0119.高浓度豆制品废水的处理
豆制品厂污水如何处理
根据对豆制品废水的了解,其具有两大特点,一是PH低,二是蛋白含量高,因此适合用生物法进行处理。
具体的处理方法如下所述:
1、厌氧法
国内外利用厌氧方法处理的比较多,有用厌氧硫化床工艺处理的,有用厌氧折流板反应器处理的。
其中采用多极厌氧生物滤池处理豆制品浓度高的有机废水,即经济又实惠。
实践证明,采用多极厌氧生物滤池处理浓度高的有机废水明显优于单级厌氧生物滤池工艺,CODcr 去除率由78%~80%提高到90%以上。
2、好氧法
可采用AB 活性污泥法进行处理。
工艺试验得到AB 活性污泥法处理豆制品废水的运行参数,实验在优化参数下运行,取得明显处理效果,CODcr出水总去除率为97% ,其中A段去除率为89% ,B段去除率为83% 。
3、厌氧—好氧法
能发挥出厌氧微生物承担高浓度、高负荷与回收有效能源的优势,同时又能利用好氧微生物生产速度快,处理水质好的特点。
当然,也可能还有其他的处理方法,具体可咨询固始三利环保设备制造有限公司进行了解。
【论文】豆制品废水处理工艺
I
Abstract
This design is about bean products waste water treatment. The main distinguishing feature of the bean products waste water is that it contains the massive organic matters, so it belongs to the high concentration organic waste water. The flow of the water which needs to be treated in the bean products waste water treatment plant is 240m3/d. Various target in the raw waste water : the concentration of BOD5 is 1000 mg/L , the concentration of COD is 2500 mg/L , the concentration of SS is 400 mg/L. it could pollute the environment if it is drained before treatment, so it requests that the bean products waste water which drained must be strictly treated to the A one effluence standard in the country, which is as following: BOD≤30mg/ L, COD≤100mg/ L, SS≤70mg/ L. The technological process of this design is: Bean products waste water → Screens →Separation grease trap→ Regulates tank→ The sewage lift pump house →Tank of UASB → Treatment water By analysis, we know that the disposal water quality belongs to the wastewater of readily biodegradable substances and no toxicity, you can use two levels of biological dispose to make the effluent reach the mark. Level l processing, mainly uses physical agents used to remove the suspension and inorganic of the sewage . Level 2 processing, mainly uses biological agents, Including UASB in biological anaerobic treatment of wastewater and SBR in aerobic biological treatment of wastewater, effectively remove the COD. BOD in the waste. The process of using the UASB + SBR combination process to deal with the bean products wastewater. With this way, not only cleaning. But also saving the money, reducing the energy while retrieving the methane. Key words:bean products waste water, UASB, SBR Tank of SBR →
豆制品废水处理方案
豆制品废水处理方案豆制品加工废水是指在豆类食品加工过程中产生的包括洗涤废水、煮沸废水、浸泡废水、油脂废水等多种种类的废水。
由于其高浓度、高COD (化学需氧量)和BOD(生物需氧量)等特性,处理这些废水成为一个重要的环境问题。
下面是一种常用的豆制品废水处理方案。
1.废水初处理废水首先需要进行初步处理,以去除固体悬浮物、颗粒物、油脂等杂质。
可采用格栅、沉砂池等设备进行预处理,将大颗粒物质和沉降物去除掉,以减少后续处理过程中的负担。
