苏科九(上)圆的期末复习检测试题(一)

合集下载

苏科版九年级上册期末复习《第二章对称图形-圆》单元试卷有答案【精编】.docx

苏科版九年级上册期末复习《第二章对称图形-圆》单元试卷有答案【精编】.docx

期末专题复习:苏科版九年级数学上册第二章对称图形-圆单元评估检测一、单选题(共10题;共30分)1.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A. 60B. 48C. 60πD. 48π2.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A. 3cmB. 4cmC. 5cmD. 6cm3.如图,AB是⊙O的直径,若∠BDC=40°,则∠AOC的度数为()A. 80°B. 100°C. 140°D. 无法确定4.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为( )A. 116°B. 58°C. 42°D. 32°5.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A. 25°B. 35°C. 50°D. 65°6.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB是骨柄长OA的,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为24 cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB为()A. 21cmB. 20 cmC. 19cmD. 18cm7.下列命题中,正确的分别是()A. 相等的圆心角,所对的弧也相等B. 两条弦相等,它们所对的弧也相等C. 在等圆中,圆心角相等,它们所对的弦也相等D. 顶点在圆周的角是圆周角8.如图,PA,PB分别切⊙O于A,B,∠APB=60°,PA=8,则⊙O的半径OA长为()A. 4B. 8C.D.9.在△ABC中,AB=1,AC= ,BC=2,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形10.如图,E,B,A,F四点共线,点D是正三角形ABC的边AC的中点,点P是直线A上B异于A,B的一个动点,且满足∠°,则()A. 点P一定在射线BE上B. 点P一定在线段AB上C. P可以在射线AF上,也可以在线段AB上D. 点P可以在射线BE上,也可以在线段二、填空题(共10题;共30分)11.用一个圆心角为90°半径为16cm的扇形做成一个圆锥的侧面(接缝处不重叠),则这个圆锥底面圆的半径为________ cm.12.已知圆锥的底面半径是3cm,高是4cm,则这个圆锥的侧面展开图的面积是________ cm2.13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则弧CD的长为________14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.15.已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直线AB的距离是________16.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.17.已知扇形的面积为,弧长为,则扇形的半径是________cm,18.已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是________ cm2.19.四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).若四边形OBCD是平行四边形时,那么∠OBA和∠ODA的数量关系是________.20.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.三、解答题(共9题;共60分)21.如图,在⊙O中,AB=CD.求证:AD=BC.22.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB 为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.23.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD的周长24.如图,在半径为10cm的圆中作一个正六边形ABCDEF,试求此正六边形的面积.25.如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.(1)求证:△ACM≌△BCP;(2)若PA=1,PB=2,求△PCM的面积.26.已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.27.已知△ABC中,AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心、OB为半径作圆,且⊙O过A点.如图①,若⊙O的半径为5,求线段OC的长;如图②,过点A作AD∥BC交⊙O于点D,连接BD,求的值.28.(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.29.如图,在Rt△ABC中,∠ABC=90°,点F为AC中点,⊙O经过点B,F,且与AC交于点D,与AB交于点E,与BC交于点G,连结BF,DE,弧EFG的长度为(1+)π.(1)求⊙O的半径;(2)若DE∥BF,且AE=a,DF=2+﹣a,请判断圆心O和直线BF的位置关系,并说明理由.答案解析部分一、单选题1.【答案】D2.【答案】D3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】C8.【答案】D9.【答案】B10.【答案】B二、填空题11.【答案】412.【答案】15π13.【答案】14.【答案】15015.【答案】516.【答案】120°17.【答案】618.【答案】24π19.【答案】∠OBA﹣∠ODA=60°或∠OBA+∠ODA=60°或∠ODA﹣∠OBA=60°或∠OBA+∠ODA=120°20.【答案】三、解答题21.【答案】证明:∵AB=CD,∴,∴,即∴ AD=BC22.【答案】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5.答:弧CD所在⊙O的半径DO为5m.23.【答案】解:由已知条件可以得到OE=3,连接OC ,在直角三角形OCE中根据勾股定理可以得到CE=,CD= ,在直角三角形ACE中,AE=9,AC= ,CD=AC=AD= 故求出三角形的周长为.24.【答案】解:连接OA,OB,且过点O作OH⊥AB,由正六边形ABCDEF可得△OAB是等边三角形,∴AB=OA=10,∴OH=OAsin60°=10×=5,∴S△OAB=×AB×OH=×10×5=25,∴S正六边形ABCDEF=6×25=150cm2.25.【答案】(1)证明:∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°.∴△ABC是等边三角形.∴BC=AC,∠ACB=60°.∵CM∥BP,∴∠PCM=∠BPC=60°.又∵∠APC=60°,∴△PCM是等边三角形. ∴PC=MC,∠M=60°.∵∠BCA-∠PCA=∠PCM-∠PCA,∴∠PCB=∠ACM.在△ACM和△BCP中,∠∠∠∠,∴△ACM≌△BCP≌△ACM(AAS).(2)解:∵△ACM≌△BCP,∴AM=PB=2.∴PM=PA+AM=1+2=3.∵△PCM是等边三角形,∴△PCM的面积==.26.【答案】证明:∵AB=CD,∴∠AOB=∠COD,∴∠AOB-∠COB=∠COD-∠COB,∴∠AOC=∠BOD27.【答案】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵OA=OB,∴∠BAO=∠B=30°,∴∠AOC=30°+30°=60°,∴∠OAC=90°,∵OA=5,∴OC=2AO=10.连接OD,∵∠AOC=60°,AD∥BC,∴∠DAO=∠AOC=60°,∵OD=OA,∴∠ADO=60°,∴∠DOB=∠ADO=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=OA,在Rt△OAC中,OC=2BD,由勾股定理得:AC= BD,∴= .28.【答案】(1)解:∵⊙O的直径为10cm,∴⊙O的半径为10÷2=5(cm),当点P在线段OA的延长线上时,PA取得最大值,当点P在线段OA上时,PA取得最小值∵OA=12cm,∴PA的最大值为12+5=17cm,PA的最小值为12﹣5=7cm;(2)证明:连接CO,如图所示,∵OA=OB,且D、E分别是半径OA和OB的中点,∴OD=OE,又∵=,∴∠COD=∠COE,在△COD和△COE中,,∴△COD≌△COE(SAS),∴CD=CE.29.【答案】解:(1)设⊙O的半径为r,∵∠ABC=90°∴弧EFG所对的圆心角的度数为180°,∴π=(1+)π,即r=1+;(2)答:圆心O在直线BF上.理由如下:∵DE∥BF,∴∠ADE=∠AFB.∵四边形DEBF是⊙O的内接四边形,∴∠AFB+∠DEB=180°.∵∠AED+∠DEB=180°,∴∠AFB=∠AED,∴∠ADE=∠AED,∴AD=AE=a.∵DF=2+﹣a,∴AF=AD+DF=2+.在Rt△ABC中,∠ABC=90°且F为AC中点,∴BF=AF=2+.∵r=1+,∴BF=2r.∵B、F都在⊙O上,∴BF为⊙O直径,∴点O在直线BF上.。

