六大数学思想之四:转化与化归_最新修正版
高考数学题中蕴含的转化与化归思想
高考数学题中蕴含的转化与化归思想一、转化与化归的内涵转化与化归是数学思想中的两个重要内容,它们贯穿于整个数学学科,是数学问题解决的基本方法之一。
转化,即将一个数学问题或数学对象转化成另一个同等价值的形式,以更便于解决或研究。
而化归,则是将一个较复杂或抽象的问题归结为一个较简单或具体的问题,从而更易于处理和理解。
转化与化归的实质是通过合理的变换和归结,将原问题转化为更易处理或更易理解的形式,从而为解题提供便利和途径。
二、数学题中的转化与化归思想在高考数学题中,转化与化归思想经常出现在各个知识点的解题过程中,其中尤以代数和几何题为突出。
以代数题为例,常见的多项式化简、方程转化、不定方程的化归等问题,都需要学生灵活掌握转化与化归的方法,才能顺利解题。
在几何题中,诸如相似三角形的证明、线段比例的求解等问题,也需要学生善于将复杂的几何形态转化为简单的几何概念,或者将一个复杂的几何问题化归为一个简单的几何问题,从而找到解答的路径。
在实际解题过程中,学生必须不断地运用转化与化归的思想,才能更轻松地解决高考数学题。
三、实例分析现来分别通过代数题和几何题的实例分析,展示高考数学题中转化与化归思想的实际应用。
1.代数题假设有如下代数方程组:\[\left\{\begin{array}{c}x+y=5 \\x^2+y^2=17\end{array}\right.\]求解这个方程组的实数解。
分析:通过观察和分析,我们很难直接求出 x 和 y 的具体值。
我们可以考虑将上述方程组进行化归。
我们知道(x+y)²=x²+2xy+y²,将其代入x²+y²=17 中得到:\[ x^2+2xy+y^2=25 \]这样方程组就化归为一个较为简单形式。
接下来,我们将 x+y=5 代入上式,可以得到:进而求出 xy 的值为 4。
接着,我们可以用代数方法求出 x 和 y 的值,最终得到实数解为 2 和 3。
转化与化归思想、分类讨论思想
一、转化与化归思想
[思想概述] 转化化归思想的基本内涵是:人们在解决数学问题时,常 常将待解决的数学问题A,通过某种转化手段,归结为另一 问题B,而问题B是相对较容易解决的或已经有固定解决模
式的问题,且通过问题B的解决可以得到原问题A的解.用
框图可直观地表示为:
[规律方法] (1)根据问题的特点转化命题,使原问题转化为与之
相关,易于解决的新问题,是我们解决数学问题的常用思 路. (2)本题把立体几何问题转化为平面几何问题,三维降为二 维,难度降低,易于解答的数学问题分解(或分割)
成若干个基础性问题,通过对基础性问题的解答来实现解决原 问题的思想策略.对问题实行分类与整合,分类标准等于增加 一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论的常见类型:
(1)由数学概念引起的分类讨论:有的概念本身就是分类的,如 绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式的限制引起的分类讨论:有的定理、
公式、性质是分类给出的,在不同的条件下结论不一致,如 等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负, 对数的底数与真数的限制,方程(不等式)的运算与根的大小比
难以入手,因此对参数θ取特殊值,进行推理求解.
(2)当问题难以入手时,可以先对特殊情况或简单情形进行 观察、分析,发现问题中特殊的数量或关系结构或部分元 素,然后推广到一般情形,并加以证明.
类型二
换元及常量与变量的转化
【例 2】 已知 f(x)为定义在实数集 R 上的奇函数,且 f(x)在[0,+ π ∞)上是增函数.当 0≤θ≤2时,是否存在这样的实数 m,使 f(cos 2θ-3)+f(4m-2mcos θ)>f(0)对所有的
转化与化归思想
转化与化归思想数学问题的解答离不开转化与化归,它既是一种数学思想,又是一种数学能力,是高考重点考查的最重要的思想方法.在高中数学的学习中,它无个不在,比如:处理立体几何问题时,将空间问题转化到一个平面上解决;在解析几何中,通过建立坐标系将几何问题化归为代数问题;复数问题化归为实数问题等.1.转化与化归的原则(1)目标简单化原则:将复杂的问题向简单的问题转化.(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当.(3)具体化原则:即化归言论自由应由抽象到具体.(4)低层次原则:即将高维空间问题化归成低维空间问题.(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.2.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.角度一 函数、方程、不等式之间的转化例1 设函数f (x )=c bx ax ++232,若a+b+c=0,f (0)f (1)>0,求证: (Ⅰ)方程f (x )=0有实数根; (Ⅱ)-2<ab <-1; (Ⅲ)设x 1,x 2是方程f (x )=0的两个实根,则33≤|x 1-x 2|<32.角度二 正面与反面的转化例2 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有____个。
高中数学 转化与化归的思想
转化与化归的思想转化就是数学命题由一种形式向另一种形式的变换过程,化归就是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
转化与化归的思想是中学数学最基本的思想方法,堪称数学思想的精髓所在,因为数形结合的思想、函数与方程的思想、分类讨论的思想都是转化思想的具体体现,各种变换的方法、分析法、反证法、待定系数法、构造法等都是转化的手段。
转化与化归的思想渗透到了数学教学内容的各个领域和解题过程的各个环节中,随着高考试题由知识立意向能力立意的转变,近几年的高考加强了对转化和化归思想的考查,主要体现在以下几个方面:1.等价转化,如 1999年高考试题第 19题,不等式求解的等价变形;2.立几问题平面化,每年高考立体几何题都展示了这种化归的思想方法;3.局部与整体的转化,如1999年高考第10题,用切割的方法化整为零计算多面体的体积,历年高考的分类讨论题也属整体与局部的转化;4.特殊与一般的转化,如选择题与填空题的特例法,数列中的猜想与证明;5.非等价转化,如反证法,分析法;6.换元、代换等变换方法。
转化和化归的思想培养,会不断提高考生的思维水平和创新能力。
例题1.解不等式222x a ->x +a .(a >0).分析:(1)利用解无理不等式的通法:)(x f >g (x ) ⇔ ⎪⎩⎪⎨⎧>≥≥)()(0)(0)(2x g x f x g x f 或⎩⎨⎧<≥0)(0)(x g x f . (2)利用数形结合法:令y 1=222x a -, y 2=x 十a . 解法一:222x a ->x +a . ⇔⎪⎩⎪⎨⎧+>-≥+≥-22222)(2002a x x a a x x a 或⎩⎨⎧<+≥-00222a x x a ⇔⎪⎪⎩⎪⎪⎨⎧<<--≥≤≤-0322222x a a x a x a 或⎪⎩⎪⎨⎧-<≤≤-a x a x a 2222⇔-a 32<x <0或x ∈ο/ ∴ 不等式的解集为{x | -a 32<x <0}解法二:设 y 1=222x a -,即 2x 2+y 12=a 2(y 1≥ 0)函数y 1=222x a -的图像是上半个椭圆.再令y 2=x +a 。
高考数学思想04 运用转化与化归的思想方法解题(精讲精练)(解析版)
思想04运用转化与化归的思想方法解题【命题规律】高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有分类讨论思想、数形结合思想、函数与方程思想、转化与化归思想等.【核心考点目录】核心考点一:运用“熟悉化原则”转化化归问题核心考点二:运用“简单化原则”转化化归问题核心考点三:运用“直观化原则”转化化归问题核心考点四:运用“正难则反原则”转化化归问题【真题回归】1.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a =,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 直线DE 的方程:x c -,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613c DE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.2.(2020·全国·统考高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.【答案】【解析】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=,222222()()2()4a cb d ac bd ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+ ,由已知122OZ OZ OP ==== ,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==3.(2020·天津·统考高考真题)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.【答案】1623【解析】甲、乙两球落入盒子的概率分别为11,23,且两球是否落入盒子互不影响,所以甲、乙都落入盒子的概率为111236⨯=,甲、乙两球都不落入盒子的概率为111(1)(1)233-⨯-=,所以甲、乙两球至少有一个落入盒子的概率为23.故答案为:16;23.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD Ì平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)[方法一]:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,3AC AE CE BE ====,由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC .由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪ ⎪⎝⎭,所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111332333244F ABC ABC V S FH -=⋅⋅=⨯⨯=[方法二]:等体积转换AB BC = ,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CFEF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆ 在中,当时,AFC面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆== 为中点DE=1若在中,32113222BEF BF S BF EF ∆==∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∆∴=+=⋅=⋅【方法技巧与总结】将问题进行化归与转化时,一般应遵循以下几种原则:1、熟悉化原则:许多数学问题的解决过程就是将陌生的问题转化为熟悉的问题,以利于我们运用已有知识、方法以及解题经验来解决.