2.生化处理生化处理是豆制品废水处理的核心环节,通常采用活性污泥法进行处理。
废水经过初处理后,进入生化池,与活性污泥接触,通过微生物降解有机物质。
这个过程中需要提供适宜的氧气和温度条件,以促进细菌生长和代谢。
此外,还需要添加一定的营养物质来满足微生物的生长需求。
该生化处理过程可有效降解掉废水中的有机物质,减少COD和BOD的含量。
3.沉淀处理在生化处理的后续,处理过的废水会进入到沉淀池进行沉淀。
沉淀过程中,废水中的悬浮物质会与粉状物质结合形成沉淀物,并通过沉淀池的分离装置分离出去。
这个过程可以有效去除废水中的悬浮物质和一部分有机物质,减少水中的污染物。
4.深度处理经过前面的处理后,废水中的COD、BOD等指标已经降低到较低的水平。
但为了满足排放标准,需要进行进一步的深度处理。
深度处理采用高级氧化技术,如臭氧氧化、紫外线处理等,用来进一步氧化分解废水中的有机物质,降低其含量。
5.排放经过以上处理后,废水已经达到或接近国家排放标准。
可以通过河道、排灌渠道等方式进行排放,但需要确保不会对周围环境造成污染。
此外,还需要注意废水处理设备的维护和定期的清洗,以确保处理效果和设备的正常运行。
同时,还需要监测处理过程中的各项指标,如COD、BOD、悬浮物质、pH值等,以及密切关注废水排放对周围环境的影响。
综上所述,豆制品废水处理方案主要包括初处理、生化处理、沉淀处理、深度处理和排放等步骤。
豆制品加工废水处理工程设计分析
豆制品加工废水处理工程设计分析一、前言豆制品加工是我国传统的食品加工行业之一,豆腐、豆浆、豆腐干等豆制品在我国食品消费中占有重要地位。
豆制品加工过程中所产生的废水含有高浓度的有机物和氮、磷等营养物质,如果直接排放到水体中会对环境造成严重的污染。
对豆制品加工废水进行有效处理是非常必要的。
本文将对豆制品加工废水处理工程的设计分析进行介绍,包括废水特性分析、处理工艺选择、处理设施设计等内容。
二、废水特性分析豆制品加工废水的主要特性包括以下几个方面:1. 高浓度有机物:豆制品加工废水中含有大量的蛋白质、脂肪、碳水化合物等有机物质,浓度较高。
3. 高浓度悬浮物和油脂:豆制品加工废水中含有大量的悬浮物和油脂,容易导致水体浑浊。
4. 酸碱度较高:豆制品加工废水的酸碱度较高,需要进行中和处理。
综合以上特性分析,豆制品加工废水处理需要采用适当的处理工艺和设施来进行有效处理。
三、处理工艺选择根据豆制品加工废水的特性,结合实际情况,选择适合的废水处理工艺是非常重要的。
一般来说,豆制品加工废水处理工艺主要包括以下几种:1. 生物处理工艺:生物处理工艺是通过微生物的代谢作用将有机物降解成无害的物质,包括活性污泥法、生物膜法等。
2. 重金属去除工艺:针对废水中的重金属进行去除处理,包括化学沉淀、离子交换等方法。
3. 膜分离工艺:采用膜分离技术对废水进行固液分离,可以有效去除悬浮物和油脂。
4. 深度处理工艺:对废水中的氮、磷等营养物质进行深度处理,包括生物脱氮、脱磷等技术。
四、处理设施设计针对豆制品加工废水处理工程的设计,需要进行设施的设计和选型,包括以下几个方面:1. 污水预处理设施:对废水进行初步预处理,包括格栅、沉砂池等设施,去除废水中的大颗粒杂物和沉淀物。
2. 生化处理设施:包括活性污泥池、生物膜反应器等设施,用于对废水中的有机物进行降解处理。
5. 消毒和中和设施:对处理后的废水进行消毒和中和处理,以保证排放水质达标。
豆制品废水处理方案
豆制品废水处理方案随着豆制品行业的快速发展,废水处理成为了一个重要的环境问题。
豆制品生产过程中产生的废水含有大量悬浮物和有机物,如果不经过有效的处理就直接排放,将严重污染水体,危害生态环境。
因此,制定合理的废水处理方案对于保护水资源、维护生态平衡至关重要。
一、废水处理前提分析在制定废水处理方案之前,首先需要进行废水排放前提分析,了解废水的特性与污染物组成。
豆制品废水通常含有高浓度的悬浮物、油脂、蛋白质和有机物,同时还含有一定量的盐类和其他微量元素。
因此,废水处理方案需要针对这些主要的污染物进行合理的处理和去除。
二、物理处理方法物理处理方法主要通过物理过滤和分离的方式去除废水中的悬浮物和油脂等大颗粒污染物。
常见的物理处理方法包括:1. 筛网过滤:通过设置不同粒径的筛网,将废水中的较大颗粒悬浮物截留在筛网上,从而实现废水的初步过滤和去除。
2. 沉淀池:利用沉淀原理,将废水中的较重颗粒悬浮物沉淀到底部,通过人工清理或者机械设备进行去除。
3. 气浮法:通过在废水中注入微细气泡,使悬浮物和油脂等污染物附着在气泡上升到液面,通过刮板或者旋流沉降装置进行去除。
三、生化处理方法生化处理方法主要利用微生物的作用去除废水中的有机物和氮、磷等营养物质。
常见的生化处理方法包括:1. 活性污泥法:通过将含有特定菌群的活性污泥与废水混合,利用微生物对有机物进行降解和吸附,最终将有机物转化为水和气体排放。
2. 厌氧消化:将废水在无氧条件下进行消化,利用厌氧菌对有机物进行分解,产生沼气和沉淀物,并达到降解有机物和减少废水体积的目的。
四、深度处理方法在经过物理过滤和生化处理之后,废水中的污染物已经被大幅度去除,但仍可能存在一定量的残留污染物。
为了进一步提高处理效果,可以采用以下深度处理方法:1. 活性炭吸附:将废水通过活性炭床层,利用活性炭对有机物和微量元素等进行吸附,去除废水中残留的难降解有机物。
2. 膜分离技术:利用超滤膜、纳滤膜等膜分离技术,将废水中的溶解性有机物和微量元素等进一步去除,提高出水水质。
豆制品加工项目污水处理方案
豆制品加工项目污水处理方案武威市黄羊镇豆制品加工项目污水处理方案第一章、项目概述豆制品加工废水主要有洗豆水、泡豆水、浆渣分离水、压滤水、各生产工艺容器的洗涤水、地面冲洗水、生产厂区生活水等,根据机械化程度不同,废水排放量普通为30 ~ 50 m3 /吨大豆。
