基于PLC的恒压供水系统课程设计

合集下载

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计随着科技的发展和社会的进步,人们对水资源的利用和管理越来越重视。

恒压供水系统是一种能够在不同用水量下保持供水压力稳定的系统,广泛应用于工业、农业和民用领域。

本文将介绍基于PLC的恒压供水系统的设计,通过PLC控制系统实现对供水系统的智能控制和优化运行。

恒压供水系统是通过控制水泵的运行来维持供水管网中的压力稳定,当用户用水量变化时,系统能够自动调节水泵的运行状态,以保持供水压力在设定范围内。

恒压供水系统一般由水泵、压力传感器、PLC控制系统等组成。

当供水管网中的压力低于设定值时,PLC 控制系统将启动水泵,当压力达到设定值时,控制系统将停止水泵的运行。

1. 系统传感器的选择恒压供水系统中需要使用压力传感器来检测供水管网中的压力情况,传感器的选择直接影响到系统的准确性和稳定性。

一般情况下,可以选择高精度的压力传感器,通过其测量得到的压力信号输入PLC控制系统,以便系统根据压力变化进行自动调节。

2. PLC控制系统的设计PLC(Programmable Logic Controller)是一种用于工业控制的可编程逻辑控制器,具有良好的稳定性和灵活性,适用于恒压供水系统的设计。

设计PLC控制系统时,首先需要明确系统的控制逻辑和运行流程,然后编写相应的控制程序并进行调试。

3. 水泵的选型和布置恒压供水系统中的水泵是系统的核心部件,其选型和布置直接影响系统的运行效果。

在选型时,需要考虑供水管网的水质、用水量、管网布局等因素,以确保水泵能够满足系统的要求。

水泵的布置也需要符合水力平衡原则,确保供水管网的水流畅通。

恒压供水系统中的水泵一般是多台联动运行的,通过PLC控制系统实现水泵的智能联动是设计的重点。

在控制系统中,需要考虑水泵的启停逻辑、联动方式、切换条件等,以便系统能够根据实际压力需求进行自动调节。

5. 系统的远程监控和报警设计恒压供水系统在运行过程中需要进行实时监控和故障报警,以确保系统的安全可靠运行。

基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。

PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。

下面将介绍一个基于PLC变频恒压供水控制系统的设计。

设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。

2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。

3.实现故障自动检测和报警,提高供水系统的可靠性。

系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。

2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。

3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。

4.水泵:使用多台水泵来实现供水。

系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。

2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。

3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。

当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。

4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。

系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。

2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。

3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。

总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计【摘要】本文主要介绍了基于PLC的恒压供水系统的设计。

