高三物理一轮复习典型例题分类精讲:热学全国通用

合集下载

高考一轮复习【第十一章】《热学》专题讲座(含答案)

高考一轮复习【第十一章】《热学》专题讲座(含答案)

【创新方案】2019年高考物理一轮复习专家专题讲座:第十一章热学(选修3-3)变质量问题的求解方法分析变质量问题时,可以通过巧妙地选择合适的研究对象,使这类问题转化为一定质量的气体问题,用气态方程求解。

1.打气问题向球、轮胎中充气是一个典型的变质量的气体问题。

只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题。

2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题。

解析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程看做是等温膨胀过程。

3.灌气问题将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题。

解决这类问题时,可以把大容器中的气体和多个小容器中的气体看做整体来作为研究对象,可将变质量问题转化为定质量问题。

4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解。

如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化,可用理想气体状态方程求解。

[典例1] 钢瓶中装有一定质量的气体,现在用两种方法抽取钢瓶中的气体,第一种方法是用小抽气机,每次抽出1 L气体,共抽取三次,第二种方法是用大抽气机,一次抽取3 L气体,这两种抽法中,抽取气体质量较多的是( )A.第一种抽法B.第二种抽法C.两种抽法抽出气体质量一样多D.无法判断[解析] 设初状态气体压强为p0,抽出气体后压强为p,对气体状态变化应用玻意耳定律,则:第一种抽法:p0V=p1(V+1)p1=p0·VV+1p1V=p2(V+1)p2=p1·VV+1=p0(VV+1)2p2V=p3(V+1)p3=p2·VV+1=p0(VV+1)3即三次抽完后:p3=p0·V3V3+3V2+3V+1第二种抽法:p 0V =p′(V+3) p′=V V +3p 0=V3V 3+3V2p 0由此可知第一种抽法抽出气体后,剩余气体的压强小,即抽出气体的质量多。

2024届高考物理一轮复习热点题型归类训练:热学的基本概念与原理(解析版)

2024届高考物理一轮复习热点题型归类训练:热学的基本概念与原理(解析版)

热学的基本概念与原理1.目录题型一 关于分子动理论及内能的考查类型1 微观量估算的两种“模型”类型2 布朗运动与分子热运动类型3 分子力和内能题型二 固体、液体和气体类型1 固体和液体性质的理解类型2气体压强的计算及微观解释题型三 关于热力学定律与能量守恒定律的理解类型1 热力学第一定律的理解类型2 热力学第二定律的理解类型3 热力学第一定律与图像的综合应用题型一:关于分子动理论及内能的考查类型1 微观量估算的两种“模型”1.微观量与宏观量(1)微观量:分子质量m0、分子体积V0、分子直径d等.(2)宏观量:物体的质量m、摩尔质量M、物体的密度ρ、物体的体积V、摩尔体积V mol等.2.分子的两种模型(1)球模型:V0=16πd3,得直径d=36V0π(常用于固体和液体).(2)立方体模型:V0=d3,得边长d=3V0(常用于气体).3.几个重要关系(1)一个分子的质量:m0=MN A.(2)一个分子的体积:V0=V molN A(注意:对于气体,V0表示一个气体分子占有的空间).(3)1mol物体的体积:V mol=Mρ.模型1 微观量估算的球体模型1(多选)钻石是首饰、高强度钻头和刻刀等工具中的主要材料,设钻石的密度为ρ(单位为kg/m3),摩尔质量为M(单位为g/mol),阿伏加德罗常数为N A.已知1克拉=0.2g,则下列选项正确的是()A.a克拉钻石物质的量为0.2aM B.a克拉钻石所含有的分子数为0.2aN A MC.每个钻石分子直径的表达式为36M×10-3N Aρπ(单位为m)D.a克拉钻石的体积为aρ【答案】 ABC【解析】 a克拉钻石的质量为0.2a克,得物质的量为0.2aM,所含分子数为0.2aM×N A,故A、B正确;每个钻石分子的体积为M×10-3ρN A,固体分子看作球体,V=43πR3=43πd23=16πd3,联立解得分子直径d=36M×10-3N Aρπ,故C正确;a克拉钻石的体积为0.2a×10-3ρ,D错误.2(2022·山东省摸底)在标准状况下,体积为V的水蒸气可视为理想气体,已知水蒸气的密度为ρ,阿伏伽德罗常数为N A,水的摩尔质量为M,水分子的直径为d。

高中物理选考一轮总复习课件专题十四热学基础篇

高中物理选考一轮总复习课件专题十四热学基础篇
出机械能。
效率分析
热机效率受多种因素影响,如燃 料热值、燃烧效率、机械损失等 。提高热机效率是节能减排的重
要途径。
冰箱、空调等制冷设备工作原理简介
01
02
03
制冷原理
利用制冷剂的物理变化( 蒸发吸热、冷凝放热)实 现热量从低温物体向高温 物体的转移。
工作过程
制冷剂在蒸发器内蒸发吸 热,使被冷却物体温度降 低;在冷凝器内冷凝放热 ,将热量排放到环境中。
高中物理选考一轮总复习课 件专题十四热学基础篇
汇报人:XX
汇报时间:20XX-01-17
目录
• 热学基本概念与单位 • 热力学第一定律 • 热力学第二定律 • 气体动理论基础知识 • 固体、液体和物态变化 • 热学在生活和科技中应用
01
热学基本概念与单位
温度与温标
温度
01
表示物体冷热程度的物理量,是分子热运动平均动能的标志。
01
热力学系统
研究对象与周围环境组成的整 体。
02
状态参量
描述系统状态的物理量,如体 积V、压强p和温度T等。
03
平衡态
系统各部分的宏观性质不随时 间变化的状态。
热力学过程与循环
热力学过程
系统从一个平衡态变化到另一个平衡态的 过程。
循环过程
系统经过一系列变化后回到初始状态的过 程,如卡诺循环。
等温过程
温标
02
温度的数值表示法,分为摄氏温标、华氏温标和热力学温标等

摄氏温度与热力学温度的关系
03
T = t + 273.15K。
热量与内能
01
热量
热传递过程中,物体间内能的 转移量,用Q表示,单位是焦

高考物理一轮复习热学热力学定律与能量守恒定律习题新人教

高考物理一轮复习热学热力学定律与能量守恒定律习题新人教

第十二章第3讲热力学定律与能量守恒定律1.(2020·全国卷Ⅱ)(多选)如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空。

现将隔板抽开,气体会自发扩散至整个汽缸。

待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积。

假设整个系统不漏气。

下列说法正确的是导学号 21992804( ABD )A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变[解析] 抽开隔板,气体自发扩散过程中,气体对外界不做功,与外界没有热交换,因此气体的内能不变,A项正确,C项错误;气体在被压缩的过程中,外界对气体做正功,D项正确;由于气体与外界没有热交换,根据热力学第一定律可知,气体在被压缩的过程中内能增大,因此气体的温度升高,气体分子的平均动能增大,B项正确,E项错误。

2.(2020·全国卷Ⅲ)(多选)如图,一定质量的理想气体从状态a出发,经过等容过程ab到达状态b,再经过等温过程bc到达状态c,最后经等压过程ca回到状态a。

下列说法正确的是导学号 21992805 ( ABD )A.在过程ab中气体的内能增加B.在过程ca中外界对气体做功C.在过程ab中气体对外界做功D.在过程bc中气体从外界吸收热量E.在过程ca中气体从外界吸收热量[解析] ab过程,气体压强增大,体积不变,则温度升高,内能增加,A项正确;ab过程发生等容变化,气体对外界不做功,C项错误;一定质量的理想气体内能仅由温度决定,bc过程发生等温变化,内能不变,bc过程,气体体积增大,气体对外界做正功,根据热力学第一定律可知气体从外界吸热,D项正确;ca过程发生等压变化,气体体积减小,外界对气体做正功,B项正确;ca过程,气体温度降低,内能减小,外界对气体做正功,根据热力学第一定律可知气体向外界放热,E项错误。

高三物理一轮复习 专题8 热学(含高考真题)

高三物理一轮复习 专题8 热学(含高考真题)