豆制品加工过程中产生的生产废水一部份浓度很高,CODCr往往高达2万~3万mg/L,水温在40—50C ,水量较小,约占废水总排放量的20%;另一部份废水来自于大豆浸泡、洗涤及工作人员的生活污水, CODCr在1500 mg/L—2500 mg/L,水量约占整个废水排放量的80% 。
废水中的主要污染物为高浓度的碳水化合物、蛋白质、脂肪等,还含有少量的食用油、辣椒、食盐和食品添加剂等。
废水中大部份污染物均可以生物降解,BOD /COD高达0. 6~0. 7,且有毒有害物质很少,除了pH较低外,非常适合污水处理所需微生物生长。
本项目年生产豆制品5000吨,据此可测算年消耗大豆 (或者黄豆) 3000吨摆布,日消耗大豆 (或者黄豆) 10吨摆布。
因此,日污水排放量在300吨摆布。
本方案即按日污水排放量在300吨进行设计。
第二章污水处理工艺说明2.1 水量、水质及排放标准处理水量:300m3/d污水水质见下表: (单位:mg/l)说明:本图中蓝色细线为污水流向,黑色粗线为污泥流向2.4 产泥量及污泥处理产泥量本工艺除栅前物,工艺本身具有污泥减量化设计,系统完成为了污泥的消化、代谢和分解,产泥量惟独传统活性污泥法的1/4-1/5,而且大多为无机固化物,。
有机成份大大降低,从设计源头即实现污泥减量化处理方式本工艺再也不设计污泥处理设备,栅前物及生化处理后的污泥,可以掺入锅炉用煤中焚烧,也可直接排入农田土地中做肥。
调节池经长期运行,其池底会产生一部份沉泥,普通半年抽排一次。
2.5 主要单元及技术参数(1)、格栅井材质:钢筋混凝土结构水力停留时间:5min有效容积:3.6 m3 有效面积:2 m2尺寸:2 m L×1m W×1.8mH数量:2 座(2)、高浓度废水调节池(兼事故池)材质:钢筋混凝土结构水力停留时间: 24h有效容积:64m3 有效面积:16 m2尺寸:4m L×4m W×4mH数量:1 座(3)、中低浓度调节池(兼事故池)材质:钢筋混凝土结构水力停留时间: 24h有效容积:240m3 有效面积:60 m2尺寸:12m L×5m W×4mH数量:1 座(4)、UASB 反应器:材质:碳钢防腐水力停留时间:12h有效容积: 125m3尺寸:4m D×10m H数量:1 套(5)、曝气生物滤池 (BAF)材质:钢制结构,树脂防腐水力停留时间:3h有效容积:118m3尺寸: 5 mD×6mH数量:1 套(6)、DBF 深床滤池材质:钢制结构,树脂防腐水力停留时间:1h有效容积:22m3尺寸:2.5 mD×4.5mH数量:1 套(7)、清水池材质:钢筋混凝土结构有效容积:64 m3尺寸:4m L×4m W×4mH(8) 污泥池材质:钢筋混凝土结构有效容积:32 m3尺寸:4m L×2m W×4mH第三章占地面积及高程布置3.1 占地面积该项目污水处理构筑物占地面积约150m2 ,同行过道占地面积约50m2 ,项目合计占地面积约200m2。
豆制品污水处理技术方案
豆制品污水处理技术方案豆制品生产过程中会产生大量的污水,含有高浓度的有机物和氮、磷等营养元素,若未经处理或处理不当,会对环境产生严重的污染。
因此,针对豆制品污水的处理技术方案是必要的。
1. 污水处理流程豆制品污水主要由淀粉、蛋白质、油脂等有机物质组成,因此污水处理的基本原则就是以生物法为主,再配合物理化学法进行后续处理。
豆制品污水处理流程如下:(1)初级处理:初级处理包括调节池、网格、砂粒池等处理设施。
调节池的作用是平衡水质,减轻水质波动对后续生化处理的影响;网格和砂粒池主要是去除大颗粒杂物和悬浮物。
(2)生化处理:生化处理是豆制品污水处理的主要环节,可以采用A/O、SBR、MBBR等多种生物处理工艺。
在生化池中,污水被微生物生化降解成为较为稳定的有机物和微生物体。
它有利于后续的深度处理,同时对削减CODCr和悬浮颗粒有良好的去除效果。
(3)深度处理:深度处理是指对生化池出水进行进一步处理,以达到污水排放标准。
深度处理主要采用物理化学法,如方解石絮凝池、曝气生物滤池等。
方解石絮凝池通过在污水中给予药剂的作用,凝聚留存在水中的悬浮物颗粒,形成絮凝体而去除;曝气生物滤池则在生物膜的帮助下利用氧化作用将氨氮和有机物质转化为无害的氮气和水。
(4)消毒处理:消毒处理一般用于对排放的废水进行处理,达到环保要求。
消毒处理可以采用紫外线照射、臭氧氧化等方式。
2. 技术选型对于豆制品污水的处理,需要根据不同的处理规模和处理要求,选择不同的处理工艺。
目前,广泛应用于豆制品污水处理的技术有:(1)活性污泥法:活性污泥法可以有效的去除COD、BOD、悬浮颗粒等,同时也可达到生化氮、生化磷等的去除效果。
活性污泥法可以采取完全混合反应器式和顺序批处理反应器式等多种方式进行。
(2)MBBR技术:MBBR生物滤池是近年来广泛应用于豆制品污水处理的技术,具有占地面积小、处理效果好、稳定性高及操作维护简单的特点,因此受到了广泛的关注。
豆制品废水处理设计方案
目录一、项目概况------------------------1二、处理水量和水质------------------------1三、设计依据------------------------2四、设计原则------------------------3五、处理工艺设计------------------------3六、设计处理效果------------------------7七、处理工段设计参数------------------------7八、自动化控制设计------------------------9九、投资费用估算-----------------------10十、运行成本分析-----------------------12十一、设计方案总结-----------------------12十二、售后服务承诺-----------------------12一、设计概况豆制品企业的废水主要来源于原料黄豆的浸豆、泡豆及压榨废水和冲洗废水,该废水有机物含量高,可生化性强,是污染环境的高浓度废水。