在具体的解题过程中,通常借助构造、换元、引入参数、建系等方法将条件与问题联系起来,使原问题转化为可利用熟悉的背景知识和模型求解的问题.2、简单化原则:根据问题的特点转化命题,使原问题转化为与之相关、易于解决的新问题.借助特殊化、等价转化、不等转化等方法常常能获得直接、清晰、简洁的解法,从而实现通过对简单问题的解答,达到解决复杂问题的目的.3、直观化原则:将较抽象的问题转化为比较直观的问题,数学问题的特点之一便是它具有抽象性,有些抽象的问题,直接分析解决难度较大,需要借助数形结合法、图象法等手段把它转化为具体的、更为直观的问题来解决.4、正难则反原则:问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.一般地,在含有“至多”、“至少”及否定词的问题中,若出现多种成立的情形,则不成立的情形相对很少,此时从反面考虑较简单.【核心考点】核心考点一:运用“熟悉化原则”转化化归问题【典型例题】例1.(2023春·云南昆明·高三昆明市第三中学阶段练习)如图所示,在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,AE=32,cos B,∠ADB=23π.(1)求AD的长;(2)求△ADE的面积.【解析】(1)在△ABD中,∵cos B=(0,)Bπ∈,∴sin7B===,∴1sin sin()()7214 BAD B ADB∠=+∠⋅-=,由正弦定理sin sinAD BDB BAD=∠,知1·sin72sin14BD BADBAD==∠.(2)由(1)知AD=2,依题意得AC=2AE=3,在△ACD中,由余弦定理得AC2=AD2+DC2-2AD•CDcos∠ADC,即29422cos3DC CDπ=+-⨯⨯,∴DC2-2DC-5=0,解得1DC=.∴11sin2(12222 ADCS AD DC ADC=⋅∠=⨯⨯⨯=,从而12ADE ADC S S == 例2.(2023·吉林·高三校联考竞赛)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是AC 、BC 的中点,60EPF ︒∠=,则球O 的表面积为____________.【答案】6π【解析】由于P -ABC 为正三棱锥,故EP FP =,从而△EPF 为等边三角形,且边长EF =1.由此可知侧面PAC 的高PE =1,故棱长PA =.的正方体可知,P -ABC,从而表面积为6π.故答案为:6π.例3.(2023春·山东潍坊·高三校考阶段练习)已知正实数a ,b 满足ab a b =+,则2a b +的最小值为____________.【答案】3+【解析】0,0a b >>,ab a b =+,则111a b+=,1122(2)()333a ba b a ba b b a +=++=++≥+=+当且仅当2a b b a =,即1a =1b =时等号成立,所以2a b +最小值是3+故答案为:3+例4.(2023春·江苏南京·高三南京市第一中学校考阶段练习)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且16AD BC = ,若M ,N 是线段BC 上的动点,且1MN =,则·DM DN 的最小值为___________【答案】132【解析】16AD BC = ,则1AD = ,如图,建立平面直角坐标系,32A ⎛ ⎝⎭,52D ⎛ ⎝⎭,(),0M x ,()1,0N x +,5,22DM x ⎛=-- ⎝⎭,3,22DN x ⎛=-- ⎝⎭,[]0,5x ∈,22531527422244DM DN x x x x ⎛⎫⎛⎫⎛⎫⋅=--+=-++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()22132x =-+,当且仅当2x =时,取得最小值132,所以DM DN ⋅ 的最小值为132.故答案为:132例5.(2023春·广西桂林·高三校考阶段练习)已知三棱锥-P ABC 的四个顶点在球O 的球面上,PA PB PC ==,ABC 是边长为2的正三角形,E F ,分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()AB .6πC .24πD.【答案】A【解析】设2PA PB PC x ===,E ,F 分别为PA ,AB 中点,EF PB ∴∥,且12EF PB x ==,ABC 为边长为2的等边三角形,CF =,又90CEF ∠=︒,CE ∴=12AE PA x ==,在AEC △中,由余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,∴D 为AC中点,又1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,解得x =,PA PB PC ∴===又===2AB BC AC ,PA ∴,PB ,PC 两两垂直,即三棱锥-P ABC 是以PA ,PB ,PC 为棱的正方体的一部分;所以球O的直径2R ==R =,则球O的体积344338V R =π=π⨯,故选:D.核心考点二:运用“简单化原则”转化化归问题【典型例题】例6.(2023春·陕西渭南·高三渭南市瑞泉中学校考阶段练习)平面四边形ABCD 中,75A B C ∠=∠=∠= ,AB =2,则AD 长度的取值范围________.【答案】(0【解析】如图所示,延长AD ,BC 交于E ,平行移动CD ,当C 与D 重合于E 点时,AD 最长,在ABE 中,75A B ∠=∠= ,30E ∠= ,AB =2,由正弦定理可得sin sin AB AE E B =∠∠,即o o 2sin 30sin 75AE =,()o o o o o o o sin 75sin 4530sin 45cos30cos 45sin 30=+=+解得AE 平行移动CD ,到图中AF 位置,即当A 与D 重合时,AD 最短,为0.综上可得,AD长度的取值范围为(0+故答案为:(0+.例7.(2023春·北京·高三北京市第一六一中学校考)三棱锥-P ABC 中,,E D 分别为,PB PC 的中点,记三棱锥D ABE -的体积为1V ,-P ABC 的体积为2V ,则12V V =____________【答案】14【解析】由已知1.2EAB PAB S S ∆∆=设点C 到平面PAB 距离为h ,则点D 到平面PAB 距离为12h ,所以,1211132.143EAB PAB S h V V S h ∆∆⋅==例8.(2023秋·山东聊城·高三山东聊城一中校考阶段练习)已知∠ACB=90°,P 为平面ABC 外一点,PC =4,点P 到∠ACB 两边AC ,BC 的距离均为23,那么点P 到平面ABC 的距离为___________.【答案】22【解析】设P 在平面ABC 内的射影为O ,则OP ⊥平面ABC ,由于,,AC BC OC ⊂平面ABC ,所以,,OP AC OP BC OP OC ⊥⊥⊥,过O 作,OE AC OF BC ⊥⊥,垂足分别为,E F ,由于90ACB ∠=︒,所以四边形OECF 是矩形.由于,,OE OP O OE OP ⋂=⊂平面POE ,所以CE ⊥平面POE ,PE ⊂平面POE ,所以CE PE ⊥;同理可证得CF PF ⊥.所以()224232CE CF ==-=,222222OC =+=,()2242222OP =-=,即P 到平面ABC 的距离是22.故答案为:22例9.(2023春·湖南衡阳·高三校考)设m ,n ,t 为正数,且345m n t ==,则()A .m n t <<B .n m t <<C .n t m <<D .t n m <<【答案】D【解析】令345m n t k ===,则1k >,3log m k =,4log n k =,5log t k =,在平面直角坐标系中画出3log y x =,4log y x =,5log y x =的图象及直线x k =,结合图象知t n m <<.方法二令345m n t k ===,则1k >,易得31log log 3k m k ==,41log log 4k n k ==,51log log 5k t k ==,又当1k >时,函数()log k f x x =在()0,+∞上单调递增,且1345<<<,∴0log 3log 4log 5k k k <<<,∴111log 3log 4log 5k k k >>,即t n m <<.故选:D.核心考点三:运用“直观化原则”转化化归问题【典型例题】例10.(2023春·北京·高三校考)已知函数()f x 是定义在()(),00,∞-+∞U 上的奇函数,当()0,∞+时,()f x 的图象如图所示,那么满足不等式35()44f x x ≥+的x 的取值范围是()A .(](],20,1-∞-⋃B .[)(]2,00,1-⋃C .(](],30,1-∞-D .[)(]3,00,1- 【答案】C【解析】因为函数()f x 是定义在()(),00,∞-+∞U 上的奇函数,所以()f x 的图像关于原点对称,由此画出函数()f x 在()(),00,∞-+∞U 上的图象,在同一坐标系内画出()3544g x x =+的图象,因为()12f =,()31f =,所以()()331f f -=-=-,又()3511244g =⨯+=,()()3533144g -=⨯-+=-,所以()f x 的图象与()g x 的图象交于()1,2和()3,1--两点,如图,所以结合图像可知,35()44f x x ≥+的解集为(](],30,1-∞- .故选:C.例11.(2023·全国·高三专题练习)已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b - 的最小值是A 1B1C .2D .2【答案】A【解析】设()()(),,1,0,,a x y e b m n ===r r r,则由π,3a e =r r 得πcos ,3a e e x y a ⋅=⋅=∴=r r r r ,由2430b e b -⋅+=r r r 得()2222430,21,m n m m n +-+=-+=因此,a b -r r 的最小值为圆心()2,0到直线y =1 1.选A.例12.(2023秋·福建莆田·高三莆田二中校考)设函数()e x f x x ax a =-+,其中1a >,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是()A .(21,2e ⎤⎦B .33e 1,2⎛⎤⎥⎝⎦C .343e 4e ,23⎛⎤⎥⎝⎦D .323e 2e ,2⎛⎤⎥⎝⎦【答案】D【解析】令()e ,()x g x x h x ax a ==-,1a >,显然直线()h x ax a =-恒过点(1,0)A ,则“存在唯一的整数0x ,使得()00f x <”等价于“存在唯一的整数0x 使得点00(,())x g x 在直线()h x ax a =-下方”,(1())e x x g x +'=,当1x <-时,()0g x '<,当1x >-时,()0g x '>,即()g x 在(,1)-∞-上递减,在(1,)-+∞上递增,则当=1x -时,min 1()(1)e g x g =-=-,当0x ≤时,1()[,0]eg x ∈-,而()(0)1h x h a ≤=-<-,即当0x ≤时,不存在整数0x 使得点00(,())x g x 在直线()h x ax a =-下方,当0x >时,过点(1,0)A 作函数()e x g x x =图象的切线,设切点为(,e ),0t P t t t >,则切线方程为:e (1)e ()t t y t t x t -=+-,而切线过点(1,0)A ,即有e (1)e (1)t t t t t -=+-,整理得:210t t --=,而0t >,解得(1,2)t =∈,因(1)e 0(1)g h =>=,又存在唯一整数0x 使得点00(,())x g x 在直线()h x ax a =-下方,则此整数必为2,即存在唯一整数2使得点(2,(2))g 在直线()h x ax a =-下方,因此有23(2)(2)2e (3)(3)3e 2g h a g h a <⎧<⎧⇔⎨⎨≥≥⎩⎩,解得323e 2e 2a <≤,所以a 的取值范围是323e(2e ,]2.