专题8 热学1.[2016·北京卷] 雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是( )A.PM10表示直径小于或等于1.0×10-6 m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5浓度随高度的增加逐渐增大答案:C解析: 10 μm=1.0×10-5 m,选项A不正确.题目的信息PM10的浓度随高度的增加而略有减小,这表明PM10的分布具有任意性,也就是说受分子力和重力的大小关系具有任意性,选项B不正确.PM10和大悬浮颗粒肉眼均不可见,而且受气体分子的撞击的影响较大,其运动具有很强的无规则性,可以认为是布朗运动,选项C正确.PM2.5与PM10相比,密度相同,颗粒更小,那么PM2.5做布朗运动更明显,而分布应该更加均匀,不会高度越高浓度越大,选项D不正确.2.[2016·江苏卷]A.[选修3­3](2)如图1­甲所示,在斯特林循环的p­V图像中,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A,整个过程由两个等温和两个等容过程组成,B→C的过程中,单位体积中的气体分子数目________(选填“增大”“减小”或“不变”),状态A和状态D 的气体分子热运动速率的统计分布图像如图乙所示,则状态A对应的是________(选填“①”或“②”).图1­答案:不变 ①解析: B →C 过程中由于气体分子总数不变,体积也不变,因此单位体积中的气体分子数目也不变.根据理想气体状态方程可得T A <T D ,而温度又是分子平均动能的标志,由图像可看出,图线①表示速率较小的分子数目多,也就是分子平均动能较小,所以图线①对应状态A .3.[2016·全国卷Ⅰ] [物理——选修3­3]在水下气泡内空气的压强大于气泡表面外侧水的压强,两压强差Δp 与气泡半径r 之间的关系为Δp =2σr,其中σ=0.070 N/m.现让水下10 m 处一半径为0.50 cm 的气泡缓慢上升,已知大气压强p 0=1.0×105 Pa ,水的密度ρ=1.0×103 kg/m 3,重力加速度大小g 取10 m/s 2. (i)求在水下10 m 处气泡内外的压强差;(ii)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值.解析: (i)当气泡在水下h =10 m 处时,设其半径为r 1,气泡内外压强差为Δp 1,则Δp 1=2σr 1① 代入题给数据得Δp 1=28 Pa ②(ii)设气泡在水下10 m 处时,气泡内空气的压强为p 1,气泡体积为V 1;气泡到达水面附近时,气泡内空气的压强为p 2,内外压强差为Δp 2,其体积为V 2,半径为r 2.气泡上升过程中温度不变,根据玻意耳定律有p 1V 1=p 2V 2 ③由力学平衡条件有p 1=p 0+ρgh +Δp 1 ④p 2=p 0+Δp 2 ⑤气泡体积V 1和V 2分别为V 1=43πr 31 ⑥V 2=43πr 32 ⑦联立③④⑤⑥⑦式得 ⎝ ⎛⎭⎪⎫r 1r 23=p 0+Δp 2ρgh +p 0+Δp 1⑧ 由②式知,Δp 1≪p 0,i =1,2,故可略去⑧式中的Δp 1项,代入题给数据得 r 2r 1=32≈1.3 ⑨ 4.[2016·全国卷Ⅱ] [物理——选修3­3](10分)一氧气瓶的容积为0.08 m 3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m 3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.解析:设氧气开始时的压强为p 1,体积为V 1,压强变为p 2(2个大气压)时,体积为V 2.根据玻意耳定律得 p 1V 1=p 2V 2 ①重新充气前,用去的氧气在p 2压强下的体积为V 3=V 2-V 1 ②设用去的氧气在p 0(1个大气压)压强下的体积为V 0,则有p 2V 3=p 0V 0 ③设实验室每天用去的氧气在p 0下的体积为ΔV ,则氧气可用的天数为N =V 0ΔV④ 联立①②③④式,并代入数据得N =4(天) ⑤5. [2016·全国卷Ⅲ] [物理——选修3­3]一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.图1­解析:设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p ′1,长度为l ′1;左管中空气柱的压强为p ′2,长度为l ′2.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00) cmHg ① l ′1=⎝ ⎛⎭⎪⎫20.0-20.0-5.002 cm ② 由玻意耳定律得p 1l 1=p ′1l ′1 ③联立①②③式和题给条件得p ′1=144 cmHg ④依题意p ′2=p ′1 ⑤l ′2=4.00 cm +20.0-5.002cm -h ⑥ 由玻意耳定律得p 2l 2= p ′2l ′2 ⑦联立④⑤⑥⑦式和题给条件得h =9.42 cm ⑧6.[2016·全国卷Ⅰ] [物理——选修3­3]关于热力学定律,下列说法正确的是________.A .气体吸热后温度一定升高B .对气体做功可以改变其内能C .理想气体等压膨胀过程一定放热D .热量不可能自发地从低温物体传到高温物体E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡答案:BDE解析:气体吸热,若同时对外做功,则温度一可能降低,故A 错误;改变气体的内能的方式有两种:做功和热传递,故B 正确;理想气体等压膨胀过程是吸热过程,故C 错误;根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,故D 正确;如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也一定达到热平衡,否则就不会与第三个系统达到热平衡,故E 正确.7.[2016·全国卷Ⅱ] [物理——选修3­3]一定量的理想气体从状态a 开始,经历等温或等压过程ab 、bc 、cd 、da 回到原状态,其p ­T 图像如图所示,其中对角线ac 的延长线过原点O .下列判断正确的是________.图1­A .气体在a 、c 两状态的体积相等B .气体在状态a 时的内能大于它在状态c 时的内能C .在过程cd 中气体向外界放出的热量大于外界对气体做的功D .在过程da 中气体从外界吸收的热量小于气体对外界做的功E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功答案:ABE解析:由pV T =C 得p =C V ·T (C 为常量),因对角线ac 的延长线过原点O ,即p =kT ,故体积V 不变,即V a =V c ,选项A 正确;一定量的理想气体的内能由温度T 决定,而T a >T c ,故E a >E c ,选项B 正确;cd 过程为等温加压过程,外界对系统做正功,但系统内能不变,故系统要对外放热,放出热量Q =W 外,选项C 错误;da 过程为等压升温过程,体积增加,对外界做功,系统内能增加,故系统要从外界吸热,且吸收热量Q =W 外+ΔE 内>W 外,选项D 错误;bc 过程为等压降温过程,由V 1T 1=V 2T 2可知,气体体积会减小,W =p ΔV =C ΔT bc ;同理da 过程中,W ′=p ′ΔV ′=C ΔT da ,因为|ΔT bc |=|ΔT da |,故|W |=|W ′|,选项E 正确.8.[2016·全国卷Ⅲ] [物理——选修3­3](1)关于气体的内能,下列说法正确的是________.A .质量和温度都相同的气体,内能一定相同B .气体温度不变,整体运动速度越大,其内能越大C .气体被压缩时,内能可能不变D .一定量的某种理想气体的内能只与温度有关E .一定量的某种理想气体在等压膨胀过程中,内能一定增加答案:CDE解析:温度相同,分子平均动能相同,若摩尔质量不同,则相同质量的气体有不同的分子数,分子总动能不同,假若都是理想气体,因为只考虑分子动能,所以内能不同,A 错误;气体内能取决于气体分子的平均动能和分子势能,而与宏观上整体的动能无关,B 错误;若外界对气体做的功等于气体向外界放出的热,则气体的内能不变,C 正确;理想气体的内能取决于气体分子的平均动能,而分子平均动能取决于温度,D 正确;理想气体等压膨胀过程中,p 一定,V 增加,由pV T=C 可知T 升高,故内能增加,E 正确. 9.[2016·江苏卷]A .[选修3­3](3)如图甲所示,在A →B 和D →A 的过程中,气体放出的热量分别为4 J 和20 J .在B →C 和C →D 的过程中,气体吸收的热量分别为20 J 和12 J .求气体完成一次循环对外界所做的功.解析:完成一次循环气体内能不变,则ΔU =0,吸收的热量Q =(20+12-4-20) J =8 J ,由热力学第一定律ΔU =Q +W 得,W =-8 J ,气体对外做功8 J.。

14.3 热力学定律(讲)--2023-2024年高考物理一轮复习讲练测(全国通用)(解析版)

14.3 热力学定律(讲)--2023-2024年高考物理一轮复习讲练测(全国通用)(解析版)

