江苏高考数学复习八大难点突破专项限时集训2立体几何中的探索性与存在性问题
2018年江苏高考数学二轮复习:第2部分 八大难点突破 难点4 解析几何中的范围、定值和探索性问题
难点四解析几何中的范围、定值和探索性问题(对应学生用书第68页)解析几何中的范围、定值和探索性问题仍是高考考试的重点与难点,主要以解答题形式考查,一般以椭圆为背景,考查范围、定值和探索性问题,试题难度较大.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用根与系数的关系进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.下面对这些难点一一分析:1.圆锥曲线中的定点、定值问题该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明,难度较大.定点、定值问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.【例1】 (2017·江苏省南京市迎一模模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)设直线x =12与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆D ,若圆D 与y 轴相交于不同的两点A ,B ,求△ABD 的面积;(3)如图1,A 1,A 2,B 1,B 2是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E ,设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.【导学号:56394098】图1[解] (1)∵直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切, ∴|0-2|2=b ,化为b =1.∵离心率e =32=c a ,b 2=a 2-c 2=1,联立解得a =2,c = 3. ∴椭圆C 的方程为x 24+y 2=1; (2)把x =12代入椭圆方程可得:y 2=1-116,解得y =±154. ∴⊙D 的方程为:⎝ ⎛⎭⎪⎫x -122+y 2=1516. 令x =0,解得y =±114, ∴|AB |=112,∴S △ABD =12|AB |·|OD |=12×112×12=118. (3)证明:由(1)知:A 1(-2,0),A 2(2,0),B 2(0,1),∴直线A 1B 2的方程为y =12x +1, 由题意,直线A 2P 的方程为y =k (x -2),k ≠0,且k ≠±12, 由⎩⎪⎨⎪⎧ y =12x +1,y =k x -,解得E ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 设P (x 1,y 1),则由⎩⎪⎨⎪⎧ y =k x -,x 24+y 2=1,得(4k 2+1)x 2-16k 2x +16k 2-4=0. ∴2x 1=16k 2-44k 2+1,∴x 1=8k 2-24k 2+1,y 1=k (x 1-2)=-4k 4k 2+1.∴P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 设F (x 2,0),则由P ,B 2,F 三点共线得,kB 2P =kB 2F .即-4k 4k 2+1-18k 2-24k 2+1-0=0-1x 2-0,∴x 2=4k -22k +1,∴F ⎝ ⎛⎭⎪⎫4k -22k +1,0. ∴EF 的斜率m =4k 2k -1-04k +22k -1-4k -22k +1=2k +14. ∴2m -k =2k +12-k =12为定值. [方法总结] 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.(1)求定值问题常见的方法有两种①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点的探索与证明问题①探索直线过定点时,可设出直线方程为y =kx +m ,然后利用条件建立k ,m 等量关系进行消元,借助于直线系的思想找出定点.②从特殊情况入手,先探求定点,再证明与变量无关.2.圆锥曲线中的最值、范围问题圆锥曲线中参数的范围及最值问题,由于其能很好地考查学生对数学知识的迁移、组合、融会的能力,有利于提高学生综合运用所学知识分析、解决问题的能力.该类试题设计巧妙、命题新颖别致,常求特定量、 特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变 量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.图2【例2】 (苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图2,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .(ⅰ)当直线的PA 斜率为12时,求△FMN 的外接圆的方程; (ⅱ)设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.[解] (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c +a 2c =62,解得⎩⎨⎧ a =4,c =22,则b =22,所以椭圆C 的标准方程为x 216+y 28=1. (2)由题可设直线PA 的方程为y =k (x +4),k >0,则M (0,4k ),所以直线FN 的方程为y =224k (x -22),则N ⎝⎛⎭⎪⎫0,-2k . (ⅰ)当直线PA 的斜率为12,即k =12时,M (0,2),N (0,-4),F (22,0),MF →=(22,-2),FN →=(-22,-4),MF →·FN →=-8+8=0.所以MF ⊥FN ,所以圆心为(0,-1),半径为3,所以△FMN 的外接圆的方程为x 2+(y +1)2=9. (ⅱ)联立⎩⎪⎨⎪⎧ y =k x +,x 216+y 28=1,消去y 并整理得,(1+2k 2)x 2+16k 2x +32k 2-16=0, 解得x 1=-4或x 2=4-8k 21+2k 2,所以P ⎝ ⎛⎭⎪⎫4-8k21+2k 2,8k1+2k 2, 直线AN 的方程为y =-12k (x +4),同理可得,Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k 1+2k 2, 所以P ,Q 关于原点对称,即PQ 过原点.所以△APQ 的面积S =12OA ·(y P -y Q )=2×16k 1+2k 2=322k +1k ≤82,当且仅当2k =1k ,即k =22时,取“=”.所以△APQ 的面积的最大值为8 2.[方法总结] 这类问题在题目中往往没有给出不等关系,需要我们去寻找.求最值或范围常见的解法:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值,求函数最值常用的方法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等.用这种方法求解圆锥曲线的最值与范围问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.3.圆锥曲线中的探索性问题探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神.因此越来越受到高考命题者的青睐.探索性问题实质上是探索结论的开放性问题.相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、 不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐.解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性.探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素.图3【例3】 (苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图3,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程;(2)在圆C 上是否存在点P 满足条件,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.【导学号:56394099】[解] (1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01--=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2. 因为MN =AB =22+22=22, 而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=+m22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P 满足条件,设P (x ,y ),则(x -2)2+y 2=4, PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<-2+-2<2+2, 所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以点P 的个数为2.[方法总结] (1)解决存在性问题的解题步骤:第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.(2)解决存在性问题应注意以下几点:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
高考数学难点突破_难点40__探索性问题
难点40 探索性问题高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题. ●难点磁场1.(★★★★)已知三个向量a 、b 、c ,其中每两个之间的夹角为120°,若|a |=3, |b |=2,|c |=1,则a 用b 、c 表示为 .2.(★★★★★)假设每一架飞机引擎在飞行中故障率为1–p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行,则对于多大的p 而言,4引擎飞机比2引擎飞机更为安全?●案例探究[例1]已知函数1)(2++=ax c bx x f (a ,c ∈R ,a >0,b 是自然数)是奇函数,f (x )有最大值21,且f (1)>52. (1)求函数f (x )的解析式;(2)是否存在直线l 与y =f (x )的图象交于P 、Q 两点,并且使得P 、Q 两点关于点(1,0)对称,若存在,求出直线l 的方程,若不存在,说明理由.命题意图:本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力,属★★★★★级题目.知识依托:函数的奇偶性、重要不等式求最值、方程与不等式的解法、对称问题.错解分析:不能把a 与b 间的等量关系与不等关系联立求b ;忽视b 为自然数而导致求不出b 的具体值;P 、Q 两点的坐标关系列不出解.技巧与方法:充分利用题设条件是解题关键.本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证.解:(1)∵f (x )是奇函数∴f (–x )=–f (x ),即1122++-=++-ax c bx ax c bx ∴–bx +c =–bx –c∴c =0∴f (x )=12+ax bx 由a >0,b 是自然数得当x ≤0时,f (x )≤0,当x >0时,f (x )>0∴f (x )的最大值在x >0时取得.∴x >0时,22111)(b abx x b a x f ≤+=当且仅当bxx b a 1=即a x 1=时,f (x )有最大值21212=b a ∴2ba =1,∴a =b 2 ① 又f (1)>52,∴1+a b >52,∴5b >2a +2 ② 把①代入②得2b 2–5b +2<0解得21<b <2 又b ∈N ,∴b =1,a =1,∴f (x )=12+x x (2)设存在直线l 与y =f (x )的图象交于P 、Q 两点,且P 、Q 关于点(1,0)对称,P (x 0,y 0)则Q (2–x 0,–y 0),∴⎪⎪⎩⎪⎪⎨⎧-=+--=+020002001)2(21y x x y x x ,消去y 0,得x 02–2x 0–1=0解之,得x 0=1±2,∴P 点坐标为(42,21+)或(42,21--)进而相应Q 点坐标为Q (42,21--) 或Q (42,21+). 过P 、Q 的直线l 的方程:x –4y –1=0即为所求.[例2]如图,三条直线a 、b 、c 两两平行,直线a 、b 间的距离为p ,直线b 、c 间的距离为2p ,A 、B 为直线a 上两定点,且|AB |=2p ,MN 是在直线b 上滑动的长度为2p 的线段.(1)建立适当的平面直角坐标系,求△AMN 的外心C 的轨迹E ;(2)接上问,当△AMN 的外心C 在E 上什么位置时,d +|BC |最小,最小值是多少?(其中d 是外心C 到直线c 的距离).命题意图:本题考查轨迹方程的求法、抛物线的性质、数形结合思想及分析、探索问题、综合解题的能力.属★★★★★级题目.知识依托:求曲线的方程、抛物线及其性质、直线的方程.错解分析:①建立恰当的直角坐标系是解决本题的关键,如何建系是难点,②第二问中确定C 点位置需要一番分析.技巧与方法:本题主要运用抛物线的性质,寻求点C 所在位置,然后加以论证和计算,得出正确结论,是条件探索型题目.解:(1)以直线b 为x 轴,以过A 点且与b 直线垂直的直线为y 轴建立直角坐标系.设△AMN 的外心为C (x ,y ),则有A (0,p )、M (x –p ,0),N (x +p ,0),由题意,有|CA |=|CM | ∴2222)()(y p x x p y x ++-=-+,化简,得x 2=2py它是以原点为顶点,y 轴为对称轴,开口向上的抛物线.(2)由(1)得,直线C 恰为轨迹E 的准线.由抛物线的定义知d =|CF |,其中F (0,2p )是抛物线的焦点. ∴d +|BC |=|CF |+|BC |由两点间直线段最短知,线段BF 与轨迹E 的交点即为所求的点直线BF 的方程为p x y 2141+=联立方程组 ⎪⎩⎪⎨⎧=+=py x p x y 221412得⎪⎪⎩⎪⎪⎨⎧+=+=.16179)171(41p y p x . 即C 点坐标为(p p 16179,4171++). 此时d +|BC |的最小值为|BF |=p 217. ●锦囊妙计如果把一个数学问题看作是由条件、依据、方法和结论四个要素组成的一个系统,那么把这四个要素中有两个是未知的数学问题称之为探索性问题.条件不完备和结论不确定是探索性问题的基本特征.解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般对这类问题有如下方法:(1)直接求解;(2)观察——猜测——证明;(3)赋值推断;(4)数形结合;(5)联想类比;(6)特殊——一般——特殊.●歼灭难点训练一、选择题1.(★★★★)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题,其中正确命题是( )①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥βA.①与②B.①与③C.②与④D.③与④2.(★★★★)某邮局只有0.60元,0.80元,1.10元的三种邮票.现有邮资为7.50元的邮件一件,为使粘贴邮票的张数最少,且资费恰为7.50元,则最少要购买邮票( )A.7张B.8张C.9张D.10张二、填空题3.