故选:D核心考点四:运用“正难则反原则”转化化归问题【典型例题】例13.(2023·全国·高三专题练习)已知矩形ABCD ,1AB =,2BC =,将ABD △沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中A .存在某个位置,使得直线AB 和直线CD 垂直B .存在某个位置,使得直线AC 和直线BD 垂直C .存在某个位置,使得直线AD 和直线BC 垂直D .无论翻折到什么位置,以上三组直线均不垂直【答案】A【解析】如图所示:作CF BD ⊥于F ,AE BD ⊥于E翻折前AC =AC =222AC AB BC AC AB +=∴⊥,AB AD ⊥,AB ∴⊥平面ACD ,⊆CD 平面ACD AB CD ∴⊥,故A 正确D 错误;若AC 和BD 垂直,BD CF BD ⊥∴⊥ 平面ACF ,AF ⊆平面ACF BD AF ∴⊥,不成立,故B 错误;若AD 和BC 垂直,BC CD ⊥故BC ⊥平面ACD ,AC ⊆平面ACD ,AC BC ∴⊥,因为AB BC <,故AC BC⊥不成立,故C 错误;故选:A例14.(2023春·湖南·高三校联考开学考试)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d ,2d =≤即3k 2≤4k ,∴0≤k≤43,故可知参数k 的最大值为43.例15.(2023秋·陕西宝鸡·高三陕西省宝鸡市长岭中学校考阶段练习)如图,用K ,1A ,2A 三类不同的元件连接成一个系统.当K 正常工作且1A ,2A 至少有一个正常工作时,系统正常工作.已知K ,1A ,2A 正常工作的概率依次为0.8,0.7,0.7,则系统正常工作的概率为___________.【答案】0.728【解析】因为1A ,2A 同时不能正常工作的概率为(10.7)(10.7)0.09--=,所以1A ,2A 至少有一个正常工作的概率为10.090.91-=,所以系统正常工作的概率为0.80.910.728⨯=,故答案为:0.728例16.(2023·全国·高三专题练习)如图,用A 、B 、C 三类不同的元件连接成两个系统1N ,2N .当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90.则系统N 1正常工作的概率为___________,系统2N 正常工作的概率为___________.【答案】0.6480.792【解析】分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件()080P A =.,()0.90P B =,()0.90P C =.因为事件A 、B 、C 是相互独立的,系统N 1正常工作的概率为()()()0.800.900.900.6)48(P A B C P A P B P C ⋅⋅==⨯⨯=⋅⋅.系统2N 正常工作的概率()1(()1()()P A P B C P A P B P C ⎡⎤⎡⎤⋅-⋅=⋅-⋅⎣⎦⎣⎦08010.100.100.800.990.7[92]=⨯-⨯=⨯=..故答案为:0.648;0.792.【新题速递】一、单选题1.(2023春·江苏盐城·高三盐城中学校考)已知,x y R ∈满足()()()()3312021113202131x x y y ⎧-+-=⎪⎨-+-=-⎪⎩,若存在实数0t >,使得不等式kt x y t-≤+成立,则实数k 的最小值为()A .-4B .-1C .1D .4【答案】A【解析】构造函数()32021f x x x =+,()f x 为奇函数,且在R 上单调增,由已知可知()()()1133f x f y f y -==--=-+,13x y -=-+,即4x y +=,所以,存在实数0t >,使得不等式4kt t-≤成立,24,k t t ≥-又244t t -≥-,4k ∴-≥.故选:A.2.(2023春·陕西榆林·高三绥德中学校考)已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,G 是椭圆C 的左顶点,点M 在过G12MF F △为等腰三角形,12150F F M ∠=︒,则椭圆C 的离心率为()A .12B .13C.111+D【答案】D【解析】由题知(),0G a -,所以直线GM的方程为()9y x a =+,因为12150F F M ∠=,所以直线2MF 的倾斜角为30 ,所以直线2MF的方程为)3y x c =-.联立))y x a y x c ⎧=+⎪⎪⎨⎪=-⎪⎩,解得32a c x +=,)6a c y +=.),.623a c a c M ⎛⎫++∴ ⎪ ⎪⎝⎭因为12MF F △为等腰三角形,12150F F M ∠=,所以2212MF F F c ==,即)2223426a c a c c c ⎤++⎛⎫-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,整理得:1)a c =.所以椭圆C的离心率为c e a ==故选:D.3.(2023春·安徽淮北·高三淮北一中校考阶段练习)已知函数||1||22()21x x x f x +++=+的最大值为M ,最小值为m ,则M m +等于()A .0B .2C .4D .8【答案】C【解析】依题意()||||1||||||22122()2212121x x x x x x x f x x +++++===++++,故令||()()221x xg x f x =-=+,所以||||()()2121x x x x g x g x ----===-++,所以函数()g x 为奇函数,所以max min ()()0g x g x +=,故max min ()2()20f x f x -+-=,所以max min ()()4f x f x +=.故选:C.4.(2023春·广东广州·高三校考)已知数列{}n a 是公比不等于1±的等比数列,若数列{}n a ,{(1)}n n a -,2{}n a 的前2023项的和分别为m ,6m -,9,则实数m 的值()A .只有1个B .只有2个C .无法确定有几个D .不存在【答案】A【解析】设{}n a 的公比为q ,由11(1)(1)n n nn a q a ++-=--,2212n na q a +=可得:{(1)}n n a -为等比数列,公比为q -,2{}n a 为等比数列,公比为2q ,则()2023111a q m q-=-①,()()202320231111611a q a q m qq⎡⎤----+⎣⎦==-++②,()2404612191a q q -=-③,①×②得:()24046122161a q m m q --=--④,由③④得:2690m m -+=,解得:3m =,故实数m 的值只有1个.故选:A5.(2023春·山西太原·高三统考)下列结论正确的个数是()①已知点()()()4,00,00,3A B C 、、,则ABC 外接圆的方程为22325(2)24x y ⎛⎫-+-= ⎪⎝⎭;②已知点()()1,01,0A B -、,动点P 满足2PA PB =,则动点P 的轨迹方程为2210103x y x +-+=;③已知点M 在圆22:9O x y +=上,()9,0P ,且点N 满足12MN NP =,则点N 的轨迹方程为22(3)4x y -+=.A .0B .1C .2D .3【答案】D【解析】对于①,线段AB 的中垂线的直线方程为2x =,线段BC 的中垂线的直线方程为32y =,故圆心为32,2⎛⎫⎪⎝⎭52=,即圆的方程为()22325224x y ⎛⎫-+-= ⎪⎝⎭,故①正确;对于②,设(),P x y ,由2PAPB ==,整理可得2210103x y x +-+=,故②正确;对于③,设(),N x y ,()00,M x y ,则()9,NP x y =-- ,()00,MN x x y y =--,由12MN NP = ,则()()0019212x x x y y y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即00392232x x y y ⎧=-⎪⎪⎨⎪=⎪⎩,M 在229x y +=上,223939222x y ⎛⎫⎛⎫∴-+= ⎪⎪⎝⎭⎝⎭,整理可得()2234x y -+=,故③正确.故选:D.6.(2023春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为()A.2B .34CD .3【答案】A【解析】如图,设椭圆的长半轴为1a ,双曲线的实半轴长为2a,则根据椭圆及双曲线的定义:1211222,2PF PF a PF PF a +=-=,所以112212,PF a a PF a a =+=-,设122F F c =,因为12π3F PF ∠=,则在12PF F △中,由余弦定理得:22212121212π4()()2()()cos3c a a a a a a a a =++--+-,化简得:2221234a a c +=,即2212134e e +=,从而有2212134e e =+≥整理得12e e ⋅≥(当且仅当122,2e e ==故选:A.7.(2023·全国·高三专题练习)在某次数学考试中,学生成绩X 服从正态分布()2100,δ.若X 在()85,115内的概率是0.5,则从参加这次考试的学生中任意选取3名学生,恰有2名学生的成绩不低于85的概率是()A .2764B .964C .34D .916【答案】A【解析】因为学生成绩服从正态分布()2100,δ,且()851150.5P X <<=,所以()851000.25P X <<=,()850.25P X <=,()3850.754P X ≥==,所以从参加这次考试的学生中任意选取1名学生,其成绩不低于85的概率是34,则从参加这次考试的学生中任意选取3名学生,恰有2名学生的成绩不低于85的概率是2233127C 4464⎛⎫⨯= ⎪⎝⎭.故选:A.二、多选题8.(2023·全国·高三专题练习)已知M 为圆C :()2212x y ++=上的动点,P 为直线l :40x y -+=上的动点,则下列结论正确的是()A .直线l 与圆C 相切B .直线l 与圆C 相离C .|PM |D .|PM |【答案】BD【解析】圆C :()2212x y ++=得圆心()1,0C -,半径r =∵圆心()1,0C -到直线l :40x y -+=得距离2d r ==>∴直线l 与圆C 相离A 不正确,B 正确;2PM PC r d r ≥-≥-=C 不正确,D 正确;故选:BD .9.(2023春·江苏盐城·高三校联考阶段练习)函数()sin()f x A x ωϕ=+(0,0)ωϕπ><<,()f x 图像一个最高点是(,2)3A π,距离点A 最近的对称中心坐标为(,0)4π,则下列说法正确的有()A .