第十四章热学【网络构建】专题14.3 热力学定律【网络构建】考点一热力学第一定律与能量守恒定律1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.2.三种特殊情况(1)若过程是绝热的,即Q=0,则W=ΔU,外界对物体做的功等于物体内能的增加量;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.3.改变内能的两种方式的比较4.温度、内能、热量、功的比较考点二热力学第二定律的理解1.对热力学第二定律关键词的理解在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义.(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质自然界中进行的涉及热现象的宏观过程都具有方向性.如(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地且不能完全转化为热.(3)气体体积V 1能自发地膨胀到不能自发地收缩到气体体积V2(较大).(4)不同气体A和B能自发地混合成不能自发地分离成混合气体AB.3.两类永动机的比较分类第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,但违背热力学第二定律考点三封闭气体多过程的问题多过程问题的处理技巧研究对象(一定质量的气体)发生了多种不同性质的变化,表现出“多过程”现象.对于“多过程”现象,则要确定每个有效的“子过程”及其性质,选用合适的实验定律,并充分应用各“子过程”间的有效关联.解答时,特别注意变化过程可能的“临界点”,找出临界点对应的状态参量,在“临界点”的前、后可以形成不同的“子过程”.考点四关联气体的状态变化问题多系统问题的处理技巧多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系.考点五变质量问题分析气体变质量问题时,可以通过巧妙地选择合适的研究对象,使变质量问题转化为气体质量一定的问题,然后利用理想气体状态方程求解.充气问题设想将充进容器内的气体用一个无形的弹性口袋收集起来,那么,当我们取容器和口袋内的全部气体为研究对象时,这些气体的状态不管怎样变化,其质量总是不变的,这样我们就将变质量的问题转化成质量一定的问题了.抽气问题在用抽气筒对容器抽气的过程中,对每一次抽气而言,气体质量发生变化,解决该类变质量问题的方法与充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题.灌气问题将一个大容器里的气体分装到多个小容器中的问题也是一种典型的变质量问题,分析这类问题时,可以把大容器中的气体和多个小容器中的气体作为一个整体来进行研究,即可将变质量问题转化为质量一定的问题.漏气问题容器漏气过程中容器内的气体的质量不断发生变化,属于变质量问题,不能直接用理想气体状态方程求解.如果选容器内原有气体为研究对象,便可使问题变成质量一定的气体状态变化问题,这时可用理想气体状态方程求解.考点六热力学第一定律与图象的综合应用判断理想气体内能变化的两种方法(1)一定质量的理想气体,内能的变化完全由温度变化决定,温度升高,内能增大.(2)若吸、放热和做功情况已知,可由热力学第一定律ΔU=W+Q来确定.高频考点一热力学第一定律与能量守恒定律例1、关于气体的内能,下列说法正确的是()A.质量和温度都相同的气体,内能一定相同B.气体温度不变,整体运动速度越大,其内能越大C.气体被压缩时,内能可能不变D.一定量的某种理想气体的内能只与温度有关E.一定量的某种理想气体在等压膨胀过程中,内能一定增加【答案】CDE【解析】质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量可能不同,则分子个数可能不同,所以分子总动能不一定相同,A错误;宏观运动和微观运动没有关系,所以宏观运动速度大,内能不一定大,B错误;气体被压缩,同时对外传热,根据热力学第一定律知内能可能不变,C 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能与分子平均动能有关,而温度是分子平均动能的标志,D正确;一定质量的某种理想气体等压膨胀,温度增大,内能一定增大,E正确.【变式训练】如图1,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变【答案】ABD【解析】因为汽缸、活塞都是绝热的,隔板右侧是真空,所以理想气体在自发扩散的过程中,与外界没有热量交换,也不对外界做功.根据热力学第一定律可知,气体自发扩散前后,内能不变,选项A正确,C 错误;气体在被压缩的过程中,外界对气体做功,气体内能增大,又因为一定质量的理想气体的内能只与温度有关,所以气体温度升高,分子平均动能增大,选项B、D正确,E错误.高频考点二热力学第二定律的理解例2、下列说法正确的是()A.压缩气体总能使气体的温度升高B.能量耗散过程中能量是守恒的C.第一类永动机不可能制成,是因为违背了能量守恒定律D.第二类永动机不违背能量守恒定律,但违背了热力学第一定律E.能量耗散过程从能量转化的角度反映了自然界中的宏观过程具有方向性【答案】BCE【解析】内能的变化取决于做功和热传递两个方面,压缩气体并不一定能使气体温度升高,选项A错误;由能量守恒定律可知,选项B正确;第一类永动机是指不消耗能量却可以不断向外做功的机器,违背了能量守恒定律,选项C正确;第二类永动机不违背能量守恒定律,但违背了热力学第二定律,选项D错误;由热力学第二定律可知,选项E正确.【变式训练】下列关于热现象的描述不正确的是()A.根据热力学定律,热机的效率不可能达到100%B .做功和热传递都是通过能量转化的方式改变系统内能的C .温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同D .物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规则的E .空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律 【答案】BDE【解析】:.根据热力学第二定律可知,热机不可能从单一热源吸收热量全部用来做功而不引起其他变化,因此,热机的效率不可能达到100%,选项A 正确;做功是通过能量转化改变系统的内能,热传递是通过能量的转移改变系统的内能,选项B 错误;温度是表示热运动的物理量,热传递过程中达到热平衡时,温度相同,选项C 正确;单个分子的运动是无规则的,大量分子的运动表现出统计规律,选项D 错误;由热力学第二定律知,热量不可能从低温物体传到高温物体而不产生其他影响,空调机作为制冷机使用时,消耗电能,将热量从温度较低的室内送到温度较高的室外,选项E 错误.高频考点三 封闭气体多过程的问题 汽缸封闭气体问题例3、如图所示,两个壁厚可忽略的导热良好的圆柱形金属筒A 和B 套在一起,底部到顶部的高度为20 cm ,两者横截面积相等,光滑接触且不漏气.将A 系于天花板上,用手托住B ,使它们内部密封的气体强与外界大气压相同,均为1.1×105 Pa ,然后缓慢松手,让B 下沉,当B 下沉了2 cm 时,停止下沉并处于静止状态.求:(1)此时金属筒内气体的压强;(2)若当时的温度为24 ①,欲使下沉后的套筒恢复到下沉前的位置,应将温度变为几摄氏度? 【答案】:(1)1.0×105 Pa (2)-3 ①【解析】:(1)设金属筒横截面积为S cm 2,p 1=1.1×105 Pa ,V 1=20S cm 3,V 2=22S cm 3 根据玻意耳定律,p 1V 1= p 2V 2,p 2=p 1V 1V 2=1.1×105×20S 22SPa =1.0×105 Pa(2)V 2=22S cm 3,T 2=297 K ,V 3=20S cm 3,根据盖—吕萨克定律得到,V 2T 2=V 3T 3,T 3=V 3T 2V 2 =20S ×29722SK =270K ,t =(270-273)①=-3 ①.活塞封闭气体问题例4、一足够高的内壁光滑的导热汽缸竖直地浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭了一 定质量的理想气体,活塞的面积为1.5×10-3 m 2,如图所示,开始时气体的体积为3.0×10-3 m 3,现缓慢地在 活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之一设大气压强为1.0×105 Pa.重力加速度g 取10 m/s 2,求:(1)最后汽缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克? 【答案】:(1)3.0×105 Pa (2)30 kg【解析】:(1)汽缸内气体的温度保持不变,根据玻意耳定律可知p 1V 1=p 2V 2 代入数据解得p 2=p 1V 1V 2=3.0×105 Pa ;(2)活塞受力分析如图所示根据力的平衡条件:p 2S =p 0S +mg ,代入数据解得:m =p 2-p 0Sg=30 kg. 高频考点四 关联气体的状态变化问题 活塞封闭气体的问题例5、如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K 关闭,汽缸 内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V8时,将K 关闭,活塞平衡时其下方气体的体积减小了V6.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g .求流入汽缸内液体的质量.【答案】15p 0S26g【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2.在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得 p 0V2=p 1V 1① p 0V2=p 2V 2① 由已知条件得 V 1=V 2+V 6-V 8=1324V ①V 2=V 2-V 6=V 3①设活塞上方液体的质量为m ,由力的平衡条件得 p 2S =p 1S +mg ①联立以上各式得m =15p 0S26g①水银柱封闭气体的问题例6、在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.【答案】22.5 cm 7.5 cm【解析】设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体 压强相等,设为p .此时原左、右两边气柱长度分别变为l 1′和l 2′.由力的平衡条件有p 1=p 2+ρg (l 1-l 2)① 式中ρ为水银密度,g 为重力加速度大小. 由玻意耳定律有 p 1l 1=pl 1′① p 2l 2=pl 2′①两边气柱长度的变化量大小相等 l 1′-l 1=l 2-l 2′①由①①①①式和题给条件得 l 1′=22.5 cm① l 2′=7.5 cm①高频考点五 变质量问题 充气问题例7、一个篮球的容积是2.5 L ,用打气筒给篮球打气时,每次把105 Pa 的空气打进去125 cm 3. 如果在打气前篮球内的空气压强也是105 Pa ,那么打30次以后篮球内的空气压强是多少?(设 打气过程中气体温度不变) 【答案】 2.5×105 Pa【解析】 设V 2为篮球的容积,V 1为30次所充空气的体积及篮球的容积之和,则 V 1=V 2+n ΔV =2.5 L +30×0.125 L =6.25 L由于整个过程中空气质量不变,温度不变,可用玻意耳定律求解,即有p 1V 1=p 2V 2 解得p 2=p 1V 1V 2=105×6.252.5Pa =2.5×105 Pa. 抽气问题例8、用容积为ΔV 的活塞式抽气机对容积为V 0的容器中的气体抽气,如图所示.设容器中原来的气体压强为p 0,抽气过程中气体温度不变.求抽气机的活塞抽气n 次后,容器中剩余气体的压强p n 为多少?【答案】 (V 0V 0+ΔV )n p 0【解析】 当活塞下压时,阀门a 关闭,b 打开,抽气机汽缸中ΔV 体积的气体排出,容器中气体压强降为p 1.活塞第二次上提(即抽第二次气),容器中气体压强降为p 2,根据玻意耳定律,对于第一次抽气,有p 0V 0=p 1(V 0+ΔV ),解得p 1=V 0V 0+ΔV p 0,对于第二次抽气,有p 1V 0=p 2(V 0+ΔV ),解得p 2=(V 0V 0+ΔV )2p 0,以此类推,第n 次抽气后容器中气体压强降为p n =(V 0V 0+ΔV )n p 0. 灌气问题例9、某容积为20 L 的氧气瓶装有30 atm 的氧气,现把氧气分装到容积为5 L 的小钢瓶中,使每个小钢瓶中氧气的压强为5 atm ,若每个小钢瓶中原有氧气压强为1 atm ,问能分装多少瓶?(设分装过程中无漏气,且温度不变)【答案】 25【解析】 设最多能分装n 个小钢瓶,并选取氧气瓶中的氧气和n 个小钢瓶中的氧气整体为研究对象.因为分装过程中温度不变,故遵循玻意耳定律.分装前整体的状态:p 1=30 atm ,V 1=20 L ;p 2=1 atm ,V 2=5n L.分装后整体的状态:p 1′=5 atm ,V 1=20 L ;p 2′=5 atm ,V 2=5n L根据玻意耳定律,有p 1V 1+p 2V 2=p 1′V 1+p 2′V 2代入数据解得n =25(瓶).漏气问题例10、某个容器的容积是10 L ,所装气体的压强是2.0×106 Pa.如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?(设大气压是1.0×105 Pa)【答案】 5%【解析】 以原来气体为研究对象,设原来的气体体积为V 1,膨胀后气体的体积为V 2.如图所示.初状态:p 1=2.0×106 Pa ,V 1=10 L末状态:p 2=1.0×105 Pa ,V 2=?由玻意耳定律得p 1V 1=p 2V 2,解得V 2=p 1V 1p 2=200 L V 1V 2=10200×100%=5%,即容器里剩下的气体是原来的5%. 高频考点六 热力学第一定律与图象的综合应用例11、一定质量的理想气体,状态从A →B →C →D →A 的变化过程可用如图所示的p -V 图描述,图中p 1、p 2、V 1、V 2和V 3为已知量.(1)气体状态从A 到B 是________过程(选填“等容”“等压”或“等温”);(2)状态从B 到C 的变化过程中,气体的温度________(选填“升高”“不变”或“降低”);(3)状态从C 到D 的变化过程中,气体________(选填“吸热”或“放热”);(4)状态从A →B →C →D 的变化过程中,气体对外界所做的总功为______________________.【答案】:(1)等压 (2)降低 (3)放热 (4)p 2(V 3-V 1)-p 1(V 3-V 2)【解析】:(1)A →B ,对应压强值恒为p 2,即为等压过程.(2)B →C ,由pV T=恒量,V 不变,p 减小,T 降低. (3)C →D ,由pV T=恒量,p 不变,V 减小,可知T 降低.外界对气体做功,内能减小,由ΔU =W +Q 可知C →D 过程放热.(4)A →B ,气体对外界做功W AB =p 2(V 3-V 1)B →C ,V 不变,气体不做功C →D ,V 减小,外界对气体做功W CD =-p 1(V 3-V 2)状态从A →B →C →D 的变化过程中,气体对外界做的总功W =W AB +W BC +W CD =p 2(V 3-V 1)-p 1(V 3-V 2).【变式训练】如图所示,一定质量的理想气体从状态A 依次经过状态B 、C 和D 后再回到状态A .其中,A →B 和C →D 为等温过程,B →C 和D →A 为绝热过程(气体与外界无热量交换).这就是著名的“卡诺循环”.(1)该循环过程中,下列说法正确的是________.A.A→B过程中,外界对气体做功B.B→C过程中,气体分子的平均动能增大C.C→D过程中,单位时间内碰撞单位面积器壁的分子数增多D.D→A过程中,气体分子的速率分布曲线不发生变化(2)该循环过程中,内能减小的过程是________(选填“A→B”“B→C”“C→D”或“D→A”).若气体在A→B过程中吸收63 kJ的热量,在C→D过程中放出38 kJ的热量,则气体完成一次循环对外做的功为________kJ.【答案】(1)C(2)B→C25【解析】(1)在A→B的过程中,气体体积增大,故气体对外界做功,A错误;B→C的过程中,气体对外界做功,W<0,且为绝热过程,Q=0,根据ΔU=Q+W,知ΔU<0,即气体内能减小,温度降低,气体分子的平均动能减小,B错误;C→D的过程中,气体体积减小,单位体积内的分子数增多,故单位时间内碰撞单位面积器壁的分子数增多,C正确;D→A的过程为绝热压缩,故Q=0,W>0,根据ΔU=Q+W,ΔU >0,即气体的内能增加,温度升高,所以气体分子的速率分布曲线发生变化,D错误.(2)从A→B、C→D的过程中气体做等温变化,理想气体的内能不变,内能减小的过程是B→C,内能增大的过程是D→A.气体完成一次循环时,内能变化ΔU=0,热传递的热量Q=Q1-Q2=(63-38)kJ=25 kJ,根据ΔU=Q+W,得W=-Q=-25 kJ,即气体对外做功25 kJ.。

2020届高三一轮复习物理典型例题分类精讲:热学

2020届高三一轮复习物理典型例题分类精讲:热学

2020届高三一轮复习物理典型例题分类精讲:热学一、选择题在每题给出的四个选项中,有的只有一项为哪一项正确的,有的有多个选项正确,全选对的得5分,选对但不全的得3分,选错的得0分。

1 •以下有关气体分子动理论的讲法正确的选项是〔〕A. 对一定质量气体加热,其内能一定增加B. 在一定温度下,某种气体的分子速率分布是确定的C. 气体的压强只跟气体的温度有关,温度越高压强越大D. 温度升高时每个气体分子的速率都将增大,因此气体分子的平均速率也将增大2. 一定质量的理想气体处于平稳状态I,现设法使其温度降低而压强升高,达到平稳状态II ,那么A. 状态I时气体的密度比状态II时的大B. 状态I时分子的平均动能比状态II时的小C.状态I时分子间的平均距离比状态II时的大D.状态I时每个分子的动能都比状态II时的分子平均动能大3 .如下图,在一端开口且足够长的玻璃管内,有一小段水银柱封住了一段空气柱。

玻璃管绕通过其封闭端的水平轴,从竖直位置开始,顺时针方向缓慢转动,在转动一周的过程中,管内空气压强p随夹角B变化的关系图像大致为〔〕4 .分子运动是看不见、摸不着的,其运动特点不容易研究,但科学家能够通过对布朗运动认识它,这种方法在科学上叫做”转换法〃。