引言部分包括引言概述、研究背景和研究意义。

在着重讨论了PLC在恒压供水系统中的应用、系统架构设计、控制策略设计、硬件设计和软件设计。

结论部分主要对设计方案进行优劣比较,并展望未来的发展方向,最后总结全文。

通过对恒压供水系统的设计,可以实现水压稳定,提高供水系统的效率和节约能源成本。

这种基于PLC的设计方案在实际工程中有着广阔的应用前景,有助于提高供水系统的自动化程度,提供更好的供水服务。

【关键词】PLC、恒压供水系统、系统架构、控制策略、硬件设计、软件设计、设计方案优劣比较、未来展望、总结、研究背景、研究意义、引言概述。

1. 引言1.1 引言概述恒压供水系统是一种通过控制水泵的运行来保持管网中恒定的水压的系统。

随着城市化进程的加快和生活水平的提高,恒压供水系统在城市生活中的应用越来越广泛,成为现代城市水务管理中的重要组成部分。

基于PLC的恒压供水系统利用PLC作为控制核心,能够实现自动控制、参数调节、故障检测等功能,可以提高系统的稳定性和可靠性。

本文旨在探讨基于PLC的恒压供水系统的设计和应用。

将介绍PLC在恒压供水系统中的应用,包括PLC的特点、优势以及在恒压供水系统中的具体作用。

然后,将详细介绍系统架构设计,包括系统的组成部分、连接方式以及工作原理。

接着,将探讨控制策略设计,包括系统的控制逻辑、参数调节方法等方面。

还将介绍硬件设计和软件设计,包括控制器的选型、传感器的选择以及编程软件的使用方法等。

通过本文的研究,可以更好地了解基于PLC的恒压供水系统的设计原理和应用方法,为实际工程项目的实施提供有力的技术支持。

1.2 研究背景恒压供水系统是一种在水泵工作中保持水压恒定的系统,能够满足用户对水压稳定的需求,提高供水系统的运行效率和水质管理。

随着现代化社会的发展和城市建设的不断推进,对水资源的需求日益增加,传统的水泵控制系统已经无法满足实际需求。

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、概述供水系统的重要性及其在现代社会中的应用:供水系统在现代社会中具有至关重要的地位。

随着城市化进程的加速和人口规模的不断扩大,稳定、高效、节能的供水系统已成为满足居民生活需求、保障工业生产和推动城市可持续发展的重要基础设施。

变频恒压供水系统的优势:变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。

相比传统的水塔、高位水箱、气压罐等供水方式,变频恒压供水系统具有以下优势:高效节能:变频恒压供水系统能根据用水量自动调节水泵转速,节能效果显著,可节能3060。

PLC在变频恒压供水系统中的应用:PLC(可编程逻辑控制器)在变频恒压供水系统中的应用,使得系统能够通过微机检测、运算,自动改变水泵转速以保持水压恒定,满足用水需求。

PLC的应用不仅提高了系统的可靠性和稳定性,还简化了系统控制接线,方便了维修和调试。

系统原理:变频恒压供水系统以管网水压(或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节(PID),使供水系统自动恒稳于设定的压力值。

设备特点:变频恒压供水系统采用可编程控制器,程序灵活多变,精度高,可靠性强,功能多,反映速度快。

系统还配有稳压泵或稳压罐稳压,在用水量小到一定值时,主泵可停止运转,减少水泵电机的机械磨损并且节约电能。

应用前景:变频恒压供水系统作为一种先进的、合理的节能供水系统,在工业、商业和居民生活等领域具有广泛的应用前景。

它不仅能够满足用户对水压和水量的要求,还能够提高供水品质和供水效率,是一种理想的现代化建筑供水设备。

1. 供水系统的重要性和挑战供水系统在城市发展中扮演着至关重要的角色,它直接关系到居民的生活质量和健康。

一个可靠的供水系统能够确保居民获得充足、安全的饮用水,同时支持城市的工业、农业和其他用水需求。

保障居民健康:水质的好坏直接关系到居民的健康。

供水系统需要确保提供的水质符合卫生标准,以减少水源性疾病的传播。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。

恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。

其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。

本文将详细介绍基于PLC恒压变频供水系统的设计与实现。

二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。

其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。

2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。

此外,还需要具有与其他设备通信的能力。

在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。

3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。

供水泵站则负责实际的供水任务。

在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。

三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。

在选型过程中,应充分考虑设备的性能、价格、维护等因素。

安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。

2. 软件实现软件部分主要包括PLC程序的编写和调试。

在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。

在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。

四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。

测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。

如果发现问题,应及时进行排查和修复。

2. 系统运行经过测试后,系统可以正式投入运行。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。

随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。

在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。

而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。

恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。

基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。

研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。

1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。

传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。

对于基于PLC的恒压供水系统的研究具有重要的意义。

通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。

本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。

1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。

通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。

通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。

通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。

恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。

本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。

二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。

其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。

三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。

当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。

此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。

四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。

2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。

3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。

4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。

5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。

五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。

2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。

3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。

恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。

本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。

同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。

三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。

其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。

四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。

2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。

3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。

4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。

五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。

2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。

3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。

4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。

六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。

2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种实现供水自动控制和恒定水压的系统,其中PLC(可编程逻辑控制器)是系统的核心控制设备。