2021-2022学年苏科版数学九年级上册第2章 对称图形——圆 期末试题选编(含解析).doc

2021-2022学年苏科版数学九年级上册第2章 对称图形——圆 期末试题选编(含解析).doc

第2章对称图形——圆一、单选题1.(2022·江苏扬州·九年级期末)已知O 的半径为4,点P 在O 外,OP 的长可能是()A .2B .3C .4D .52.(2022·江苏南京·九年级期末)如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AB =AD ,∠ADC =105°.若点E 在 BC 上,且 EC =2 BE ,连接AE ,则∠BAE 的度数是()A .15°B .20°C .25°D .30°3.(2022·江苏南通·九年级期末)如图,O 是等边三角形ABC 的外接圆,若O 的半径为2,则ABC 的面积为()AB C .D .4.(2022·江苏盐城·九年级期末)如图,四边形ABCD 为O 的内接四边形,若60A ∠=︒,则C ∠等于()A .30︒B .60︒C .120︒D .300︒5.(2022·江苏盐城·九年级期末)如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC .若20B ∠=︒,则P ∠等于()A .20︒B .30︒C .40︒D .50︒6.(2022·江苏泰州·九年级期末)如图,半径为5的扇形AOB 中,∠AOB =90°,点C 在OB 上,点E 在OA 上,点D 在弧AB 上,四边形OCDE 是正方形,则图中阴影部分的面积等于()A .254πB .258πC .2516πD .2532π7.(2022·江苏无锡·九年级期末)如图,AB 是O 的直径,CD 是O 的弦,且CD AB ∥,12AB =,6CD =,则图中阴影部分的面积为()A .18πB .12πC .6πD .3π8.(2022·江苏连云港·九年级期末)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是()A.R=2r;B.R ;C.R=3r;D.R=4r.9.(2022·江苏常州·九年级期末)已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是()A.10πB.12πC.16πD.20π二、填空题10.(2022·江苏淮安·九年级期末)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB =45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.11.(2022·江苏扬州·九年级期末)如图,以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16,则MD=_____.12.(2022·江苏无锡·九年级期末)一个直角三角形的斜边长,两条直角边长的和是6cm,则这个直cm.角三角形外接圆的半径为______cm,直角三角形的面积是________213.(2022·江苏扬州·九年级期末)如图,在圆内接五边形ABCDE中,∠EAB+∠C+∠CDE+∠E=430°,则∠CDA=_____度.14.(2022·江苏泰州·九年级期末)如图,四边形ABCD内接于以BD为直径的⊙O,CA平分∠BCD,若四边形ABCD的面积是30cm2,则AC=______cm.15.(2022·江苏宿迁·九年级期末)如图,△ABC 中,AB =10,BC =8,AC =6,点P 在线段AC 上,以P 为圆心,PA 长为半径的圆与边AB 相交于另一点D ,点Q 在直线BC 上,且DQ 是⊙P 的切线,则PQ 的最小值为__________.16.(2022·江苏盐城·九年级期末)如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为_______________.17.(2022·江苏徐州·九年级期末)如图、直线PA 、PB 分别与O 相切于点A 、B .若60P O ∠=︒ ,的半径为6cm ,则弧 AB 的长为______cm (.结果保留)π三、解答题18.(2022·江苏盐城·九年级期末)【学习心得】(1)小雯同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图,在ABC 中,AB AC =,90BAC ∠=︒,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A 为圆心,AB 长为半径作辅助圆A ,则C ,D 两点必在A 上,BAC ∠是A 的圆心角,BDC ∠是A 的圆周角,则BDC ∠=______°.【初步运用】(2)如图,在四边形ABCD 中,90BAD BCD ∠=∠=︒,24BDC ∠=︒,求BAC ∠的度数;【方法迁移】(3)如图,已知线段AB 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得30APB ∠=︒(不写作法,保留作图痕迹);【问题拓展】(4)①如图,已知矩形ABCD ,2AB =,BC m =,M 为边CD 上的点.若满足45AMB ∠=︒的点M 恰好有两个,则m 的取值范围为______.②如图,在ABC 中,45BAC ∠=︒,AD 是BC 边上的高,且6BD =,2CD =,求AD 的长.19.(2022·江苏南京·九年级期末)如图,已知P 是⊙O 外一点.用直尺和圆规作图.(1)过点P 作一条直线l ,使l 与⊙O 相切;(2)在⊙O 上作一点Q ,使∠OQP =60°.(要求:保留作图痕迹,不写作法)20.(2022·江苏无锡·九年级期末)如图,正三角形ABC 内接于O ,O 的半径为r ,求这个正三角形的周长和面积.21.(2022·江苏常州·九年级期末)如图,在平面直角坐标系中,△ABC 的三个顶点A 、B 、C 的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O 为位似中心,在第一象限画出△ABC 的位似图形△ABC ,使△A 1B 1C 1与△ABC 的相似比为2:1;(2)借助网格,在图中画出△ABC 的外接圆P ,并写出圆心P 的坐标;(3)将△ABC 绕(2)中的点P 将△ABC 绕点P 顺时针旋转90°,则点A 运动的路线长是.22.(2022·江苏扬州·九年级期末)如图,在等腰△ABC 中,AB =BC ,以AB 为直径的⊙O ,分别与AC 和BC 相交于点D 和E ,连接OD .(1)求证:∥OD BC ;(2)求证:AD =DE .23.(2022·江苏淮安·九年级期末)如图△ABC ,用圆规和没有刻度的直尺作出△ABC 的外接圆.(用黑水笔描清楚作图痕迹)24.(2022·江苏宿迁·九年级期末)如图,AB 是O 的直径,点P 是O 外一点,PA 切O 于点A ,连接OP ,过点B 作BC OP ∥交O 于点C ,点E 是 AB 的中点,且106AB BC =,=.(1)PC 与O 有怎样的位置关系?为什么?(2)求CE 的长.25.(2022·江苏泰州·九年级期末)ABC 在直角坐标平面内,三个顶点的坐标分别为()0,3A 、()3,4B 、()2,2C (正方形网格中每个小正方形的边长是一个单位长度).(1)将ABC 向下平移4个单位长度得到的111A B C △,则点1C 的坐标是____________;(2)以点B 为位似中心,在网格上画出222A B C △,使222A B C △与ABC 位似,且位似比为2:1,求点2C 的坐标;(3)若M 是222A B C △外接圆,求M 的半径.26.(2022·江苏连云港·九年级期末)已知:如图,AB 是O 的直径,,AB AC BC ⊥交O 于点D ,点E 是AC 的中点,ED 与AB 的延长线交于点F .(1)求证:DE 是O 的切线;(2)若30,2F BF ∠=︒=,求ABC 外接圆的半径.参考答案:1.D【解析】根据题意可以求得OP 的取值范围,从而可以解答本题.解:∵⊙O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围.2.B【解析】连接,BD DE ,根据圆周角定理和等腰直角三角形的性质求得45ADB ︒∠=,进而可得60BDC ︒∠=,由圆周角定理即可求得20BAE ︒∠=.解:连接,,BD DE 90,,BAD AB AD ︒∠== 45ABD ADB ︒∴∠=∠=105,ADC ︒∠= 1054560BDC ︒︒︒∴∠=-= 2ECBE ∴=112023BDE CDE BDC ︒∴∠=∠=∠=20,BAE BDE ︒∴∠=∠=故选:B .本题考查了等腰直角三角形的性质,圆周角定理,弧、弦、圆心角之间的关系等知识点,正确作出辅助线并能求出60BDC ︒∠=是解此题的关键.3.D【解析】过点O 作OH ⊥BC 于点H ,根据等边三角形的性质即可求出OH 和BH 的长,再根据垂径定理求出BC 的长,最后运用三角形面积公式求解即可.解:过点O 作OH ⊥BC 于点H ,连接AO ,BO ,∵△ABC 是等边三角形,∴∠ABC =60°,∵O 为三角形外心,∴∠OAH =30°,∴OH =12OB =1,∴BH AH =-AO +OH =2+1=3∴2BC BH ==∴11322ABC S BC AH ∆=⨯=⨯=故选:D本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.4.C【解析】直接根据圆内接四边形的性质即可得出结论.解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°.∵∠A =60°,∴∠C =180°-60°=120°.故选C .本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.5.D【解析】先由OC OB =,20B ∠=︒,求得AOC ∠的度数,再结合AB 是O 的直径,PA 切O 于点A ,即可得到结论.解:OC OB =Q ,20BCO B ∴∠=∠=︒40AOC ∴∠=︒AB 是O 的直径,PA 切O 于点A ,OA PA ∴⊥,即90PAO ∠=︒,9050P AOC ∴∠=︒-∠=︒故选:D .本题考查了切线的性质、等腰三角形的性质,熟练掌握知识点是解题的关键.6.B【解析】连接OD ,交CE 于点F .由正方形的性质得出OEF FCD S S = ,45EOD ∠=︒.即根据扇形面积公式求出扇形AOD 的面积即可.如图,连接OD ,交CE 于点F .∵四边形OCDE 是正方形,∴OEF FCD S S = ,45EOD ∠=︒,∴2455253608AODS S ππ⨯===阴扇形.故选B .本题考查正方形的性质,扇形的面积公式.理解AOD S S =阴扇形是解题关键.7.C 【解析】如图,连接OC ,OD ,可知COD △是等边三角形,60n COD =∠=︒,6r =,2==360COD n r S S π阴影扇形,计算求解即可.解:如图连接OC ,OD∵12OC OD AB CD ===∴COD △是等边三角形∴60COD ∠=︒由题意知=ACD COD S S △△,22606==6360360COD n r S S πππ⨯⨯==阴影扇形故选C .本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.8.D 解:扇形的弧长是:901802R R ππ=,圆的半径为r ,则底面圆的周长是2πr ,圆锥的底面周长等于侧面展开图的扇形弧长则得到:22Rrππ=∴即:R =4r ,r 与R 之间的关系是R =4r .故选D .9.D【解析】首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.22534-=,则底面周长是:8π,则圆锥的侧面积是:185202ππ⨯⨯=.故选:D .本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.10.22【解析】根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.解: 点M ,N 分别是AB ,BC 的中点,12MN AC ∴=,∴当AC 取得最大值时,MN 就取得最大值,当AC 时直径时,最大,如图,45ACB D ∠=∠=︒ ,4AB =,AD ∴=12MN AD ∴==故答案为:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN 的值最大问题转化为AC 的最大值问题,难度不大.11.4【解析】连接OA ,如图,设⊙O 的半径为r ,则OA =r ,OM =16-r ,根据垂径定理得到AM =BM =8,再根据勾股定理得到82+(16-r )2=r 2,解方程求出r =10,然后计算CD -CM 即可.解:连接OA ,如图,设⊙O 的半径为r ,则OA =r ,OM =16-r ,∵AB ⊥CD ,∴AM =BM =12AB =8,在Rt △AOM 中,82+(16-r )2=r 2,解得r =10,∴CD =2r =20,∴MD =CD -CM =20-16=4.故答案为:4.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.12.4【解析】设一直角边长为x ,另一直角边长为(6-x )根据勾股定理()(222+6x x -=,解一元二次方程求出1224x x ==,,利用三角形面积公式求124=42⨯⨯2cm 即可.解:设一直角边长为x ,另一直角边长为(6-x ),∵三角形是直角三角形,∴根据勾股定理()(222+6x x -=,整理得:2680x x -+=,解得1224x x ==,,这个直角三角形的斜边长为外接圆的直径,,三角形面积为124=42⨯⨯2cm .4.本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.13.70【解析】先利用多边的内角和得到∠EAB +∠B +∠C +∠CDE +∠E =540°,则可计算出∠B =110°,然后根据圆内接四边形的性质求∠CDA 的度数.解:∵五边形ABCDE 的内角和为(5-2)×180°=540°,∴∠EAB +∠B +∠C +∠CDE +∠E =540°,∵∠EAB +∠C +∠CDE +∠E =430°,∴∠B =540°-430°=110°,∵四边形ABCD 为⊙O 的内接四边形,∴∠B +∠CDA =180°,∴∠CDA =180°-110°=70°.故答案为70.本题考查了多边形的内角和与圆内接四边形的性质,运用圆内接四边形的性质是解决问题的关键.14.【解析】过A 点作AE ⊥AC ,交CD 的延长线与点E ,证明△ABC ≌△ADE ,从而得到四边形ABCD 的面积等于△ACE 的面积,然后证明出△ACE 是等腰直角三角形,根据三角形的面积公式即可求出AC的长度.如图,过A 点作AE ⊥AC ,交CD 的延长线与点E .∵BD 为⊙O 的直径∴∠BAD =∠BCD =90°∵CA 平分∠BCD∴∠BCA =∠ACD =45°∴∠E =∠ACD =45°∴AC =AE∵AE ⊥AC∴∠CAE =90°∴∠CAD +∠DAE =90°又∵∠BAC +∠CAD =90°∴∠BAC =∠DAE又∵∠BCA =∠E =45°在△ABC ≌△ADE 中,BCA E AC AE BAC DAE ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△ADE (ASA )∴ =ABC ADES S∴ 四边形==30ADE ABCD S S ∴21302=AC∴=AC故答案为:本题主要考查了圆周角定理和圆内接四边形的性质,关键在于运用转化思想,将四边形ABCD 的面积转化为△ACE 的面积.15.4.8【解析】连接PD ,取PQ 的中点E ,连接CE ,DE ,判定点E 在AB 边中线上时PQ 有最小值即可.解:在△ABC 中,BC =8,AC =6,AB =10,∴AB 2=AC 2+BC 2,∴∠ACB =90°,连接PD ,取PQ 的中点E ,连接CE ,DE ,∵DQ 是⊙P 的切线,∴∠PDQ =90°,∴CE =12PQ ,DE =12PQ ,当CD ⊥AB 时,CE +DE 有最小值,即CD =AC •BC ÷AB =4.8,故答案为:4.8.本题主要考查切线的性质,熟练掌握切线的性质,勾股定理等知识是解题的关键.16.【解析】根据题意得到图中阴影部分的面积=S △ABC +3S △ADE ,代入数据即可得到结论.解:∵“六芒星”图标是由圆的六等分点连接而成,∴△ABC 与△ADE 是等边三角形,∴∠BAC =60°过点A 作AH ⊥BC 于点H ,则圆心O 在AH 上,连接OB ,OC ,如图,∴∠BOC =120°,BH =12BC ∴∠BOH =60°,∠OBH =30°∵圆的半径为2,即OB =2∴OH =1∴AH =3,由勾股定理得,BH 3∴23BC AB==同理可得,OF =1∴AF =1,∠EAF =30°∴AE =2EF由勾股定理得,222EF AF AE +=∴2214EF EF +=∴33EF =∴AE 23,∴图中阴影部分的面积=S △ABC +3S △ADE =1123233134322⨯+⨯=故答案为:43本题考查了正多边形与圆,等边三角形的性质,熟记正多边形与圆的性质是解题的关键.17.4π【解析】连接OA ,OB ,根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形的性质得到360120AOB P PAO PBO ∠=︒-∠-∠-∠=︒,根据弧长公式即可得到结论.解:连接OA ,OB ,直线PA 、PB 分别与O 相切于点A 、B ,90PAO PBO ∴∠=∠=︒,60P ∠=︒ ,360120AOB P PAO PBO ∴∠=︒-∠-∠-∠=︒,O 的半径为6cm ,∴ AB 的长 ()12064cm 180AB l ππ⨯==.故答案为:4π.本题主要考查了切线的性质,弧长的计算,正确作出辅助线是解题的关键.18.(1)45︒;(2)24︒;(3)见解析;(4)①21m ≤<;②4+【解析】(1)根据圆周角定理求解即可;(2)如图所示,取BD 中点E ,连接AE ,CE ,则1=2AE BE DE CE BD ===,即可得到A 、B 、C 、D 在以E 为圆心,12BD 为半径的圆心,则==24BAC BDC ︒∠∠;(3)先作等边三角形OAB ,再以O 为圆心,AB 的长为半径画弧与直线l 的交点即为所求;(4)①如图所示,在BC 上截取一点F 使得BF =BA ,连接AF ,以AF 为直径作圆O ,过点F 作EF ⊥AD 交AD 于E ,过点O 作OG ⊥EF 交EF 于H 交圆O 于G ,过点G 作圆O 的切线分别交AD ,BC 于K 、Q ,则当BF m BQ ≤<时满足题意,据此求解即可;②如图所示,作△ABC 的外接圆,过圆心O 作OE ⊥BC 于E ,OF ⊥AD 于F ,连接OB ,OC ,OA ,则四边形OFDE 是矩形,分别求出AF 、DF 即可得到答案.解:(1)∵AB =AC =AD ,∴B 、C 、D 三点都在以A 为圆心,以AB 长为半径的圆上,∵∠BAC =90°,∴1==452BDC BAC ︒∠,故答案为:45︒;(2)如图所示,取BD 中点E ,连接AE ,CE ,∵∠BAD =∠BCD =90°,E 为BD 的中点,∴1=2AE BE DE CE BD ===,∴A 、B 、C 、D 在以E 为圆心,12BD 为半径的圆心,∴==24BAC BDC ︒∠∠;、(3)如图所示,1P 、2P 即为所求;(4)①如图所示,在BC 上截取一点F 使得BF =BA ,连接AF ,以AF 为直径作圆O ,过点F 作EF ⊥AD 交AD 于E ,过点O 作OG ⊥EF 交EF 于H 交圆O 于G ,过点G 作圆O 的切线分别交AD ,BC 于K 、Q ,则四边形ABFE 为正方形∵四边形ABCD 是矩形,∴∠ABE =90°,∴B 在圆O 上,AF ==∴OG OF ==,∵OH ⊥EF ,∴11122FH EF AB ===,∴1OH ==,∴=1GH OG OH -=-,∴BF m BQ ≤<,∴221m ≤<+,即21m ≤<②如图所示,作△ABC的外接圆,过圆心O作OE⊥BC于E,OF⊥AD于F,连接OB,OC,OA,则四边形OFDE是矩形∵∠BAC=45°,∴∠BOC=90°,在直角△BOC中BC=BD+CD=8,∴42BO CO==,∵OE⊥BC,∴142BE BC==,∴DE=OF=2,224OE DF OB BE==-=,∴2227AF AO OF=-=,∴427AD AF DF=+=+本题主要考查了圆周角定理,垂径定理,直角三角形斜边上的中线,矩形的性质与判定,勾股定理等等,熟练掌握圆的相关知识是解题的关键.19.(1)见解析(2)见解析【解析】(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;(2)构造四点共圆,作120PDO ∠=︒,步骤如下,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求.(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;理由:,,P O A 三点共圆,PO 是直径,则PAO ∠是直角,即OA l ⊥,则l 为所求作的切线(2)如图,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求,理由是:PQOD 是E 的内接四边形,120PDO ∠=︒,则60OQP ∠=︒本题考查了尺规作图,作圆的切线,作圆周角,四点共圆,作特殊角,掌握基本作图是解题的关键.20.周长为.面积为24r .【解析】连接OB ,OA ,延长AO 交BC 于D ,根据等边三角形性质得出AD ⊥BC ,BD =CD =12BC ,∠OBD =30°,求出OD ,根据勾股定理求出BD ,即可求出BC ,BC 的三倍即为周长,根据三角形的面积公式即可求出面积.解:连接OB ,OA ,延长AO 交BC 于D ,如图所示:∵正△ABC 外接圆是⊙O ,∴AD ⊥BC ,BD =CD =12BC ,∠OBD =12∠ABC =12×60°=30°,∴OD =12OB =12r ,由勾股定理得:BD 2r =,即三角形边长为BC =2BD,AD =AO +OD =r +12r =32r ,则△ABC 的周长=3BC;△ABC 的面积=12BC ×AD =12×32r 2.∴正三角形ABC 周长为;正三角形ABC 面积为2334r .本题考查了等边三角形、等腰三角形的性质、勾股定理、三角形的外接圆、三角形的面积等知识点;关键是能正确作辅助线后求出BD 的长.21.(1)见解析(2)图见解析,圆心P 的坐标是(3,4)【解析】(1)根据题意可得()()()1110,6,4,2,8,2A B C ,再顺次连接,即可求解;(2)根据题意可得分别作出BC ,AC 边的垂直平分线,交于点P ,即可求解;(3)连接AP ,可得AP =,再利用弧长公式计算,即可求解.(1)解:根据题意得:()()()1110,6,4,2,8,2A B C ,根据题意画出图形,如下图所示:111A B C △即为所求;(2)解:根据题意分别作出BC ,AB 边的垂直平分线,交于点P ,再以P 为圆心,BP 长为半径作圆,则P 即为所求,如图所示,∵点()()()0,3,2,1,4,1A B C ,∴点P 的横坐标为3,∵点P 在AB 的垂直平分线上,且AB 是边长为2的正方形的对角线,∴点P 位于边长为3的正方形的对角线上,∴点P 的纵坐标为4,∴圆心P 的坐标是(3,4);(3)解:连接AP ,则AP ,∵将△ABC 绕(2)中的点P 将△ABC 绕点P 顺时针旋转90°,∴点A 运动的路线长是901802π=.本题主要考查了画位似图形,三角形的外接圆,求弧长,熟练掌握位似图形的性质,三角形的外接圆的性质,弧长公式是解题的关键.22.(1)见解析(2)见解析【解析】(1)如图,连接,BD 证明90,ADB ∠=︒再结合等腰三角形的性质可得,BD CD =再结合三角形的中位线的性质可得答案;(2)连接半径OE ,如图,证明∠B =∠OEB ,∠AOD =∠B ,∠OEB =∠EOD ,可得∠AOD =∠EOD ,从而可得结论.(1)证明:如图,连接,BD AB 为O 的直径,90,ADB ∴∠=︒,AB BC = ,AD DC ∴=,OA OB = OD ∴是ABC 的中位线,.OD BC \∥(2)证明:连接半径OE ,如图,∴OB =OE ,∴∠B =∠OEB ,由(1)知OD ∥BC ,∴∠AOD =∠B ,∠OEB =∠EOD ,∴∠AOD =∠EOD ,∴AD =DE .本题考查的是等腰三角形的性质,圆周角定理,直径所对的圆周角是直角,圆心角,弦,弧的关系,掌握以上基础知识是解本题的关键.23.见解析【解析】作线段BC 的垂直平分线MN ,作线段AB 的垂直平分线EF ,直线EF 交MN 于点O ,连接OB ,以O 为圆心,OB 为半径作⊙O 即可.解:如图,⊙O即为所求.此题考查作图﹣应用与设计作图,三角形的外接圆与外心等知识,解题的关键是理解三角形的外心是三角形两边的垂直平分线的交点.24.(1)PC 与O 的切线,见解析;(2)CE =.【解析】(1)连接OC ,证明POC POA ≌,根据全等三角形的性质得到OCP OAP ∠∠=,根据切线的性质得到OA AP ⊥,根据切线的判定定理证明结论;(2)连接AE BE AC 、、,过点B 作BM AC ⊥于M ,根据圆周角定理得到45ECB ECA ∠∠︒==,根据等腰直角三角形的性质计算,得到答案.(1)解:PC 与O 的切线,理由如下:连接OC ,BC OP ,POC OCB POA OBC ∴∠∠∠∠=,=,OB OC =,OBC OCB ∴∠∠=,POC POA ∴∠∠=,在POC △和POA 中,OC OA POC POA OP OP =⎧⎪∠=∠⎨⎪=⎩∴POC POASAS △≌△(),∴OCP OAP ∠∠=,∵PA 切O 于点A ,∴OA ⊥AP ,∴OC ⊥CP ,∵OC 是O 的半径,∴PC 与O 的切线;(2)连接AE BE AC 、、,过点B 作BM AC ⊥于M ,∴90BME BMC ∠∠︒==,∵AB 是O 的直径,∴90AEB ACB ∠∠︒==,∵点E 是 AB 的中点,∴45ECB ECA EA EB AB ∠∠︒===,==,∴2BM CM ==,BC =由勾股定理得:EM =∴CE EM CM +==43=本题主要考查了圆的切线的性质、圆周角定理、全等三角形的判定与性质,掌握圆的切线垂直于经过切点的半径是解决问题的关键.25.(1)(2,-2)(2)图见解析,(1,0)(3)r =【解析】(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)证明222A B C △是直角三角形,根据直角三角形外切圆半径公式计算即可.(1)如图所示:C 1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C 2(1,0);故答案为(1,0);(3)由图可知:∵22A C ==22B C ==22A B ==∴222222222A CBC A B +=∴222A B C △是直角三角形,∴能盖住222A B C △的最小圆即为222A B C △外接圆,设其半径为R ;则2212R A B ==本题考查作图—平移变换,作图—位似变换、三角形外接圆,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.26.(1)见解析(2)4【解析】(1)要证明DE 是O 的切线,想到连接OD ,只要证明90ODE ∠=︒即可,因为AB 是O 的直径,想到连接AD ,可得90ADB ∠=︒,然后利用直角三角形斜边上的中线等于斜边长的一半,证出ED EA =,再利用等边对等角即可解答;(2)根据已知易求2OB =,然后证明DOB ∆是等边三角形,求出60DBO ∠=︒,最后在Rt ABC 中,求出BC 的长即可解答.(1)证明:连接OD ,AB AC ⊥ ,90CAB ∴∠=︒,90CAD DAO ∴∠+∠=︒,AB 是O 的直径,90ADB ∴∠=︒,18090ADC ADB ∴∠=︒-∠=︒,点E 是AC 的中点,12EA ED AC ∴==,EAD EDA ∴∠=∠,OA OD = ,OAD ODA ∠=∠∴,90EDA ODA ∴∠+∠=︒,90ODE ∴∠=︒,OD 是O 的半径,DE ∴是O 的切线;(2)解:30F ∠=︒ ,2BF =,90ODF ∠=︒,2OF OD ∴=,22OB OD ∴+=,OD OB = ,2OD OB ∴==,9060DOF F ∠=︒-∠=︒ ,DOB ∴∆是等边三角形,60OBD ∴∠=︒,在Rt ABC 中,24AB OB ==,481cos602AB BC ∴===︒,ABC ∆ 外接圆的半径142BC ==,ABC ∴∆外接圆的半径为:4.本题考查了切线的判定与性质,三角形的外接圆与外心,解题的关键是熟练掌握直角三角形外接圆的圆心在斜边中点处.。