下面给出的四个研究实例,其中采取的方法与上述研究分子运动的方法相同的是〔〕A. 伽利略用理想斜面实验得出力不是坚持物体运动的缘故的结论B. 爱因斯坦在普朗克量子学讲的启发下提出了光子讲C. 欧姆在研究电流与电压、电阻关系时,先保持电阻不变研究电流与电压的关系;然后再保持电压不变研究电流与电阻的关系D. 奥斯特通过放在通电直导线下方的小磁针发生偏转得出通电导线的周围存在磁场的结论5.在光滑水平面上有一个内外壁都光滑的气缸质量为M气缸内有一质量为m的活塞,M>m活塞密封一部分理想气体。

现对气缸施一水平向左的拉力F〔如图A〕时,气缸的加速度为a i,封闭气体的压强为p i,体积为V i;假设用同样大小的力F水平向左推活塞,如图B,现在气缸的加速度为比,封闭气体的压强为P2,体积为匕,设密封气体的质量和温度均不变。

高考物理全国通用大一轮复习讲义文档第十三章热学第讲Word版含答案

高考物理全国通用大一轮复习讲义文档第十三章热学第讲Word版含答案

第3讲热力学定律与能量守恒定律一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做功的和.(2)表达式:ΔU=Q+W.(3)ΔU=Q+W中正、负号法则:二、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.3.第一类永动机是不可能制成的,它违背了能量守恒定律.三、热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的.”2.用熵的概念表示热力学第二定律在任何自然过程中,一个孤立系统的总熵不会减小.3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行.4.第二类永动机不可能制成的原因是违背了热力学第二定律.1.判断下列说法是否正确.(1)为了增加物体的内能,必须对物体做功或向它传递热量,做功和热传递的实质是相同的.(×)(2)绝热过程中,外界压缩气体做功20 J,气体的内能可能不变.(×)(3)在给自行车打气时,会发现打气筒的温度升高,这是因为打气筒从外界吸热.(×)(4)可以从单一热源吸收热量,使之完全变成功.(√)2.一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少1.3×105 J,则此过程()A.气体从外界吸收热量2.0×105 JB.气体向外界放出热量2.0×105 JC.气体从外界吸收热量6.0×104 JD.气体向外界放出热量6.0×104 J答案 B3.木箱静止于水平地面上,现在用一个80 N的水平推力推动木箱前进10 m,木箱受到的摩擦力为60 N,则转化为木箱与地面系统的内能U和转化为木箱的动能E k分别是() A.U=200 J,E k=600 JB.U=600 J,E k=200 JC.U=600 J,E k=800 JD.U=800 J,E k=200 J答案 B解析U=F f x=60×10 J=600 JE k=F·x-U=80×10 J-600 J=200 J4.(人教版选修3-3P61第2题改编)下列现象中能够发生的是()A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体答案CD5.(粤教版选修3-3P73第3题)在一个密闭隔热的房间里,有一电冰箱正在工作,如果打开电冰箱的门,过一段时间后房间的温度会()A.降低B.不变C.升高D.无法判断答案 C命题点一热力学第一定律与能量守恒定律1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.2.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.例1(2016·全国Ⅲ卷·33(1))关于气体的内能,下列说法正确的是()A.质量和温度都相同的气体,内能一定相同B.气体温度不变,整体运动速度越大,其内能越大C.气体被压缩时,内能可能不变D .一定量的某种理想气体的内能只与温度有关E .一定量的某种理想气体在等压膨胀过程中,内能一定增加 答案 CDE解析 质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏观运动速度大,内能不一定大,B 错误;根据pVT=C 可知,如果等温压缩,则内能不变;等压膨胀,温度增大,内能一定增大,C 、E 正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D 正确.1.对于一定质量的理想气体,下列说法正确的是( ) A .保持气体的压强不变,改变其体积,可以实现其内能不变 B .保持气体的压强不变,改变其温度,可以实现其内能不变 C .若气体的温度逐渐升高,则其压强可以保持不变D .气体温度每升高1 K 所吸收的热量与气体经历的过程有关E .当气体体积逐渐增大时,气体的内能一定减小 答案 CD解析 一定质量的某种理想气体的内能只与温度有关系,温度变化则其内能一定变化,B 项错;保持气体的压强不变,改变其体积,则其温度一定改变,故内能变化,A 项错误;气体温度升高的同时,若其体积也逐渐变大,由理想气体状态方程pVT =C 可知,则其压强可以不变,C 项正确;由热力学第一定律ΔU =Q +W 知,气体温度每升高1 K 所吸收的热量Q 与做功W 有关,即与气体经历的过程有关,D 选项正确;当气体做等温膨胀时,其内能不变,E 项错.故C 、D 正确.2.(2015·北京理综·13)下列说法正确的是( ) A .物体放出热量,其内能一定减小 B .物体对外做功,其内能一定减小C .物体吸收热量,同时对外做功,其内能可能增加D .物体放出热量,同时对外做功,其内能可能不变答案 C解析由热力学第一定律ΔU=W+Q可知,改变物体内能的方式有两种:做功和热传递.若物体放热Q<0,但做功W未知,所以内能不一定减小,A选项错误;物体对外做功W<0,但Q未知,所以内能不一定减小,B选项错误;物体吸收热量Q>0,同时对外做功W<0,W+Q可正、可负、还可为0,所以内能可能增加,故C选项正确;物体放出热量Q<0,同时对外做功W<0,所以ΔU<0,即内能一定减小,D选项错误.命题点二热力学第二定律1.热力学第二定律的涵义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.在产生其他影响的条件下内能可以全部转化为机械能,如气体的等温膨胀过程.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.3.热力学过程方向性实例低温物体.(1)高温物体热量Q能自发传给热量Q不能自发传给热.(2)功能自发地完全转化为不能自发地转化为气体体积V2(较大).(3)气体体积V 1能自发膨胀到不能自发收缩到(4)不同气体A和B能自发混合成混合气体AB.不能自发分离成4.热力学第一、第二定律的比较5.两类永动机的比较例2 (2016·全国Ⅰ卷·33(1))关于热力学定律,下列说法正确的是( ) A .气体吸热后温度一定升高 B .对气体做功可以改变其内能C .理想气体等压膨胀过程一定放热D .热量不可能自发地从低温物体传到高温物体E .如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 答案 BDE解析 气体内能的改变ΔU =Q +W ,故对气体做功可改变气体内能,B 选项正确;气体吸热为Q ,但不确定外界做功W 的情况,故不能确定气体温度变化,A 选项错误;理想气体等压膨胀,W <0,由理想气体状态方程pVT =C ,p 不变,V 增大,气体温度升高,内能增大,ΔU >0,由ΔU =Q +W ,知Q >0,气体一定吸热,C 选项错误;由热力学第二定律,D 选项正确;根据热平衡性质,E 选项正确.3.根据热力学定律,下列说法正确的是( )A .电冰箱的工作表明,热量可以从低温物体向高温物体传递B .空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量C.科技的不断进步使得人类有可能生产出从单一热源吸热全部用来对外做功而不引起其他变化的热机D.即使没有漏气、摩擦、不必要的散热等损失,热机也不可以把燃料产生的内能全部转化为机械能E.对能源的过度消耗使自然界的能量不断减少,形成“能源危机”答案ABD解析热量可以在外界做功的情况下从低温物体向高温物体传递,但不能自发进行,A正确;空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量,B正确;不可能从单一热源吸热全部用来对外做功而不引起其他变化,故C错误;根据热力学第二定律,即使没有漏气、摩擦、不必要的散热等损失,热机也不可以把燃料产生的内能全部转化为机械能,故D正确;对能源的过度消耗将形成“能源危机”,但自然界的总能量守恒,故E错误.4.关于热力学定律,下列说法正确的是()A.热量能够自发地从高温物体传到低温物体B.不可能使热量从低温物体传向高温物体C.第二类永动机违反了热力学第二定律D.气体向真空膨胀的过程是不可逆过程E.功转变为热的实际宏观过程是可逆过程答案ACD命题点三热力学定律与气体实验定律的综合解决热力学定律与气体实验定律的综合问题的基本思路例3(2016·全国Ⅱ卷·33(1))一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其pT图象如图1所示,其中对角线ac的延长线过原点O.下列判断正确的是()图1A .气体在a 、c 两状态的体积相等B .气体在状态a 时的内能大于它在状态c 时的内能C .在过程cd 中气体向外界放出的热量大于外界对气体做的功D .在过程da 中气体从外界吸收的热量小于气体对外界做的功E .在过程bc 中外界对气体做的功等于在过程da 中气体对外界做的功对角线ac 的延长线过原点O .答案 ABE解析 由理想气体状态方程pV T =C 得,p =CVT ,由图象可知,V a =V c ,选项A 正确;理想气体的内能只由温度决定,而T a >T c ,故气体在状态a 时的内能大于在状态c 时的内能,选项B 正确;由热力学第一定律ΔU =Q +W 知,cd 过程温度不变,内能不变,则Q =-W ,选项C 错误;da 过程温度升高,即内能增大,则吸收的热量大于对外界做的功,选项D 错误;由理想气体状态方程知:p a V a T a =p b V b T b =p c V c T c =p d V dT d =C ,即p a V a =CT a ,p b V b =CT b ,p c V c =CT c ,p d V d =CT d .设过程bc 中压强为p 0=p b =p c ,过程da 中压强为p 0′=p d =p a .由外界对气体做功W =p ·ΔV 知,过程bc 中外界对气体做的功W bc =p 0(V b -V c )=C (T b -T c ),过程da 中气体对外界做的功W da =p 0′(V a -V d )=C (T a -T d ),T a =T b ,T c =T d ,故W bc =W da ,选项E 正确. 例4 一定质量的理想气体被活塞封闭在汽缸内,如图2所示水平放置.活塞的质量m =20 kg ,横截面积S =100 cm 2,活塞可沿汽缸壁无摩擦滑动但不漏气,开始使汽缸水平放置,活塞与汽缸底的距离L 1=12 cm ,离汽缸口的距离L 2=3 cm.外界气温为27 ℃,大气压强为1.0×105 Pa ,将汽缸缓慢地转到开口向上的竖直位置,待稳定后对缸内气体逐渐加热,使活塞上表面刚好与汽缸口相平,已知g =10 m/s 2,求:图2(1)此时气体的温度为多少?(2)在对缸内气体加热的过程中,气体膨胀对外做功,同时吸收Q =370 J 的热量,则气体增加的内能ΔU 多大?①缓慢、稳定;②活塞上表面刚好与汽缸口相平.答案 (1)450 K (2)310 J 解析(1)当汽缸水平放置时,p 0=1.0×105 Pa , V 0=L 1S ,T 0=(273+27) K =300 K当汽缸口朝上,活塞到达汽缸口时,活塞的受力分析如图所示,有 p 1S =p 0S +mg则p 1=p 0+mg S =1.0×105 Pa +20010-2 Pa =1.2×105 PaV 1=(L 1+L 2)S由理想气体状态方程得p 0L 1S T 0=p 1(L 1+L 2)ST 1则T 1=p 1(L 1+L 2)p 0L 1T 0=1.2×105×151.0×105×12×300 K =450 K.(2)当汽缸口向上,未加热稳定时:由玻意耳定律得 p 0L 1S =p 1LS则L =p 0L 1p 1=1.0×105×121.2×105cm =10 cm加热后,气体做等压变化,外界对气体做功为 W =-p 0(L 1+L 2-L )S -mg (L 1+L 2-L )=-60 J 根据热力学第一定律 ΔU =W +Q 得ΔU =310 J.5.一定质量的理想气体经历了如图3所示的A →B →C →D →A 循环,该过程每个状态视为平衡态,各状态参数如图所示.A 状态的压强为1×105 Pa ,求:图3(1)B 状态的温度;(2)完成一次循环,气体与外界热交换的热量. 答案 (1)600 K (2)放热150 J解析 (1)理想气体从A 状态到B 状态的过程中,压强保持不变,根据盖—吕萨克定律有 V A T A =V BT B代入数据解得T B =V BV AT A =600 K(2)理想气体从A 状态到B 状态的过程中,外界对气体做功 W 1=-p A (V B -V A ) 解得W 1=-100 J气体从B 状态到C 状态的过程中,体积保持不变,根据查理定律有 p B T B =p C T C解得p C =2.5×105 Pa从C 状态到D 状态的过程中,外界对气体做功 W 2=p C (V B -V A ) 解得W 2=250 J一次循环过程中外界对气体所做的总功W =W 1+W 2=150 J理想气体从A 状态完成一次循环,回到A 状态,始末温度不变,所以内能不变.根据热力学第一定律有 ΔU =W +Q 解得Q =-150 J故完成一次循环,气体向外界放热150 J.6.如图4所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度H 1=0.60 m ,气体的温度T 1=300 K ;现给汽缸缓慢加热至T 2=480 K ,活塞缓慢上升到距离汽缸底部某一高度H 2处,此过程中缸内气体增加的内能ΔU =300 J .已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2.求:图4(1)活塞距离汽缸底部的高度H 2;(2)此过程中缸内气体吸收的热量Q .答案 (1)0.96 m (2)480 J解析 (1)气体做等压变化,根据盖—吕萨克定律得:H 1S T 1=H 2S T 2即0.60 m 300 K =H 2480 K解得H 2=0.96 m(2)在气体膨胀的过程中, 气体对外做功为:W 0=p 0ΔV =[1.0×105×(0.96-0.60)×5.0×10-3] J =180 J 根据热力学第一定律可得气体内能的变化量为ΔU =-W 0+Q ,得Q =ΔU +W 0=480 J.题组1 热力学第一定律的理解和应用1.在装有食品的包装袋中充入氮气,然后密封进行加压测试,测试时,对包装袋缓慢施加压力,将袋内的氮气视为理想气体,在加压测试过程中,下列说法中正确的是( )A .包装袋内氮气的压强增大B .包装袋内氮气的内能不变C .包装袋内氮气对外做功D.包装袋内氮气放出热量E.包装袋内氮气的所有分子运动速率都保持不变答案ABD2.下列说法中正确的是()A.物体速度增大,则分子动能增大,内能也增大B.一定质量气体的体积增大,但既不吸热也不放热,内能减小C.相同质量的两种物体,提高相同的温度,内能的增量一定相同D.物体的内能与物体的温度和体积都有关系E.凡是与热现象有关的宏观过程都具有方向性答案BDE解析速度增大,不会改变物体的分子的动能,故A错误;体积增大时,气体对外做功,不吸热也不放热时,内能减小,故B正确;质量相同,但物体的物质的量不同,故温度提高相同的温度时,内能的增量不一定相同,故C错误;物体的内能取决于物体的温度和体积,故D正确;由热力学第二定律可知,凡是与热现象有关的宏观过程都具有方向性,故E 正确.题组2热力学第二定律的理解3.根据你学过的热学中的有关知识,判断下列说法中正确的是()A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来答案 A解析机械能可以全部转化为内能,而内能在引起其他变化时也可以全部转化为机械能,A 正确;凡与热现象有关的宏观过程都具有方向性,在热传递中,热量可以自发地从高温物体传递给低温物体,也能从低温物体传递给高温物体,但必须借助外界的帮助,B错误;尽管科技不断进步,热机的效率仍不能达到100%,制冷机也不能使温度降到-293 ℃,只能无限接近-273.15 ℃,C错误;第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,而是违背了热力学第二定律,第二类永动机不可能制造出来,D错误.4.关于两类永动机和热力学的两个定律,下列说法正确的是()A.第二类永动机不可能制成是因为违反了热力学第一定律B.第一类永动机不可能制成是因为违反了热力学第二定律C.由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热源吸收热量,完全变成功也是可能的答案 D解析第一类永动机违反能量守恒定律,第二类永动机违反热力学第二定律,A、B错;由热力学第一定律可知W≠0,Q≠0,但ΔU=W+Q可以等于0,C错;由热力学第二定律可知D中现象是可能的,但会引起其他变化,D对.题组3热力学定律与气体实验定律的综合5.(2015·福建·29(2))如图1,一定质量的理想气体,由状态a经过ab过程到达状态b或者经过ac过程到达状态c.设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()图1A.T b>T c,Q ab>Q ac B.T b>T c,Q ab<Q acC.T b=T c,Q ab>Q ac D.T b=T c,Q ab<Q ac答案 C解析a→b过程为等压变化,由盖-吕萨克定律得:V0T a=2V0T b,得T b=2T a,a→c过程为等容变化,由查理定律得:p0T a=2p0T c,得T c=2T a,所以T b=T c.由热力学第一定律,a→b:W ab+Q ab=ΔU ab a→c:W ac+Q ac=ΔU ac又W ab <0,W ac =0,ΔU ab =ΔU ac >0,则有Q ab >Q ac ,故C 项正确.6.如图2所示,一定质量的理想气体从状态A 变化到状态B ,再由状态B 变化到状态C .已知状态A 的温度为300 K.图2(1)求气体在状态B 的温度;(2)由状态B 变化到状态C 的过程中,气体是吸热还是放热?简要说明理由.答案 (1)1 200 K (2)放热,理由见解析解析 (1)由理想气体的状态方程p A V A T A =p B V B T B解得气体在状态B 的温度T B =1 200 K(2)由B →C ,气体做等容变化,由查理定律得:p B T B =p C T CT C =600 K气体由B 到C 为等容变化,不做功,但温度降低,内能减小,根据热力学第一定律,ΔU =W +Q ,可知气体要放热.7.如图3所示,体积为V 、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T 0、压强为1.2p 0的理想气体,p 0与T 0分别为大气的压强和温度.已知:气体内能U 与温度T 的关系为U =αT ,α为正的常量;容器内气体的所有变化过程都是缓慢的.求:图3(1)汽缸内气体与大气达到平衡时的体积V 1;(2)在活塞下降过程中,汽缸内气体放出的热量Q .答案 见解析解析 (1)在气体由压强p =1.2p 0下降到p 0的过程中,气体体积不变,温度由T =2.4T 0变为T 1,由查理定律得:p T =p 0T 1, 解得T 1=2T 0在气体温度由T 1变为T 0过程中,体积由V 减小到V 1,气体压强不变,由盖—吕萨克定律得 V T 1=V 1T 0得V 1=12V (2)在活塞下降过程中,活塞对气体做的功为W =p 0(V -V 1)在这一过程中,气体内能的减少为ΔU =α(T 1-T 0)由热力学第一定律得,汽缸内气体放出的热量为Q =W +ΔU解得Q =12p 0V +αT 0. 8.如图4所示,一个绝热的汽缸竖直放置,内有一个绝热且光滑的活塞,中间有一个固定的导热性能良好的隔板,隔板将汽缸分成两部分,分别密封着两部分理想气体A 和B .活塞的质量为m ,横截面积为S ,与隔板相距h .现通过电热丝缓慢加热气体,当A 气体吸收热量Q 时,活塞上升了h ,此时气体的温度为T 1.已知大气压强为p 0,重力加速度为g .图4(1)加热过程中,若A 气体内能增加了ΔU 1,求B 气体内能增加量ΔU 2.(2)现停止对气体加热,同时在活塞上缓慢添加砂粒,当活塞恰好回到原来的位置时A 气体的温度为T 2.求此时添加砂粒的总质量Δm .答案 (1)Q -(mg +p 0S )h -ΔU 1 (2)(2T 2T 1-1)(Sp 0g+m ) 解析 (1)B 气体对外做的功:W =pSh =(p 0S +mg )h由热力学第一定律得ΔU 1+ΔU 2=Q -W解得ΔU 2=Q -(mg +p 0S )h -ΔU 1(2)停止对气体加热后,B 气体的初状态:p 1=p 0+mg SV 1=2hS ,T 1B 气体的末状态: p 2=p 0+(m +Δm )g S V 2=hS ,T 2由理想气体状态方程 p 1V 1T 1=p2V 2T 2解得Δm =(2T 2T 1-1)(Sp 0g +m ).。