本文将介绍基于PLC的恒压供水系统的设计。

需要明确恒压供水系统的工作原理。

恒压供水系统通过感应水压信号,实时检测并调节水泵的运行状态,以保持恒定的水压。

当水压下降时,PLC将接收到水压信号,并根据预设的控制逻辑,自动启停水泵。

当水压恢复到设定的压力范围内时,PLC会停止水泵的运行。

1. 系统布局设计:首先需要对供水系统的布局进行设计。

包括水泵的位置安排、水源与供水管道的连接方式等。

通过合理的布局设计,可以确保供水系统的稳定运行。

2. PLC选型和安装:根据实际需求选择合适的PLC设备,并进行安装。

选型时需要考虑PLC的输入输出点数量,通信接口等因素。

安装时需要按照PLC的安装手册进行操作,确保PLC设备的正常运行。

3. 传感器的选择和安装:恒压供水系统的关键是实时检测水压信号。

需要选择合适的传感器来感应水压信号,并将信号输入到PLC中。

一般可以选择压力传感器或液位传感器作为水压信号的检测装置。

安装传感器时需要遵循传感器的安装手册,确保传感器的准确度和可靠性。

4. PLC程序编写:根据系统需求,编写PLC程序。

程序的编写需要根据实际情况设置水压的设定值、水泵的启停逻辑等控制策略。

编写完程序后,需要进行PLC程序的调试和测试,确保程序的正确性和稳定性。

5. 系统调试和优化:系统调试是确保恒压供水系统正常运行的关键步骤。

调试过程中需要检查各个设备的连接情况、信号传输的准确性等。

同时还需要对恒压供水系统进行性能优化,例如设置合理的启停控制逻辑,调整设定的水压范围等,以提高供水系统的稳定性和节能效果。

6. 系统运行和维护:系统调试完成后,可以正式启动恒压供水系统的运行。

在系统运行过程中,需要定期检查和维护系统设备,保持设备的正常运行。

同时也需要注意系统的安全性,定期检查阀门、电气连接等,确保供水系统的安全运行。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计随着工业技术的不断发展,PLC(可编程逻辑控制器)在自动化领域中发挥着越来越重要的作用。

PLC可以实现逻辑控制、运算处理、故障诊断、通信联网等功能,因此在工业生产中广泛应用。

在工业生产中,恒压供水系统是一种重要的自动化系统,它能够保证供水系统在不同负荷条件下稳定供水,提高了供水系统的效率和可靠性。

本文将介绍一种基于PLC的恒压供水系统的设计方案。

一、恒压供水系统的结构和工作原理1. 结构恒压供水系统通常由水泵、水箱、变频器、传感器、PLC控制系统、阀门等组成。

其中水泵负责将水送入水箱,变频器负责控制水泵的转速,传感器用于监测系统的压力、液位等参数,PLC控制系统负责根据传感器的反馈信号来对水泵进行控制,以保持系统的恒压供水。

2. 工作原理恒压供水系统的工作原理主要是通过PLC不断地监测系统的压力变化,当系统压力低于设定值时,PLC控制系统会通过变频器提高水泵的转速,增加供水量;当系统压力高于设定值时,PLC控制系统会通过变频器降低水泵的转速,减少供水量,以达到恒压供水的目的。