苏科版数学九年级上册《期末检测题》含答案

苏科版数学九年级上册《期末检测题》含答案
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
28.如图,在平面直角坐标系xOy中,抛物线 ( )与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l: 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC
A. B. C. D.
[答案]B
[解析]
[分析]
根据已知两根确定出所求方程即可.
[详解]以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
[点睛]此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
6.⊙O的半径为5,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A. 相交B. 相切C. 相离D. 无法确定
A. 1:3B. 2:5C. 3:5D. 4:9
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A. 9B. 10C. D.
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
A 3πcmB. 4πcmC. 5πcmD. 6πcm
[答案]D
[解析]
解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为: =3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选D.
9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()

苏教版九年级数学上册圆综合提优复习自测卷含答案

苏教版九年级数学上册圆综合提优复习自测卷含答案

y xOPCBA (第7题)l 1MA苏教版九年级数学上册圆综合提优复习自测卷一、选择题1、⊙O 的半径为5,圆心O 的坐标为( 0,0 ) ,点P 的坐标为 ( 4 , 2 ) 则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .点P 在⊙O 上或⊙O 外2.下列命题正确的个数有( )①等弧所对的圆周角相等; ②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等; ④三点确定一个圆; ⑤在同圆或等圆中,同弦或等弦所对的圆周角相等. A .2B .3C .4D .5(3.如图,C 是以AB 为直径的⊙O 上一点,已知AB =10,BC =6,则圆心O 到弦BC 的距离是 ( )A .3B .4C .5D .2.5.4.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为 ( )A .36°B .46°C .27°D .63°5.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是 ( )A .30°B .35°C .45°D .60°6.在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 绕AC 所在的直线旋转一周得到一个旋转体,则该旋转体的侧面积为 ( )A .12πB .15πC .30πD .60π)7.如图,经过原点的⊙P 与两坐标轴分别交于点A (23,0)和点B (0,2), C 是 优弧OAB ⌒ 上的任意一点(不与点O 、B 重合),则∠BCO 的值为( ) A .45° B .60°C .25°D .30°8.若将直尺的0cm 刻度线与半径为5cm 的量角器的0º线对齐,并让量角器沿直尺BA第3题图O的边缘无滑动地滚动(如图),则直尺上的10cm 刻度线对应量角器上的度 数约为( ) A .90º B .115º C .125º D .180º\9如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B . 点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移. 若⊙O 的半径为1,∠AMN =60°,则下列结论不正确...的是( )A. MN =433B. 当MN 与⊙O 相切时,AM =3C. l 1和l 2的距离为2D. 当∠MON =90°时,MN 与⊙O 相切 10.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为( ) A .32B .1C .3D .332二、填空题—11.如图,半圆O 是一个量角器,AOB ∆为一纸片,AB 交半圆于点D , OB交半圆于点C ,若点C 、D 、A 在量角器上对应读数分别为︒︒︒160,70,45,则A ∠的度数为 .12.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =2,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好 与⊙O 相切于点C ,则OC = .13、正六边形的边长为10 cm ,它的边心距等于________cm .14.用半径为30cm ,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径 为 cm .15如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为^直径作半圆,则图中阴影部分的面积为16.一副量角器与一块含30°锐角的三角板如图所示放置,三角板的顶点C 恰好落在量角器的直径MN 上,顶点A ,B 恰好落在量角器的圆弧上,且AB ∥MN . 若AB =8,则量角器的直径MN = . 17.如图将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD =5,DB =7,则BC 的长是 .DCB AO(第11题)NMCB A(第16题)—18.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为三、解答题:19.如图,四边形ABCD 内接于⊙O ,并且AD 是⊙O 的直径,C 是弧BD 的中点,AB 和DC 的延长线交于⊙O 外一点E .求证:BC =EC .20、在直径为20cm 的圆中,有一弦长为16cm ,求它所对的弓形的高。

苏科版九年级数学上册 第二章 对称图形——圆 测试卷1(有答案)

苏科版九年级数学上册 第二章 对称图形——圆 测试卷1(有答案)