高考物理全国通用大一轮复习讲义文档第十三章热学第讲Word版含答案(2)

高考物理全国通用大一轮复习讲义文档第十三章热学第讲Word版含答案(2)

第2讲固体、液体和气体一、固体晶体与非晶体的比较二、液体和液晶1.液体的表面张力(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.2.毛细现象是指浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,毛细管越细,毛细现象越明显.3.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.三、饱和汽、饱和汽压和相对湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.2.饱和汽压(1)定义:饱和汽所具有的压强.(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比.即:相对湿度=水蒸气的实际压强同温度水的饱和汽压.[深度思考]在闷热的夏天我们会感到非常的不舒服,是因为空气的相对湿度大还是小呢?答案相对湿度大.四、气体1.气体压强(1)产生的原因由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子的密集程度.2.气体实验定律3.理想气体的状态方程 (1)理想气体①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,即分子间无分子势能. (2)理想气体的状态方程一定质量的理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pV T =C .气体实验定律可看做一定质量理想气体状态方程的特例. 4.气体实验定律的微观解释 (1)等温变化一定质量的某种理想气体,温度保持不变时,分子的平均动能不变.在这种情况下,体积减小时,分子的密集程度增大,气体的压强增大. (2)等容变化一定质量的某种理想气体,体积保持不变时,分子的密集程度保持不变.在这种情况下,温度升高时,分子的平均动能增大,气体的压强增大. (3)等压变化一定质量的某种理想气体,温度升高时,分子的平均动能增大.只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变.1.判断下列说法是否正确.(1)单晶体的所有物理性质都是各向异性的.( × )(2)单晶体具有固定的熔点,而多晶体和非晶体没有固定的熔点.( × ) (3)晶体和非晶体在一定条件下可以相互转化.( √ ) (4)液晶是液体和晶体的混合物.( × )(5)船浮于水面上不是由于液体的表面张力.( √ )(6)水蒸气达到饱和时,水蒸气的压强不再变化,这时蒸发和凝结仍在进行.( √ ) (7)一定质量的理想气体在等压变化时,其体积与摄氏温度成正比.( × ) 2.(粤教版选修3-3P26第1题)关于晶体与非晶体,正确的说法是( )A.晶体能溶于水,而非晶体不能溶于水B.晶体内部的物质微粒是有规则地排列的,而非晶体内部物质微粒的排列是不规则的C.晶体内部的物质微粒是静止的,而非晶体内部的物质微粒在不停地运动着D.在物质内部的各个平面上,微粒数相等的是晶体,不相等的是非晶体答案 B3.(粤教版选修3-3P37第2题)下列现象中,与液体表面张力有关的是()A.小缝衣针漂浮在水面上B.小木船漂浮在水面上C.荷叶上的小水珠呈球形D.慢慢向小酒杯中注水,即使水面稍高出杯口,水仍不会流下来答案ACD4.(粤教版选修3-3P24第1题)辨别物质是晶体还是非晶体,比较正确的方法是() A.从外形来判断B.从各向异性或各向同性来判断C.从导电性能来判断D.从是否具有确定的熔点来判断答案 D5.(人教版选修3-3P25第1题改编)对一定质量的气体来说,下列几点能做到的是() A.保持压强和体积不变而改变它的温度B.保持压强不变,同时升高温度并减小体积C.保持温度不变,同时增加体积并减小压强D.保持体积不变,同时增加压强并降低温度答案 C6. (人教版选修3-3P23第2题)如图1,向一个空的铝制饮料罐(即易拉罐)中插入一根透明吸管,接口用蜡密封,在吸管内引入一小段油柱(长度可以忽略).如果不计大气压的变化,这就是一个简易的气温计.已知铝罐的容积是360 cm3,吸管内部粗细均匀,横截面积为0.2 cm2,吸管的有效长度为20 cm,当温度为25 ℃时,油柱离管口10 cm.图1(1)吸管上标刻温度值时,刻度是否应该均匀? (2)估算这个气温计的测量范围.答案 (1)刻度是均匀的 (2)23.4 ℃~26.6 ℃ 解析 (1)由于罐内气体压强始终不变,所以 V 1T 1=V 2T 2,V 1T 1=ΔV ΔT , ΔV =V 1T 1ΔT =362298ΔT ,ΔT =298362·S ·ΔL由于ΔT 与ΔL 成正比,刻度是均匀的. (2)ΔT =298362×0.2×(20-10) K ≈1.6 K故这个气温计可以测量的温度范围为: (25-1.6) ℃~(25+1.6) ℃ 即23.4 ℃~26.6 ℃.命题点一 固体与液体的性质 例1 下列说法正确的是( )A .悬浮在液体中的微粒越小,在液体分子的撞击下越容易保持平衡B .荷叶上的小水珠呈球形是由于液体表面张力的作用C .物体内所有分子的热运动动能之和叫做物体的内能D .当人们感到潮湿时,空气的绝对湿度不一定较大E .一定质量的理想气体先经等容降温,再经等温压缩,压强可以回到初始的数值 答案 BDE解析 做布朗运动的微粒越小,在液体分子的撞击下越不容易保持平衡,故A 错误;荷叶上的小水珠呈球形是由于液体表面张力的作用,故B 正确;物体内所有分子的热运动动能之和与分子势能的总和叫做物体的内能,故C 错误;潮湿与空气的相对湿度有关,与绝对湿度无关,当人们感到潮湿时,空气的绝对湿度不一定较大,故D 正确;根据理想气体的状态方程:pVT =C 可知,一定质量的理想气体先经等容降温,压强减小;再经等温压缩,压强又增大,所以压强可以回到初始的数值,故E 正确.1.(2015·新课标全国Ⅰ·33(1))下列说法正确的是( ) A .将一块晶体敲碎后,得到的小颗粒是非晶体B .固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C .由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E .在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变 答案 BCD解析 晶体有固定的熔点,并不会因为颗粒的大小而改变,即使敲碎为小颗粒,仍旧是晶体,选项A 错误;固体分为晶体和非晶体两类,有些晶体在不同方向上光学性质不同,表现为具有各向异性,选项B 正确;同种元素构成的固体可能由于原子的排列方式不同而形成不同的晶体,如金刚石和石墨,选项C 正确;晶体的分子排列结构如果遭到破坏就可能形成非晶体,反之亦然,选项D 正确;熔化过程中,晶体要吸热,温度不变,但是内能增大,选项E 错误.2.(2014·海南·15(1))下列说法正确的是( ) A .液面表面张力的方向与液面垂直并指向液体内部 B .单晶体有固定的熔点,多晶体没有固定的熔点 C .单晶体中原子(或分子、离子)的排列具有空间周期性 D .通常金属在各个方向的物理性质都相同,所以金属是非晶体 E .液晶具有液体的流动性,同时具有晶体的各向异性特征 答案 CE解析 液面表面张力的方向始终与液面相切,A 错误.单晶体和多晶体都有固定的熔点,非晶体熔点不固定,B 错误.单晶体中原子(或分子、离子)的排列是规则的,具有空间周期性,表现为各向异性,C 正确.金属材料虽然显示各向同性,但并不意味着就是非晶体,可能是多晶体,D 错误.液晶的名称由来就是由于它具有液体的流动性和晶体的各向异性,E 正确.3.下列说法正确的是()A.一切晶体的光学和力学性质都是各向异性的B.在完全失重的宇宙飞船中,水的表面存在表面张力C.脱脂棉脱脂的目的,在于使它从不能被水浸润变为可以被水浸润,以便吸取药液D.土壤里有很多毛细管,如果要把地下的水分沿着它们引到地表,可以将地面的土壤锄松E.人们可以利用某些物质在水溶液中形成的薄片状液晶来研究离子的渗透性,进而了解机体对药物的吸收等生理过程答案BCE命题点二气体压强的产生与计算平衡状态下气体压强的求法1.液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.2.力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.3.等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强.例2若已知大气压强为p0,在图2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强.图2各装置均处于静止状态.答案甲:p0-ρg h乙:p0-ρgh丙:p0-32ρgh丁:p0+ρgh1解析在甲图中,以高为h的液柱为研究对象,由二力平衡知p甲S=-ρghS+p0S 所以p甲=p0-ρgh在图乙中,以B液面为研究对象,由平衡方程F上=F下有:p A S+ρghS=p0Sp乙=p A=p0-ρgh在图丙中,仍以B液面为研究对象,有p A′+ρgh sin 60°=p0所以p丙=p A′=p0-32ρgh在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S所以p丁=p0+ρgh14.竖直平面内有如图3所示的均匀玻璃管,内用两段水银柱封闭两段空气柱a、b,各段水银柱高度如图所示,大气压为p0,求空气柱a、b的压强各多大.图3答案p a=p0+ρg(h2-h1-h3)p b=p0+ρg(h2-h1)解析从开口端开始计算,右端大气压为p0,同种液体同一水平面上的压强相同,所以b 气柱的压强为p b=p0+ρg(h2-h1),而a气柱的压强为p a=p b-ρg h3=p0+ρg(h2-h1-h3).5.汽缸截面积为S,质量为m的梯形活塞上面是水平的,下面与右侧竖直方向的夹角为α,如图4所示,当活塞上放质量为M的重物时处于静止.设外部大气压为p0,若活塞与缸壁之间无摩擦.求汽缸中气体的压强.图4答案 p 0+(m +M )gS解析 p 气S ′=(m +M )g +p 0Ssin α又因为S ′=Ssin α所以p 气=(m +M )g +p 0S S =p 0+(m +M )gS .命题点三 气体状态变化的图象问题 1.气体实验定律图象对比(质量一定)2.利用垂直于坐标轴的线作辅助线去分析同质量、不同温度的两条等温线,不同体积的两条等容线,不同压强的两条等压线的关系.例如图5中A 、B 是辅助线与两条等容线的交点,可以认为从B 状态通过等温升压到A 状态,体积必然减小,所以V 2<V 1.图5例3 如图6甲是一定质量的气体由状态A 经过状态B 变为状态C 的V -T 图象.已知气体在状态A 时的压强是1.5×105 Pa.图6(1)写出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值. (2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p -T 图象,并在图线相应的位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程.