ω的值是6B .(,1212x ππ∈-时,函数()f x 单调递增C .1312x π=时函数()f x 图像的一条对称轴D .()f x 的图像向左平移φ(0)φ>个单位后得到()g x 图像,若()g x 是偶函数,则φ的最小值是6π【答案】AD【解析】由题意可知,2A =±,134124T πππ-==,即3T π=,其中T 为()f x 的最小正周期,又因为2T πω=,所以6ω=,故A 正确;当2A =时,()2sin(6)233f ππϕ=⨯+=,由0ϕπ<<,可得2ϕπ=,此时()2sin(62cos 62f x x x π=+=,3(2cos 042f ππ==,满足题意;当2A =-时,()2sin(6)233f ππϕ=-⨯+=,由0ϕπ<<,则ϕ无解,综上所述,()2cos 6f x x =,从而()f x 是一个偶函数,故()f x 在(,1212ππ-上不单调,故B 错误;又因为1313(2cos(6021212f A ππ=⨯=≠=,所以1312x π=不是函数()f x 图像的一条对称轴,故C 错误;对于选项D:由题意可得,()2cos 6()2cos(66)g x x x φφ=+=+,若()g x 是偶函数,则6k φπ=,Z k ∈,即16k φπ=,Z k ∈,又因为0φ>,所以φ的最小值是6π,此时1k =,故D 正确.故选:AD.10.(2023秋·辽宁朝阳·高三统考开学考试)已知函数32()23f x x x x =-+-,若过点(1,)P m -(其中m 是整数)可作曲线()y f x =的三条切线,则m 的所有可能取值为()A .2B .3C .4D .5【答案】ABCD【解析】由题知'2()343f x x x =-+-,设切点为00(,())x f x ,则切线方程为32200000023(343)()y x x x x x x x +-+=-+--,将=1x -,y m =代入得32000243m x x x =+-+;令32()243g x x x x =+-+,则'2()6242(1)(32)g x x x x x =+-=+-,23x ∴>或1x <-时,'()0g x >;213x -<<时,'()0g x <,()g x ∴的极大值为(1)6g -=,极小值为237(327g =,由题意知37627m <<,又m 为整数,2,3,4,5m ∴=.故选:ABCD.11.(2023秋·辽宁朝阳·高三统考开学考试)已知1F 、2F 分别是椭圆22:12516x y C +=的左、右焦点,点A 是椭圆C 上一点,则下列说法正确的是()A .1210AF AF +=B .椭圆C 的离心率为45C .存在点A 使得12AF AF ⊥D .12AF F △面积的最大值为12【答案】AD【解析】由椭圆的标准方程,得5a =,4b =,3c =,且1(3,0)F -,2(3,0)F ;对于A :由椭圆的定义,知12210AF AF a +==,即选项A 正确;对于B :椭圆C 的离心率35c e a ==,即选项B 错误;对于C:设(,)A m n ,则2212516m n +=,若12AF AF ⊥,则210F A A F ⋅= ,则2(3)(3)0m m n -++=,即229m n +=,联立2222912516m n m n ⎧+=⎪⎨+=⎪⎩,得21759m =-(舍)即该方程组无解,即不存在点A 使得12AF AF ⊥,即选项C 错误;对于D :当点A 为上、下顶点时,12AF F △的面积取得最大值,即()12max 12122AF F S c b bc =⨯⨯==△,即选项D 正确.故选:AD.12.(2023春·江苏南通·高三校联考)已知定义在R 上函数()f x 的图象是连续不断的,且满足以下条件:①,()()x R f x f x ∀∈-=;②1x ∀,2(0,)x ∈+∞,当12x x ≠时,都有1212()()0f x f x x x -<-;③(1)0f -=,下列选项成立的是()A .(3)(4)>-f f B .若(1)(3)f x f -<,则(4,)x ∈+∞C .若()0xf x <,(1,0)(1,)x ∈-⋃+∞D .,x R M R ∀∈∃∈,使得()f x M【答案】ACD 【解析】由①x ∀∈R ,()()f x f x -=,得()f x 为偶函数,②1x ∀,2(0,)x ∈+∞,当12x x ≠时,都有1212()()0f x f x x x -<-,得()f x 在(0,)+∞上单调递减,(4)(4)(3)f f f ∴-=<,故A 正确;(1)(3)f x f -<即13x ->或13x -<-,解得4x >或<2x -,故B 错误;由(1)0f -=,得(1)0f =,若()0xf x <,则()00f x x >⎧⎨<⎩或()00f x x <⎧⎨>⎩,解得(1,0)(1,)x ∈-⋃+∞,故C 正确;由()f x 为R 上的偶函数,在(0,)+∞单调递减,在(,0)-∞单调递增,又因为函数()f x 的图象是连续不断的,所以(0)f 为()f x 的最大值,所以x ∀∈R ,∃∈M R ,使得()f x M ,故D 正确.故选:ACD三、填空题13.(2023·高三课时练习)如图,在三棱锥A BCD -中,底面边长与侧棱长均为a ,点M ,N 分别是棱AB ,CD 上的点,且2=MB AM ,12CN ND =,则MN 的长为______.【答案】3a 【解析】 三棱锥A BCD -底面边长与侧棱长均为a ,∴三棱锥A BCD -各个面均为等边三角形,MN MB BC CN =++ ()()2133AB AC AB AD AC =+-+- 112333AB AD AC =-++ ,22112333MN AB AD AC ∴=-++⎛⎫ ⎪⎝⎭ 222124414999999AB AD AB AB AC AC AD AD AC =-⋅-⋅+⋅++ 222222112214999999a a a a a a =--+++259a =,3MN a ∴= ,即MN =..14.(2023秋·广东佛山·高三统考期末)若函数πsin 3y x ⎛⎫=+ ⎪⎝⎭的图像在[]0,m 上恰好有一个点的纵坐标为1,则实数m 的值可以是__________(写出一个满足题意m 的值即可).【答案】6π(答案写1366m ππ≤<内任意的实数都正确).【解析】因为函数πsin 3y x ⎛⎫=+ ⎪⎝⎭的图像在[]0,m 上恰好有一个点的纵坐标为1,令3z x π=+,由0x m ≤≤,得,333x m πππ≤+≤+,即33z m ππ≤≤+,原命题等价于,函数sin y z =的图像在,33m ππ⎡⎤+⎢⎥⎣⎦上恰好有一个点的纵坐标为1,所以5,322m πππ⎡⎫+∈⎪⎢⎣⎭,即5232m πππ≤+<,解得1366m ππ≤<.故答案为:6π(答案写1366m ππ≤<内任意的实数都正确).15.(2023春·河北石家庄·高三石家庄外国语学校校考)已知定义域为R 的函数()11221x f x =-++则关于t 的不等式()()222210f t t f t +<--的解集为________.【答案】()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.【解析】函数()11221x f x =-++的定义域为R.因为()1112221221x x x f x --=-+=-+++,所以()()1111110221221x x f x f x -⎛⎫⎛⎫-+=-++-+=-+= ⎪ ⎪++⎝⎭⎝⎭,所以()()f x f x -=-,即()f x 是奇函数.因为2x y =为增函数,所以121x y =+为减函数,所以()11221x f x =-++在R 上为减函数.所以()()222210f t t f t -+-<可化为()()()22222112f t t f t f t -<--=-.所以22212t t t ->-,解得:1t >或13t <-.故答案为:()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.16.(2023春·湖南长沙·高三宁乡一中校考)过点()2,e P 可以作两条直线与曲线()e 0x y a a =>相切,则实数a 的取值范围是______.【答案】1,e ⎛⎫+∞ ⎪⎝⎭【解析】设切点坐标为(),e t t a ,e ,e x x y a y a '==,故斜率为e t a ,切线方程为()e e t t y a a x t -=-,代入()2,e P 得()e e e 2t t a a t -=-,整理得()e 3e t t a-=-,构造函数()()3e t f t t =-,()()2e t f t t '=-⋅,所以()f t 在区间()()(),2,0,f t f t '-∞<递减;在区间()()()2,,0,f t f t '+∞>递增.所以()f t 在2t =时取得极小值也即是最小值()22e f =-,当3t <时,()0f t <,当3t >时,()0f t >,要使过点()2,e P 可以作两条直线与曲线()e 0x y a a =>相切,则2e 1e 0,ea a --<<>,所以a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭.故答案为:1,e ⎛⎫+∞ ⎪⎝⎭17.(2023春·黑龙江绥化·高三校考)已知F 是椭圆22:143x y C +=的左焦点,P 为椭圆C 上任意一点,点Q 坐标为(2,1),则||||PQ PF +的最大值为________.【答案】4【解析】由22:143x y C +=可知2a =,设椭圆右焦点(1,0)F ',则24PQ PF PQ a PF QF ''+=+-≤+44==当且仅当P ,Q ,F '共线时且当P 在QF '的延长线上时等号成立.||||PQ PF ∴+的最大值为4故答案为:4+。
数学思想之转化与化归总结
数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
专题四转化与化归思想
则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在
数学思想方法专题四:转化与化归思想
数学思想方法专题专题四:转化与化归思想化归思想方法:在研究和解决有关数学问题时,采用某种手段或方法将问题通过变换使之转化,进而达到使问题解决的一种方法。
在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化为一个新问题,通过对新问题的求解,达到解决原问题的目的。
转化思想方法:是实现问题的规范化、模式化以便应用已知的理论、方法和技巧,达到问题的解决。
转化与化归的原则:(1)熟悉化原则;(2)简单化原则;(3)直观化原则;(4)正难则反原则。
常见的转化方法:(1)直接转化法;(2)换元法;(3)数形结合法;(4)等价转化法;(5)特殊化方法;(6)构造法; (7)坐标法;(8)类比法; (9)参数法; (10)补集法。