1. 水泵选择在恒压供水系统设计中,水泵的选择非常重要。

一般选用离心泵,因为它具有流量大、压力稳定等特点,适合恒压供水系统的要求。

2. 传感器选择恒压供水系统需要具有对压力和液位的监测功能,因此需要选择适合的传感器。

一般选用压力传感器和液位传感器,它们能够准确地监测到系统的压力和液位变化,并将这些信息传输给PLC控制系统。

3. PLC选择PLC控制系统是恒压供水系统的“大脑”,需要选择性能稳定、可靠性高的PLC。

一般选用国内外知名品牌的PLC产品,如西门子、施耐德等。

变频器作为恒压供水系统中控制水泵转速的关键设备,需要选择具有可调节范围广、响应速度快等优点的产品。

同样,一般选用国内外知名品牌的变频器产品。

5. 恒压控制算法设计在PLC控制系统中,需要设计恒压控制算法,通过对系统压力和液位的监测,不断地调节水泵的转速来实现恒压供水。

【大学本科毕业设计】基于PLC的变频调速恒压供水系统-----自动化等专业3

【大学本科毕业设计】基于PLC的变频调速恒压供水系统-----自动化等专业3

摘要本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统,并利用组态软件开发良好的运行管理界面。

变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。

本系统包含三台水泵电机,它们组成变频循环运行方式。

采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。

压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。

关键词:变频调速,恒压供水,PLC,组态软1 绪论1.1 课题的提出水和电是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。

小区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。

传统的小区供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下[1]:(1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。

(2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,而出水压力无谓的增高,也使浪费加大,从而限制了其发展。

基于PLC变频恒压供水系统设计

基于PLC变频恒压供水系统设计

目录第一章课题概述第一节变频恒压供水概论第二节变频恒压供水旳应用第三节变频恒压供水旳现实状况及发展第二章变频恒压供水系统旳基本构成和工作原理第一节变频恒压供水系统旳构成第二节变频恒压供水系统旳工作原理第三节变频恒压供水系统各元件旳选择第三章PLC旳选择及作用第一节PLC旳概述第二节PLC旳应用及选型第四章基于PLC旳变频恒压供水系统设计第一节系统规定第二节控制系统旳I/O及地址分派第三节系统外围接线图第四节电气控制系统原理第五节 PLC程序设计第五章结束语及感想道谢参照文献第一章课题概述第一节变频恒压供水概论对于大多数采用供水企业来说,老式供水机泵存在平常运行费用太高,供水成本居高不下,单位供水旳能耗偏大旳问题,寻求供水与能耗之间旳最佳性价比,是困扰企业旳一种长期问题。

目前各供水厂旳供水机泵设计按最大扬程与最大流量这一最不利条件设计,水泵大多数时间在设计效率如下运行。

导致电动机与水泵之间常常出现大马拉小车问题。

因此,怎样处理供水与能耗之间旳不平衡,寻求提高供水效率旳整体处理方案,是各供水企业关怀旳焦点问题之一。

伴随社会经济旳迅速发展,人们对供水质量和供水系统旳可靠性规定不停提高。

衡量供水质量旳重要原则之一是供水压力与否恒定,由于水压恒定于某些工业或特殊顾客是非常重要旳,如当发生火警时,若供水压力局限性或无水供应,不能迅速灭火,会导致更大旳经济损失或人员伤亡。

不过顾客用水量是常常变动旳,因此用水和供水之间旳不平衡旳现象时有发生,并且集中反应在供水旳压力上:用水多而供水少,则供水压力低;用水少而供水多,则供水压力大。

保持管网旳水压恒定供水,可使供水和用水之间保持平衡,不仅提高了供水旳产量和质量,也保证了供水生产以及电机运行旳安全可靠性。

变频恒压供水系统能合用于生活用水场所旳供水规定,该系统具有如下特点:(1)供水系统旳控制对象是顾客管网旳水压,它是一种过程控制量,同其他某些过程控制量(如:温度、流量、浓度等)同样,对控制作用旳响应具有滞后性。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。

恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。

本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。

包括供水范围、水压要求、水泵数量及功率等。

同时,还需考虑系统的稳定性、可维护性及节能性等因素。

2. 硬件设计硬件设计是恒压变频供水系统的基础。

主要包括PLC控制器、变频器、水泵、压力传感器等设备。

其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。

3. 软件设计软件设计是实现恒压变频供水系统的关键。

通过PLC编程,实现对水泵的转速、输出及水压的精确控制。

同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。

三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。

通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。

在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。

2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。

确保各设备之间能够正常通信,并实现精确的控制与协调。

3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。

人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。

四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。

确保系统能够满足实际需求。

2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。

优化过程中,需充分考虑系统的实际运行情况及外界环境因素。

基于PLC控制的双恒压无塔供水系统设计

基于PLC控制的双恒压无塔供水系统设计

基于PLC控制的双恒压无塔供水系统设计1.系统概述双恒压无塔供水系统是一种集PLC控制技术、传感器技术和水泵技术于一体的现代供水系统。

该系统通过PLC控制水泵的运行,实现恒压供水。

其主要特点是操作简便,自动化程度高,可靠性强。

2.系统结构该系统由PLC控制器、传感器、水泵和压力感应器组成。

2.1PLC控制器PLC控制器是整个系统的核心,用于控制和调节水泵的运行。

PLC控制器接收传感器检测到的压力信号,根据设定的参数判断是否需要开启水泵,并根据实际的压力情况控制水泵的运行频率和时间。

2.2传感器压力传感器用于检测水压,它将水压信号转换为电信号,并发送到PLC控制器。

PLC控制器根据传感器检测到的压力信号进行判断和控制。

2.3水泵水泵用于将水送入供水系统。

水泵的运行与停止由PLC控制器根据传感器检测到的压力进行控制。

当水压低于设定值时,PLC控制器将启动水泵,提供足够的水压。

当水压高于设定值时,PLC控制器将停止水泵的运行。

2.4压力感应器压力感应器用于感应水泵出口的压力,它将压力信号发送到PLC控制器。

通过接收到的压力信号,PLC控制器可以实时检测供水系统的压力情况,根据设定的压力参数进行控制和调节。

3.系统工作原理当供水系统启动时,PLC控制器开始工作。

它不断接收传感器发送的压力信号,并与设定的压力参数进行比较。

如果当前水压低于设定值,PLC控制器将开启水泵,水泵开始供水。

当水压达到设定值时,PLC控制器将关闭水泵,停止供水。

在水泵运行过程中,PLC控制器会不断地根据传感器发送的压力信号进行调节。

如果水压过高,PLC控制器将减少水泵的运行频率和时间,以减小供水量。

如果水压过低,PLC控制器将增加水泵的运行频率和时间,以提供更多的水压。

通过不断地调节水泵的运行,系统可以实现恒压供水。

在实际应用中,系统还可以增加人机界面,方便操作人员进行参数的设定和监控。

4.系统优势4.1操作简便:整个系统通过PLC控制器实现自动化操作,只需要简单的参数设定即可实现恒压供水,操作方便快捷。

plc课程设计恒压供水

plc课程设计恒压供水

plc课程设计恒压供水一、教学目标本节课的教学目标是使学生掌握PLC在恒压供水系统中的应用。

通过本节课的学习,学生需要达到以下三个目标:1.知识目标:学生需要了解恒压供水系统的基本原理和组成,掌握PLC的工作原理和编程方法,理解PLC在恒压供水系统中的应用和优势。

2.技能目标:学生能够运用PLC编程软件编写简单的恒压供水系统控制程序,并能对程序进行调试和优化。

3.情感态度价值观目标:通过本节课的学习,学生能够认识到PLC在工业自动化中的重要地位,培养学生的创新意识和团队合作精神。

二、教学内容本节课的教学内容主要包括以下四个部分:1.恒压供水系统的基本原理和组成:介绍恒压供水系统的工作原理,主要包括水泵、变频器、传感器等组成部分。

2.PLC的工作原理和编程方法:讲解PLC的基本工作原理,包括硬件结构和软件编程。

3.PLC在恒压供水系统中的应用:介绍PLC在恒压供水系统中的具体应用,包括控制策略和程序设计。

4.案例分析:分析具体的恒压供水系统案例,使学生能够更好地理解和掌握PLC在实际工程中的应用。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:通过讲解恒压供水系统的基本原理和PLC的工作原理,使学生掌握相关理论知识。