(★★★★)观察sin 220°+cos 250°+sin20°cos50°=43,sin 215°+cos 245°+sin15°·cos45°=43,写出一个与以上两式规律相同的一个等式 . 三、解答题4.(★★★★)在四棱锥P —ABCD 中,侧棱P A ⊥底面ABCD ,底面ABCD 是矩形,问底面的边BC 上是否存在点E .(1)使∠PED =90°;(2)使∠PED 为锐角.证明你的结论.5.(★★★★★)已知非零复数z 1,z 2满足|z 1|=a ,|z 2|=b ,|z 1+z 2|=c (a 、b 、c 均大于零),问是否根据上述条件求出12z z ?请说明理由. 6.(★★★★★)是否存在都大于2的一对实数a 、b (a >b )使得ab ,ab ,a –b ,a +b 可以按照某一次序排成一个等比数列,若存在,求出a 、b 的值,若不存在,说明理由.7.(★★★★★)直线l 过抛物线y 2=2px (p >0)的焦点且与抛物线有两个交点,对于抛物线上另外两点A 、B 直线l 能否平分线段AB ?试证明你的结论.8.(★★★★★)三个元件T 1、T 2、T 3正常工作的概率分别为0.7、0.8、0.9,将它们的某两个并联再和第三个串联接入电路,如图甲、乙、丙所示,问哪一种接法使电路不发生故障的概率最大?参 考 答 案●难点磁场1.解析:如图–a 与b ,c 的夹角为60°,且|a |=|–a |=3.由平行四边形关系可得–a =3c +23b ,∴a =–3c –23b . 答案:a =–3c –23b 2.解析:飞机成功飞行的概率分别为:4引擎飞机为:4222443342224)1(4)1(6C )1(C )1(C P P P P P P P P P P +-+-=+-+-2引擎飞机为222212)1(2C )1(C P P P P P P +-=+-⋅.要使4引擎飞机比2引擎飞机安全,则有:6P 2(1–P )2+4P 2(1–P )+P 4≥2P (1–P )+P 2,解得P ≥32. 即当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.●歼灭难点训练一、1.解析:①l ⊥α且α∥β⇒l ⊥β,m ⊂β⇒l ⊥m .②α⊥β且l ⊥α⇒l ∥β,但不能推出l ∥m .③l ∥m ,l ⊥α⇒m ⊥α,由m ⊂β⇒α⊥β.④l ⊥m ,不能推出α∥β.答案:B2.解析:选1.1元5张,0.6元2张,0.8元1张.故8张.答案:B二、3.解析:由50°–20°=(45°–15°)=30°可得sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43. 答案:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43 三、4.解:(1)当AB ≤21AD 时,边BC 上存在点E ,使∠PED =90°;当AB >21AD 时,使∠PED =90°的点E 不存在.(只须以AD 为直径作圆看该圆是否与BC 边有无交点)(证略)(2)边BC 上总存在一点,使∠PED 为锐角,点B 就是其中一点.连接BD ,作AF ⊥BD ,垂足为F ,连PF ,∵P A ⊥面ABCD ,∴PF ⊥BD ,又△ABD 为直角三角形,∴F 点在BD 上,∴∠PBF 是锐角.同理,点C 也是其中一点.5.解:∵|z 1+z 2|2=(z 1+z 2)(1z +2z )=|z 1|2+|z 2|2+(z 12z +1z z 2)∴c 2=a 2+b 2+(z 12z +1z z 2)即:z 12z +1z z 2=c 2–a 2–b 2∵z 1≠0,z 2≠0,∴z 12z +1z ·z 2=12112221z z z z z z z z + =|z 2|2(21z z )+|z 1|2(12z z ) 即有:b 2(21z z )+a 2(12z z )=z 1z 2+z 1z 2 ∴b 2(21z z )+a 2(12z z )=c 2–a 2–b 2 ∴a 2(12z z )2+(a 2+b 2–c 2)(12z z )+b 2=0 这是关于12z z 的一元二次方程,解此方程即得12z z 的值. 6.解:∵a >b ,a >2,b >2,∴ab ,a b ,a –b ,a +b 均为正数,且有ab >a +b >ab ,ab >a +b >a –b .假设存在一对实数a ,b 使ab ,ab ,a +b ,a –b 按某一次序排成一个等比数列,则此数列必是单调数列.不妨设该数列为单调减数列,则存在的等比数列只能有两种情形,即①ab ,a +b , a –b ,a b ,或②ab ,a +b ,a b ,a –b 由(a +b )2≠ab ·ab 所以②不可能是等比数列,若①为等比数列,则有:⎪⎩⎪⎨⎧+=+=⎪⎩⎪⎨⎧⋅=-+-=+22710257 ))(()()(2b a a b ab b a b a b a ab b a 解得经检验知这是使ab ,a +b ,a –b ,ab 成等比数列的惟一的一组值.因此当a =7+25,b =22710+时,ab ,a +b ,a –b ,ab 成等比数列. 7.解:如果直线l 垂直平分线段AB ,连AF 、BF ,∵F (2p ,0)∈l .∴|F A |=|FB |,设 A (x 1,y 1),B (x 2,y 2),显然x 1>0,x 2>0,y 1≠y 2,于是有(x 1–2p )2+y 12=(x 2–2p )2+y 22,整理得:(x 1+x 2–p )(x 1–x 2)=y 22–y 12=–2p (x 1–x 2).显然x 1≠x 2(否则AB ⊥x 轴,l 与x 轴重合,与题设矛盾)得:x 1+x 2–p =–2p 即x 1+x 2=–p <0,这与x 1+x 2>0矛盾,故直线l 不能垂直平分线段AB .8.解:设元件T 1、T 2、T 3能正常工作的事件为A 1、A 2、A 3,电路不发生故障的事件为A ,则P (A 1)=0.7,P (A 2)=0.8,P (A 3)=0.9.(1)按图甲的接法求P (A ):A =(A 1+A 2)·A 3,由A 1+A 2与A 3相互独立,则P (A )=P (A 1+A 2)·P (A 3)又P (A 1+A 2)=1–P (21A A +)=1–P (1A ·2A )由A 1与A 2相互独立知1A 与2A 相互独立,得:P (1A ·2A )=P (1A )·P (2A )=[1–P (A 1)]·[1–P (A 2)]=(1–0.7)×(1–0.8)=0.06,∴P (A 1+A 2)=0.1–P (1A ·2A )=1–0.06=0.94,∴P (A )=0.94×0.9=0.846.(2)按图乙的接法求P (A ):A =(A 1+A 3)·A 2且A 1+A 3与A 2相互独立,则P (A )=P (A 1+A 3)· P (A 2),用另一种算法求P (A 1+A 3).∵A 1与A 3彼此不互斥,根据容斥原理P (A 1+A 3)= P (A 1)+P (A 3)–P (A 1A 3),∵A 1与A 3相互独立,则P (A 1·A 3)=P (A 1)·P (A 3)=0.7×0.9=0.63,P (A 1+A 3)=0.7+0.9–0.63=0.97.∴P (A )=P (A 1+A 3)·P (A 2)=0.97×0.8=0.776.(3)按图丙的接法求P (A ),用第三种算法.A =(A 2+A 3)A 1=A 2A 1+A 3A 1,∵A 2A 1与A 3A 1彼此不互斥,据容斥原理,则P (A )=P (A 1A 2)+P (A 1A 3)–P (A 1A 2A 3),又由A 1、A 2、A 3相互独立,得P (A 1·A 2)=P (A 1)P (A 2)=0.8×0.7=0.56,P (A 3A 1)=P (A 3)·P (A 1)=0.9×0.7=0.63,P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=0.7×0.8×0.9=0.504,∴P (A )=0.56+0.63–0.504=0.686.综合(1)、(2)、(3)得,图甲、乙、丙三种接法电路不发生故障的概率值分别为0.846,0.776,0.686.故图甲的接法电路不发生故障的概率最大.Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