第二章对称图形-----圆测试卷(1)班级________姓名________得分________一、选择题(每题3分,共30分)1.下列说法正确的是( )A.相等的圆心角所对的孤相等B.90°的角所对的弦是直径C.等弧所对的弦相等D.圆的切线垂直于半径2.在⊙O中,AB是弦,圆心到AB的距离为1,若⊙O的半径为2,则弦AB的长为( ) A.5B.25C.3D.253.如图,已知PA切⊙O于A,⊙O的半径为3,OP=5,则切线长PA为( ) A.34B.8 C. 44.设⊙O的半径为R,圆心到点A的距离为d,且R,d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是( )A.点A在⊙O内部B.点A在⊙O上C.最A在⊙O外部D.点A不在⊙O上5.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC的度数为( ) A.50°B.40°C.30°D.20°6.已知正三角形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:a:R等于( ) A.1:23:2 B.1:3:2 C.1:2:3D.1:3:237.图中实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A.12π m B.18π m C.20π m D.24π8.如图,将半径为2的圆形纸片,沿半径OA,OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )A.12B.1 C.1或3 D.12或329.已知矩形的边,,以点为圆心作圆,使,,三点至少有一点在内,且至少有一点在外,则的半径的取值范围是()A. B.C. D.10.如图,中,,,,是的外接圆,是优弧上任意一点(不包括,),记四边形的周长为,的长为,则关于的函数关系式是()A. B. C. D.二、填空题(每题3分,共24分)11.已知两直角边是5和12的直角三角形,则其内切圆的半径是_______.12.已知弦AB的长等于⊙O的半径,则弦AB所对的圆周角是_______.13.已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是_______.14. 已知:内一点到圆的最大距离是,最小距离是,则这个圆的半径是________.第16题第17题第18题15.在△ABC中,∠A=50°,若O为△ABC的外心,∠BOC=_______;若I为△ABC 的内心,∠BIC=_______.16.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=_______.17.如图,已知为的切线,的直径是,弦,则______度.18.如图,过、、三点的圆的圆心为,过、、三点的圆的圆心为,如果,那么________.三、解答题(共46分)19.(8分)已知⊙O的直径AB的长为4 cm,C是⊙O上一点,∠BAC=30°,过点C作⊙O的切线交AB的延长线于点P,求BP的长.20.如图,已知直线交于、两点,是的直径,为的切线,为切点,且,垂足为.若,求的度数;若,的直径为,求的长度.21.26.如图,为的直径,是上一点,过点的直线交的延长线于点,,垂足为,是与的交点,平分.求证:是的切线;若,,求图中阴影部分的面积.22.如图13所示,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于点E,F.(1)求证:AF⊥EF;(2)小强同学通过探究发现:AF+CF=AB,请你帮助小强同学证明这一结论.23.(12分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆ACB弧的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.24.在等腰梯形中,,,且.以为直径作交于点,过点作于点.建立如图所示的平面直角坐标系,已知、两点坐标分别为、.求、两点的坐标;求证:为的切线;将梯形绕点旋转到,直线上是否存在点,使以点为圆心,为半径的与直线相切?如果存在,请求出点坐标;如果不存在,请说明理由.参考答案1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D11.212.45°或135°13.180°14.0.215.100°115°16.52°17.8<AB≤1018.319.13 8m20.2(cm).21.(1)60°.(2)略(3)8 322.(1)△OBC是直角三角形.(2)10.(3)OF=24 523.(1)略(2)是菱形24.解:连接,如图,∵是的直径,∴轴,∵四边形为等腰梯形,∵,,∴,∴;证明:连接,如图,在中,∵,∴,在等腰梯形中,∴∴又∵∴∴为的切线.存在.理由如下:过作于,且交于∵梯形与梯形关于点成中心对称∴,∴且,在中,,,∴在中,•,∴.设点存在,则,作轴于点,∴,,①若点在的延长线上,∴,∴.②若点在的延长线上,∴,∴.∴在直线上存在点和,使以点为圆心,为半径的与直线相切.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上期末测试题(Word版含答案)一、选择题1.在半径为3cm的⊙O中,若弦AB=32,则弦AB所对的圆周角的度数为()A.30°B.45°C.30°或150°D.45°或135°2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x-3=0 3.sin 30°的值为()A.3B.32C.12D.224.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.13B.512C.12D.15.方程 x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-4 6.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º7.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在()A.⊙O上B.⊙O外C.⊙O内8.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则DE BC的值为()A.12B.13C.14D.199.若25xy=,则x yy+的值为()A .25B .72C .57D .7510.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°11.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .1612.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .613.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .6二、填空题16.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.17.若53x y x +=,则yx=______. 18.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.19.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .20.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.21.数据2,3,5,5,4的众数是____.22.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.23.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .24.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .25.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.26.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 27.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.28.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 29.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.30.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.三、解答题31.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.32.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.33.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.34.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3. (1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标; ②若 tan ∠BPM=25,求抛物线的解析式.35.已知二次函数y =ax 2+bx ﹣16的图象经过点(﹣2,﹣40)和点(6,8). (1)求这个二次函数图象与x 轴的交点坐标; (2)当y >0时,直接写出自变量x 的取值范围.四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.如图,已知矩形ABCD 中,BC =2cm ,AB =23cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.38.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.39.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.4.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 5.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.6.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.解析:B 【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.9.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键. 10.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 =,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.12.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.13.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m,然后利用根的判别式和求根公式即可判定t的取值范围.将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题16.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 17.【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】∴3x+3y=5x,∴2x=3y,∴.故答案为:. 【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出D E=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根1【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根据圆的性质即可求解.【详解】如图,延长MN交DA延长线于点E,过D作DF⊥BC交BC延长线于F,连接MD,∵四边形ABCD是菱形,∴AB=BC=CD=4,AD∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=232-,x 2=232(不符合题意,舍去) ∴DM=232+,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.19.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BEN K的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.20.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.21.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.22.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.23.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.24..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.25.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设AC =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得BD ==,因为BC =,所以BC x =+=x 2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 26.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.27.【解析】【分析】先根据解析式求出点A、B、C的坐标,求出直线AC 的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=26【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.28.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.29.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.30.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.三、解答题31.(1)49;(2)13【解析】【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可.【详解】解:列表得:相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=3193=.【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.32.(1)详见解析;(2)详见解析;(3)4【解析】【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出ABD∆∽DBC∆,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出FEH∆∽FHG∆,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:80ABC BD,︒∠=平分ABC∠,40,140ABD DBCA ADB︒︒∴∠=∠=∴∠+∠=140,140ADCBDC ADBA BDC,︒︒∠=∴∠+∠∠=∠∴=ABD∴∆∽DBC∆∴BD是四边形ABCD的“相似对角线”.(3)FH是四边形EFGH的“相似对角线”,三角形EFH与三角形HFG相似.又EFH HFG∠=∠FEH∴∆∽FHG∆FE FH FH FG∴= 2FH FE FG ∴=⋅过点H 作EQ FG ⊥垂足为Q则sin 60EQ FE ︒=⨯=1432132FG EQ FG FE ∴=∴=16FG FE ∴=28FH FE FG ∴=⋅=216FH FG FE ∴==4FH =【点睛】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.33.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】 (1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可; (2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2; 2s 乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2; (2)∵2s 甲<2s 乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.34.(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++. 【解析】【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO △EPM 得到AO EM OB PM =,找出OE=a c-,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式. 【详解】(1)∵二次函数为:22y ax ax c =-+(a<0), ∴对称轴为2122b a x a a-=-=-=, 过点P 作PM ⊥x 轴于点M ,则M (1,0),M 为AC 中点,又OA :OC=1:3,设A (-m ,0),C (3m ,0),∴231m m -+=, 解得:m=1, ∴A (-1,0),C (3,0),(2)①做图如下:∵PE ∥AB ,∴∠BAO=∠PEM ,又∠AOB=∠EMP ,∴△ABO△EPM , ∴AO EM OB PM= , 由(1)知:A (-1,0),C (3,0),M (1,0),B (0,c ),P (1,c-a ), ∴11OE c c a+=-, ∴OE=a c -, 将A (-1,0)代入解析式得:3a+c=0,∴c=-3a ,∴133a a OE c a =-== , ∴E (-13,0); ②设PM 交BD 于点N ;∵22y ax ax c =-+(a<0),∴x=1时,y=c-a ,即点P (1,c-a ),∵BN ‖AC ,PM ⊥x 轴∴NM= BO=c ,BN=OM=1,∴PN=-a ,∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52, 由(1)知c=-3a ,∴c=152; ∴原函数解析式为:2515522y x x =-++. 【点睛】 此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式.35.(1)交点坐标为(2,0)和(8,0);(2)2<x <8【解析】【分析】(1)把点(﹣2,﹣40)和点(6,8)代入二次函数解析式得到关于a 和b 的方程组,解方程组求得a 和b 的值,可确定出二次函数解析式,令y =0,解方程即可;(2)当y >0时,即二次函数图象在x 轴上方的部分对应的x 的取值范围,据此即可得结论.【详解】(1)由题意,把点(﹣2,﹣40)和点(6,8)代入二次函数解析式,得404216836616a b a b -=--⎧⎨=+-⎩, 解得:110a b =-⎧⎨=⎩, 所以这个二次函数的解析式为:21016y x x +=--,当y =0时,210160x x +--=,解之得:1228x x =,=,∴这个二次函数图象与x 轴的交点坐标为(2,0)和(8,0);(2)当y >0时,直接写出自变量x 的取值范围是2<x <8.【点睛】本题考查待定系数法求解析式、二次函数图象与x 轴的交点,解题的关键是熟练掌握待定系数法求解析式. 四、压轴题。

苏科版九年级数学上册 第2章《对称图形——圆》章末检测题 含答案

苏科版九年级数学上册 第2章《对称图形——圆》章末检测题   含答案

苏科版2020年九上第2章《对称图形——圆》章末检测题一.选择题(共10小题,满分30分,每小题3分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°4.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦6.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A.B.C.D.不能确定7.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cmC.6.5cm D.5cm或13cm8.有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()A.1个B.2个C.3个D.4个9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm210.如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有()个:①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.A.1B.2C.3D.4二.填空题(共6小题,满分18分,每小题3分)11.如右图中有条直径,有条弦,以点A为端点的优弧有条,有劣弧条.12.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.13.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是.14.如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是.15.已知△ABC中,AB=5cm,BC=4cm,AC=3cm,那么△ABC的外接圆半径为cm.16.如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是.三.解答题(共7小题,满分52分)17.(6分)如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD.18.(6分)如图所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O 于B,且AB=OC,求∠A的度数.19.(6分)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.20.(8分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言可表达为:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为多少?21.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分线,过A,D,C三点的圆与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求△ACD外接圆的直径.22.(9分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.23.(9分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(Ⅰ)如图①,求∠ODE的大小;(Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.2.解:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等.故选:D.3.解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.4.解:∵圆心到直线的距离5cm=5cm,∴直线和圆相切.故选:B.5.解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,故选:D.6.解:在同圆和等圆中相等的弦所对的弧才会相等,要注意同圆和的条件,本题是两个不同的圆,所以无法判断两弦所对的弧的大小,故选D.7.解:设此点为P点,圆为⊙O,最大距离为PB,最小距离为P A,则:∵此点与圆心的连线所在的直线与圆的交点即为此点到圆心的最大、最小距离∴有两种情况:当此点在圆内时,如图所示,半径OB=(P A+PB)÷2=6.5cm;当此点在圆外时,如图所示,半径OB=(PB﹣P A)÷2=2.5cm;故圆的半径为2.5cm或6.5cm故选:A.8.解:①在同圆或等圆中,能够重合的弧叫做等弧,等弧的长度相等;故①正确;②正确;③在同圆或等圆中,相等的圆心角所对的弧相等;故③错误;④圆中,90°圆周角所对的弦是直径;故④错误;⑤在同圆中,等弦所对的圆周角相等或互补;故⑤错误;因此正确的结论是①②;故选:B.9.解:设底面圆的半径为R,则πR2=25π,解得R=5,圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m2.故选:A.10.解:∵⊙O是四边形ABCD的内切圆,∴AF=AE,BF=BG,CG=CH,DH=DE,∴AB+CD=AF+BF+CH+DH=AE+BG+CG+DE=AD+BC.①AF=BG;④BG<CG无法判断.正确的有②③故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A为端点的优弧有、这2条,劣弧有、这2条,故答案为:1、4、2、2.12.解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.13.解:连接OB,∵BD=OA,OB=OA,∴BD=AO=OB,∴△OBD,△OAB都是等腰三角形,设∠D的度数是x,则∠BAO=∠ABO=x+x=2x,则在△AOB中,利用三角形的内角和是180度,可得:120﹣x+2x+2x=180,解得x=20.故答案为:20°.14.解:∵圆锥的底面直径为6,∴圆锥的底面半径为3,∵圆锥的高为4,∴圆锥的母线长为5,∴圆锥的侧面积为π×3×5=15π.15.解:∵BC2+AC2=42+32=25,AB2=52=25,∴BC2+AC2=AB2,∴∠C=90°,∴△ACB是直角三角形,其外接圆的半径是AB=×5=2.5.故答案为:2.5.16.解:作所对的圆周角∠ADB,如图,∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣150°=30°,∴∠AOB=2∠ADB=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,∴扇形OAB的面积==π.故答案为π.三.解答题(共7小题,满分52分)17.证明:∵AD=BC,∴,∴,即,∴AB=CD.18.解:如右图所示,连接OB,∵AB=OC,OB=OC,∴AB=OB,∠1=∠A,又OB=OE,∠E=∠2=∠1+∠A=2∠A,∴∠EOD=∠E+∠A=3∠A,即3∠A=78°,∴∠A=26度.19.解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.20.解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵CE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).21.(1)证明:∵∠ACB=90°,且∠ACB为⊙O的圆周角,∴AD为⊙O的直径,∴∠AED=90°,∴∠ACB=∠AED.∵AD是△ABC中∠BAC的平分线,∴∠CAD=∠EAD,∴CD=DE,在Rt△ACD与Rt△AED中,,∴△ACD≌△AED(HL),∴AC=AE;(2)∵△ABC是直角三角形,且AC=6,BC=8,∴AB===10,∵由(1)得,∠AED=90°,∴∠BED=90°.设CD=DE=x,则DB=BC﹣CD=8﹣x,EB=AB﹣AE=10﹣6=4,在Rt△BED中,根据勾股定理得,BE2=BE2+ED2,即(8﹣x)2=x2+42,解得x=3,∴CD=3,∵AC=6,△ACD是直角三角形,∴AD2=AC2+CD2=62+32=45,∴AD=3.22.解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.23.证明:(Ⅰ)连接OE,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵E点是BC的中点,∴DE=BC=BE,∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE,∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=.。