一、例题讲解1、(2007年江苏)在平面直角坐标系xO y 中,已知A B C ∆的顶点(4,0)A -和(4,0)C ,顶点B 在椭圆221259xy+=上,则sin sin sin A CB+=2、设12lo g 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A 、a b c <<B 、c b a <<C 、c a b <<D 、b a c <<3、(2010年天津)如图,在A B C ∆中,A D A B ⊥,B C D =,1A D =,则AC AD ⋅= ( )A 、B 2C 3D4、已知椭圆()2222:10x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为k ()0k >的直线与C 相交于A 、B 两点,若3A F F B =,则k =( )A 、1BCD 、25、如图,已知球O 的表面上四点A 、B 、C 、D ,D A ⊥平面A B C ,A B ⊥B C ,D A A B B C ===,则球O 的体积等于数学思想方法专题四:转化与化归思想练习1、(2006年辽宁)若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=2、已知224x y +=,则2x y +的取值范围是3、若存在过点()1,0的直线与曲线3y x =和21594y a x x =+-都相切,则a 等于A 、1-或25-64B 、1-或214C 、74-或25-64D 、74-或7。
“转化与化归”思想在高中数学解题教学中的应用
解题研究2023年12月上半月㊀㊀㊀转化与化归 思想在高中数学解题教学中的应用◉哈尔滨师范大学教师教育学院㊀李㊀硕㊀㊀转化与化归 思想是高学数学中的一种重要的数学思想,运用非常广泛,尤其是一些特殊的问题,运用 转化与化归 思想解题可以提高效率,同时还可以降低问题解决的难度.因此,在数学课堂引入并应用转化与化归思想,能够让学生在学习数学及解题的过程中,加深对数学概念的理解,同时也能有效锻炼数学思维,提高学习效率,进一步发展数学核心素养.在高中数学的解题过程中,基于 转化与化归 思想的三大原则,主要运用的解题方法包括特殊与一般的转化㊁命题的等价转化,以及函数㊁方程㊁不等式之间的转化等一些常见的转化方法.1特殊与一般的转化将一般问题进行特殊化处理,可使问题的解决变得更为直接和简便,并且还能从特殊情况中寻找问题解决的常规思维;除此之外,对特殊性问题进行概括性研究,实现特殊问题一般化,也能从宏观与全局的角度把握特殊性问题的普遍规律,并能有效地解决特殊性问题.例1㊀ 蒙日圆 涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为(㊀㊀).A.x 2+y 2=9㊀㊀㊀㊀㊀B .x 2+y 2=7C .x 2+y 2=5D.x 2+y 2=4分析:根据题目中的已知条件,在椭圆上,两条相互垂直的切线可以随意选择,但其交点位于与椭圆同心的圆却是唯一的,也即答案是唯一的.由此,可以通过选取一般问题的特殊情形找到一般的解题思路,不妨利用过椭圆的右顶点和上顶点的两条切线进行解题.解:因为椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,所以1a +1=12,解得a =3.所以椭圆C 的方程为x 24+y 23=1,且椭圆C 的上顶点为A (0,3),右顶点为B (2,0),则椭圆在A ,B 两点的切线方程分别为y =3和x =2,这两条切线的交点坐标为M (2,3).由题意可知,交点M 必在一个与椭圆C 同心的圆上,可得与椭圆C 同心的圆的半径r =22+(3)2=7.所以椭圆C 的蒙日圆方程为x 2+y 2=7.故选:B .以问题的特征为依据,对命题进行转化,将原问题转化为与之相关的㊁容易解决的新问题,这也是解决数学问题常见的转化思路,并且可以通过这种转化逐步培养识别关键信息的能力.2命题的等价转化把题目中已有的条件或者结论进行相应的转化,化难为易,是解决较难问题常用的转化手段.其主要方法包括:数与形的转化㊁正与反的转化㊁常量与变量的转化㊁图形形体及位置的转化等.例2㊀由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,得m 的取值范围是(-ɕ,a ),则实数a 的值是.分析:利用转化思想可以将命题 存在x 0ɪR ,使e |x -1|-m ɤ0 是假命题转化为 对任意x ɪR ,e|x -1|-m >0是真命题,由此得出m <e |x -1|恒成立,进而通过m 的取值范围来求a 的值.解:由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,可知 对任意x ɪR ,e |x -1|-m >0是真命题,由此可得m 的取值范围是(-ɕ,1),而(-ɕ,a )与(-ɕ,1)为同一区间,故a =1.例3㊀若对于任意t ɪ[1,2],函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是.分析:根据函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,可以利用正难则反的转化思想先找出g (x )在(t ,3)上单调的条件,再利用补集思想求出m 的取值范围.852023年12月上半月㊀解题研究㊀㊀㊀㊀解:求得g ᶄ(x )=3x 2+(m +4)x -2.若g (x )在(t ,3)上单调递增,则g ᶄ(x )ȡ0,即3x 2+(m +4)x -2ȡ0,亦即m +4ȡ2x-3x 在x ɪ(t ,3)上恒成立.故m +4ȡ2t-3t 在t ɪ[1,2]上恒成立,则m +4ȡ-1,即m ȡ-5.若g (x )在(t ,3)上单调递减,则g ᶄ(x )ɤ0,即m +4ɤ2x-3x 在x ɪ(t ,3)上恒成立,所以m +4ɤ23-9,即m ɤ-373.综上,符合题意的m 的取值范围为-373<m <-5.根据命题的等价性对题目条件进行明晰化处理是解题常见的思路;对复杂问题采用正难则反的转化思想,更有利于问题得到快速解答.3函数㊁方程㊁不等式之间的转化函数与方程㊁不等式之间有着千丝万缕的关联,通过结合函数y =f (x )图象可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例4㊀若2x -2y<3-x -3-y ,则(㊀㊀).A.l n (y -x +1)>0B .l n (y -x +1)<0C .l n |x -y |>0D.l n |x -y |<0分析:由题意,可将2x -2y<3-x -3-y 转化为2x -3-x <2y-3-y ,进而实现不等式与函数之间的转化,从而解得答案.解:由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .故构造函数y =2x -3-x ,即y =2x -(13)x.由于函数y =2x-(13)x 在R 上单调递增,因此x <y ,即y -x +1>1.所以l n (y -x +1)>l n 1=0.故选择:A .例5㊀已知函数f (x )=e l n x ,g (x )=1ef (x )-(x +1).(e =2.718 )(1)求函数g (x )的最大值;(2)求证:1+12+13+ +1n >l n (n +1)(n ɪN +).分析:第(1)问要求函数g (x )的最大值,关键在于需要运用转化与划归思想,通过g ᶄ(x )得出函数g (x )单调性,即可求出g (x )的最大值.将第(1)问得出的g (x )最大值-2转化成l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立),再利用换元法最终证明出结论.解:(1)由g (x )=1ef (x )-(x +1),即g (x )=l n x -(x +1),得g ᶄ(x )=1x-1(x >0).令g ᶄ(x )>0,则0<x <1;令g ᶄ(x )<0,则x >1.所以,函数g (x )在区间(0,1)上单调递增,在区间(1,+ɕ)上单调递减.故g (x )的最大值为=g (1)=-2.(2)证明:由(1)知x =1是函数g (x )的极大值点,也是最大值点,故g (x )ɤg (1)=-2.所以l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立).令t =x -1,则有t ȡl n (t +1)(t >-1).取t =1n (n ɪN +),则有1n >l n (1+1n)=l n(n +1n ).故1>l n2,12>l n 32,13>l n 43,,1n>l n(n +1n ).上面n 个不等式叠加,得1+12+13+ +1n>l n (2ˑ32ˑ43ˑ ˑn +1n)=l n (n +1).故1+12+13+ +1n >l n (n +1)(n ɪN +).在分析此类题目的过程中,利用函数㊁方程㊁不等式进行转化与化归更有利于问题的解决,因此,利用转化与划归思想不仅能让整个数学知识的体系变得更加紧密,同时也能对学生从系统性角度掌握数学知识之间的联系提供非常大的帮助.转化与化归思想所蕴含的内容丰富且深奥,为高中数学问题的解决提供了多种思路,对高中数学的学习也有极大的指导与启发作用,值得我们不断地探索与研究.因此,在解决高中数学问题的过程中,要灵活运用 转化与化归 的解题思想.有些数学问题看似复杂,但通过分析可知出题者采用的是 障眼法 ,其中有的是多余或无用的条件.同时,在高中数学课堂教学中,教师可以在解题教学过程中渗透转化与化归思想,加强学生在特殊与一般转化㊁命题的等价转化以及函数㊁方程㊁不等式之间的转化等方面的技能,逐步锻炼学生简化题目内容的能力和意识,最大程度提高解题效率.Z95。
专题04 转化与化归思想(解析版)
专题04 转化与化归思想思想方法诠释转化与化归思想:是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.【典例讲解】要点一 特殊与一般的转化[解析] (1)因为非零向量a ,b 满足|a |=|b |=|a +b |,所以不妨设a =(1,0),b =⎝⎛⎭⎫-12,32,则2a -b =⎝⎛⎭⎫52,-32,所以a ·(2a -b )=52,故cos 〈a,2a -b 〉=a ·(2a -b )|a |·|2a -b |=521×7=5714.(2)令a =b =c ,则△ABC 为等边三角形, 且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45.[答案](1)D (2)45化一般为特殊的应用要点把一般问题特殊化,解答选择题、填空题常能起到事半功倍的效果,既准确又迅速.常用的特例有特殊值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等,要注意恰当利用所学知识、恰当选择特殊量.【训练】1.已知点P 是△ABC 所在平面内的一点,边AB 的中点为D ,若PD →=1-λ2P A →+12CB →,其中λ∈R ,则点P 一定在( )A .AB 边所在的直线上 B .BC 边所在的直线上 C .AC 边所在的直线上D .△ABC 的内部[解析] 取λ=1,则2PD →=CB →,因为边AB 的中点为D ,所以P A →+PB →=2PD →,所以P A →+PB →=PB →-PC →,所以P A →=CP →,所以A ,C ,P 三点共线,因此点P 一定在AC 边所在的直线上,故选C.[答案] C【训练】2.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[解析] 不妨令数列{a n }为常数列,则a n =5,故a 2+a 8=10. [答案] 10要点二 函数、方程、不等式间的转化[解析] (1)由题易得f ′(x )=3x 2-12x +4,因为a 3,a 2017是函数f (x )=x 3-6x 2+4x -1的两个不同的极值点,所以a 3,a 2017是方程3x 2-12x +4=0的两个不等实数根,所以a 3+a 2017=4.