废水的污染物大都为可降解有机物,可生化性达到0.6—0.7,废水的C∶N∶P平均为100∶4.7∶0.7,适合微生物的生长,对于该类型的废水的处理关键是选择合适的处理工艺和相关参数的合理设计是至关重要的。
豆制品废水主要来源于洗豆水、泡豆水、浆渣分离水、压滤水、各生产工艺容器的洗涤水、地面冲洗水等[1]。
其中黄泔水CODCr高达20000~30000mg/L,泡豆水的CODCr4000~8000mg/L[2],其他废水CODCr相对较低。
根据实际工程经验,豆制品废水处理易出现以下问题:①豆制品生产属于间歇生产方式,排水时间较集中,水量和水质很不均匀;②SS高达1000~1500mg/L,厌氧条件下易在废水表面形成浮渣层;③高浓度废水在厌氧处理过程中易酸化,使厌氧单元的处理效果恶化;④好氧阶段,采用活性污泥法处理,易产生污泥膨胀。
豆制品加工废水处理工程设计分析
豆制品加工废水处理工程设计分析1. 引言1.1 研究背景豆制品加工是我国传统的食品加工行业之一,其加工过程产生的废水含有大量的有机物和污染物,直接排放会对环境造成严重污染。
随着环保意识的日益增强,豆制品加工废水处理成为了一个迫切需要解决的问题。
豆制品加工废水处理工程设计旨在减少废水对环境的污染,达到环保和资源化利用的目的。
通过合理设计废水处理工程,可以将废水中的有机物和污染物去除或降解,达到国家排放标准要求,保护周边环境的安全和健康。
当前,豆制品加工废水处理工程设计在我国仍处于起步阶段,存在着技术不成熟、设备落后、管理不规范等问题,亟待解决。
开展豆制品加工废水处理工程设计分析具有重要的现实意义和实践价值。
通过对豆制品加工废水处理工程设计的研究,可以为相关行业提供技术支撑和决策参考,推动我国豆制品加工行业的可持续发展。
1.2 研究目的豆制品加工废水处理工程的研究目的主要是为了解决豆制品加工过程中产生的废水处理问题,保护环境,提高生产效率,降低生产成本,促进豆制品行业的可持续发展。
通过研究废水处理工程设计,可以有效地减少污染物的排放,达到国家相关环保标准,改善生产环境,提升企业形象。
通过优化废水处理工艺,还可以实现资源的回收利用,降低企业的生产成本,提高经济效益。
综合考虑环境、经济和社会效益,豆制品加工废水处理工程的研究具有重要的现实意义和广阔的应用前景。
通过本次研究,我们希望为豆制品加工企业提供可行的废水处理工程设计方案,推动行业的规范化发展,促进我国豆制品产业的健康发展。
1.3 研究意义豆制品加工废水处理工程设计的研究意义主要体现在以下几个方面:豆制品加工废水中含有大量的有机物和氨氮等污染物,如果直接排放到环境中会对周围水质造成严重影响,对生态环境构成威胁。
通过对豆制品加工废水进行有效处理,可以减少其对环境的污染,保护生态环境。
豆制品加工废水处理工程的设计研究可以提高豆制品生产企业的生产效率和环保水平,符合国家环保政策的要求。
豆制品废水处理方案
第1篇
豆制品废水处理方案
一、项目背景
随着我国豆制品行业的快速发展,豆制品生产过程中产生的废水问题日益凸显。豆制品废水具有有机物浓度高、悬浮物多、氮磷含量高等特点,若未经处理直接排放,将对环境造成严重污染。为响应国家环保政策,确保企业可持续发展,制定一套合法合规的豆制品废水处理方案具有重要意义。
3.社会效益:提升企业环保形象,促进企业与社会和谐共处。
本方案将为豆制品企业提供一套全面、高效的废水处理方案,助力企业实现环保责任与经济效益的双重目标。
二、处理目标
1.满足《污水综合排放标准》(GB 8978-1996)中的一级A标准;
2.减少污染物排放,实现资源循环利用;
3.提高环保意识,提升企业形象。
三、工艺流程
1.预处理单元:包括格栅、调节池、初沉池等,主要去除废水中的悬浮物、调节水质水量,为后续处理创造良好条件。
2.生物处理单元:采用厌氧+好氧的处理工艺,包括UASB反应器、SBR反应器等,有效降解有机物,降低污染物浓度。
4. UASB反应器:确定合理的容积负荷和水力停留时间,提高有机物降解效率。
5. SBR反应器:调整运行周期,实现有机物的深度降解。
6.沉淀池和滤池:设计合理的流速和反冲洗周期,确保处理效果。
7.污泥处理设备:选择高效节能的污泥浓缩和脱水设备,降低运行成本。
五、运行与管理
1.制定严格的操作规程,确保设施稳定运行。
-滤池:采用砂滤池,去除微小悬浮物和部分溶解性污染物。
-吸附单元:活性炭吸附,去除残余的有机污染物和色度。
4.消毒与排放
-消毒处理:选用适宜的消毒剂,如次氯酸钠或臭氧,消灭病原微生物。
-排放标准:确保废水排放符合一级A标准,保护受纳水体的水质。
豆制品废水处理研究
物理处理法
01
02
03
沉淀法
利用废水中的悬浮物和水 的密度差进行沉淀,去除 废水中的悬浮物和部分有 机物。
过滤法
通过过滤材料将废水中的 悬浮物和细菌等去除,常 用的过滤材料有活性炭、 陶粒等。
膜分离法
利用膜的孔径大小不同, 将废水中的大分子物质和 有害物质去除,常用的膜 有微滤膜、超滤膜等。
化学处理法
处理效果
经过处理后,废水中的污染物浓度显著降低,达到国家排放标准 。
某传统豆制品作坊废水处理案例
废水来源
01
该传统豆制品作坊主要生产豆腐、豆浆等产品,废水主要来源
于原料清洗、加工过程和产品清洗等环节。
处理工艺
02
该作坊采用了简易的物理过滤和自然沉淀等方法,有效去除废
