa 。
求原混合气体中乙烯的摩尔分数。
5-11以下哪些关系式是正确的( p、V、n 无下标时表示混合气体的总压、总体积和总的物质的量)?说明理由。
pV B = n B RT p B V = n B RT p B V B = nRT pV = nRT5-12以下系统内各有几个相?(1)水溶性蛋白质的水溶液;(2)氢氧混合气体;(3)盐酸与铁块发生反应的系统(4)超临界状态的水。
第5章热力学基础
第5章热⼒学基础第5章热⼒学基础5-1 (1)V P -图上⽤⼀条曲线表⽰的过程是否⼀定是准静态过程(2)理想⽓体向真空⾃由膨胀后,状态由),(11V P 变⾄),(22V P ,这⼀过程能否在V P -图上⽤⼀条曲线表⽰,(3)是否有r r V P V P 2121=成⽴答:(1)是;(2)不能;(3)成⽴,但中间过程的状态不满⾜该关系式。
5-2(1)有可能对物体加热⽽不升⾼物体的温度吗(2)有可能不作任何热交换,⽽使系统的温度发⽣变化吗答:(1)可能,如等温膨胀过程;(2)可能,如绝热压缩过程,与外界没有热交换但温度升⾼。
5-3 (1)⽓体的内能与哪些因数有关(2)为什么说理想⽓体的内能是温度的单值函数答:(1)⽓体的内能与温度、体积及⽓体量有关;(2)理想⽓体分⼦间没有相互作⽤,也就没有势能,所以内能与分⼦间距离⽆关,也就与体积⽆关,因⽽理想⽓体的内能是温度的单值函数。
5-4 如图所⽰,系统沿过程曲线abc 从a 态变化到c 态共吸收热量500J ,同时对外做功400J ,后沿过程曲线cda 回到a 态,并向外放热300J 。
系统沿过程曲线cda 从c 态变化到a 态时内能的变化及对外做的功。
解:据热⼒学第⼀定律计算a →b →c :5001=Q ΘJ ,4001=A J ,1001=?∴E J c →d →a :3002-=Q ΘJ ,1002-=?E J ,2001-=A ΘJ 系统沿过程曲线cda 从c 态变化到a 态时内能的变化:1002-=?E J ;对外做的功:2001-=A J5-5 内能和热量的概念有何不同,下⾯两种说法是否正确(1)物体的温度愈⾼,→则热量愈多;(2)物体的温度愈⾼,则内能愈⼤。
答:内能是状态量,热量是过程量。
(1)物体的温度愈⾼,→则热量愈多。
错。
(2)物体的温度愈⾼,则内能愈⼤。
对。
习题5-4图5-6 1 mol 氧⽓由状态1变化到状态2,所经历的过程如图,⼀次沿21→→m 路径,另⼀次沿21→直线路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。
(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为ghp gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
从氧气质量的角度来分析。
利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。
解:根据分析有RTV Mp m RTV Mp m RTV Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。
设容器的容积V 0=2.0升,问经过多长时间后才能使容器内的压强由1.01×105 Pa 降为133Pa 。
设抽气过程中温度始终不变。
分析:抽气机每打开一次活门, 容器内气体的容积在等温条件下扩大了V ,因而压强有所降低。
活门关上以后容器内气体的容积仍然为V 0 。
下一次又如此变化,从而建立递推关系。
解:抽气机抽气体时,由玻意耳定律得: 活塞运动第一次:)(0100V V p V p +=001p VV V p +=活塞运动第二次:)(0201V V p V p +=021002p V V V p V V V p ⎪⎪⎭⎫⎝⎛+=+=活塞运动第n 次:)(001V V p V p n n +=-nn VV V p p ⎪⎪⎭⎫ ⎝⎛+= 00VV V np p n n +=000ln抽气机每次抽出气体体积l 05.0l )400/20(==V l 0.20=V Pa 1001.150⨯=p Pa 133=n p将上述数据代入(1)式,可解得 276=n 。
则s 40s 60)400/276(=⨯=t5-4 l.0 mol 的空气从热源吸收了热量2.66⨯105J ,其内能增加了4.18⨯105J ,在这过程中气体作了多少功?是它对外界作功,还是外界对它作功?解:由热力学第一定律得气体所作的功为J1052.15⨯-=-=E Q W ∆负号表示外界对气体作功。
5-5 1mol 双原子分子的理想气体,开始时处于P 1=1.01×105Pa ,V 1=10-3m 3的状态。
然后经本题图示直线过程Ⅰ变到P 2=4.04×105Pa ,V 2=2×10-3m 3的状态。
后又经过程方程为PV 1/2=C (常量)的过程Ⅱ变到压强P 3=P 1=1.01×105Pa 的状态。
求:(1)在过程Ⅰ中的气体吸收的热量;(2)整个过程气体吸收的热量。
解:(1)在过程I 中气体对外作的功 2/))((12211V V p p A -+= 在过程I 中气体内能增量)(25)(251122121V p V p T T R E -=-=∆在过程I 中气体吸收的热量J E A Q 3111002.2⨯=+=∆ (2)在过程II 中气体对外作的功OV习题5-5图)(222332223232V p V p V dVV p pdV A V V V V -===⎰⎰由常量=21pV可算得3331032m V -⨯=,带入上式得J A 321085.4⨯= 整个过程中气体对外作功J A A A 321101.5⨯=+=整个过程中气体内能增量JT T R E 3131083.7)(25⨯=-=∆整个过程中气体吸收的热量J A E Q 41029.1⨯=+=∆5-6 如本题图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J 。