2.案例分析法:通过分析具体的恒压供水系统案例,使学生能够将理论知识与实际应用相结合。

3.实验法:安排实验室实践环节,使学生在实际操作中掌握PLC编程和调试技能。

4.小组讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《PLC技术与应用》作为主教材,辅助以相关参考书籍。

2.多媒体资料:制作PPT课件,展示恒压供水系统和PLC的相关图片和视频。

3.实验设备:准备PLC实验装置和恒压供水系统实验装置,供学生进行实验操作。

4.网络资源:利用网络资源,为学生提供更多的学习资料和案例分析。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计一、引言恒压供水系统是现代城市生活中常见的设备,它能够保持水压稳定,满足不同用水设备对水压的需求。

而PLC(可编程逻辑控制器)作为现代自动化控制系统的核心,具有高精度、稳定性强等特点,已广泛应用于各个领域。

本文将通过PLC对恒压供水系统的设计,实现对水泵运行、压力控制等参数的精确控制,从而提高供水系统的性能和稳定性。

1. 恒压供水系统的工作原理恒压供水系统主要由水泵、压力传感器、PLC控制器和阀控制器等组成。

当用户开启水龙头用水时,压力传感器感知到水压下降,PLC则会启动水泵进行供水,当水压升高到设定值时,PLC会控制关闭水泵。

这样就能够保持系统内的水压稳定,满足用户的需求。

2. PLC控制原理PLC作为恒压供水系统的核心控制器,负责监测水压、控制水泵启停等功能。

其控制原理主要包括四个步骤:(1)采集数据:通过压力传感器等传感器采集系统中的各项参数,比如水压、水流量等。

(2)数据处理:PLC将采集到的数据进行处理和分析,根据设定的逻辑规则进行判断和运算。

(3)控制执行:根据处理后的数据结果,PLC控制执行相应的操作,比如启停水泵、调整阀门开度等。

(4)监测反馈:PLC实时监测系统运行状态,并接收执行结果的反馈信息,保证供水系统的稳定运行。

1. 系统参数设定需要根据实际需要设定恒压供水系统的各项参数,比如供水压力、水泵启停设定值、阀门开度等。

根据系统参数的设定,编写相应的PLC控制程序,实现对水泵运行、压力控制等功能的自动化控制。

3. PLC硬件布置与连线根据控制程序的需求,布置PLC控制器及相关IO模块,进行连线连接,确保PLC与系统中的各个传感器、执行器等设备能够正常通讯。

4. 调试与运行对编写好的PLC控制程序进行调试,检查系统各部分设备的运行状态,确保系统能够按照设定的参数稳定运行。

1. 精确控制:PLC具有较高的精度和稳定性,能够实现对恒压供水系统的精确控制。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计一、系统概述恒压供水系统是一种保持供水压力恒定的供水系统,并且可以根据水压的变化自动调整水泵的转速以维持恒定的水压。

本文设计的系统采用了PLC控制系统作为控制核心,通过检测压力传感器反馈的水压信号,然后根据设定的压力值来控制水泵的转速。

本系统的优点是具有压力恒定、节能、便于维护、易于操作等特点。

二、系统硬件设计本系统硬件设计包括水泵、压力传感器、PLC控制器、电源和电线等。

1、水泵:采用变频水泵,可以根据PLC发送的调节水泵转速的信号来控制水泵的转速,保持水压恒定。

2、压力传感器:传感器采用,具有高精度、高可靠性、长使用寿命等特点,通过监测水管中的水压,并将反馈的水压信号发送到PLC控制器。

3、PLC控制器:本系统采用网口式PLC,具有高性能、可靠性高、扩展功能强等特点,定时读取压力传感器反馈的水压信息,并与事先设定的压力值对比,然后根据变频器的功率输出,输出控制信号来实现对水泵的转速的调节。