水中的悬浮物和有机物。
处理效果
03
化学法
通过酸碱中和、氧化还原等化学反应,将豆制品废水中的有害 物质转化为无害物质。
豆制品废水处理与环境保护的关系
减少污染
豆制品废水含有大量的有机物和悬浮物,未经处理直接排放会对环境造成严重污染。通过处理将污染物去除, 减少对环境的危害。
资源化利用
豆制品废水含有丰富的营养物质,如蛋白质、脂肪、淀粉等,经过处理后可以进行资源化利用,如制作肥料、 饲料等。
环境保护
豆制品废水含有大量的有机物和氮、磷等营养物质,如不处理直 接排放,会对水体造成严重污染,破坏生态环境。
行业持续发展
豆制品废水处理是行业持续发展的必要条件,有助于保障产品质 量和行业声誉。
健康风险
豆制品废水中的有害物质如不处理,可能对人类健康造成威胁。
提高豆制品废水处理的效率与效果的方法
优化预处理工艺
豆制品加工废水处理工艺
豆制品加工废水处理工艺
豆制品加工废水处理工艺是指对豆制品生产过程中产生的废水
进行处理,以达到排放标准或可再利用的水质要求的一系列技术和方法。
豆制品加工废水主要来源于豆腐、豆浆、豆皮、豆腐干等豆制品的生产过程中的洗涤、蒸煮、浸泡、搅拌等工序产生的水。
这些废水中含有大量的有机物、蛋白质、植酸盐等物质,若直接排放到环境中,会对水质造成极大的影响。
因此,对豆制品加工废水进行处理非常必要。
目前,常用的处理工艺包括:
1.生物处理:将废水通过生物反应器进行处理,利用活性污泥或微生物将有机物等物质降解为二氧化碳和水等无害物质。
2.物化处理:将废水通过化学药剂等物质进行处理,如氧化剂、还原剂、絮凝剂等,使废水中的有害物质转化为无害物质,或者将悬浮颗粒聚集凝结,形成沉淀物。
3.膜分离技术:利用膜过滤或逆渗透等技术将废水中的有机物、悬浮颗粒等物质分离出来,达到净化水质的目的。
豆制品加工废水处理工艺的选择应根据废水的水质、产生量、处理成本等因素进行综合考虑,以达到经济、环保、高效的目的。
- 1 -。
豆制品废水处理方案
豆制品废水处理方案背景介绍豆制品是一种非常受欢迎的食品,在生产过程中会产生大量废水,其中含有豆腐渣、豆浆渣等有机物质和蛋白质。
这些有机物质和蛋白质在废水中的高浓度会对环境造成严重污染。
为了有效处理豆制品废水,降低对环境的影响,需要采取适当的处理方案。
废水处理技术1. 混合流反应器法混合流反应器法是一种常用的废水处理技术。
它通过将豆制品废水与生物活性污泥一起在反应器中进行混合和反应,利用微生物的代谢作用分解豆制品废水中的有机物质。
这种方法处理豆制品废水效果明显,能够达到国家排放标准。
2. 曝气法曝气法是利用氧气来促进微生物代谢反应的一种废水处理技术。
在豆制品废水处理过程中,通过加入合适的氧气量,可以增加废水中的溶解氧浓度,提高微生物的代谢活性,从而加速有机物质的降解和去除。
曝气法具有操作简单、能耗低的特点,是一种较为经济有效的处理豆制品废水的方法。
3. 活性炭吸附法活性炭是一种具有很强吸附能力的材料,可以有效去除豆制品废水中的有机物质和异味。
将废水通过活性炭床进行吸附处理,可以有效去除废水中的污染物,提高水质。
活性炭吸附法是一种简单、经济的豆制品废水处理技术,适用于小型生产企业。
废水处理方案优化针对豆制品废水处理过程中存在的一些问题,可以采取以下措施进行优化:1. 中和调节豆制品废水中的pH值通常较低,采用中和调节方法可以将废水中的酸碱度调整到理想范围。
中和调节可以提高废水处理厂的处理效果,减少废水对环境的影响。
2. 混合处理将豆制品废水与其他废水混合处理,可以降低废水中有机物质浓度,减少废水处理的难度。
混合处理可以降低处理成本,提高废水处理的效率。
3. 内循环利用在豆制品废水处理过程中,适当利用处理后的废水进行循环利用,可以减少废水排放量,降低对环境的影响。
内循环利用可以提高废水处理厂的资源利用率,减少运营成本。
废水处理后的利用经过合理处理的豆制品废水可以得到一定程度的净化,可以用于以下方面的利用:1. 农田灌溉将处理后的豆制品废水用于农田灌溉是一种有效的资源回收利用方式。
豆制品废水处理方案
豆制品废水处理方案摘要:豆制品废水是由豆腐、豆浆、豆干等加工过程中产生的废水,含有高浓度的悬浮物、有机物和氮、磷等营养元素。
本文介绍了豆制品废水的特点和处理方法,包括物理处理、化学处理和生物处理等方面。
本文重点介绍了生物处理中的活性污泥法和厌氧消化法,并对其工艺流程、设备、优缺点进行了详细的阐述。
第一部分:引言豆制品废水是由豆制品加工过程中产生的废水,具有高浓度的有机物和悬浮物的特点,对环境造成了一定的污染。
因此,对豆制品废水的处理具有重要意义。
本文将介绍豆制品废水的处理方案,以期为豆制品加工企业提供参考。
第二部分:豆制品废水的特点豆制品废水的特点是含有高浓度的悬浮物、有机物和氮、磷等营养元素。
豆腐废水的COD浓度一般在15000~30000mg/L,BOD浓度在2000~5000mg/L,悬浮物浓度在1000~3000mg/L。
这些高浓度的有机物和悬浮物对环境造成了较大的影响,需要采取适当的处理方法。
第三部分:豆制品废水的物理处理方法物理处理是豆制品废水处理的第一步,其目的是去除废水中的悬浮物和颗粒物。
常用的物理处理方法有格栅预处理、凝聚沉淀和过滤等。
格栅预处理是将废水经过格栅去除大颗粒物,凝聚沉淀是利用凝聚剂使悬浮物凝聚成大颗粒物,过滤是通过过滤介质去除悬浮物。
第四部分:豆制品废水的化学处理方法化学处理是豆制品废水处理的第二步,其目的是去除废水中的有机物和氮、磷等营养元素。
常用的化学处理方法有氧化法、还原法和沉淀法等。
氧化法利用氧化剂将有机物氧化为无机物,还原法利用还原剂将有机物还原为无机物,沉淀法利用沉淀剂使废水中的磷等营养元素沉淀下来。