苏科版九年级上册期末复习《第二章对称图形-圆》单元试题含解析

苏科版九年级上册期末复习《第二章对称图形-圆》单元试题含解析

期末复习:苏科版九年级数学上册第二章对称图形-圆单元检测试卷一、单选题(共10题;共30分)1.下列说法正确的是()A. 弦是直径B. 平分弦的直径垂直弦C. 过三点A,B,C的圆有且只有一个D. 三角形的外心是三角形三边中垂线的交点2.已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为()A. 0B. 1C. 2D. 无法确定3.若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A. 130°B. 100°C. 50°D. 65°7.如图,弦AB和CD相交于点P,∠B=30°,∠APC=80°,则∠BAD的度数为()A. 20°B. 50°C. 70°D. 110°8.如图,直径为10的⨀A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⨀A 优弧上一点,则∠OBC 的余弦值为( )A. 12B. 34C. √32D. 45 9.如图,圆O 的内接四边形ABCD 中,BC=DC ,∠BOC=130°,则∠BAD 的度数是( )A. 120°B. 130°C. 140°D. 150°10.如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA +PB 的最小值为( )A. 4 √2B. 2C. 4D. 2 √2二、填空题(共10题;共33分)11.三角形三边垂直平分线的交点到三角形________的距离相等.12.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的直径________cm.13.圆心角为120°,半径为6cm 的扇形的弧长是________cm .14.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠COA 的度数是________ .15.如图,正五边形ABCDE 内接于圆O ,F 是圆O 上一点,则∠CFD=________度.16.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.17.如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是________.18.在直角坐标系中,☉M的圆心坐标是(m,0),半径是2,如果☉M与y轴相切,那么m=________;如果☉M与y 轴相交,那么m的取值范围是________.19.如图,四边形ABCD的四个顶点都落在⊙O上,BC=CD,连结BD,若∠CBD=35∘,则∠A的度数是________.20.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧BD的长为________cm.三、解答题(共8题;共57分)21.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)22.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.23.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.24.如图,在⊙O中,=,∠ACB=60°,求证∠AOB=∠BOC=∠COA.25.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:AĈ=BD̂.26.如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.27.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.28.如图,在⊙O中,AC∧=CB∧,点D、E分别在半径OA和OB上,AD=BE求证:CD=CE.答案解析部分一、单选题1.【答案】D【考点】圆的认识,垂径定理,确定圆的条件,三角形的外接圆与外心【解析】【分析】利用弦的定义、垂径定理以及不在同一直线上的三点确定一个圆即可作出判断.【解答】A、弦是圆上任意两点的连线,而圆是过圆心的弦,故弦不一定是直径,故选项错误;B、平分弦(弦不是直径)的直径垂直于弦,故选项错误;C、过不在一条直线上的三点的圆有且只有一个,故选项错误;D、正确.故选D.【点评】本题考查了弦的定义、垂径定理以及不在同一直线上的三点确定一个圆,要注意到垂径定理叙述中:被平分的弦必须不是直径2.【答案】C【考点】直线与圆的位置关系【解析】【分析】首先求得该圆的半径,再根据直线和圆的位置关系与数量之间的联系进行分析判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,进而利用直线与圆相交有两个交点,相切有一个交点,相离没有交点,即可得出答案.【解答】根据题意,得该圆的半径是6cm,即大于圆心到直线的距离5cm,则直线和圆相交,故直线l与⊙O的交点个数为2.故选:C.【点评】此题主要考查了直线与圆的位置关系,这里要特别注意12是圆的直径;掌握直线和圆的位置关系与数量之间的联系是解题的关键3.【答案】B【考点】直线与圆的位置关系【解析】【解答】本题中圆的半径为10cm,点到直线的距离为10cm,则直线与圆相切.【分析】当圆心到直线的距离等于半径则直线与圆相切;当圆心到直线的距离小于半径则直线与圆相交;当圆心到直线的距离大于半径则直线与圆相离.此题的半径为10,而圆心到到直线l的距离为10cm就能做出判断。

苏科版九年级上期末专题:第二章对称图形-圆(含答案解析)

苏科版九年级上期末专题:第二章对称图形-圆(含答案解析)

苏科版九年级数学上册期末专题:第二章对称图形-圆一、单选题(共10题;共30分)1.如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A. 75°B. 60°C. 45°D. 30°2.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AĈ上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°4.如图,△ABC内接于⊙O,点P是AĈ上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A. 0<x<55°B. 55°<x<110°C. 0<x<110°D. 0<x<180°5.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 70°B. 60°C. 45°D. 30°6.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2√3,那么∠AOB等于()A. 90°B. 100°C. 110°D. 120°7.一个钢管放在V形架内,下是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60°,则OP 的长为A. 50 cmB. 25√3cmC. 50√3cm D. 50√3cm38.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A. P在圆内B. P在圆上C. P在圆外D. 无法确定9.己知正六边形的边长为2,则它的内切圆的半径为()A. 1B. √3C. 2 √3D. 210.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A. 70°B. 40°C. 50°D. 20°二、填空题(共10题;共30分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________.12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于________.13.(2022•淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是________°.14.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= k经过圆心xH,则反比例函数的解析式为________.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.已知⊙O的半径为4,PO>5,则点P与⊙O的位置关系是点P在⊙O________.18.⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为________.19.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).20.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图,⊙O的半径OC⊥AB,D为BC上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB 的长.23.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.24.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.25.如图,AD=CB,求证:AB=CD.26.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.27.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在AD∧上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值28.如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】A8.【答案】C9.【答案】B10.【答案】D二、填空题11.【答案】1012.【答案】613.【答案】12014.【答案】﹣8 √315.【答案】130°16.【答案】15017.【答案】外18.【答案】2或819.【答案】300π20.【答案】√13﹣2≤BE<3三、解答题21.【答案】解:如图,过O点作OC⊥AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC=√OB2−OC2=√102−62=8,从而求得AB=2BC=2×8=16.22.【答案】解:∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=3,∴AB=623.【答案】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.24.【答案】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠BOC=60°,又∵CD为⊙的切线,∴∠OCD=90°,∴∠D=30°,∴在Rt△OCD中,OC= 12OD=15cm,∴AB=2OC=30cm25.【答案】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,{∠A=∠C AD=BC∠D=∠B,∴△ADE≌△CBE(ASA).∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.26.【答案】解;(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE=1BO,∠BDO=90°,2∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=2√3;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE=1BO,2∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=2√3.27.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,∴n=360°30°=12.28.【答案】证明:(1)如图1,连接BI , ∵I 是△ABC 的内心,∴∠1=∠2,∠3=∠4,∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE ,∴IE=BE .(2)四边形BECI 是菱形,如图2∵∠BED=∠CED=60°, ∴∠ABC=∠ACB=60°,∴BE=CE ,∵I 是△ABC 的内心,∴∠4=12∠ABC=30°,∠ICD=12∠30°,∴∠4=∠ICD ,∴BI=IC ,由(1)证得IE=BE ,∴BE=CE=BI=IC ,∴四边形BECI是菱形.精品Word 可修改欢迎下载。

苏科版数学九年级上册《期末检测试题》及答案

苏科版数学九年级上册《期末检测试题》及答案
[答案]
[解析]
因为点G为△ABC的重心,所以AG:GD=2:1,因为EF∥BC,点E是AC的中点,所以FE:DC=1:2,即AF:DF=1:1,所以AF:AG=3:4,故答案为: 3:4.
12.如图,圆的两条弦 、 相交于点 , 、 的度数分别为 、 , 的度数为 ,则 、 和 之间的数量关系为__________.
24.( )如图①,在 中, , ,垂足为 .求证 .
( )如图②,已知线段 、 ,用直尺和圆规作线段 ,使得 是 、 的比例中项.(保留作图的痕迹,不写作法)
25.在说明“周长一定的矩形中,正方形面积最大”时,小明的思路如下:
令矩形 周长为 ,如果设矩形的一边长为 ,面积为 ,利用 与 的函数关系,结合函数的性质进行解释.
A. B. C. D.
[答案]A
[解析]
先将二次函数 的图像先绕原点旋转 ,可得旋转后的二次函数 ,再将函数向上平移3个单位可得: ,故选A.
17.如图, 、 分别为 的两条中线, 、 相交于点 ,连接 ,若 的面积为 ,则 的面积为().
A. B. C. D.
[答案]D
[解析]
因为 , 分别为 的两条中线,所以可得: = ,因为 的面积为 ,且BE是中线,所以 的面积是6,在 中,DE是中线,所以 的面积是3,又因为 = ,所以 的面积为 ,故选D.
B. 3a=2b⇒a:b=2:3,故选项正确;
C. ⇒b:a=2:3,故选项错误;
D. ⇒a:b=3:2,故选项错误.
故选B.
15.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()
A. B. C. D.
[答案]B

苏科版九年级数学上册期末专题:第二章对称图形-圆含答案解析

苏科版九年级数学上册期末专题:第二章对称图形-圆含答案解析

苏科版九年级数学上册期末专题:第二章对称图形-圆一、单选题(共10题;共30分)1.如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A. 75°B. 60°C. 45°D. 30°2.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°4.如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A. 0<x<55°B. 55°<x<110°C. 0<x<110°D. 0<x<180°5.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 70°B. 60°C. 45°D. 30°6.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2,那么∠AOB等于()A. 90°B. 100°C. 110°D. 120°7.一个钢管放在V形架内,下是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60°,则OP 的长为A. 50 cmB. 25cmC. cmD. cm8.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A. P在圆内B. P在圆上C. P在圆外D. 无法确定9.己知正六边形的边长为2,则它的内切圆的半径为()A. 1B.C. 2D. 210.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A. 70°B. 40°C. 50°D. 20°二、填空题(共10题;共30分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________.12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于________.13.(2017•淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是________°.14.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.已知的半径为,,则点与的位置关系是点在________.18.⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为________.19.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).20.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图,⊙O的半径OC⊥AB,D为上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB的长.23.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.24.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.25.如图,AD=CB,求证:AB=CD.26.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.27.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值28.如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】A8.【答案】C9.【答案】B10.【答案】D二、填空题11.【答案】1012.【答案】613.【答案】12014.【答案】﹣815.【答案】130°16.【答案】15017.【答案】外18.【答案】2或819.【答案】300π20.【答案】﹣2≤BE<3三、解答题21.【答案】解:如图,过O点作OC⊥AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC===8,从而求得AB=2BC=2×8=16.22.【答案】解:∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=3,∴AB=623.【答案】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.24.【答案】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠BOC=60°,又∵CD为⊙的切线,∴∠OCD=90°,∴∠D=30°,∴在Rt△OCD中,OC= OD=15cm,∴AB=2OC=30cm25.【答案】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∠∠,∠∠∴△ADE≌△CBE(ASA).∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.26.【答案】解;(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE=BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE=BO,∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=.27.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,=12.∴n=°°28.【答案】证明:(1)如图1,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4,∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴IE=BE.(2)四边形BECI是菱形,如图2∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE,∵I是△ABC的内心,∴∠4=∠ABC=30°,∠ICD=∠30°,∴∠4=∠ICD,∴BI=IC,由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.sin 30°的值为( ) A .3B .32C .12D .223.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=4.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.45.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-16.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°7.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.8.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或69.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.510.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°11.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3412.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130° 13.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x += D .()247x += 14.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .115.二次函数y=ax2+bx+c的y与x的部分对应值如下表:x…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.如图,在□ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为____.18.如图,在Rt△ABC中,BC AC,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=45,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;20.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.21.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .23.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)24..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.25.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.26.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.27.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.29.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.32.如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.33.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x 元时,日盈利为w 元.据此规律,解决下列问题:(1)降价后每件商品盈利 元,超市日销售量增加 件(用含x 的代数式表示); (2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?34.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC . 35.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.38.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意画出图形,连接OA 和OB ,根据勾股定理的逆定理得出∠AOB =90°,再根据圆周角定理和圆内接四边形的性质求出即可. 【详解】 解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 4.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.5.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.6.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C .【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.7.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 8.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CANCBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽,∴CN MH AC CH=, ∴123516685k k k =-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.9.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..10.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 11.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.12.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.14.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.15.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r ,∵AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,AB =5,AD =6∴GC=r ,BG=BF=6-r ,∴AF=5-(6-r )=r-1=AE∴ND=6-(r-1)-r=7-2r ,在Rt △NDC 中,NC 2+ND 2=CD 2,(7-r )2+(2r )2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC= ,∴152515BD =, ∴BD=9.故答案为:9.【点睛】 本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin ∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===, ∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.20.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.21.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.22.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.23.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 24.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.25.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.26.6或7【解析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 27.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题31.(1)见解析;(2)见解析;(3)3 2【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=33,∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=33 2OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积3 .【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.32.(1)详见解析;(2)①1;1.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴42=,21t解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CE=,PA AE∴41=,22t解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t 为1时,点E 恰好为AC 的一个三等分点; ②如右图所示, ∵∠DPF =90°,∠DPF =∠OPF ,∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ ,∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP =224(2)t +=224t +,PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =222t +﹣a ,∵△AEP ∽△CED ,∴AP PE CD DE=, 即22424t t a=+-, 解得,a =224t t +, ∴PQ =224t t +, ∴224244224t t t t +=-+,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.33.(1)(30-x );10x ;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x 元,超市平均每天可多售出10x 件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w ,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x 件;(2)设每件商品降价x 元时,利润为w 元根据题意得:w =(30-x )(100+10x )= -10x 2+200x +3000=-10(x -10)2+4000∵-10<0,∴w 有最大值,当x =10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w 关于x 的二次函数解析式是解题的关键.34.(1)作图见试题解析;(2)作图见试题解析.【解析】试题分析:(1)过点C 作直径CD ,由于AC=BC ,弧AC=弧BC ,根据垂径定理的推理得CD 垂直平分AB ,所以CD 将△ABC 分成面积相等的两部分;(2)连结PO 并延长交BC 于E ,过点A 、E 作弦AD ,由于直线l 与⊙O 相切于点P ,根据切线的性质得OP ⊥l ,而l ∥BC ,则PE ⊥BC ,根据垂径定理得BE=CE ,所以弦AE 将△ABC 分成面积相等的两部分.试题解析:(1)如图1,直径CD 为所求;(2)如图2,弦AD 为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.35.1m =,此时方程的根为121x x ==【解析】【分析】直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根,∴b 2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m 为正整数,∴m=1,∴此时二次方程为:x 2-2x+1=0,则(x-1)2=0,解得:x 1=x 2=1.【点睛】此题主要考查了根的判别式,正确得出m 的值是解题关键.四、压轴题36.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出 OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴。

苏科版九年级数学上册 第二章 对称图形-圆 复习题(解析版)

苏科版九年级数学上册  第二章  对称图形-圆  复习题(解析版)