又数列{a n }为等差数列,所以a 3+a 2017=2a 1010,即a 1010=2,从而log 14 a 1010=log 142=-12,故选B.(2)设|MA |=a >0,因为|OM |=22,|OA |=2,由余弦定理知cos ∠OMA =|OM |2+|MA |2-|OA |22|OM |·|MA |=(22)2+a 2-222×22a =142×⎝⎛⎭⎫4a +a ≥142×24a ×a =22,当且仅当a =2时等号成立,所以∠OMA ≤π4,即∠OMA 的最大值为π4.[答案] (1)B (2)C函数、方程与不等式间的转化策略函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简.本例(1)将函数的极值点转化为导函数的零点,再转化为方程的两个实根.(2)将∠OMA 的最值转化为其三角函数值的最值,这样才能更好地进行运算.一般可将函数的零点与方程的根相互转化,将不等式关系转化为最值(值域)问题,从而求出参变量的范围.【训练】3.(2017·银川二模)若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围为( )A .(-∞,-5)∪(10,+∞)B .[-5,10)C .(-5,10)D .[-5,10][解析] 因为点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,所以(5+m )(-10+m )<0,解得-5<m <10,故选C.[答案] C【训练】4.已知直线l 过点A (2,3)且与x 轴、y 轴的正半轴分别交于M 、N 两点,则当|AM |·|AN |最小时,直线l 的方程为________.[解析] 设∠AMO 为θ,则θ∈⎝⎛⎭⎫0,π2, ∴|AM |=3sin θ,|AN |=2cos θ.∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12.当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. [答案] x +y -5=0 要点三 正与反的转化[解析] (1)原命题的否定为“∀∈R,2x 2+(a -1)x +12>0”,且为真命题,则Δ=(a -1)2-4×2×12<0,解得-1<a <3.(2)若4x 2-ax +1=0在(0,1)内没有实数根,则在x ∈(0,1)内,a ≠4x +1x ,而当x ∈(0,1)时,4x +1x ∈[4,+∞),要使a ≠4x +1x,必有a <4,故满足题设的实数a 的取值范围是[4,+∞).[答案] (1)(-1,3) (2)[4,+∞)正与反的转化要点正与反的转化,体现“正难则反”的原则,先从正面求解,再取正面答案的补集即可.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单.因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.【训练】5.(2017·广东七校联考)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.15B.35C.710D.910[解析] 甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1-1C 35=1-110=910.故选D. [答案] D【训练】6.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] ∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈pD ⇒/ 綈q 等价于p ⇒q ,且qD ⇒/ p .记p :A ={x ||4x -3|≤1}=⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1,q :B ={x |x 2-(2a +1)x +a (a +1)≤0}={x |a ≤x ≤a +1},则A B . 从而⎩⎪⎨⎪⎧a +1≥1,a ≤12,且两个等号不同时成立,解得0≤a ≤12.故所求实数a 的取值范围是⎣⎡⎦⎤0,12. [答案] ⎣⎡⎦⎤0,12要点四 主与次的转化[解析] (1)因为x ∈[-2,2],当x =0时,原式为02-a ·0+1≥0恒成立,此时a ∈R ;当x ∈(0,2]时,原不等式可化为a ≤x 2+1x ,而x 2+1x ≥2xx =2,当且仅当x =1时等号成立,所以a 的取值范围是(-∞,2];当x ∈[-2,0)时,可得a ≥x 2+1x,令f (x )=x 2+1x =x +1x,由函数的单调性可知,f (x )max =f (-1)=-2, 所以a ∈[-2,+∞).综上可知,a 的取值范围是[-2,2].(2)因为a ∈[-2,2],则可把原式看作关于a 的函数, 即g (a )=-xa +x 2+1≥0,由题意可知,⎩⎪⎨⎪⎧g (-2)=x 2+2x +1≥0,g (2)=x 2-2x +1≥0,解之得x ∈R , 所以x 的取值范围是(-∞,+∞). [答案] (1)[-2,2] (2)(-∞,+∞)主与次的转化要点在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看作是“主元”,而把其他变元看作是常量,从而达到减少变元简化运算的目的.通常给出哪个“元”的取值范围就将哪个“元”视为“主元”.【训练】7.(2017·陕西汉中模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2][解析] mx 2+2mx -4<2x 2+4x ,即(m -2)x 2+2(m -2)x -4<0,对任意x 均成立,当m =2时,适合题意;当m <2时,由Δ<0,即4(m -2)2+16(m -2)<0得m >-2.所以-2<m <2.综上所述-2<m ≤2.故选A.[答案] A【训练】8.对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________.[解析] 设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1. [答案] (-∞,-1)∪(3,+∞) 【思想方法总结】转化与化归思想的四项原则1.熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.2.简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3.和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.4.正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.【强化训练】 一、选择题1.函数y =cos 2x -2sin x的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t+1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C2的值为( )A.15B.14C.12D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C 2=1,由tan A =43,得tan A 2=12.∴tan A 2·tan C 2=12·1=12,选C.[答案] C3.P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9[解析] 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心, 由已知|PF 1|-|PF 2|=2×3=6.要使|PM |-|PN |最大,需PM ,PN 分别过F 1、F 2点即可. ∴(|PM |-|PN |)max =(|PF 1|+2)-(|PF 2|-1) =|PF 1|-|PF 2|+3=9.故选D. [答案] D4.函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (1)=0,当x <0时,xf ′(x )+f (x )>0,则使得f (x )<0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)[解析] 设g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x ).∵当x <0时,xf ′(x )+f (x )>0,∴当x <0时,g ′(x )>0,∴函数g (x )=xf (x )在(-∞,0)上为增函数, ∵函数f (x )是奇函数,∴g (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x )=g (x )(x ∈R ),∴函数g (x )在R 上为偶函数, 由f (1)=0,得g (1)=0, 函数g (x )的图象大致如图所示, ∵f (x )<0,∴x ≠0,g (x )x<0,∴⎩⎪⎨⎪⎧ x <0,g (x )>0或⎩⎪⎨⎪⎧x >0,g (x )<0,由函数图象知,-1<x <0或x >1. ∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B. [答案] B5.某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B. [答案] B6.若α、β∈⎣⎡⎦⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎡⎦⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎡⎦⎤0,π2时,f ′(x )≥0, ∴f (x )在⎣⎡⎦⎤0,π2上为增函数,在⎣⎡⎦⎤-π2,0上为减函数. ∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒ α2>β2,故选D. [答案] D 二、填空题7.已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________. [解析] 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1. [答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝⎛⎭⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127. [答案] 1279.如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°,在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +P A 1的最小值为5 2.[答案] 5 2三、解答题10.已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b 2a=-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝⎛⎭⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立. 12.已知函数f (x )=ln x -(x +1).(1)求函数f (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). [解] (1)∵f (x )=ln x -(x +1),∴f ′(x )=1x-1(x >0). 令f ′(x )>0,解得0<x <1;令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点,∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时,则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n , 叠加得1+12+13+ (1)>ln ⎝⎛⎭⎫2·32·43.....n +1n =ln(n +1). 即1+12+13+ (1)>ln(n +1).。