第五部分:豆制品废水的生物处理方法生物处理是豆制品废水处理的最后一步,其目的是通过微生物的作用将废水中的有机物和氮、磷等营养元素降解为无机物。
常用的生物处理方法有活性污泥法和厌氧消化法等。
活性污泥法是将废水通过曝气搅拌,使废水中的有机物被微生物降解为无机物;厌氧消化法利用厌氧菌将有机物分解产生沼气。
豆制品加工废水处理工艺
豆制品加工废水处理工艺
豆制品加工废水处理工艺是指将豆制品加工过程中产生的废水
进行处理,达到环保标准的过程。
豆制品加工废水含有较高的COD、BOD、悬浮物、氨氮等污染物,若不进行处理直接排放会对环境造成严重的污染。
因此,对豆制品加工废水的处理一直是豆制品企业的重点关注和研究方向。
目前,豆制品加工废水的处理主要采用物理化学方法和生物处理方法相结合的综合处理工艺。
具体分为以下几个步骤:
1. 初级过滤:利用格栅、沉淀池等设备将废水中的大颗粒、固体杂质等进行初步过滤,以减轻后续处理工艺的负担。
2. 生化处理:将初步过滤后的废水进入生化池,利用菌群的作用将废水中的有机物质分解为无机物质,其中主要采用活性污泥法、生物膜法等方法。
3. 沉淀处理:将经生化处理的废水进入沉淀池进行沉淀,将废水中的悬浮物、污泥等物质沉淀下来,减少废水中的污染物浓度。
4. 深度处理:根据不同的污染物特性,采用不同的深度处理工艺,如吸附、膜分离、氧化等方法,对废水中的污染物进行进一步的去除。
5. 排放:经过上述处理步骤后,废水中的污染物浓度降低至环保标准以下,可以进行安全排放。
以上是豆制品加工废水处理的基本流程,具体处理方式应根据废水水质特点、处理量、处理工艺等因素进行综合考虑,并结合现代化
科技手段和设备对废水进行处理,达到最佳处理效果和经济效益。
0119.高浓度豆制品废水的处理
高浓度豆制品废水的处理1 工艺流程的确定根据豆制品废水的特点及经处理后的废水接入城市污水管网的要求,对高浓度废水采用酸化水解—厌氧消化处理工艺,充分利用其能耗低、处理效率高、耐负荷并能产生沼气等特点。
高浓度废水经酸化水解—厌氧消化后,出水与低浓度废水混合,泵入城市排污管网。
具体工艺流程见图1。
高浓度废水在酸化水解池的滞留期为12 h,经水解酸化后的酸化液通过水力筛网筛除未被水解酸化的大颗粒豆制品,然后进入增温计量池,把酸化液增温至38 ℃,再泵入厌氧消化罐。
厌氧发酵采用复合式上流厌氧污泥床工艺,中温发酵,水力滞留时间为84 h,容积负荷为 4.40kgCOD/(m3·d),COD去除率在95%以上,产沼气达510m3/d,产气率为1.70m3/(m3·d)。
厌氧出水经沉淀后进入配水池与稀废水混合,最终排入城市污水干管。
水解酸化池的设置,可以把复杂且难降解、大颗粒的有机物水解成易降解的简单有机物,大大降低废水中的SS含量,此时废水的pH 值不仅没有降低,反而有所提高(这主要是与酸化时间较长、酸化后期产甲烷菌群的活跃和部分铵离子的产生有关),这样可以大大减少废水对厌氧消化的冲击。
在设计厌氧消化池时,增加了废水回流设施的设置,三相分离器上部的厌氧出水回流至回流罐,与未经处理的高浓度废水混合后再进入厌氧消化罐,这样可以提高废水的pH值,降低进入厌氧消化罐的废水COD浓度,减少对厌氧污泥的局部冲击,防止厌氧池内部酸化反应的存在,提高厌氧消化效率。
随着回流比例的调整,可以大大提高厌氧消化罐的耐冲击能力。
2 设计和施工由于厂区内可利用的空地很小,进行总图设计时,结合工艺流程,将预处理各池以及沉淀池和配水池建成重叠型,节约了建设用地。
①由于废水处理设施正好位于原有的池塘上,其地基承载力和土质均匀度都很差,如采用钢筋混凝土结构,由于其自重大,地基处理费用就相当高。
厌氧罐和贮气柜设计采用德国引进的Lipp罐体,由于罐体自重轻,基础比较容易处理,费用随之降低。
豆制品厂污水怎么处理能达标排放
豆制品厂污水怎么处理能达标排放豆制品生产具有作坊式生产、产量低且分散、生产工艺繁多、多集中在城乡接合部等特点。
非发酵类豆制品生产工艺,以豆腐为例,流程为:初选→水洗→浸泡→磨浆→煮浆→点卤→压滤→成品,其中由水洗到压滤均产生废水。
发酵类豆制品生产工艺,以豆腐乳为例,流程为:初选→水洗→浸泡→磨浆→煮浆→点卤→压滤→豆腐→切块发酵→成品,其中由水洗到压滤均产生废水。
在豆腐生产过程中,废水主要来自水洗、浸泡和压滤工序,以及部分冲洗水,其中水质及水量如下表所示:豆制品废水是一种浓度很高的有机废水,其中含有蛋白质、脂肪、淀粉等有机物,有较好的生物降解性,豆制品厂污水怎么处理能达标排放呢?下面介绍几种豆制品废水的处理工艺。
1、厌氧法国内外利用厌氧方法处理豆制品废水的比较多,有用厌氧硫化床工艺处理豆制品废水的,有用厌氧折流板反应器处理豆制品废水的,采纳多极厌氧生物滤池处理豆制品浓度高的有机废水,既经济又实惠。
实践证明,采纳多级厌氧生物滤池处理浓度高的有机废水明显优于单级厌氧生物滤池工艺,CODcr去除率由78%~80%提高到90%以上。
此方法为应用于工程实践的多极厌氧生物滤池———好氧工艺。
2、好氧法针对豆制品废水的特点,可采纳AB活性污泥法进行处理。
工艺试验得到AB活性污泥法处理豆制品废水的运行参数,试验在优化参数下运行,取得明显处理效果,CODcr出水总去除率为97%,其中A 段去除率为89%,B段去除率为83%。
3、厌氧—好氧法厌氧—好氧处理工艺能发挥出厌氧微生物担当高浓度、高负荷与回收有效能源的优势,同时又能利用好氧微生物生产速度快,处理水质好的特点。
豆制品废物的资源化方式多种多样,有讨论发觉,在酱油渣、豆腐渣中含有多种蛋白质、淀粉质、脂肪等,可作为牲畜消化汲取的物质。
豆制品废水中含有氧化型酵母菌生产所需要的碳、氮、磷及微量金属元素。
酵母菌在氧气充分的状况下可将糖类全部分解为二氧化碳和水,同时产生大量含蛋白质的菌丝体,可回收作为饲料蛋白。
豆制品废水的处理及综合利用
&"!