第二章对称图形-圆复习题一.选择题1.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB =72°,则∠E等于()A.36°B.30°C.18°D.24°2.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.3.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是()A.B.C.D.3cm4.如图,⊙O是△ABC的外接圆,∠C=45°,OE⊥AB于点E,OE=2,则⊙O的半径为()A.2B.2C.4D.45.如图,已知∠AOB是⊙O的圆心角,∠AOB=60°,则圆周角∠ACB的度数是()A.50°B.25°C.100°D.30°6.如图,AB是圆O的直径,点C在BA的延长线上,直线CD与圆O相切于点D,弦DF ⊥AB于点E,连接BD,CD=BD=4,则OE的长度为()A.B.2C.2D.47.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°8.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C、D外任意一点,则∠CPD的度数为()A.30°B.30°或150°C.60°D.60°或120°9.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=40°,AB=6,则弧BC的长为()A.B.C.D.10.如图,从一块半径为2m的圆形铁皮上剪出一个半径为2m的扇形,则此扇形围成的圆锥的侧面积为()A.2πm2B.C.πm2D.二.填空题11.已知正△ABC的边长为4,那么能够完全覆盖这个正△ABC的最小圆的半径是.12.如图,⊙O的半径为2,点A为⊙O上一点,如果∠BAC=60°,OD⊥弦BC于点D,那么OD的长是.13.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=26°,则∠ABC的度数为.14.如图,已知⊙O的半径为m,点C为直径AB延长线上一点,BC=m.过点C任作一直线l,若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于.15.如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度.三.解答题16.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.17.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.18.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O 的半径.19.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.20.如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.第二章对称图形-圆复习题参考答案与试题解析一.选择题1.【分析】根据圆的半径相等,可得等腰三角形;根据三角形的外角的性质,可得关于∠E 的方程,根据解方程,可得答案.【解答】解:如图:CE=OB=CO,得∠E=∠1.由∠2是△EOC的外角,得∠2=∠E+∠1=2∠E.由OC=OD,得∠D=∠2=2∠E.由∠3是三角形△ODE的外角,得∠3=E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:D.【点评】本题考查了圆的认识,利用圆的半径相等得出等腰三角形是解题关键,又利用了三角形外角的性质.2.【分析】根据垂径定理求出AF=BF,CE=BE,=,求出∠AOD=2∠C,求出∠AOD=2∠A,求出∠A=30°,解直角三角形求出OF和BF,求出OE、BE、BF,根据三角形的面积公式求出即可.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.【点评】本题考查了垂径定理,圆周角定理,解直角三角形等知识点,能够综合运用定理进行推理是解此题的关键.3.【分析】连接OB,根据垂径定理求出BE,根据勾股定理求出OB,再根据勾股定理计算即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得,OB=,则EC=AC﹣AE=9,BC==3,∵OF⊥BC,∴CF=BC=,∴OF==(cm),故选:A.【点评】本题考查的是垂径定理、勾股定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.【分析】由圆周角定理可得∠AOB=90°,由等腰直角三角形的性质可求解.【解答】解:∵∠AOB=2∠C,∠C=45°,∴∠AOB=90°,且OB=OA,OE⊥AB∴AB=OB,AB=2OE=4,∴OB=2故选:B.【点评】本题考查了三角形的外接圆与外心,圆周角定理,勾股定理,垂径定理等知识,熟练运用这些性质进行推理是本题的关键.5.【分析】由于圆心角∠AOB和圆周角∠ACB所对的弧相同,因此可直接用圆周角定理进行求解.【解答】解:∵∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.【分析】连结OD,根据切线的性质得∠ODC=90°,根据等腰三角形的性质得出∠B=∠C=∠ODB,于是可根据三角形外角性质得∠DOE=2∠B=2∠C,进而求得∠DOE=60°,解直角三角形即可求得OE.【解答】解:连结OD,如图,∵直线CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∵CD=BD=4,∴∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠DOE=∠B+∠ODB=2∠B,∴∠DOE=2∠C,在Rt△OCD中,∠DOE=2∠C,则∠DOE=60°,∠C=30°,∴OD=cot∠EOD•CD=×4=4,∵DF⊥AB,∴∠DEO=90°,在Rt△ODE中,OE=cos∠EOD•OD=×4=2,故选:B.【点评】本题考查了切线的性质,等腰三角形的性质,三角形外角的性质,解直角三角形等,作出辅助线构建等腰三角形和直角三角形是解题的关键.7.【分析】连接OB,如图,先根据切线的性质得到∠ABO=90°,再利用互余计算出∠AOB =62°,然后根据圆周角定理得到∠ACB的度数.【解答】解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣28°=62°,∴∠ACB=∠AOB=31°.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.8.【分析】连接OC、OD,如图,利用正六边形的性质得到∠COD=60°,讨论:当P点在弧CAD上时,根据圆周角定理得到∠CPD=30°,当P点在弧CD上时,利用圆内接四边形的性质得到∠CPD=150°.【解答】解:连接OC、OD,如图,∵⊙O是正六边形ABCDEF的外接圆,∴∠COD=60°,当P点在弧CAD上时,∠CPD=∠COD=30°,当P点在弧CD上时,∠CPD=180°﹣30°=150°,综上所述,∠CPD的度数为30°或150°.故选:B.【点评】本题考查了正多边形与圆:熟练掌握正多边形的有关概念和正多边的性质.也考查了圆周角定理.9.【分析】利用弧长公式计算即可.【解答】解:∵OA=OC,∴∠OCA=∠A=40°,∴∠BOC=∠A+∠OCA=80°,∴的长==,故选:D.【点评】本题考查弧长公式,等腰三角形的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】根据题意求得扇形的圆心角的度数,然后利用扇形面积公式求解即可.【解答】解:如图:连接OA,OB,作OD⊥AB于点D,由题意知:AB=2,OA=OB=2,所以AD=,∴∠BAO=30°,∴∠BAC=60°,∴扇形面积为:=2π,故选:A.【点评】本题考查了圆锥的计算,解题的关键是求得扇形的圆心角,难度不大.二.填空题11.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC 外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=2,∵sin∠BOE==∴OB=故答案为:【点评】本题考查三角形外接圆与外心,等边三角形的性质,锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.12.【分析】根据圆周角定理得出∠BAC=BOC,根据等腰三角形的性质得出∠BOD=∠COD=BOC,求出∠BOD=∠BAC=60°,再求出答案即可.【解答】解:∵OB=OC,OD⊥BC,∴∠BDO=90°,∠BOD=∠COD=BOC,∵由圆周角定理得:∠BAC=BOC,∴∠BOD=∠BAC,∵∠BAC=60°,∴∠BOD=60°,∵∠BDO=90°,∴∠OBD=30°,∴OD=OB,∵OB=2,∴OD=1,故答案为:1.【点评】本题考查了垂径定理,圆周角定理,含30°角的直角三角形的性质等知识点,能求出∠BOD的度数是解此题的关键.13.【分析】直接利用切线的性质结合等腰三角形的性质得出答案.【解答】解:连接CO,∵CD切⊙O于点C,∴CO⊥CD,∴∠OCD=90°,∵∠BCD=26°,∴∠OCB=90°﹣26°=64°,∵CO=BO,∴∠ABC=∠OCB=64°.故答案为:64°.【点评】此题主要考查了切线的性质,正确得出∠OCB的度数是解题关键.14.【分析】根据切线的性质和已知条件先证得四边形PMON是正方形,从而求得OP=m,以O为圆心,以m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P 点,此时∠ACP有最大值,作出图形,根据切线的性质得出OP⊥PC,根据勾股定理求得PC的长,从而证得△OPC是等腰直角三角形,即可证得∠ACP的最大值为45°.【解答】解:∵PM、PN是过P所作的⊙O的两切线且互相垂直,∴∠MON=90°,∴四边形PMON是正方形,根据勾股定理求得OP=m,∴P点在以O为圆心,以m长为半径作大圆⊙O上,以O为圆心,以m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P 点,此时∠ACP有最大值,如图所示,∵PC是大圆⊙O的切线,∴OP⊥PC,∵OC=2m,OP=m,∴PC==m,∴OP=PC,∴∠ACP=45°,∴∠ACP的最大值等于45°,.故答案为45°.【点评】本题考查了切线的性质,正方形的判定和性质,勾股定理的应用,解题的关键是求得P点的位置.15.【分析】在优弧FG上取一点T,连接TF,TG.利用圆内接四边形对角互补解决问题即可.【解答】解:在优弧FG上取一点T,连接TF,TG.∵ABCDEF是正六边形,∴∠AOE=120°∵∠T=∠FOG,∴∠T=60°,∵∠FMG+∠T=180°,∴∠FMG=120°,故答案为120°.【点评】本题考查正多边形与圆,解题的关键是学会添加常用辅助线,构造圆内接四边形解决问题.三.解答题16.【分析】(1)根据半径相等可知∠OAC=∠OCA,∠ODB=∠OBD,再根据对顶角相等和三角形内角和定理证明∠ABD=∠CAB;(2)连接BC.由CE为⊙O的切线,可得∠OCE=90°,因为B是OE的中点,得BC =OB,又OB=OC,可知△OBC为等边三角形,∠ABC=60°,所以BC=AC=4,即⊙O的半径为4.【解答】解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC.∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.【点评】本题考查了切线的性质、圆周角定理、含30°角的直角三角形的性质,正确的作出辅助线是解题的关键.17.【分析】(1)证明△DAF≌△DCE,可得∠DF A=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)连接AH,求出DB=2DH=2,在Rt△ADF和Rt△BDF中,可得AD2﹣(AD ﹣BF)2=DB2﹣BF2,解方程可求出AD的长.则OA可求出.【解答】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DF A=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴,∴AD=5.∴⊙O的半径为.【点评】本题考查了圆的综合,涉及了圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.18.【分析】(1)作DF⊥BC于F,连接DB,根据切线的性质得到∠P AC=90°,根据圆周角定理得到∠ADC=90°,得到∠DBC=∠DCB,得到DB=DC,根据线段垂直平分线的性质、圆周角定理证明即可;(2)根据垂径定理求出FC,证明△DEC≌△CFD,根据全等三角形的性质得到DE=FC=3,根据射影定理计算即可.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.【点评】本题考查的是切线的性质、全等三角形的判定和性质、垂径定理、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.19.【分析】(1)由题意可知=,根据同弧所对的圆心角相等得到∠AOP=∠POC=∠AOC,再根据同弧所对的圆心角和圆周角的关系得出∠ABC=∠AOC,利用同位角相等两直线平行,可得出PO与BC平行;(2)利用切线的性质得到OC垂直于CD,从而得到OC∥AD,即可得到∠APO=∠COP,进一步得出∠APO=∠AOP,确定出△AOP为等边三角形,根据平行线的性质得出∠OBC =∠AOP=60°,从而得到△OBC为等边三角形,继而得出△POC为等边三角形,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,可得出PD为AB的四分之一,即AB=4PD=4.【解答】(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴=∴∠AOP=∠COP,∴∠AOP=∠AOC,又∵∠ABC=∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,∴AB=4PD=4.【点评】此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,轴对称的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.20.【分析】(1)连接AE,由圆周角定理得∠ADB=∠AEB=90°,由等腰三角形的性质得出BE=CE=3,证出OE是△ABC的中位线,得出OE∥AC,得出BD∥EF,即可得出结论;(2)由勾股定理得出AE==4,由三角形面积得出BD==,由三角形中位线定理即可得出EF=BD=.【解答】(1)证明:连接AE,如图所示:∵AB为⊙O的直径,∴∠ADB=∠AEB=90°,∴AE⊥BC,BD⊥AC,∵AB=AC,∴BE=CE=3,∵EF是⊙O的切线,∴OE⊥EF,∵OA=OB,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD,∴BD∥EF,∵BE=CE,∴CF=DF,∴EF是△CDB的中位线;(2)解:∵∠AEB=90°,∴AE===4,∵△ABC的面积=AC×BD=BC×AE,∴BD===,∵EF是△CDB的中位线,∴EF=BD=.【点评】本题考查了切线的性质、圆周角定理、等腰三角形的性质、三角形中位线定理、勾股定理等知识;熟练掌握切线的性质和圆周角定理是解题的关键.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③4.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠06.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .47.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定8.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 9.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1 B .a =1C .a =﹣1D .无法确定10.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定11.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x12.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >13.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°14.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变15.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题16.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2. 17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 18.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 21.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.22.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.23.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__. 24.关于x 的方程220kx x --=的一个根为2,则k =______.25.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.26.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 27.数据1、2、3、2、4的众数是______.28.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 29.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.30.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 32.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC =5,DC =6,当点F 为AD 的中点时,求AF 的值.33.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?34.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由; (3)求出从开始到停止,线段PQ 的中点M 所经过的路径长.35.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.39.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -, ∴228610+= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1,∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.D解析:D【解析】 【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可; 【详解】解:∵点I 是△ABC 的内心, ∴∠ABC =2∠IBC ,∠ACB =2∠ICB , ∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°, ∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°. 故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.6.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.7.B解析:B 【解析】 【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 8.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1, 故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.9.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故选:C.【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.10.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.11.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.12.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 13.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.A解析:A【解析】根据黄金比的定义得:512APAB=,得5142522AP=⨯= .故选A.二、填空题16.24π【解析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底面圆的半径为3,则底面周长=6π, ∴侧面面积=12×6π×5=15π; ∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】 本题利用了圆的周长公式和扇形面积公式求解.17.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∴当x=1时,y取得最小值,此时y=-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.19.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°4.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .355.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)6.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .3C .6D .9 7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 8.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .4 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .411.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>12.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 13.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x -= B .2(1)6x += C .2(1)9x += D .2(1)9x -= 14.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .17.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.18.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.19.若53x y x +=,则yx=______. 20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).23.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.24.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 25.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.26.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.27.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.28.若a b b -=23,则ab的值为________. 29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________. 30.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.32.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.33.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE . (1)求证:直线DF 与⊙O 相切; (2)求证:BF =EF ;34.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