高考数学立体几何空间几何中的探索性问题
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
2021年高考数学难点突破(新课标版) 专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d =A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE , 如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC .专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(22A D =,0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a ,3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BDAD BD ∴⊥,1AA ⊥平面ABC , 1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF -,此时DE 的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,112AD AB BC ===,PD ⊥平面ABCD ,PD =M 为PC 上的动点.(Ⅰ)当M 为PC 的中点时,在棱PB 上是否存在点N ,使得//MN 平面PDA ?说明理由; (Ⅰ)BDM ∆的面积最小时,求三棱锥M BCD -的体积.【分析】(Ⅰ)当N 为PB 中点时,//MN 平面PDA .取PB 的中点N ,连接MN ,由M ,N 分别为PC ,PB 中点,可得//MN BC ,又//BC AD ,得//MN AD ,再由直线与平面平行的判定对立即可证明//MN 平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥,又BD CD ⊥,CDPD D =,得BD ⊥平面PCD ,又MD ⊂平面PDC ,可得BD MD ⊥,进一步得到DBM ∆为直角三角形,当MD PC ⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD -的体积. 【解答】解:(Ⅰ)当N 为PB 中点时,//MN 平面PDA . 证明如下:取PB 的中点N ,连接MN ,M ,N 分别为PC ,PB 中点,//MN BC ∴,又//BC AD , //MN AD ∴,又DA ⊂平面PDA ,MN ⊂/平面PDA , //MN ∴平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD =.则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯=8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
高考数学难点突破训练 立体几何(含答案)
高考数学难点突破训练立体几何(含答案)高考数学难点突破训练-立体几何(含答案)高考数学难点的突破训练——立体几何acd30,?acb?45?,1.将两块三角板按图甲方式拼好,其中?b??d?90?,交流电?2.现在沿AC折叠三角形板ACD,使D在平面ABC上的投影正好在AB上,如图B所示(1)求证:ad?平面bdc;w.w.w.k.s.5.u.c.o.m(2)求二面角d?ac?b的大小;(3)找出AC和BD之间的角度2.如图,在正三棱柱abc?a1b1c1中,各棱长都等于a,d、 E分别是AC1和BB1的中点,(1)求证:de是异面直线ac1与bb1的公垂线段,并求其长度;(2)找到二面角e?ac1?C)房间的大小;(3)求从点C1到平面AEC的距离3.如图,在棱长为a的正方体abcd?a1b1c1d1中,e、f分别为棱ab和bc的中点,ef 交bd于h.(1)二面角?1.ef?B的正切值;(2)试在棱b1b上找一点m,使d1m?平面efb1,并证一明你的结论;(3)求出从点D1到平面efb1的距离4.如图,斜三棱柱abc―a1b1c1的底面是直角三角形,ac⊥cb,∠abc=45°,侧面A1abb1是边长为a且垂直于底部ABC的钻石,∠ a1ab=60°,e和F分别为Ab1和BC 的中点(1)求证ef//平面a1acc1;(2)找到EF和a1abb1侧之间的角度;(3)求出a-bce三角金字塔的体积5.已知直三棱柱abc―a1b1c1中,△abc为等腰直角三角形,∠bac=90°,且ab=aa1,d、e、f分别为b1a、c1c、bc的中点。
(i)验证:de‖plane ABC;(二)验证:B1F⊥ 飞机AEF;(iii)求二面角b1―ae―f的大小(用反三角函数表示)。
二6.在直角梯形abcd中,∠a=∠d=90°,ab<cd,sd⊥平面abcd,ab=ad=a,SD=2A,在线段SA上取一个点E(不包括终点),使EC=AC,横截面CDE和Sb在点F 处相交。
高考数学二轮复习第2部分八大难点突破难点2立体几何中的探索性与存在性问题课件
[点评] 这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用 下列二种方法:(1)通过各种探索尝试给出条件;(2)找出命题成立的必要条件, 也证明充分性.
2.对命题结论的探索 探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条 件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时, 常假设结论存在,再寻找与条件相容还是矛盾的结论.
难点二 立体几何中的探索性与存在性问题
栏目 导航
专项限时集训
(对应学生用书第 65 页) 数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是 对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何 中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查. 探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体 几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学 生的意志力及探究的能力.
[思路分析] 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂 直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一 条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(2)证 明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性 质定理,三是利用面面平行的性质;(3)证明两个平面垂直,首先考虑直线与平 面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现, 这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是,AB 与 CD 不平行.如图,延长 AB,DC,相交于点 M(M ∈平面 PAB),点 M 即为所求的一个点.