废水中生物活性物质的回收
豆制品废水中含有蛋白质、 寡聚糖、 皂苷、 异黄
中图分类号: (!458 文献标识码: 9 文 章 编 号 : :554;5<5= ( 4554 ) 57;5575;5<
于豆制品废水处理的工艺有: 生物滤膜( 、 E9C/! ) 9C 法和活性污泥法等。
:6:6:
E9C/! 工艺
8O 年 PH&H0$& Q&10)#3* 等 R:S 利
用不同孔径的超滤膜分级处理豆制品废水,可 以 去 且利 用 活 性 炭 除分子量 <555 道尔顿以上的蛋白质, 或沸石吸附去除 @&4T、 使处 理 后 的 水 达 到 U,4T、 DEMT, 生活用水的标准, 得以循环利用。但是, 分子量小于
<555 的蛋白质仍存留于水中,且有机碳不能有效吸
附去除。
:6:64
9C 工 艺
有研究指出, 9C 法 对 豆 制 品 废 水
・ 的处理效果良好 , 9 段 的 @AB 负 荷 率 465V, I H< ’左 ・ 右, EW( 为 =65) ; C 段 则 分 别 为 56<V, I H< ’ 和 O65) , 进 水 @AB 浓 度 是 =555 >7555H, I J, 出 水 可 低 于
三种不同的甲烷发酵过程进行了比较,一种是 膜 酸 化、 甲烷发酵反应器; 一种是酸化、 甲烷发酵, 最后是 膜分离; 第三种是选择酸化反应器、 膜和甲烷发酵反 应器。在相同处理量和操作条件下产生的气体 量 进 行比较, 当废水中有机的悬浮固形物含量高时, 第三 种方法为最优方案。因为膜应用于酸化和甲烷 发 酵 中间, 将反应清楚地分为两段式。
豆制品废水处理流程
豆制品废水处理流程
豆制品生产企业,在生产中需要使用大量的水源,如黄豆的清洗,豆浆的制备,豆腐的生产,各种豆制品的蒸煮,会产生大量的废水,废水含有各种重金属的盐,以及含有大量的富营养物质,这样的废水直接排到外部环境中,会对水体产生严重危害,所以必须针对此类废水进行处理后才能排放。
豆制品废水处理方法:
1)先通过格栅过滤废水废水,除去废水中的大块固体废弃物质;
2)然后废水通过一沉淀池,除去大部分的油脂和较大的颗粒悬浮物和砂粒;
3)再然后,废水经过调节池,作水质、水量均衡后,废水经泵提升气浮池,通过向废水中加药,去除废水中悬浮物池;
4)再然后,废水通过管道泵进入酸化水解池,污水由底部进入酸化水解池,在向上流的过程中,穿过池中由微生物所形成的污泥床,废水中污染物被污泥床所截留,经吸附,同化和解,将高分子,复杂的有机物分解成低分子,简单的有机物;同时反硝化菌就利用接触氧化池回流混合液带来的硝酸盐,以及污水中可生物降解有机物作为碳源进行反硝化,达到同时降低BOD5 与脱氮的目的;
5)废水由酸化水解池出来后进入好氧接触氧化池;接触氧化池内悬挂大量的纤维填料,填料表面附着大量的微生物,在有氧的条件下同化和分解水中的有机物,终生成CO2和H2O;
6)接触氧化池出水进入斜管沉淀池,去除水中悬浮物后,100%
回流至厌氧池脱氮,出水可达标排放。
7)斜管沉淀池污泥定期由螺杆泵打到板框压滤机进行脱水处理,脱水后的干污泥定期外运。
其中在步骤2)中,沉淀在沉淀池内的沉渣由污泥泵加压后进入板框机进行脱水。
步骤5)中,老化的生物膜从填料表面脱落下来,随水流入二沉池,并沉于二沉池集泥斗。
废水经过上述处理池后,完全达到国家规定的排放标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高浓度豆制品废水的处理
1工艺流程的确定
根据豆制品废水的特点及经处理后的废水接入城市污水管网的要求,对高浓度废水采用酸化水解—厌氧消化处理工艺,充分利用其能耗低、处理效率高、耐负荷并能产生沼气等特点。
高浓度废水经酸化水解—厌氧消化后,出水与低浓度废水混合,泵入城市排污管网。
具体工艺流程见图1。
高浓度废水在酸化水解池的滞留期为12h,经水解酸化后的酸化液通过水力筛网筛除未被水解酸化的大颗粒豆制品,然后进入增温计量池,把酸化液增温至38℃,再泵入厌氧消化罐。
厌氧发酵采用复合式上流厌氧污泥床工艺,中温发酵,水力滞留时间为84h,容积负荷为4.40kgCOD/(m3·d),COD去除率在95%以上,产沼气达510m3/d,产气率为1.70m3/(m3·d)。
厌氧出水经沉淀后进入配水池与稀废水混合,最终排入城市污水干管。
水解酸化池的设置,可以把复杂且难降解、大颗粒的有机物水解成易降解的简单有机物,大大降低废水中的SS含量,此时废水的pH 值不仅没有降低,反而有所提高(这主要是与酸化时间较长、酸化后
期产甲烷菌群的活跃和部分铵离子的产生有关),这样可以大大减少废水对厌氧消化的冲击。
在设计厌氧消化池时,增加了废水回流设施的设置,三相分离器上部的厌氧出水回流至回流罐,与未经处理的高浓度废水混合后再进入厌氧消化罐,这样可以提高废水的pH值,降低进入厌氧消化罐的废水COD浓度,减少对厌氧污泥的局部冲击,防止厌氧池内部酸化反应的存在,提高厌氧消化效率。
随着回流比例的调整,可以大大提高厌氧消化罐的耐冲击能力。
2设计和施工
由于厂区内可利用的空地很小,进行总图设计时,结合工艺流程,将预处理各池以及沉淀池和配水池建成重叠型,节约了建设用地。
①由于废水处理设施正好位于原有的池塘上,其地基承载力和土质均匀度都很差,如采用钢筋混凝土结构,由于其自重大,地基处理费用就相当高。
厌氧罐和贮气柜设计采用德国引进的Lipp罐体,由于罐体自重轻,基础比较容易处理,费用随之降低。