苏科九(上)圆的期末复习检测试题(一)

苏科九(上)圆的期末复习检测试题(一)

苏科九(上)圆的期末复习检测试题(一)一、精心选一选(每小题3分,共30分)分) 1.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③ 相等的圆心角所对的弧相等.其中真命题的是(相等的圆心角所对的弧相等.其中真命题的是( ))A.A.①②①②①②B. B. B. ②③②③②③C. C. C. ①③①③①③D. D. D. ①②③①②③①②③2. ⊙O 中,中,AOB AOB AOB=∠=∠=∠848484°,则弦°,则弦AB 所对的圆周角的度数为(所对的圆周角的度数为( ))A.42 A.42°°B.138 B.138°°C.69 C.69°°D.42 D.42°或°或138138°°3.如图1,⊙,⊙O O 的直径CD 垂直于弦EF EF,垂足为,垂足为G ,若∠,若∠EOD=40EOD=40EOD=40°°,则∠DCF 等于(等于( )) A.80 A.80°° B. 50 B. 50°° C. 40 C. 40°° D. 20 D. 20°° 图图14.已知圆上的一段弧长为5πcm cm,它所对的圆心角为,它所对的圆心角为100100°°,则该圆的半径为则该圆的半径为( ) ( )A.6B.9C.12D.185.如图2,△,△ABC ABC 内接于⊙内接于⊙O O ,∠,∠C=45C=45C=45°,°,°,AB= 4 AB= 4 AB= 4 ,则⊙,则⊙,则⊙O O 半径为(半径为( ))A 、22B B、、4C 4 C、、32D D、、5 5 图图26、下列命题:①长度相等的弧是等弧、下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆②任意三点确定一个圆 ③相等的圆心角所对的弦相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有(有( )A .0个B .1个C .2个D .3个7、如图3,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE=70°,则∠BOD=( ) A .35° B.70° C .110° D.140° 图3 8、如图4,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠AOC=84°,则∠E 等于(于( )A .42 °B .28° C .21° D .20°图4 9、如图5,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O的直径是(的直径是( )A 、2cm B 、4cm C 、6cm D 、8cm 10、如图6,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为(,则图中阴影部分的面积为( )A. 12pB. pC. 2pD. 4p二、耐心填一填(每小题3分,共30分)分)1111.过⊙.过⊙.过⊙O O 内一点M 的最长弦为10cm 10cm,最短弦为,最短弦为8cm 8cm,则,则OM= cm.OM= cm...1212.已知正.已知正n 边形的一个外角与一个内角之比为1︰3,则n 等于等于 .. 1313.某校九(.某校九(.某校九(33)班在圣诞节前,为圣诞晚会制作一个圆锥形圣诞老人的纸帽,已知圆锥的A B C D E 图5 图6 母线长为30cm 30cm,,底面直径为20cm 20cm,,则这个纸帽的表面积为则这个纸帽的表面积为 ..1414.如图,⊙.如图,⊙.如图,⊙O O 中,直径为MN MN ,正方形,正方形ABCD 四个顶点分别在半径OM OM、、OP以及⊙以及⊙O O 上,并且∠上,并且∠POM = 45POM = 45POM = 45°,若°,若AB AB==1,则该圆的半径为,则该圆的半径为 ..15、(2006山西)某圆柱形网球筒,其底面直径是100cm ,长为80cm ,将七个这样的网球筒如图所示放置并包装侧面,则需________________2cm 的包装膜(不计接缝,π取3).16、(2006山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点。

苏科版九年级上册期末复习《第二章对称图形-圆》单元试题含解析

苏科版九年级上册期末复习《第二章对称图形-圆》单元试题含解析

期末复习:苏科版九年级数学上册第二章对称图形-圆单元检测试卷一、单选题(共10题;共30分)1.下列说法正确的是()A. 弦是直径B. 平分弦的直径垂直弦C. 过三点A,B,C的圆有且只有一个D. 三角形的外心是三角形三边中垂线的交点2.已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为()A. 0B. 1C. 2D. 无法确定3.若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°6.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A. 130°B. 100°C. 50°D. 65°7.如图,弦AB和CD相交于点P,∠B=30°,∠APC=80°,则∠BAD的度数为()A. 20°B. 50°C. 70°D. 110°8.如图,直径为10的⨀A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⨀A 优弧上一点,则∠OBC 的余弦值为( )A. 12B. 34C. √32D. 45 9.如图,圆O 的内接四边形ABCD 中,BC=DC ,∠BOC=130°,则∠BAD 的度数是( )A. 120°B. 130°C. 140°D. 150°10.如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA +PB 的最小值为( )A. 4 √2B. 2C. 4D. 2 √2二、填空题(共10题;共33分)11.三角形三边垂直平分线的交点到三角形________的距离相等.12.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的直径________cm.13.圆心角为120°,半径为6cm 的扇形的弧长是________cm .14.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠COA 的度数是________ .15.如图,正五边形ABCDE 内接于圆O ,F 是圆O 上一点,则∠CFD=________度.16.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.17.如图,在△ABC中,AB=5,AC=4,BC=3,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是________.18.在直角坐标系中,☉M的圆心坐标是(m,0),半径是2,如果☉M与y轴相切,那么m=________;如果☉M与y 轴相交,那么m的取值范围是________.19.如图,四边形ABCD的四个顶点都落在⊙O上,BC=CD,连结BD,若∠CBD=35∘,则∠A的度数是________.20.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧BD的长为________cm.三、解答题(共8题;共57分)21.如图,点A是圆弧BC上一点,用尺规作图法找出圆心O点(保留作图痕迹,不写做法)22.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.23.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.24.如图,在⊙O中,=,∠ACB=60°,求证∠AOB=∠BOC=∠COA.25.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:AĈ=BD̂.26.如图,⊙O的两条弦AB、CD交于点E,OE平分∠BED.(1)求证:AB=CD;(2)若∠BED=60°,EO=2,求DE﹣AE的值.27.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.28.如图,在⊙O中,AC∧=CB∧,点D、E分别在半径OA和OB上,AD=BE求证:CD=CE.答案解析部分一、单选题1.【答案】D【考点】圆的认识,垂径定理,确定圆的条件,三角形的外接圆与外心【解析】【分析】利用弦的定义、垂径定理以及不在同一直线上的三点确定一个圆即可作出判断.【解答】A、弦是圆上任意两点的连线,而圆是过圆心的弦,故弦不一定是直径,故选项错误;B、平分弦(弦不是直径)的直径垂直于弦,故选项错误;C、过不在一条直线上的三点的圆有且只有一个,故选项错误;D、正确.故选D.【点评】本题考查了弦的定义、垂径定理以及不在同一直线上的三点确定一个圆,要注意到垂径定理叙述中:被平分的弦必须不是直径2.【答案】C【考点】直线与圆的位置关系【解析】【分析】首先求得该圆的半径,再根据直线和圆的位置关系与数量之间的联系进行分析判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,进而利用直线与圆相交有两个交点,相切有一个交点,相离没有交点,即可得出答案.【解答】根据题意,得该圆的半径是6cm,即大于圆心到直线的距离5cm,则直线和圆相交,故直线l与⊙O的交点个数为2.故选:C.【点评】此题主要考查了直线与圆的位置关系,这里要特别注意12是圆的直径;掌握直线和圆的位置关系与数量之间的联系是解题的关键3.【答案】B【考点】直线与圆的位置关系【解析】【解答】本题中圆的半径为10cm,点到直线的距离为10cm,则直线与圆相切.【分析】当圆心到直线的距离等于半径则直线与圆相切;当圆心到直线的距离小于半径则直线与圆相交;当圆心到直线的距离大于半径则直线与圆相离.此题的半径为10,而圆心到到直线l的距离为10cm就能做出判断。