理由如下: 由已知,知 BC∥ED,且 BC=ED, 所以四边形 BCDE 是平行四边形, 从而 CM∥EB. 又 EB⊂平面 PBE,CM⊄平面 PBE, 所以 CM∥平面 PBE. (说明:延长 AP 至点 N,使得 AP=PN,则所找的点可以是直线 MN 上任意一点)
高考数学难点突破__探索性问题
难点40 探索性问题高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.1.(★★★★)已知三个向量a 、b 、c ,其中每两个之间的夹角为120°,若|a |=3, |b |=2,|c |=1,则a 用b 、c 表示为 .2.(★★★★★)假设每一架飞机引擎在飞行中故障率为1–p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行,则对于多大的p 而言,4引擎飞机比2引擎飞机更为安全?[例1]已知函数1)(2++=ax c bx x f (a ,c ∈R ,a >0,b 是自然数)是奇函数,f (x )有最大值21,且f (1)>52. (1)求函数f (x )的解析式;(2)是否存在直线l 与y =f (x )的图象交于P 、Q 两点,并且使得P 、Q 两点关于点(1,0)对称,若存在,求出直线l 的方程,若不存在,说明理由.命题意图:本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力,属★★★★★级题目.知识依托:函数的奇偶性、重要不等式求最值、方程与不等式的解法、对称问题.错解分析:不能把a 与b 间的等量关系与不等关系联立求b ;忽视b 为自然数而导致求不出b 的具体值;P 、Q 两点的坐标关系列不出解.技巧与方法:充分利用题设条件是解题关键.本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证.解:(1)∵f (x )是奇函数∴f (–x )=–f (x ),即1122++-=++-ax c bx ax c bx ∴–bx +c =–bx –c∴c =0∴f (x )=12+ax bx 由a >0,b 是自然数得当x ≤0时,f (x )≤0,当x >0时,f (x )>0∴f (x )的最大值在x >0时取得.∴x >0时,22111)(b abx x b a x f ≤+= 当且仅当bxx b a 1=即a x 1=时,f (x )有最大值21212=b a∴2ba =1,∴a =b 2 ① 又f (1)>52,∴1+a b >52,∴5b >2a +2 ② 把①代入②得2b 2–5b +2<0解得21<b <2 又b ∈N ,∴b =1,a =1,∴f (x )=12+x x (2)设存在直线l 与y =f (x )的图象交于P 、Q 两点,且P 、Q 关于点(1,0)对称,P (x 0,y 0)则Q (2–x 0,–y 0),∴⎪⎪⎩⎪⎪⎨⎧-=+--=+020002001)2(21y x x y x x ,消去y 0,得x 02–2x 0–1=0解之,得x 0=1±2,∴P 点坐标为(42,21+)或(42,21--)进而相应Q 点坐标为Q (42,21--) 或Q (42,21+). 过P 、Q 的直线l 的方程:x –4y –1=0即为所求.[例2]如图,三条直线a 、b 、c 两两平行,直线a 、b 间的距离为p ,直线b 、c 间的距离为2p ,A 、B 为直线a 上两定点,且|AB |=2p ,MN 是在直线b 上滑动的长度为2p 的线段.(1)建立适当的平面直角坐标系,求△AMN 的外心C 的轨迹E ;(2)接上问,当△AMN 的外心C 在E 上什么位置时,d +|BC |最小,最小值是多少?(其中d 是外心C 到直线c 的距离).命题意图:本题考查轨迹方程的求法、抛物线的性质、数形结合思想及分析、探索问题、综合解题的能力.属★★★★★级题目.知识依托:求曲线的方程、抛物线及其性质、直线的方程.错解分析:①建立恰当的直角坐标系是解决本题的关键,如何建系是难点,②第二问中确定C 点位置需要一番分析.技巧与方法:本题主要运用抛物线的性质,寻求点C 所在位置,然后加以论证和计算,得出正确结论,是条件探索型题目.解:(1)以直线b 为x 轴,以过A 点且与b 直线垂直的直线为y 轴建立直角坐标系.设△AMN 的外心为C (x ,y ),则有A (0,p )、M (x –p ,0),N (x +p ,0),由题意,有|CA |=|CM | ∴2222)()(y p x x p y x ++-=-+,化简,得x 2=2py它是以原点为顶点,y 轴为对称轴,开口向上的抛物线.(2)由(1)得,直线C 恰为轨迹E 的准线.由抛物线的定义知d =|CF |,其中F (0,2p )是抛物线的焦点. ∴d +|BC |=|CF |+|BC |由两点间直线段最短知,线段BF 与轨迹E 的交点即为所求的点直线BF 的方程为p x y 2141+=联立方程组 ⎪⎩⎪⎨⎧=+=py x p x y 221412得⎪⎪⎩⎪⎪⎨⎧+=+=.16179)171(41p y p x . 即C 点坐标为(p p 16179,4171++). 此时d +|BC |的最小值为|BF |=p 217.如果把一个数学问题看作是由条件、依据、方法和结论四个要素组成的一个系统,那么把这四个要素中有两个是未知的数学问题称之为探索性问题.条件不完备和结论不确定是探索性问题的基本特征.解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般对这类问题有如下方法:(1)直接求解;(2)观察——猜测——证明;(3)赋值推断;(4)数形结合;(5)联想类比;(6)特殊——一般——特殊.一、选择题1.(★★★★)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题,其中正确命题是( )①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥βA.①与②B.①与③C.②与④D.③与④2.(★★★★)某邮局只有0.60元,0.80元,1.10元的三种邮票.现有邮资为7.50元的邮件一件,为使粘贴邮票的张数最少,且资费恰为7.50元,则最少要购买邮票( )A.7张B.8张C.9张D.10张二、填空题3.(★★★★)观察sin 220°+cos 250°+sin20°cos50°=43,sin 215°+cos 245°+sin15°·cos45°=43,写出一个与以上两式规律相同的一个等式 .三、解答题4.(★★★★)在四棱锥P —ABCD 中,侧棱P A ⊥底面ABCD ,底面ABCD 是矩形,问底面的边BC 上是否存在点E .(1)使∠PED =90°;(2)使∠PED 为锐角.证明你的结论.5.(★★★★★)已知非零复数z 1,z 2满足|z 1|=a ,|z 2|=b ,|z 1+z 2|=c (a 、b 、c 均大于零),问是否根据上述条件求出12z z ?请说明理由. 6.(★★★★★)是否存在都大于2的一对实数a 、b (a >b )使得ab ,ab ,a –b ,a +b 可以按照某一次序排成一个等比数列,若存在,求出a 、b 的值,若不存在,说明理由.7.(★★★★★)直线l 过抛物线y 2=2px (p >0)的焦点且与抛物线有两个交点,对于抛物线上另外两点A 、B 直线l 能否平分线段AB ?试证明你的结论.8.(★★★★★)三个元件T 1、T 2、T 3正常工作的概率分别为0.7、0.8、0.9,将它们的某两个并联再和第三个串联接入电路,如图甲、乙、丙所示,问哪一种接法使电路不发生故障的概率最大?参 考 答 案●难点磁场1.解析:如图–a 与b ,c 的夹角为60°,且|a |=|–a |=3.由平行四边形关系可得–a =3c +23b ,∴a =–3c –23b . 