厌氧消化罐高为9m,直径为7m,是地上式圆形Lipp罐。
由于对厌氧消化罐的径、高比进行了调整,原有的三相分离器就不是很适合。
因此,对三相分离器进行了重新设计,采用三层钢结构漏斗式导流板做三相分离器(见图2)。
从使用结果看,三相分离效果相当好,厌氧污泥流失量很
小,污泥截留效果明显。
②沼气贮气柜采用干式贮气柜,由于其自重很小,地基无需进行特别处理。
而湿式贮气柜其自重较大,需较大的地基处理费用。
采用Lipp技术卷制的干式贮气柜,柜体为镀锌钢板一次卷制成形的筒体,在柜内安装了贮气袋和高位控制架,柜外安装有气体量的显示装置,并同时安装了气袋保护装置——气体超压保护器。
贮气袋采用从德国进口的专用沼气贮气袋,其使用寿命较长,并且不需每年进行维护,一年可节约一笔不小的维护费。
③厌氧消化罐采用Lipp技术进行卷制。
筒体材料采用不锈钢复合高强度板卷制,在罐顶上部安装有压顶槽钢,采用不锈钢螺栓与筒体之间的定位,不采用焊接方式。
筒体制作完成后,进行罐内的金属结构安装。
由于罐体为金属结构,罐顶可在罐内金属结构完成后再进行安装,这样给罐内的安装工作带来了极大的便利。
厌氧罐内设有布水器,布水器采用枝状布水,隔3m2设有一个布水头,布水较为均匀。
三相分离器的安装是罐内金属结构安装的重点,由三个圆锥形正反斗组成,施工要求高、难度大。
在施工中充分利用罐顶后施工的特点,三个圆锥斗在外进行拼接,然后到罐内进行安装,降低了施工难度和劳动强度,工程质量也较容易控制,加快了工程进度。
安装完成三相分离器和溢流槽后,进行罐顶的安装施工工作。
罐体保温材料采用阻
燃型的聚苯乙烯泡沫板,外壳采用彩色瓦楞钢板,瓦楞钢板采用特制的定位卡头扁钢定位,安装效果良好。
Lipp罐体与钢筋混凝土之间的浇筑采用膨胀混凝土(见图3)。
3调试运行
调试运行工作从1996年11月开始,对水解酸化、厌氧消化进行培菌调试。
①水解酸化:菌种采取自然富集培养,处理水量与厌氧消化进水量相匹配,从10m3/d、20m3/d……逐步增加负荷,1个半月后达到满负荷运转,处理能力为80m3/d。
经酸化处理后,出水COD平均从24 000mg/L降为16500mg/L左右,COD去除率达30%,pH值为5.5。
②厌氧消化:厌氧菌采用厂区的阴沟污泥和杭州四堡污水处理厂的厌氧污泥接种,共接种60%含水率的厌氧污泥30m3,菌种接入厌氧罐后,加入少量生产废水作为培养基,先进行升温和驯化培养。
每天升温1℃左右,直至达到设计要求的38±1℃。
废水处理量从10m3/d 开始,COD负荷从0.36kgCOD/(m3·d)逐步增加,1个半月后,进水量达到80m3/d,COD负荷为4.40kgCOD/(m3·d),出水COD浓度为650
mg/L 左右,COD 去除率达96%,出水pH 值为7.2,产沼气为510m 3/d,产气率为1.70m 3/(m 3
·d)。
4正常运行
废水处理工程运行初期,由于水量变化较大(约为60~150m 3不等),废水浓度波动也很大,最低时CODCr 浓度在8000mg/L 左右,而最高时CODCr 浓度可达到3×104mg/L,这给正常运行带来了困难。
同时也发现,当废水量较大时其浓度相应较低,而水量少时其浓度就很高,在工程实际运行管理中,根据这个特点,当水量较大时采用延长进料时间同时减少厌氧消化罐的回流比例,以减少由于水量的增加而对厌氧消化所产生的冲击。
当水量减少而浓度较高时,加大厌氧消化罐的回流比例和回流时间,加大回流比可以很好地减少高浓度废水对厌氧消化的局部冲击。
经过一段时间的探索,总结出高浓度废水与厌氧回流水相混合后的COD 浓度在1.5×104mg/L 以下时,就可以减少对厌氧消化的冲击,而将混合废水的COD 浓度控制在1×104mg/L 以下时,基本上不会对厌氧产生冲击,出水各项指标均很正常。
处理工程经过近2年的运行,效果稳定,没有出现大的反复,各单元的处理效果(平均值)与沼气产气量见表
2。
表2各单元的处理效
果
项目高浓度废水格栅沉砂池酸化水解池厌氧
消化
罐沉淀池混合池
处理水量(m
3
/d)
8080808080330滞留时间(h)
1128466pH 值 5.0 5.0
5.57.27.2
6.5SS(mg/L)120001100
07200430350501
去除率(%)8.334.5
9418.6CODCr(mg/L)24000230001650
0690650460
去除率(%) 4.428.395.8 4.4
BOD 5(mg/L)108001050
8500260260200去除率(%) 2.8
1997.5温度(℃)
50302838常温常温
沼气(m 3/d)
5105结论与经验①通过近2年的运行,处理效果达到和超过设计指标,处理设备和装置运行正常,说明用水解酸化—厌氧发酵的工艺处理豆制品废水是切实可行的。
同时,采用德国Lipp 技术与设备,大大缩短了工程的施工周期,受天气影响的程度也远比钢筋混凝土结构的工程要小,无论在南方或北方,Lipp 技术都比较适合发展。
②由于采用Lipp技术卷制的罐体其自重很小,罐体结构受力得到大大改善,对地基的处理费用大大降低,特别是在软土地基的地区,工程造价更是显著下降。
同时,可以减少大量的日常维护和检修费用,工程使用寿命也大大延长。
③增加厌氧消化罐的回流量可以大大减少对厌氧的冲击,不必为调节pH而多支出药品的费用,可以使运行处于低成本状态,增加了沼气出售的收入(该工程产沼气为510m3/d,若按1.2元/m3计,则收入为612元/d)。