转化与化归思想
第1讲 第4课时 转化与化归思想
[解析] g′(x)=3x2+(m+4)x-2, 若 g(x)在区间(t,3)上总为单调函数, 则①g′(x)≥0 在(t,3)上恒成立, 或②g′(x)≤0 在(t,3)上恒成立. 由①得 3x2+(m+4)x-2≥0, 即 m+4≥2x-3x,当 x∈(t,3)时恒成立, 所以 m+4≥2t -3t 恒成立, 则 m+4≥-1,
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
应用二 函数、方程、不等式之间的转化
1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助函数与方程、不等式进行转化 与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变 量的范围.
第1讲 第4课时 转化与化归思想
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
即 m≥-5; 由②得 3x2+(m+4)x-2≤0, 即 m+4≤2x-3x,当 x∈(t,3)时恒成立, 则 m+4≤23-9, 即 m≤-337. 所以函数 g(x)在区间(t,3)上总不为单调函数的 m 的取值范围为-337,-5.
第1讲 第4课时 转化与化归思想
首页 ] 若对于任意 t∈[1,2],函数 g(x)=x3+m2 +2x2-2x 在区间(t,3)上总不为单调函数,则 实数 m 的取值范围是________.
第1讲 第4课时 转化与化归思想
首页 上页 下页 末页
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
[解析] 因为当 t∈[-1,+∞)且 x∈[1,m]时,x+t≥0, 所以 f(x+t)≤3ex⇔ex+t≤ex⇔t≤1+ln x-x. 所以原命题等价转化为:存在实数 t∈[-1,+∞),使得不等式 t≤1+ln x-x 对任意 x∈[1,m]恒成立. 令 h(x)=1+ln x-x(x≥1). 因为 h′(x)=1x-1≤0, 所以函数 h(x)在[1,+∞)上为减函数, 又因为 x∈[1,m],所以 h(x)min=h(m)=1+ln m-m.
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
转化与化归思想
转化与化归思想转化与化归的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法。
转化与化归的基本类型:(1)正与反、一般与特殊的转化,即正难则反、特殊化原则。
(2)常量与变量的转化,即在处理多元问题时,选取其中的常量(或参数)当“主元”,其它的变量看作常量。
(3)数与形的转化,即利用对数量关系的讨论来研究图形性质,也可利用图形直观提供思路,直接的反应函数或方程中变量之间的关系。
(4)数学各分支之间的转化,如利用向量法解立体几何问题,用解析几何方法处理平面几何、代数、三角问题等。
(5)相等与不等之间的转化。
(6)实际问题与数学模型的转化。
[例1]对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x0);②若x1 D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去。
现定义f(x)=(1)若输入x0= ,则由数列发生器产生数列{xn},请写出{xn}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;(3)若输入x0时,产生的无穷数列{xn},满足对任意正整数n均有xn4,x3=f(x2)x1且1xn(n∈N*)综上所述,x1∈(1,2)由x1=f(x0),得x0∈(1,2)。
[例2]设动直线x=m与函数f(x)=x3,g(x)=lnx的图像分别交于点M,N,则MN的最小值为()A. (1+ln3)B. ln3C. (1-ln3)D.ln3-1解析:如图,MN=x3-lnx,令h(x)=x3-lnx,则h(x)=3x3- = ,令h(x)=0,解得x= ,當0 时,h(x)>0,h(x)单调递增;所以当x= 时,h(x)取最小值,即MN=h(x)=h 。
转化与化归思想方法
转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.1.转化与化归的原则1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决.2简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3直观化原则:将比较抽象的问题化为比较直观的问题来解决.4正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解.2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.常见的转化方法有:1直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3数形结合法:研究原问题中数量关系解析式与空间形式图形关系,通过互相变换获得转化途径.4等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.5特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化,这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现.新的教学体制的出现,化归与转化的思想将是贯穿整个中学教学的一种主要的思想,所以在教学过程中要把这种思想溶入进去,让学生体会个中的精髓.关健词化归;转化;分析;联想1.化归与转化解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题相对来说,对自己较熟悉的问题,通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.化归与转化思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题.从而求得原问题的解决.它的基本形式有:化未知为已知,化难为易,化繁为简,化曲为直等等.化归与转化的思想也不是随时能用,或随便用的,它需要遵循一定的原则,从而达到转化的正确性,实现这种思想的作用.下面我就来谈谈我对这种方法的理解.2.化归与转化的原则化归与转化思想的实质是揭示联系,实现转化.转化有等价转化和非等价转化,等价转化的作用就不用说,而不等价转换,如果没明确的附加条件,那就失去它的价值了.所以化归与转化就需要遵循一定的原则:2.1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决.除了及少数的原始知识外,整个中学的数学知识的学习就是在实现转化为旧的知识而得到的.例如:学二元一次方程就用化元法转化为一元一次方程;学一元二次方程用降幂法转化为一元一次方程;函数与方程之间的转化等等.2.2简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.这个原则大部分学生都知道,他们都会想把问题简单化,达到求解的过程.这个原则可以在无以记数的数学简便方法中体现出来.2.3和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律.也就是说整个转化的过程中,要符合思维规律,虽然思维可以多样化,可以无以为边的想象,但也要能被人接受并能理解.体现出现在国家倡导的和谐社会.2.4直观化原则:将比较抽象的问题转化为比较直观的问题来解决.这个主要在函数与图象的联系中体现出来.把某些枯燥乏味的代数问题转化为图形来解决,能直观的解决问题.2.5正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.反证法的应用把这个原则表现的淋漓尽致,学生能理解到其中的精髓可是可以受用无穷的,包括在生活中的应用.2.6 现实化原则:所学所用所理解的道理要用于社会实践,同时要满足社会人才的需求.3.化归与转化的方法化归与转化的方法,在千变万化的题目中,方法也各不相同,也无以统计,这里就只讲解几中常用,学生也容易理解的.3.1 直接转化法:直接把新的知识转化为前续知识.这个在讲解新课的时候,尽量让学生去体会,让他们能自己解决新的问题,获取新的知识,接着把新的知识吸收,继续解决新的问题.3.2 构造法:这个是个重要的方法,有不少题目,不能直接解决和转化,缺少了媒介,让不少学生无从下手,这时就需要构造一个数学情境,建立一个数学模型,把问题溶入进去,使问题简单化,直观化,从而达到求解的过程.3.3 数与形的转化:这个主要用于函数问题的解答和某些图型中的某些量的关系.数形结合是数学学习的一种重要的思想.3.4 换元法:这个重要是把一些繁杂的,但又有重复性的题目简单化,更直观.这个主要用于方程的解答.3.5 相等与不相等之间的转化:这个主要用与不等式的证明和函数区间.3.6 实际问题与数学理论的转化:理论联系实际的一种方法.也是学生情感方面的培养.3.7 特殊与一般之间的转化:公式法解一元二次方程就是把特殊的一般化了.同时也可以说把具体的抽象化了.3.8 数学各分支之间的转化:数学本来就是一个连贯的整体,把各分支有机的联系起来,让人感到它的魄力.同时也能解决数学以外的我问题.5 总结提炼数学新课标要求学生不仅要学会知识,还要能用所学的知识解决新问题,并能总结归纳,化为新的知识并接受,这样才能满足社会人才的需求.化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.懂得化归和转化的基本方向是简单化、熟悉化、和谐化.化归和转化需要广泛和灵活的联想,联想的基础是扎实的基础知识、基本技能和基本方法.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题.。
转化与化归思想
转化与化归思想转化与化归思想转化与化归思想是中学数学中四种重要的数学思想之一,它是在处理问题时,把那些待解决的问题,通过某种转化过程,归结为一类已经解决或比较容易解决的问题,最终求得原问题,是一种把未知问题转化为熟知可解问题的一种重要的思想方法。