答案:a =–3c –23b 2.解析:飞机成功飞行的概率分别为:4引擎飞机为:4222443342224)1(4)1(6C )1(C )1(C P P P P P P P P P P +-+-=+-+-2引擎飞机为222212)1(2C )1(C P P P P P P +-=+-⋅.要使4引擎飞机比2引擎飞机安全,则有:6P 2(1–P )2+4P 2(1–P )+P 4≥2P (1–P )+P 2,解得P ≥32. 即当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全.●歼灭难点训练一、1.解析:①l ⊥α且α∥β⇒l ⊥β,m ⊂β⇒l ⊥m .②α⊥β且l ⊥α⇒l ∥β,但不能推出l ∥m .③l ∥m ,l ⊥α⇒m ⊥α,由m ⊂β⇒α⊥β.④l ⊥m ,不能推出α∥β.答案:B2.解析:选1.1元5张,0.6元2张,0.8元1张.故8张.答案:B二、3.解析:由50°–20°=(45°–15°)=30°可得sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43. 答案:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43 三、4.解:(1)当AB ≤21AD 时,边BC 上存在点E ,使∠PED =90°;当AB >21AD 时,使∠PED =90°的点E 不存在.(只须以AD 为直径作圆看该圆是否与BC 边有无交点)(证略)(2)边BC 上总存在一点,使∠PED 为锐角,点B 就是其中一点.连接BD ,作AF ⊥BD ,垂足为F ,连PF ,∵P A ⊥面ABCD ,∴PF ⊥BD ,又△ABD 为直角三角形,∴F 点在BD 上,∴∠PBF 是锐角.同理,点C 也是其中一点.5.解:∵|z 1+z 2|2=(z 1+z 2)(1z +2z )=|z 1|2+|z 2|2+(z 12z +1z z 2)∴c 2=a 2+b 2+(z 12z +1z z 2)即:z 12z +1z z 2=c 2–a 2–b 2∵z 1≠0,z 2≠0,∴z 12z +1z ·z 2=12112221z z z z z z z z + =|z 2|2(21z z )+|z 1|2(12z z ) 即有:b 2(21z z )+a 2(12z z )=z 1z 2+z 1z 2 ∴b 2(21z z )+a 2(12z z )=c 2–a 2–b 2 ∴a 2(12z z )2+(a 2+b 2–c 2)(12z z )+b 2=0 这是关于12z z 的一元二次方程,解此方程即得12z z 的值.。
高考数学难点突破_难点40__探索性问题
难点40 探索性问题高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题. ●难点磁场1.(★★★★)已知三个向量a 、b 、c ,其中每两个之间的夹角为120°,若|a |=3, |b |=2,|c |=1,则a 用b 、c 表示为 .●案例探究[例1]已知函数1)(2++=ax c bx x f (a ,c ∈R ,a >0,b 是自然数)是奇函数,f (x )有最大值21,且f (1)>52. (1)求函数f (x )的解析式;(2)是否存在直线l 与y =f (x )的图象交于P 、Q 两点,并且使得P 、Q 两点关于点(1,0)对称,若存在,求出直线l 的方程,若不存在,说明理由.命题意图:本题考查待定系数法求函数解析式、最值问题、直线方程及综合分析问题的能力,属★★★★★级题目.知识依托:函数的奇偶性、重要不等式求最值、方程与不等式的解法、对称问题.错解分析:不能把a 与b 间的等量关系与不等关系联立求b ;忽视b 为自然数而导致求不出b 的具体值;P 、Q 两点的坐标关系列不出解.技巧与方法:充分利用题设条件是解题关键.本题是存在型探索题目,注意在假设存在的条件下推理创新,若由此导出矛盾,则否定假设,否则,给出肯定的结论,并加以论证.解:(1)∵f (x )是奇函数∴f (–x )=–f (x ),即1122++-=++-ax c bx ax c bx ∴–bx +c =–bx –c∴c =0∴f (x )=12+ax bx 由a >0,b 是自然数得当x ≤0时,f (x )≤0,当x >0时,f (x )>0∴f (x )的最大值在x >0时取得.∴x >0时,22111)(b a bx x b a x f ≤+=当且仅当bxx b a 1= 即a x 1=时,f (x )有最大值21212=b a∴2b a =1,∴a =b 2 ① 又f (1)>52,∴1+a b >52,∴5b >2a +2 ② 把①代入②得2b 2–5b +2<0解得21<b <2 又b ∈N ,∴b =1,a =1,∴f (x )=12+x x (2)设存在直线l 与y =f (x )的图象交于P 、Q 两点,且P 、Q 关于点(1,0)对称,P (x 0,y 0)则Q (2–x 0,–y 0),∴⎪⎪⎩⎪⎪⎨⎧-=+--=+020002001)2(21y x x y x x ,消去y 0,得x 02–2x 0–1=0解之,得x 0=1±2,∴P 点坐标为(42,21+)或(42,21--)进而相应Q 点坐标为Q (42,21--) 或Q (42,21+). 过P 、Q 的直线l 的方程:x –4y –1=0即为所求.[例2]如图,三条直线a 、b 、c 两两平行,直线a 、b 间的距离为p ,直线b 、c 间的距离为2p ,A 、B 为直线a 上两定点,且|AB |=2p ,MN 是在直线b 上滑动的长度为2p 的线段.(1)建立适当的平面直角坐标系,求△AMN 的外心C 的轨迹E ;命题意图:本题考查轨迹方程的求法、抛物线的性质、数形结合思想及分析、探索问题、综合解题的能力.属★★★★★级题目.知识依托:求曲线的方程、抛物线及其性质、直线的方程.错解分析:①建立恰当的直角坐标系是解决本题的关键,如何建系是难点,②第二问中确定C 点位置需要一番分析.技巧与方法:本题主要运用抛物线的性质,寻求点C 所在位置,然后加以论证和计算,得出正确结论,是条件探索型题目.解:(1)以直线b 为x 轴,以过A 点且与b 直线垂直的直线为y 轴建立直角坐标系. 设△AMN 的外心为C (x ,y ),则有A (0,p )、M (x –p ,0),N (x +p ,0),由题意,有|CA |=|CM |∴2222)()(y p x x p y x ++-=-+,化简,得x 2=2py它是以原点为顶点,y 轴为对称轴,开口向上的抛物线.(2)由(1)得,直线C 恰为轨迹E 的准线.由抛物线的定义知d =|CF |,其中F (0,2p )是抛物线的焦点. ∴d +|BC |=|CF |+|BC |由两点间直线段最短知,线段BF 与轨迹E 的交点即为所求的点直线BF 的方程为p x y 2141+=联立方程组 ⎪⎩⎪⎨⎧=+=py x p x y 221412得⎪⎪⎩⎪⎪⎨⎧+=+=.16179)171(41p y p x . 即C 点坐标为(p p 16179,4171++). 此时d +|BC |的最小值为|BF |=p 217. ●锦囊妙计如果把一个数学问题看作是由条件、依据、方法和结论四个要素组成的一个系统,那么把这四个要素中有两个是未知的数学问题称之为探索性问题.条件不完备和结论不确定是探索性问题的基本特征.解决探索性问题,对观察、联想、类比、猜测、抽象、概括诸方面有较高要求,高考题中一般对这类问题有如下方法:(1)直接求解;(2)观察——猜测——证明;(3)赋值推断;(4)数形结合;(5)联想类比;(6)特殊——一般——特殊.●歼灭难点训练一、选择题1.(★★★★)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题,其中正确命题是( )①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥βA.①与②B.①与③C.②与④D.③与④2.(★★★★)某邮局只有0.60元,0.80元,1.10元的三种邮票.现有邮资为7.50元的邮件一件,为使粘贴邮票的张数最少,且资费恰为7.50元,则最少要购买邮票( )A.7张B.8张C.9张D.10张二、填空题3.(★★★★)观察sin 220°+cos 250°+sin20°cos50°=43,sin 215°+cos 245°+sin15°三、解答题4.(★★★★)在四棱锥P —ABCD 中,侧棱P A ⊥底面ABCD ,底面ABCD 是矩形,问底面的边BC 上是否存在点E .(1)使∠PED =90°;(2)使∠PED 为锐角.证明你的结论.6.(★★★★★)是否存在都大于2的一对实数a 、b (a >b )使得ab ,a b ,a –b ,a +b 可以按照某一次序排成一个等比数列,若存在,求出a 、b 的值,若不存在,说明理由.参 考 答 案●难点磁场1.解析:如图–a 与b ,c 的夹角为60°,且|a |=|–a |=3.由平行四边形关系可得–a =3c +23b ,∴a =–3c –23b . 答案:a =–3c –23b 2.解析:飞机成功飞行的概率分别为:4引擎飞机为:4222443342224)1(4)1(6C )1(C )1(C P P P P P P P P P P +-+-=+-+-2引擎飞机为222212)1(2C )1(C P P P P P P +-=+-⋅.要使4引擎飞机比2引擎飞机安全,则有:6P 2(1–P )2+4P 2(1–P )+P 4≥2P (1–P )+P 2,解得P ≥32. 即当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机安全. ●歼灭难点训练一、1.解析:①l ⊥α且α∥β⇒l ⊥β,m ⊂β⇒l ⊥m .②α⊥β且l ⊥α⇒l ∥β,但不能推出l ∥m .③l ∥m ,l ⊥α⇒m ⊥α,由m ⊂β⇒α⊥β.④l ⊥m ,不能推出α∥β.答案:B2.解析:选1.1元5张,0.6元2张,0.8元1张.故8张.答案:B二、3.解析:由50°–20°=(45°–15°)=30°可得sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43. 答案:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=43三、4.解:(1)当AB ≤21AD 时,边BC 上存在点E ,使∠PED =90°;当AB >21AD 时,使∠PED =90°的点E 不存在.(只须以AD 为直径作圆看该圆是否与BC 边有无交点)(证略)(2)边BC 上总存在一点,使∠PED 为锐角,点B 就是其中一点.连接BD ,作AF ⊥BD ,垂足为F ,连PF ,∵P A ⊥面ABCD ,∴PF ⊥BD ,又△ABD 为直角三角形,∴F 点在BD 上,∴∠PBF 是锐角.同理,点C 也是其中一点.5.解:∵|z 1+z 2|2=(z 1+z 2)(1z +2z )=|z 1|2+|z 2|2+(z 12z +1z z 2)∴c 2=a 2+b 2+(z 12z +1z z 2)即:z 12z +1z z 2=c 2–a 2–b 2即有:b 2(21z z )+a 2(12z z )=z 1z 2+z 1z 2 ∴b 2(21z z )+a 2(12z z )=c 2–a 2–b 2 ∴a 2(12z z )2+(a 2+b 2–c 2)(12z z )+b 2=0 这是关于12z z 的一元二次方程,解此方程即得12z z 的值. 6.解:∵a >b ,a >2,b >2,∴ab ,a b ,a –b ,a +b 均为正数,且有ab >a +b >ab ,ab >a +b >a –b . 假设存在一对实数a ,b 使ab ,a b ,a +b ,a –b 按某一次序排成一个等比数列,则此数列必是单调数列.不妨设该数列为单调减数列,则存在的等比数列只能有两种情形,即①ab ,a +b ,⎪⎩⎪⎨⎧+=+=⎪⎩⎪⎨⎧⋅=-+-=+22710257 ))(()()(2b a a b ab b a b a b a ab b a 解得经检验知这是使ab ,a +b ,a –b ,ab 成等比数列的惟一的一组值.因此当a =7+25,b =22710+时,ab ,a +b ,a –b ,a b 成等比数列. 7.解:如果直线l 垂直平分线段AB ,连AF 、BF ,∵F (2p ,0)∈l .∴|F A |=|FB |,设A (x 1,y 1),B (x 2,y 2),显然x 1>0,x 2>0,y 1≠y 2,于是有(x 1–2p )2+y 12=(x 2–2p )2+y 22,整理得:(x 1+x 2–p )(x 1–x 2)=y 22–y 12=–2p (x 1–x 2).显然x 1≠x 2(否则AB ⊥x 轴,l 与x 轴重合,与题设矛盾)得:x 1+x 2–p =–2p 即x 1+x 2=–p <0,这与x 1+x 2>0矛盾,故直线l 不能垂直平分线段AB .8.解:设元件T 1、T 2、T 3能正常工作的事件为A 1、A 2、A 3,电路不发生故障的事件为A ,则P (A 1)=0.7,P (A 2)=0.8,P (A 3)=0.9.∴P (A )=0.94×0.9=0.846.P (A 2),用另一种算法求P (A 1+A 3).∵A 1与A 3彼此不互斥,根据容斥原理P (A 1+A 3)=(3)按图丙的接法求P (A ),用第三种算法.∴P (A )=0.56+0.63–0.504=0.686.综合(1)、(2)、(3)得,图甲、乙、丙三种接法电路不发生故障的概率值分别为0.846,0.776,0.686.故图甲的接法电路不发生故障的概率最大.。
立体几何中的探索性问题
立体几何中的探索性问题
徐勇
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2012(000)010
【摘要】从近几年江苏高考试题分析解答题中考查一道立体几何题型是固定模式,一般与棱柱和棱锥相关,主要考查线线关系、线面关系和面面关系,形成解答题中的容易题.其重点放在对几何体中的一些线、面之间的平行与垂直关系的证明上,能突出考查学生的空间想象能力和推理运算能力.在命题风格上,本人认为可能逐步由封闭性向灵活性、开放性转变,因此形成立体几何中的探索性问题,当然也就可能在一定程度上加大了题目的难度.但这种题型有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势.立体几何探索性命题的类型主要有:一是探索条件,即探索能使结论成立的条件是什么;
【总页数】2页(P17-18)
【作者】徐勇
【作者单位】江苏省兴化中学,225700
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.立体几何中探索性问题的解答
2.突破立体几何中的探索性问题
3.立体几何中的探索性问题
4.高中立体几何"存在型"探索性问题求解策略
5.立体几何中探索性问题的“创新”
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专项限时集训(二)立体几何中的探索性与存在性问题
(对应学生用书第115页)
(限时:60分钟)
1.(本小题满分14分)(南京市、盐城市2017届高三第一次模拟)如图3,在直三棱柱ABC -A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
图3
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1.