找到两个图象对应的状态变化过程及状态参量.答案 见解析解析 (1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是一个等压变化,即p A =p B根据盖—吕萨克定律可得V A T A =V B T B所以T A =V A V B T B =0.40.6×300 K =200 K(2)由题图甲可知,B →C 是等容变化,根据查理定律得p B T B =p CT C所以p C =T C T B p B =400300×1.5×105 Pa =2.0×105 Pa则可画出状态A →B →C 的p -T 图象如图所示.气体状态变化图象的应用技巧1.明确点、线的物理意义:求解气体状态变化的图象问题,应当明确图象上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图象上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.2.明确斜率的物理意义:在V-T图象(或p-T图象)中,比较两个状态的压强(或体积)大小,可以比较这两个状态到原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.6.一定质量的理想气体,从图7中A状态开始,经历了B、C,最后到D状态,下列说法中正确的是()图7A.A→B温度升高,体积不变B.B→C压强不变,体积变大C.C→D压强变小,体积变小D.B点的温度最高,C点的体积最大答案 A7.如图8所示,汽缸开口向右、固定在水平桌面上,汽缸内用活塞(横截面积为S)封闭了一定质量的理想气体,活塞与汽缸壁之间的摩擦忽略不计.轻绳跨过光滑定滑轮将活塞和地面上的重物(质量为m)连接.开始时汽缸内外压强相同,均为大气压p0(mg<p0S),轻绳处在伸直状态,汽缸内气体的温度为T0,体积为V.现使汽缸内气体的温度缓慢降低,最终使得气体体积减半,求:图8(1)重物刚离开地面时汽缸内气体的温度T 1;(2)气体体积减半时的温度T 2;(3)在如图乙所示的坐标系中画出气体状态变化的整个过程并标注相关点的坐标值.答案 (1)p 0-mg S p 0T 0 (2)p 0-mg S 2p 0T 0(3)见解析图 解析 (1)p 1=p 0,p 2=p 0-mg S等容过程:p 1T 0=p 2T 1,解得:T 1=p 0-mg S p 0T 0 (2)等压过程:V T 1=V 2T 2,解得:T 2=p 0-mg S 2p 0T 0(3)如图所示命题点四 气体实验定律的微观解释例4 对于一定质量的气体,当压强和体积发生变化时,以下说法正确的是( )A .压强和体积都增大时,其分子平均动能不可能不变B .压强和体积都增大时,其分子平均动能有可能减小C .压强增大,体积减小时,其分子平均动能一定不变D .压强减小,体积增大时,其分子平均动能可能增大答案AD8.一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为( )A .气体分子每次碰撞器壁的平均冲力增大B .单位时间内单位面积器壁上受到气体分子碰撞的次数增多C .气体分子的总数增加D .单位体积内的分子数目增加答案 BD解析理想气体经等温压缩,体积减小,单位体积内的分子数目增加,则单位时间内单位面积器壁上受到气体分子的碰撞次数增多,压强增大,但气体分子每次碰撞器壁的平均冲力不变,故B、D正确,A、C错误.9.封闭在汽缸内一定质量的气体,如果保持气体体积不变,当温度升高时,以下说法正确的是()A.气体的密度增大B.气体的压强增大C.气体分子的平均动能减小D.每秒撞击单位面积器壁的气体分子数增多答案BD解析等容变化温度升高时,压强一定增大,分子密度不变,分子平均动能增大,单位时间撞击单位面积器壁的气体分子数增多,B、D正确.题组1固体、液体和气体性质的理解1.对下列几种固体物质的认识,正确的有()A.食盐熔化过程中,温度保持不变,说明食盐是晶体B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同答案AD解析若物体是晶体,则在熔化过程中,温度保持不变,可见A正确;烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,是由于云母片在不同方向上导热性能不同造成的,说明云母片是晶体,所以B错误;沿晶体的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理性质不同,这就是晶体的各向异性.选项C 错误,D正确.2.下列说法中正确的是()A.空气中水蒸气的实际压强与饱和汽压相差越大,越有利于水的蒸发B.布朗运动是液体分子的运动,说明液体分子永不停息地做无规则热运动C.水杯里的水面超出杯口但不溢出,是由于水的表面张力作用D.单晶体具有物理性质各向异性的特征E.温度升高,物体所有分子的动能都增大答案ACD3.下列说法中正确的是()A.物体体积增大时,其分子势能一定增大B.只要物体温度升高,其分子平均动能就一定变大C.空气绝对湿度不变时,温度越高,相对湿度越小D.给自行车打气越打越困难,主要是因为气体分子间斥力越来越大E.液体表面层分子比内部分子稀疏,因此液体表面有收缩的趋势答案BCE解析分子间距离从很小逐渐增大的过程中,分子势能先减小后增大,要看分子间的距离从何位置增大,所以物体体积增大时,其分子势能不一定增大.故A错误.温度是分子平均动能的量度,只要物体温度升高,其分子平均动能就一定变大.故B正确.空气中水蒸气的实际压强与同温度水的饱和汽压之比叫做空气的相对湿度;空气绝对湿度不变时,温度越高,饱和汽压越大,相对湿度越小.故C正确;气体间分子间距较大,此时分子间作用力已经接近为零,故自行车打气越打越困难主要是因为胎内气体压强增大而非分子间相互排斥,故D错误;因液体分子表面层分子分布比内部稀疏,故分子间作用力表现为引力,液体表面有收缩趋势,故E正确.4.关于晶体、液晶和饱和汽的理解,下列说法正确的是()A.晶体的分子排列都是有规则的B.液晶显示器利用了液晶对光具有各向异性的特点C.饱和汽压与温度和体积都有关D.相对湿度越大,空气中水蒸气越接近饱和E.对于同一种液体,饱和汽压随温度升高而增大答案BDE题组2气体状态变化的图象问题5.一定质量的理想气体经历一系列变化过程,如图1所示,下列说法正确的是( )图1A .b →c 过程中,气体压强不变,体积增大B .a →b 过程中,气体体积增大,压强减小C .c →a 过程中,气体压强增大,体积不变D .c →a 过程中,气体内能增大,体积变小E .c →a 过程中, 气体从外界吸热,内能增大答案 BCE解析 b →c 过程中,气体压强不变,温度降低,根据盖—吕萨克定律V T=C 得知,体积应减小.故A 错误.a →b 过程中气体的温度保持不变,即气体发生等温变化,压强减小,根据玻意耳定律pV =C 得知,体积增大.故B 正确.c →a 过程中,由图可知,p 与T 成正比,则气体发生等容变化,体积不变,故C 正确,D 错误;一定质量的理想气体的内能只与气体温度有关,并且温度越高气体的内能越大,则知c →a 过程中,温度升高,气体内能增大,而体积不变,气体没有对外做功,外界也没有对气体做功,所以气体一定吸收热量.故E 正确.6.(2014·福建理综·29(2))图2为一定质量理想气体的压强p 与体积V 的关系图象,它由状态A 经等容过程到状态B ,再经等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是( )图2A .T A <TB ,T B <T CB .T A >T B ,T B =TC C .T A >T B ,T B <T CD .T A =T B ,T B >T C答案 C解析 由题中图象可知,气体由A 到B 过程为等容变化,由查理定律得p A T A =p B T B ,p A >p B ,故T A >T B ;由B 到C 过程为等压变化,由盖·吕萨克定律得V B T B =V C T C,V B <V C ,故T B <T C .选项C 正确. 7.如图3,一定量的理想气体从状态a 沿直线变化到状态b ,在此过程中,其压强( )图3A .逐渐增大B .逐渐减小C .始终不变D .先增大后减小答案 A解析 由图象可得,体积V 减小,温度T 增大,由公式pV T=C 得压强p 一定增大.故答案选A.8.(1)在高原地区烧水需要使用高压锅,水烧开后,锅内水面上方充满饱和汽,停止加热,高压锅在密封状态下缓慢冷却,在冷却过程中,锅内水蒸气的变化情况为________.A .压强变小B .压强不变C .一直是饱和汽D .变为未饱和汽(2)如图4甲所示,在斯特林循环的p -V 图象中,一定质量理想气体从状态A 依次经过状态B 、C 和D 后再回到状态A ,整个过程由两个等温和两个等容过程组成.B →C 的过程中,单位体积中的气体分子数目________(选填“增大”“减小”或“不变”),状态A 和状态D 的气体分子热运动速率的统计分布图象如图乙所示,则状态A 对应的是________(选填“①”或“②”).图4(3)如图甲所示,在A→B和D→A的过程中,气体放出的热量分别为4 J和20 J,在B→C 和C→D的过程中,气体吸收的热量分别为20 J和12 J.求气体完成一次循环对外界所做的功.答案(1)AC(2)不变①(3)8 J解析(1)停止加热后,高压锅在密封状态下缓慢冷却,此过程中锅内水蒸气仍是饱和汽,由p-T关系知,p减小.故A、C项正确.(2)从B→C的过程中,气体体积不变,故单位体积中的气体分子数目不变;因T A<T D,温度升高气体分子的平均速率增大,则A状态对应的是①.(3)完成一次循环气体内能不变ΔU=0,吸收的热量Q=(20+12-4-20) J=8 J由热力学第一定律ΔU=Q+W得,W=-8 J,气体对外做功为8 J.题组3气体实验定律的应用9.如图5所示,足够长的圆柱形汽缸竖直放置,其横截面积为S=1×10-3 m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦.开始时活塞被销子K销于如图位置,离缸底高度L1=12 cm,此时汽缸内被封闭气体的压强p1=1.5×105 Pa,温度T1=300 K,外界大气压p0=1.0×105 Pa,g=10 m/s2.图5(1)现对密闭气体加热,当温度升到T2=400 K.其压强p2多大?(2)若在此时拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度降为T3=360 K,则这时活塞离缸底的距离L3为多少?(3)保持气体温度为360 K不变,让汽缸和活塞一起在竖直方向做匀变速直线运动,为使活塞能停留在离缸底L 4=16 cm 处,则求汽缸和活塞应做匀加速直线运动的加速度a 的大小及方向.答案 (1)2.0×105 Pa (2)18 cm (3)7.5 m/s 2,方向向上 解析 (1)等容变化:p 1T 1=p 2T 2,解得p 2=2.0×105 Pa(2)活塞受力平衡,故封闭气体压强p 3=p 0+mg S =1.2×105 Pa根据理想气体状态方程,有p 2V 2T 2=p 3V 3T 3,又V 2=L 1S ,V 3=L 3S ,解得:L 3=18 cm (3)等温变化:p 3V 3=p 4V 4,解得p 4=1.35×105 Pa 应向上做匀加速直线运动对活塞,由牛顿第二定律:p 4S -p 0S -mg =ma 解得:a =7.5 m/s 2.。