高中阶段,几乎每一个题目都要用到这一思想方法,而重视对化归与转化思想的考查,已是高考数学命题多年来所坚持的方向,并以各种不同的层次融入试题中,通过对转化与化归思想方法的运用,对考生的数学能力进行区分。
常见的转化方法:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题。
(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。
(3)数形结合法:研究原问题中的数量关系(解析式)与空间形式(图形)关系,通过互相变换,获得转化途径。
(4)参数法:引进参数,使原问题的变换具有灵活性,易于转化。
(5)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题。
(6)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径。
(7)类比法:运用类比推理,猜测问题的结论,确定转化途径。
(8)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题。
(9)一般化方法:若原问题是某个一般化形式问题的特殊形式且又较难解决,可将问题通过一般化的途径进行转化。
(10)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的。
(11)补集法:如果正面解决原问题有困难,可把原问题的结果类比集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集C U A使原问题获得解决。
以上所列的一些方法是互相交叉的,不能截然分割。
一、等与不等的相互转化等与不等是数学中两个重要的关系,也是常见的两种关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
转化与化归的数学思想
转化与化归的数学思想一、转化与化归思想的含义化归指的是转化与归结.简单的化归思想就是把不熟悉的问题转化成熟悉问题的数学思想.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的这种解决问题的思想,称为化归思想.化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程.数学中的转化比比皆是,比如将未知向已知转化;复杂问题向简单问题转化;命题间的转化;数与形的转化;空间向平面的转化;高次向低次的转化;多元向少元的转化;无限向有限的转化等都是化归思想的体现.化归思维模式:问题→新问题→解决新问题→解决原问题.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、化归思想的解题途径1、一般与特殊的转化21(0)11,2.243y ax a F P Q PF FQ p q p q A a B a C a D a =>+例 过抛物线的焦点作一直线与抛物线交于、两点,若线段、的长分别为、则的值为( )2.具体与抽象的转化.把抽象问题具体化是在数学解题中常有的化归途径,它是对抽象问题的理解和再认识,在抽象.例2、设函数 的定义域为D ,若所有点 构成一个正方形区域,则a 的值为A .-2B .-4C .-8D .不能确定3. 正面与反面的转化在处理某一问题时,按习惯思维从正面思考比较困难,这时用逆向思维的方式从反面去考虑,往往使问题变得比较简单。
思想方法 第4讲 转化与化归思想
思想方法第4讲转化与化归思想 思想概述转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1(1)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7C .x 2+y 2=5D .x 2+y 2=4________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________(2)在平行四边形ABCD 中,|AB →|=12,|AD →|=8,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM→等于( )A .20B .15C .36D .6________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法一般问题特殊化,使问题处理变得直接、简单;特殊问题一般化,可以把握问题的一般规律,使我们达到成批处理问题的效果.对于客观题,当题设条件提供的信息在普通条件下都成立或暗示答案是一个定值时,可以把题中变化的量用特殊值代替,可以快捷地得到答案.方法二命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2(1)(2022·济南模拟)若“∃x∈(0,π),sin 2x-k sin x<0”为假命题,则k的取值范围为() A.(-∞,-2] B.(-∞,2]C.(-∞,-2) D.(-∞,2)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)已知在三棱锥P-ABC中,P A=BC=234,PB=AC=10,PC=AB=241,则三棱锥P -ABC的体积为()A.40 B.80C.160 D.240________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y=f(x)的图象性质可以确定方程f(x)=0,不等式f (x )>0和f (x )<0的解集.例3已知f (x )=ln x -x 4+34x,g (x )=-x 2-2ax +4,若对∀x 1∈(0,2],∃x 2∈[1,2],使得f (x 1)≥g (x 2)成立,则a 的取值范围是____________.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 例4已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1). (1)求函数g (x )的极大值;________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 规律方法借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六大数学思想之四:转化与化归1.什么是转化与化归?转化与化归思想方法是解决数学问题的一种重要思想方法,转化与化归思想贯穿于整个数学中,掌握这一思想方法,学会用化归与转化的思想方法分析问题、处理问题有着十分重要意义。
化归与转化是通过某种转化过程,把待解决的问题或未知解的问题转化到在已有知识范围内可解的问题或者容易解决的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
2. 转化与化归的主要方式:1、等价转化,2、空间图形问题转化为平面图形问题,3、局部与整体的相互转化,4、特殊与一般的转化,5、非等价转化,6、换元、代换等转化方法的运用,7、正与反的转化,8、数与形的转化,9、相等与不等的转化,10、常量与变量的转化、11、实际问题与数学语言的转化等.3.转化与化归思想的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.题型一正难则反的转化:Esp1:已知集合A={x∈R|x2-4mx+2m+6=0},B={x∈R|x<0},若A∩B≠∅,求实数m的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.Esp2: 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝ ⎛⎭⎪⎫-373,-5解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t,3)上恒成立,所以m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化:解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.Esp3: 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x-1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n(n ∈N *)时,则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).Esp4: 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0.即e x-x2+2ax-1>0,故e x>x2-2ax+1.题型三主与次的转化:合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x及a,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量。
Esp5:已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫-23,1解析 由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0, ∴⎩⎨⎧φ,φ-,即⎩⎨⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0.Esp6: 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________. 答案 (-∞,-1]∪[0,+∞) 解析 ∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].(*) (*)式可化为(x -1)a +x 2+1≥0 对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1. 则⎩⎨⎧g -=x 2-x +2≥0,g=x 2+x ≥0,解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞).题型四 以换元为手段的转化与化归:换元有整体代换、特值代换、三角换元等情况.Esp7:是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,请说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t , 则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1.当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去); 当0≤a 2≤1,即0≤a ≤2时,则t =a2时函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去), 综上所述,存在实数a =32,使得函数在闭区间[0,π2]上有最大值1.Esp8:若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝ ⎛⎭⎪⎫t +4t ,∵t >0,∴-⎝⎛⎭⎪⎫t +4t ≤-4,∴a ≤-8,即实数a 的取值范围是(-∞,-8]。