[证明](1)因为D,E分别是AB,AC的中点,所以DE∥BC,2分又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE. 4分又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE. 6分
(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,
又DE⊂底面ABC,所以CC1⊥DE.8分
又BC⊥AC,DE∥BC,所以DE⊥AC,10分
又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.
12分又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1. 14分2.(本小题满分14分)如图4所示,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
图4
(1)求证:DB⊥平面B1BCC1;
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.
[解](1)因为AB∥DC,AD⊥DC,
所以AB⊥AD,在Rt△ABD中,AB=AD=1,
所以BD=2,易求BC=2,4分因为CD=2,所以BD⊥BC.
又BD⊥BB1,B1B∩BC=B,
所以BD⊥平面B1BCC1. 6分
(2)DC的中点为E点.
如图所示,连接BE,
因为DE∥AB,DE=AB,
所以四边形ABED是平行四边形. 8分所以AD∥BE.
又AD∥A1D1,所以BE∥A1D1,10分所以四边形A1D1EB是平行四边形,所以D1E∥A1B. 12分因为D1E⊄平面A1BD,
所以D1E∥平面A1BD.14分
3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图5, 在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
图5
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1.
【导学号:56394093】[证明](1)连接ED,因为D,E分别为BC,B1C1的中点,
所以B 1E ∥BD 且B 1E =BD , 所以四边形B 1BDE 是平行四边形,
2分
所以BB 1∥DE 且BB 1=DE ,又BB 1∥AA 1且BB 1=AA 1, 所以AA 1∥DE 且AA 1=DE , 所以四边形AA 1ED 是平行四边形,
4分 所以A 1E ∥AD ,又因为A 1E ⊄平面ADC 1,AD ⊂平面ADC 1, 所以直线A 1E ∥平面ADC 1.7分
(2)在正三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC , 又AD ⊂平面ABC ,所以AD ⊥BB 1,
又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC , 9分 又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,
又EF ⊂平面B 1BCC 1,所以AD ⊥EF ,
11分 又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.14分
4.(本小题满分14分)(镇江市2017届高三上学期期末)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =EC =1
2
AA 1.
图6
(1)求证:AC 1∥平面BDE ; (2)求证:A 1E ⊥平面BDE .
[证明] (1)连接AC 交BD 于点O ,连接OE .
在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 为正方形,点O 为AC 的中点,2分
AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,则EC =12
CC 1,
即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE . 4分 又因为OE ⊂平面BDE ,AC 1⊄平面BDE .所以AC 1∥平面BDE .
6分
(2)连接OA 1,根据垂线定理,可得OA 1⊥DB ,OE ⊥DB ,OA 1∩OE =O ,∴平面A 1OE ⊥DB . 可得A 1E ⊥DB . 8分
∵E 为CC 1的中点, 设AB =BC =EC =1
2
AA 1=a ,
∴BE =2a ,A 1E =3a ,A 1B =5a , ∵A 1B 2
=A 1E 2
+BE 2
, ∴A 1E ⊥EB .
12分
∵EB ⊂平面BDE ,BD ⊂平面BDE ,EB ∩BD =B , ∴A 1E ⊥平面BDE .
14分 5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图7,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,
EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.
图7
求证:(1)直线MN ∥平面EBC ; (2)直线EA ⊥平面EBC .
[证明] (1)取BE 中点F ,连接CF ,MF , 又M 是AE 的中点,所以MF 綊1
2
AB ,
又N 是矩形ABCD 边CD 的中点,
所以NC 綊1
2
AB ,所以MF 綊NC ,
所以四边形MNCF 是平行四边形, 4分
所以MN ∥CF ,
又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .
8分
(2)在矩形ABCD 中,BC ⊥AB ,
又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB ,
12分 又EA ⊂平面EAB ,所以BC ⊥EA ,
又EA ⊥EB ,BC ∩EB =B ,EB ,BC ⊂平面EBC , 所以EA ⊥平面EBC .
16分 6.(本小题满分16分)(无锡市2017届高三上学期期末)在四棱锥P -ABCD 中,底面ABCD 为矩形,AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点.求证:
图8
(1)平面PAD ⊥平面ABCD ; (2)EF ∥平面PAD .
[证明] (1)∵AP ⊥平面PCD ,CD ⊂平面PCD ,∴AP ⊥CD . ∵ABCD 为矩形,∴AD ⊥CD ,
2分
又∵AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,∴CD ⊥平面PAD ,4分 ∵CD ⊂平面ABCD ,∴平面PAD ⊥平面ABCD . 6分 (2)连接AC 、BD 交于O ,连接OE ,OF . ∵ABCD 为矩形,∴O 为AC 中点,
∵E为PC中点,∴OE∥PA.
∵OE⊄平面PAD,PA⊂平面PAD,∴OE∥平面PAD,10分同理OF∥平面PAD,12分∵OE∩OF=O,∴平面OEF∥平面PAD,14分∵EF⊂平面OEF,∴EF∥平面PAD. 16分7.(本小题满分16分)(扬州市2017届高三上学期期末)如图9,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.
图9
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.
【导学号:56394094】[证明](1)因为点E、F分别是棱PC和PD的中点,所以EF∥CD,又在矩形ABCD中,AB∥CD,所以EF∥AB,3分
又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB. 6分
(2)在矩形ABCD中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD
⊂平面ABCD,所以CD⊥平面PAD,
又AF⊂面PAD,所以CD⊥AF.①
因为PA=AD且F是PD的中点,所以AF⊥PD,②
由①②及PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以AF⊥平面PCD. 16分。