2019--2020学年江苏省九年级上册数学(苏科版)期末考试《对称图形——圆》试题分类——填空题

2019--2020学年江苏省九年级上册数学(苏科版)期末考试《对称图形——圆》试题分类——填空题

2019--2020学年江苏省九年级上册数学(苏科版)期末考试《对称图形——圆》试题分类——填空题一.填空题1.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为°.2.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).3.如图,已知P A,PB是⊙O的两条切线,A,B为切点.C是⊙O上一个动点,且不与A,B重合.若∠P AC =α,∠ABC=β,则α与β的关系是.4.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为cm2.5.如图,∠AOB=45°,点P、Q都在射线OA上,OP=2,OQ=6.M是射线OB上的一个动点,过P、Q、M三点作圆,当该圆与OB相切时,其半径的长为.6.如图,四边形ABCD内接于⊙O,若AB=AD,∠C=116°,则∠ABD=°.7.如图,点A到直线l的距离为3,⊙A的半径为2,C、P分别为⊙A和l上的动点,以PC为直角边的Rt △PBC与圆A始终相切于点C,且∠P=30°,则斜边PB的最小值为.8.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是度.9.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=°.10.如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有个.11.如图,在平行四边形ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为.12.如图,在平面直角坐标系中,点A,B分别在x,y的正半轴上,以AB所在的直线为对称轴将△ABO 翻折,使点O落在点C处,若点C的坐标为(4,8),则△AOC的外接圆半径为.13.如图,已知射线BP ⊥BA ,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒 度.14.有一块三角板ABC ,∠C 为直角,∠ABC =30°,将它放置在⊙O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AÂ的度数等于 ° 15.如图,⊙O 半径为√2,正方形ABCD 内接于⊙O ,点E 在AAA ̂上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为 .16.如图,在⊙O 中,AA ̂=AÂ,AB =3,则AC = .17.如图,将半径为2,圆心角为90°的扇形BAC 绕点A 逆时针旋转60°,点B 、C 的对应点分别为D 、E ,点D 在AÂ上,则阴影部分的面积为 .18.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =2√3,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C ,则OC = .19.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为.20.若圆锥的底面半径为3cm,母线长为4cm,则它的侧面展开图的面积等于cm2.21.已知圆的半径是2√3,则该圆的内接正六边形的边长是.22.已知矩形ABCD中,AB=4,BC=3,以点B为圆心r为半径作圆,且⊙B与边CD有唯一公共点,则r 的取值范围是.23.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则弧BD的长为.24.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=.25.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是cm.2019--2020学年江苏省九年级上册数学(苏科版)期末考试《对称图形——圆》试题分类——填空题参考答案与试题解析一.填空题(共25小题)1.【答案】见试题解答内容 【解答】解:如图,在优弧AÂ上取一点D ,连接AD ,BD .∵∠ADB +∠ACB =180°,∴∠ADB =180°﹣∠ACB =180°﹣100°=80°,∴∠AOB =2∠ADB =160°.故答案为160.2.【答案】见试题解答内容【解答】解:∵五边形ABCDE 是正五边形,∴五边形ABCDE 为圆内接正五边形,∴AÂ=AA ̂=AA ̂=AA ̂=AA ̂, ∴∠BAE =(5−2)×180°5=108°,∠HAN =∠AEH =∠BAC =∠DAE =∠ABE =13∠BAE =13×108°=36°, ∴∠EAH =∠BAN =36°+36°=72°,∴∠AHE =180°﹣72°﹣36°=72°,∠ANB =180°﹣72°﹣36°=72°,∴∠EAH =∠EHA =72°,∠ANH =∠AHN =72°,∴AE =HE ,∠EAH =∠EHA =∠ANH =∠AHN ,∴△AEH ∽△AHN ,∴AA AA =AA AA ,∵五角星的边框总长为40cm , ∴AH =AN =EN =4010=4,HN =HE ﹣NE =AE ﹣4, ∴AA 4=4AA −4,整理得:(AE ﹣2)2=20,∴AE =2√5+2(cm ),故答案为:2√5+2.3.【答案】见试题解答内容【解答】解:连接OA ,OB ,∵P A ,PB 是⊙O 的两条切线,∴∠P AO =∠PBO =90°,∵OA =OB ,∴∠OAB =∠OBA ,分两种情况:⊙当C 在优弧AB 上时,如图1,∵∠P AC =α,∠ABC =β,∴α+β=∠P AC +∠ABC ,=90°+∠OAC +∠ABC ,=90°+∠OAC +180°﹣∠C ﹣∠BAC ,=270°+∠OAC −12AAOB ﹣∠OAB ﹣∠OAC ,=270°−12AAAA −∠OAB ,△OAB 中,∠AOB +∠OAB +∠OBA =180°,∴12AAAA +∠OAB =90°,∴α+β=270°﹣90°=180°;⊙当C 在劣弧AB 上时,如图2,∵∠P AO =∠PBO =90°,∠OAB =∠OBA ,∠CBP =∠CAB ,∴∠P AC =∠ABC ,即α=β,综上,α与β的关系是:α+β=180°或α=β;故答案为:α+β=180°或α=β.4.【答案】见试题解答内容【解答】解:S =S 扇形BAC ﹣S 扇形DAE =150⋅A ⋅182360−150⋅A ⋅92360=4054π(cm 2). 故答案是:4054π5.【答案】见试题解答内容【解答】解:∵过P 、Q 、M 三点的圆与OB 相切,∴点M 为切点,设过P 、Q 、M 三点的圆的圆心为O ′,连接O ′M ,则O ′M ⊥OB ,过O ′作O ′H ⊥PQ 于H ,延长HO ′交OB 于G ,∵OP =2,OQ =6,∴PH =12PQ =2,设O ′P =O ′M =x ,∵∠AOB =45°,∴△OGH 和△O ′MG 是等腰直角三角形,∴OH =HG =4,O ′G =√2x ,∴HO ′=4−√2x ,∴PH 2+HO ′2=PO ′2,∴4+(4−√2x )2=x 2,解得:x =4√2−2√3,x =4√2+2√3(不合题意舍去),∴半径的长为4√2−2√3,故答案为:4√2−2√3.6.【答案】见试题解答内容【解答】解:∵∠BAD +∠C =180°,∠C =116°,∴∠BAD =180°﹣116°=64°,∵AB =AD ,∴∠ABD =∠ADB =12(180°﹣∠BAD )=(180°﹣64°)=58°,故答案为:58°.7.【答案】见试题解答内容【解答】解:连结AC ,AP ,作AP ′⊥l 于P ′如图,AP ′=3,∵PC 切⊙O 于点C ,∴AC ⊥PC ,∴∠PCA =90°,∴PC =√AA 2−AA 2=√AA 2−22,当点P 运动到点P ′的位置时,AP 最小时,则PC 最小,此时AP =3,∴PC 的最小值为√32−22=√5.∴以PC 为直角边的Rt △PBC ,∵∠P =30°,∴PB =2√33PC ,∴斜边PB 的最小值为2√153, 故答案为:2√153.8.【答案】见试题解答内容【解答】解:连接OE ,∵射线CP 从CA 处出发沿顺时针方向以每秒4度的速度旋转,∴第18秒时,∠ACE =4°×18=72°,∵∠ACB =90°,∴点C 在以AB 为直径的圆上,即点C 在⊙O 上,∴∠EOA=2∠ECA=2×72°=144°.故答案为144.9.【答案】见试题解答内容【解答】解:如图,连接OD、OB,∵∠C=80°,∴∠BOD=2∠C=160°,∵OB=OD,∴∠OBD=180°−160°2=10°,∵四边形ABCD内接于⊙O,∴∠A=100°,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ABC=80°,△ABD中,∠ADB=54°,∴∠ABD=180°﹣54°﹣100°=26°,∴∠OBC=80°﹣26°﹣10°=44°,∵EF是⊙O的切线,∴∠OBF=90°,∴∠CBF=90°﹣∠OBC=90°﹣44°=46°,故答案为:46.10.【答案】见试题解答内容【解答】解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,∴{A2+A2=3612⋅2A⋅A=18,则y=18A,∴A2+(18A)2=36,解得x =3√2或﹣3√2(舍),∴OC =3√2>4,∴4<OP ≤6,∵点P 为弦AB 上一动点,当OP 长为整数时,OP =5或6,P 点有4个.解法二:设△AOB 中OA 边上的高为h ,则12×AAA =18,即12×6A =18,∴h =6,∵OB =6,∴OA ⊥OB ,即∠AOB =90°,∴AB =6√2,图中OC =3√2,同理得:点P 为弦AB 上一动点,当OP 长为整数时,OP =5或6,P 点有4个.故答案为:4.11.【答案】见试题解答内容【解答】解:连接EG ,OM ,∵在平行四边形ABCD 中,AD ∥BC ,∵AD 、BC 分别与⊙O 相切于E 、G 三点,∴EG 过圆心O ,∵CN ⊥AD ,∴四边形CNEG 是矩形,∴EG =CN ,∵CN 是⊙O 的切线,∴OM ⊥CN ,∴四边形EOMN 和四边形CMOG 是正方形,设⊙O 的半径为r ,∴BF =BG =6﹣r ,∴AF =AE =5﹣(6﹣r )=r ﹣1,∴DN =6﹣r ﹣(r ﹣1)=7﹣2r ,∵DN 2+CN 2=CD 2,∴(7﹣2r )2+(2r )2=52,解得:r =2,r =1.5,∴⊙O 的半径为2或1.5,故答案为:2或1.5.12.【答案】见试题解答内容【解答】解:如图,过点C 作CE ⊥y 轴于点E ,连接OC 交AB 于点D ,根据翻折可知:AB 是OC 的垂直平分线,作AO 的垂直平分线交AB 于点O ′,则点O ′即为△AOC 的外心,设OB =CB =x ,∵点C (4,8)∴CE =4,OE =8,则OC =√AA 2+AA 2=√42+82=4√5∴CD =OD =2√5,EB =8﹣x ,在Rt △CEB 中,根据勾股定理,得x 2=(8﹣x )2+42,解得x =5,即OB =BC =5,∴BD =√AA 2−AA 2=√25−20=√5∵OD 2=BD •AD∴AD =4√5设OO ′=AO ′=r ,则DO ′=4√5−r ,∴(4√5−r )2+(2√5)2=r 2解得r =5√52. 所以△AOC 的外接圆半径为:5√52. 故答案为:5√52.13.【答案】见试题解答内容【解答】解:∵射线BP 与⊙O 恰好有且只有一个公共点,∴射线BP 与⊙O 相切,如图,当BP ′与⊙O 相切于D ,连接OD ,则OD =1,OB =2,OD ⊥BP ′,∴∠OBD =30°,∵BP ⊥BA ,∴∠ABP =90°,∴∠PBP ′=60°,∵60°2=30°,∴射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒30°,当BP ″与⊙O 相切于E ,连接OE ,同理∠ABP ″=30°,∴∠PBP ″=120°,∵120°2=60°,∴射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒60°,综上所述,射线BP 与⊙O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒30°或60°, 故答案为:30或60.14.【答案】见试题解答内容【解答】解:如图,连接OA ..∵OA =OB ,∴∠OAB =∠B =30°,∴∠AOB =120°,∴弧AC 的度数为120°.故答案为120.15.【答案】见试题解答内容【解答】解:如图,取AB 的中点K ,以AB 为直径作⊙K ,∵AF ⊥BE ,∴∠AFB =90°,∵AK =BK ,∴KF =AK =BK ,∵正方形ABCD 的外接圆的半径为√2,∴AB =BC =√2⋅√2=2,∴KF =AK =KB =1,∵∠CBK =90°,∴CK =√AA 2+AA 2=√22+12=√5,∵CF ≥CK ﹣KF ,∴CF ≥√5−1,∴CF 的最小值为√5−1.故答案为√5−1.16.【答案】见试题解答内容 【解答】解:∵在⊙O 中,AÂ=AA ̂, ∴AC =AB =3,故答案为:317.【答案】见试题解答内容【解答】解:连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为2,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,∴∠BAD =60°,AB =AD ,∴△ABD 是等边三角形,∴∠ABD =60°,则∠ABN =30°,故AN =1,BN =√3,S 阴影=S 扇形ADE ﹣S 弓形AD =S 扇形ABC ﹣S 弓形AD=90⋅A ⋅22360−(60⋅A ⋅22360−12×2×√3) =π﹣(23π−√3) =A 3+√3.故答案为:A 3+√3. 18.【答案】见试题解答内容【解答】解:∵OB ⊥AB ,OB =2√3,OA =4,∴在直角△ABO 中,sin ∠OAB =AA AA =√32,则∠OAB =60°; 又∵∠CAB =30°,∴∠OAC =∠OAB ﹣∠CAB =30°;∵直线l 2刚好与⊙O 相切于点C ,∴∠ACO =90°,∴在直角△AOC 中,OC =12OA =2(30°角所对的直角边是斜边的一半). 故答案是:2.19.【答案】见试题解答内容【解答】解:在△ABC 中,∵AB =5,BC =3,AC =4,∴AC 2+BC 2=32+42=52=AB 2,∴∠C =90°,如图:设切点为D ,连接CD ,∵AB 是⊙C 的切线,∴CD ⊥AB ,∵S △ABC =12AC •BC =12AB •CD ,∴AC •BC =AB •CD ,即CD =AA ⋅AA AA =3×45=2.4, ∴⊙C 的半径为2.4,故答案为:2.420.【答案】见试题解答内容【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×4=12π(cm2).故答案为:12π21.【答案】见试题解答内容【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,∵等边三角形的边长是2√3,∴该圆的内接正六边形的边长是2√3;故答案为:2√322.【答案】见试题解答内容【解答】解:∵矩形ABCD中,AB=4,BC=3,∴BD=AC=√AA2+AA2=5,AD=BC=3,CD=AB=4,∵以点B为圆心作圆,⊙B与边CD有唯一公共点,∴⊙B的半径r的取值范围是:3≤r≤5;故答案为:3≤r≤523.【答案】见试题解答内容【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴弧BD的长=120A×3180=2π;故答案为2π.24.【答案】见试题解答内容【解答】解:在优弧AB上取一点D,连接AD、BD,如图所示:∵∠ACB=130°,∴∠ADB=180°﹣∠ACB=50°,∴∠AOB=2∠ADB=100°.故答案为:100°.25.【答案】见试题解答内容【解答】解:由题意可得:圆的直径为:√AA2+AA2=√62+82=10,故该圆玻璃镜的半径是:5.故答案为:5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科九(上)圆的期末复习检测试题(一)
一、精心选一选(每小题3分,共30分)
1.下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③ 相等的圆心角所对的弧相等.其中真命题的是( )
A.①②
B. ②③
C. ①③
D. ①②③
2. ⊙O 中,AOB =∠84°,则弦AB 所对的圆周角的度数为( )
A.42°
B.138°
C.69°
D.42°或138°
3.如图1,⊙O 的直径CD 垂直于弦EF ,垂足为G ,若∠EOD=40°,则∠
DCF 等于( )
A.80°
B. 50°
C. 40°
D. 20° 图1
4.已知圆上的一段弧长为5πcm ,它所对的圆心角为100°,则该圆的半径为( )
A.6
B.9
C.12
D.18
5.如图2,△ABC 内接于⊙O ,∠C=45°,AB= 4 ,则⊙O 半径为( )
A 、22
B 、4
C 、32
D 、5 图2
6、下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等
的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共
有( )
A .0个
B .1个
C .2个
D .3个
7、如图3,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE=70°,
则∠BOD=( )
A .35° B.70° C .110° D.140° 图3
8、如图4,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠AOC=84°,则∠E 等
于( )
A .42 °
B .28°
C .21°
D .20°
图4 9、如图5,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O
的直径是( )
A 、2cm
B 、4cm
C 、6cm
D 、8cm
10、如图6,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别
连结AC 、BD ,则图中阴影部分的面积为( ) A. 12
π B. π C. 2π D. 4π
二、耐心填一填(每小题3分,共30分)
11.过⊙O 内一点M 的最长弦为10cm ,最短弦为8cm ,则OM= cm..
12.已知正n 边形的一个外角与一个内角之比为1︰3,则n 等于 . 13.某校九(3
)班在圣诞节前,为圣诞晚会制作一个圆锥形圣诞老人的纸帽,已知圆锥的
A B C D E
图5
图6
母线长为30cm ,底面直径为20cm ,则这个纸帽的表面积为 .
14.如图,⊙O 中,直径为MN ,正方形ABCD 四个顶点分别在半径OM 、OP
以及⊙O 上,并且∠POM = 45°,若AB =1,则该圆的半径为 .
15、(2006山西)某圆柱形网球筒,其底面直径是100cm ,长为80cm ,将
七个这样的网球筒如图所示放置并包装侧面,则需
________________2
cm 的包装膜(不计接缝,π取3).
16、(2006山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ
进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点。

有两种射门方
式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门。

仅从射门
角度考虑,应选择________种射门方式.
17、如果圆的内接正六边形的边长为6cm ,则其外接圆的半径为 .
18、如图,已知:在⊙O 中弦AB 、CD 交于点M 、AC 、DB
于点N ,则图中相似三角形有________对. 19、
(2006年北京)如图9,直角坐标系中一条圆弧经过网格点A 、 B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标 为 . 第14题 20、(原创)如图10,两条互相垂直的弦将⊙O 分成四部分,S 1、S 2,若圆心到两弦的距离分别为2和3,则︱S 1-S 2︱= .
三、思维大比拼
21. 如图7,在△ABC 中,∠ACB =90°,∠B =36°,以C 为圆心,CA 为半径的圆交AB 于
点D,交BC 于点E.求 、 的度数.
22.如图11,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5.
(1)若sin ∠BAD =35,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π).
N
AD DE
23.如图①,△ABC 内接于⊙0,且∠ABC =∠C ,点D 在弧BC 上运动.过点D 作DE∥BC.DE
交直线AB 于点E ,连结BD .
(1)求证:∠ADB=∠E ;
(2)求证:AD 2=AC ·AE ;
(3)当点D 运动到什么位置时,△DBE∽△ADE 请你利用图②进行探索和证明.
图① 图②
24.图①是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的
一部分,其展开图是矩形.图②是车棚顶部截面的示意图, 所在圆的圆心为O .
车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算
结果保留 ).
O B
A
· 图②
图① AB
25、(2005年山西)如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB 的圆心角及这个纸杯的表面积(面积计算结果用π表示) .
26、如图,在平面直角坐标系中,直线l ∶y =-2x -8分别与x 轴,y 轴相交于A,B 两点,点P(0,k)是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙.
(1)连结PA ,若PA PB ,试判断P ⊙与x 轴的位置关系,并说明理由;
(2)当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?
(第17题)。

相关文档
最新文档