当系统从状态C 沿另一曲线返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析:已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化为CA E ∆,则由热力学第一定律即可求得该过程中系统传递的热量Q CA 。
由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化AC E ∆,而CA AC E E ∆-=∆,故可求得Q CA 。
解:系统经ABC 过程所吸收的热量及对外所作的功分别为J126J,326A BC A BC ==W Q则由热力学第一定律可得由A 到C 过程中系统内能的增量J200ABC ABC AC =-=∆W Q E由此可得从C 到A ,系统内能的增量为J200CA -=∆E从C 到A ,系统所吸收的热量为J252CA CA CA -=+∆=W E Q习题5-6图式中负号表示系统向外界放热252 J 。
这里要说明的是由于CA 是一未知过程。
上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热。
5-7 空气由压强为1.52⨯105 Pa ,体积为5.0⨯10-3 m 3,等温膨胀到压强为1.01⨯105 Pa ,然后再经等压压缩到原来的体积。
试计算空气所作的功。
解:空气在等温膨胀过程中所作的功为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=2111121T ln ln p p V p V V RT M mW 空气在等压压缩过程中所作的功为()212p d V Vp V p W -==⎰利用等温过程关系2211V p V p =,则空气在整个过程中所作的功为()J7.55ln 11122111p T =-+=+=V p V p p p V p W W W5-8 如本题图所示,使l mol 氧气(1)由A 等温地变到B ;(2)由A 等体地变到C ,再由C 等压地变到B ,试分别计算氧气所作的功和吸收的热量。
分析:从p -V 图上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()⎰=V V p W d 求出。
考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同B A T T =,故0=E ∆,利用热力学第一定律E W Q ∆+=,可求出每一过程所吸收的热量。
解:(1)沿AB 作等温膨胀的过程中,系统作功J 1077.2ln ln 3A B A A A B AB ⨯=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=V V V p V V RT M mW 由分析可知在等温过程中,氧气吸收的热量为J1077.23AB AB ⨯==W Q(2)沿A 到C 再到B 的过程中系统作功和吸热分别为()J100.23C B C CB CB AC ACB ⨯=-==+=V V p W W W WJ100.23ACB ACB ⨯==W Q5-9 一定量的某单原子分子理想气体装在封闭的气缸里,此气缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气)。
已知气体的初压强P 1=1atm,体积V 1=10-3m 3,现将该气体在等压下加热直到体积为原来的两倍,然后在等体下加热,到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,试求:在整个过程中气体内能的改变、吸收的热量和所作的功。
解: 因为14T T =,所以内能增量为零。
习题5-8图Jp p V V V p Q 2111111106.5)2(223)2(25⨯=-+-=J Q A 2106.5⨯==5-10 有1mol 刚性多原子分子的理想气体,原来的压强为1.0atm,温度为27℃,若经过一绝热过程,使其压强增加到16atm 。
试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时气体的分子数密度。
解:(1)()K p p T T 60012112==γγ-JT T R i M E 31210479.7)(2⨯=-μ=∆(2) J E A 310479.7⨯=-=∆(3)32622/1096.1m kT p n 个⨯==5-11 有一绝热的圆柱形的容器,在容器中间放置一无摩擦、绝热的可动活塞,活塞两侧各有ν摩尔同种单原子分子理想气体,初始时,两侧的压强、体积、温度均为(P 0,V 0,T 0)。
气体的定容摩尔热容量为C V =3R/2。
现将一通电线圈放在活塞左侧气体中,对气体缓慢加热。
左侧气体膨胀,同时压缩右方气体,最后使右方气体体积为V 2=V 0/8。
求:(1)左、右两侧气体的终温是多少? (2)左侧气体吸收了多少热量? 解:(1)右则气体经历一绝热过程,初态()000T V P 、终态()222T V P , 由方程 12210--=γγV T V T 得出右侧气体末态温度:0013/50120248T T T VV T ==⎪⎪⎭⎫ ⎝⎛=--γ由理想气体物态方程,右侧气体终态压强为002200232P T V T V P P ==由于活塞是可动的,左、右两侧的压强应相同:02132P P P ==, 左侧末态体积: 02018152V V V V =-=左侧气体末态温度: 000001116081532T T T V P V P T =⨯==(2)00021936223)2(U U W V P T R T T T C U Q V =⨯=-+=∆∆∆=→νν +=+右左右左左5-12 如本题图所示,有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分A 和B ,其中各盛有一摩尔的理想气体氮。