高考物理一轮复习 专题54 热力学定律(讲)(含解析)(1)

高考物理一轮复习 专题54 热力学定律(讲)(含解析)(1)

专题54 热力学定律1.知道改变内能的两种方式,理解热力学第一定律.2.知道与热现象有关的宏观物理过程的方向性,了解热力学第二定律.3.掌握能量守恒定律及其应用.1.物体内能的改变(1)做功是其他形式的能与内能的相互转化过程,内能的改变量可用做功的数值来量度.(2)热传递是物体间内能的转移过程,内能的转移量用热量来量度.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.3.能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量不变,这就是能量守恒定律.(2)任何违背能量守恒定律的过程都是不可能的,不消耗能量而对外做功的第一类永动机是不可能制成的.4.热力学第二定律(1)两种表述①第一种表述:热量不能自发地从低温物体传到高温物体(克劳修斯表述).②第二种表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响(开尔文表述).(2)第二类永动机是指设想只从单一热库吸收热量,使之完全变为有用的功而不产生其他影响的热机.这类永动机不可能制成的原因是违背了热力学第二定律.考点一对热力学第一定律的理解及应用1.热力学第一定律不仅反映了做功和热传递这两种方式改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.2. 对公式ΔU =Q +W 符号的规定3. (1)若过程是绝热的,则Q =0,W =ΔU ,外界对物体做的功等于物体内能的增加量.(2)若过程中不做功,即W =0,则Q =ΔU ,物体吸收的热量等于物体内能的增加量.(3)若过程的始末状态物体的内能不变,即ΔU =0,则W +Q =0或W =-Q .外界对物体做的功等于物体放出的热量.★重点归纳★应用热力学第一定律应注意(1)热力学第一定律反映功、热量与内能改变量之间的定量关系:ΔU =W +Q ,使用时注意符号法则(简记为:外界对系统取正,系统对外取负).对理想气体,ΔU 仅由温度决定,W 仅由体积决定,绝热情况下,Q =0.(2)对于理想气体,可以直接根据温度的变化来确定内能的变化.吸、放热不能直接确定时,则要放在最后,根据热力学第一定律来确定.必须指出的是,一般来说系统对外界做功,系统体积膨胀;外界对系统做功,系统体积则被压缩.但在某些特定条件下,例如气体自由膨胀(外界为真空)时,气体就没有克服外力做功.另外,在判断内能变化时,还必须结合物态变化以及能的转化与守恒来进行.★典型案例★下列说法正确的是 (填正确答案标号.部分选对得3分,全对得5分,每选错1个扣3分,最低得分为0分)A .第二类永动机不可能制成是因为它违反了能量守恒定律B .在绝热条件下压缩理想气体,气体的内能一定增加C .只要知道气体的摩尔体积和阿伏加德罗常数,就可以估算出气体分子的直径D .一定质量的理想气体,压强不变、温度升高时,气体分子单位时间对气缸壁单位面积碰撞的次数将变少【答案】BD【解析】第二类永动机不可能制成是因为它违反了热力学第二定律,但是不违反能量守恒定律,选项A 错误;根据热力学第一定律可知:E W Q ∆=+,则在绝热条件下压缩理想气体,Q =0,W >0,则0E ∆>,即气体的内能一定增加,选项B 正确;只要知道气体的摩尔体积和阿伏加德罗常数,就可以估算出气体分子运动占据的空间的直径,选项C 错误;一定质量的理想气体,压强不变、温度升高时,气体的平均速率变大,则气体分子单位时间对气缸壁单位面积碰撞的次数将变少,选项D 正确;故选BD .★针对练习1★一定质量的理想气体,当发生如下哪些状态变化时,能放出热量( )A .体积不变,压强减小B .压强不变,体积减小C .温度不变,体积减少D .温度不变,压强减小【答案】ABC 【名师点睛】注意此类题目经常把理想气体状态方程PV K T=与热力学第一定律E W Q ∆=+相结合,并要理解热力学第一定律中各个符号的物理意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热学一、选择题在每小题给出的四个选项中,有的只有一项是正确的,有的有多个选项正确,全选对的得5分,选对但不全的得3分,选错的得0分。

1.下列有关气体分子动理论的说法正确的是()A.对一定质量气体加热,其内能一定增加B.在一定温度下,某种气体的分子速率分布是确定的C.气体的压强只跟气体的温度有关,温度越高压强越大D.温度升高时每个气体分子的速率都将增大,因此气体分子的平均速率也将增大2.一定质量的理想气体处于平衡状态I,现设法使其温度降低而压强升高,达到平衡状态II,则A.状态I时气体的密度比状态II时的大B.状态I时分子的平均动能比状态II时的小C.状态I时分子间的平均距离比状态II时的大D.状态I时每个分子的动能都比状态II时的分子平均动能大3.如图所示,在一端开口且足够长的玻璃管内,有一小段水银柱封住了一段空气柱。

玻璃管绕通过其封闭端的水平轴,从竖直位置开始,顺时针方向缓慢转动,在转动一周的过程中,管内空气压强p随夹角θ变化的关系图像大致为()4.分子运动是看不见、摸不着的,其运动特征不容易研究,但科学家可以通过对布朗运动认识它,这种方法在科学上叫做“转换法”。

下面给出的四个研究实例,其中采取的方法与上述研究分子运动的方法相同的是()A.伽利略用理想斜面实验得出力不是维持物体运动的原因的结论B.爱因斯坦在普朗克量子学说的启发下提出了光子说C.欧姆在研究电流与电压、电阻关系时,先保持电阻不变研究电流与电压的关系;然后再保持电压不变研究电流与电阻的关系D.奥斯特通过放在通电直导线下方的小磁针发生偏转得出通电导线的周围存在磁场的结论5.在光滑水平面上有一个内外壁都光滑的气缸质量为M,气缸内有一质量为m的活塞,已知M>m。

活塞密封一部分理想气体。

现对气缸施一水平向左的拉力F(如图A)时,气缸的加速度为a1,封闭气体的压强为p1,体积为V1;若用同样大小的力F水平向左推活塞,如图B,此时气缸的加速度为a2,封闭气体的压强为p2,体积为V2,设密封气体的质量和温度均不变。

则()A.a1=a2,p1<p2,V1>V2 B.a1<a2,p1>p2,V1<V2C.a1=a2,p1<p2,V1<V2 D.a1>a2,p1>p2,V1>V26.某同学借助铅笔把气球塞进一只瓶子里,并拉大气球的吹气口,反扣在瓶口上。

然后,给气球吹气,发现要把气球吹大,非常困难,不管怎么吹,气球不过大了一丁点。

这是因为A.瓶和气球之间密封着的空气体积缩小,压强增大,阻碍了气球的膨胀B.气球里气体质量增大压强增大C.气球一部分与瓶接触受到瓶的阻力D.气球和嘴连通的部分狭小,压强很大,阻碍了人往气球里吹气7.一艘油轮装载着密度为9×102 kg/m3的原油在海上航行,由于某种事故使原油发生部分泄露,设共泄露出9 t,则这次事故造成的最大可能的污染面积约为()A.1011 m2B.1012 m2 C.108 m2D.109m28.若某种实际气体分子之间的作用力表现为引力,下列关于一定质量的该气体内能的大小,气体体积和温度关系的说法正确的是()A.如果保持其体积不变,温度升高,内能增大B.如果保持其体积不变,温度升高,内能减少C.如果保持其温度不变,体积增大,内能增大D.如果保持其温度不变,体积增大,内能减少9.根据热力学定律,下列判断正确的是()A.我们可以利用高科技手段,将流散到周围环境中的内能重新收集起来加以利用B.利用浅层海水和深层海水间的温度差制造出一种热机,将海水的一部分内能转化为机械能,这在原理上是可行的C.制冷系统能将冰箱内的热量传给外界较高温度的空气中而不引起其它变化D.满足能量守恒定律的客观过程都可以自发地进行10.如图,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0为斥力,F<0为引力,a、b、为x轴上四个特定的位置,现把乙分子从a处由静c、d止释放,则()A.乙分子从a到b做加速运动,由b到c做减速运动B.乙分子从a到c做加速运动,到达c时速度最大C.乙分子由a到b的过程中,两分子间的分子势能一直增大D.乙分子由b到d的过程中,两分子间势能一直增大11.电冰箱门不但有磁性,四周还镶有橡皮条,用以增加密封性,因为门与箱体之间密封得越严密,电冰箱越节能。

用户在购买冰箱时,总希望能够买到门与箱体之间密封性能好的冰箱,有经验的冰箱维修师挑选冰箱的做法是:首先通电让冰箱工作一段时间,然后,打开冷冻室的门,用手摸摸冷冻室门上的密封胶条,去感触箱门最上面一部分胶条的温度,电冰箱的密封性好坏就知道了,请你判断()A.如果该部分胶条温度高,则密封性好B.如果该部分胶条温度低,则密封性差C.如果该部分胶条温度高,则密封性差D.该部分胶条温度与密封性无关12.如图所示,厚壁容器的一端通过胶塞插进一只灵敏温度计和一根气针,另一端有个用卡子卡住的可移动胶塞。

用打气筒慢慢向筒内打气,使容器内的压强增加到一定程度,这时读出温度计示数。

打开卡子,胶塞冲出容器后()A.温度计示数变大,实验表明气体对外界做功,内能减少B.温度计示数变大,实验表明外界对气体做功,内能增加C.温度计示数变小,实验表明气体对外界做功,内能减少D.温度计示数变小,实验表明外界对气体做功,内能增加选1如图所示,质量为m的活塞将一定质量的气体封闭在气缸内,活塞与气缸之间无摩擦。

a态是气缸放在冰水混合物中气体达到的平衡状态,b态是气缸从容器中移出后,在室温(270C)中达到的平衡状态。

气体从a态变化到b态的过程中大气压强保持不变。

若忽略气体分子之间的势能,下列说法正确的是()A、与b态相比,a态的气体分子在单位时间内撞击活塞的个数较多B、与a态相比,b态的气体分子在单位时间内对活塞的冲量较大C、在相同时间内,a、b两态的气体分子对活塞的冲量相等D、从a态到b态,气体的内能增加,外界对气体做功,气体对外界释放了热量选 2.为研究影响家用保温瓶保温效果的因素,某同学在保温瓶中灌入热水,现测量初始水温,经过一段时间后再测量末态水温。

改变实验条件,先后共做了序号瓶内水量(mL)初始水温(0C)时间(h)末态水温(0C)1 1000 91 4 782 1000 98 8 743 1500 914 804 1500 98 10 755 2000 91 4 826 2000 98 12 77下列研究方案中符合控制变量方法的是A、若研究瓶内水量与保温效果的关系,可用第1、3、5次实验数据B、若研究瓶内水量与保温效果的关系,可用第2、4、6次实验数据C、若研究初始水温与保温效果的关系,可用第1、2、3次实验数据D、若研究保温时间与保温效果的关系,可用第4、5、6次实验数据二、本题共两小题,把答案填在题中的横线上或按题目要求作答13.(8分)在粗测油酸分子大小的实验中,具体操作如下:①取油酸1.00 mL注入250 mL的容量瓶内,然后向瓶中加入酒精,直到液面达到250 mL的刻度为止,摇动瓶使油酸在酒精中充分溶解,形成油酸的酒精溶液。

②用滴管吸取制得的溶液逐滴滴入量筒,记录滴入的滴数直到量筒达到1.00 mL为止,恰好共滴了100滴。

③在水盘内注入蒸馏水,静止后滴管吸取油酸的酒精溶液,轻轻地向水面滴一滴溶液,酒精挥发后,油酸在水面上尽可能地散开,形成一油膜。

④测得此油膜面积为3.60×102 cm2。

(1)这种粗测方法是将每个分子视为,让油酸尽可能地在水面上散开,则形成的油膜面积可视为,这层油膜的厚度可视为油分子的。

(3分)(2)利用数据可求得油酸分子的直径为 m。

(5分)三、本题共五小题,52分。

解答应写出必要的文字说明、方程式和重要的演算步骤。

只写出最后答案的不能得分。

有数值计算的题答案中必须明确写出数值和单位。

14.(12分)已知地球的半径为R,大气层厚度为h(可认为大气层厚R<<h),空气的平均摩尔质量为M,阿伏加德罗常数为N A,大气压强为P0,则地球大气层的空气分子数为多少?分子间的平均距离为多少?15.(12分)高压锅的锅盖通过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气,锅盖中间有一排气孔,上面可套上类似砝码的限压阀将排气孔堵住。

当加热高压锅(锅内有水),锅内气体压强增加到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔排出锅外。

已知某高压锅的排气孔的直径为0.4cm,大气压强为1.00×105Pa。

假设锅内水的沸点与锅内压强的关系如图所示,要设计一个锅内一最高温度达120℃的高压锅,问需要配一个质量多大的限压阀?16.(12分)一定质量的气体从外界吸收了4.2×105J的热量,同时气体对外做了 6×105 J的功,问:(1)物体的内能增加还是减少?变化量是多少?(2)分子势能是增加还是减少?(3)分子动能是增加还是减少?17.(14分)太阳与地球的距离为1.5×1011 m,太阳光以平行光束入射到地面。

地球表面2/3的面积被水面所覆盖,太阳在一年中辐射到地球表面水面部分的总能量W约为1.87×1024J。

设水面对太阳辐射的平均反射率为7%,而且将吸收到的35%能量重新辐射出去。

太阳辐射可将水面的水蒸发(设在常温、常压下蒸发1 kg水需要2.2×106 J的能量),而后凝结成雨滴降落到地面。

(1)估算整个地球表面的年平均降雨量(以毫米表示,球面积为4πR2 地球的半径R=6.37×106 m)。

(2)太阳辐射到地球的能量中只有约50%到达地面,W只是其中的一部分。

太阳辐射到地球的能量没能全部到达地面,这是为什么?请说明二个理由。

选1如图所示,两端足够长的敞口容器中,有两个可以自由移动的光滑活塞A和B,中间封有一质量的空气,现有一块粘泥C以E k0的动能沿水平方向飞撞到A并粘在一起,由于活塞的压缩,使密封气体的内能增加,设A、B、C质量相等,则密封空气在绝热状态变化过程中,内能增加的最大值是多少?1 2 3 4 5 6 7 8 9 10 11 12 选1 选2B C D D A D A AC B B C C AC A13.(1)球形 单分子油膜 直径 (2)1.11×10-9。

14.解:设大气层中气体的质量为m ,由大气压强产生的原因得,mg=p 0S ,即:m=p 0S/g 。

所以,分子数n=mN A /M= p 0SN A /Mg可认为每个分子占据一个小立方体,各小立方体紧密排列,则小立方体边长即为平均间距,设为a ,大气层中气体总体积为V ,3/n V a =,而h R V 2π=,所以302/A SN p hMg R a π=15.解:由图可知,锅内温度达120℃时,锅内压强为p =1.72×105Pa ,由于P=P 0+mg/s所以m =(p -p 0)S /g =(p -p 0)πd 2/4g ,代入数据,解得,m =0.092kg 。

相关文档
最新文档