4、电源:恒压供水系统的电源使用交流电源,电源频率为50Hz,可供给水泵、PLC控制器和压力传感器等设备使用。

三、系统流程控制PLC控制系统根据实际情况,设计了以下控制流程:1、水泵启动时间控制:与恒压供水系统反应快慢的一个重要原因,是水泵的启动时间,如果水泵启动时间过长,则水压下降会比较明显,影响水的正常使用。

系统中启动时间的控制使用定时器软件实现。

2、水泵流量控制:PLC根据监测到的水压信号和设定的压力值,来计算出流量,根据流量来控制水泵的转速,以保持压力稳定。

3、故障报警:当系统出现故障时,PLC控制器会自动停机,并发出故障报警信号,提示用户需要检查系统是否存在故障。

四、系统总结恒压供水系统基于PLC的设计,具有结构简单、自动化控制、操作方便等优点,能够自动控制恒压供水系统的水压,达到节能、节约水资源的目的。

由于PLC控制器具有高性能、可靠性高、控制精度高等优点,可以实现对系统的全面监控和排错,使系统稳定性和可靠性提高。

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计变频调速恒压供水系统第一章绪论1.1变频恒压供水产生的背景和意义1.2国内外研究现状1.3 发展趋势1.4变频恒压供水优势第二章方案拟定2.1任务要求2.2 恒压供水系统简介2.3变频恒压供水控制方式的选择2.4变频构成恒压供水及工作原理第三章电路设计3.1主电路设计3.2控制电路设计第四章器件的选型及介绍4.1 可编程控制器选择4.1.2 PLC的特点4.1.3 PLC的选型4.2 变频器4.2.1 变频器的构成4.2.2 变频器的选型4.3 PID调节器4.4 压力传感器第五章 PLC与变频器的链接5.1 利用PLC的模拟量输出模块控制变频器5.2 利用PLC的开关量输入/输出模块控制变频器5.3PLC通过485通信接口控制变频器第六章程序设计结束语参考文献第一章绪论1.1 变频恒压供水产生的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需大量消耗能量,提高泵站效率:降低能耗,对国民经济有重大意义。

我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等等原因,致使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。

目前,大量的电能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当的比例。

这一方面是由于我国居民多,用水量大,造成用电量大:另一方面是因为我国供水设备工作效率低,控制方式不够科学合理。

造成不必要的能量浪费。

因此,研究提水系统的能量模型,找出能够节能的控制策略方法,这里大有潜力可挖,是减少能耗,保障供水的一个很有意义的工作。

以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术于一体。

东莞恒压供水plc课程设计

东莞恒压供水plc课程设计

东莞恒压供水plc课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和结构,掌握其在恒压供水系统中的应用。

2. 学生能够描述恒压供水系统的组成和工作原理,并运用PLC进行控制逻辑设计。

3. 学生掌握相关传感器的工作原理,并能将其与PLC进行有效连接。

技能目标:1. 学生能够运用PLC编程软件进行程序编写,实现恒压供水系统的自动化控制。

2. 学生通过实际操作,培养解决实际工程问题的能力,提高动手操作和团队协作能力。

3. 学生能够分析恒压供水系统故障,并进行相应的故障排查和处理。

情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术的兴趣,激发创新精神和实践能力。

2. 学生在课程实践中,增强环保意识,认识到技术在实际生活中的应用和重要性。

3. 学生通过小组合作,培养团队协作精神,提高沟通与交流能力。

课程性质:本课程为实践性较强的课程,结合理论教学和实际操作,使学生能够掌握PLC在恒压供水系统中的应用。

学生特点:学生具备一定的电子、电气基础知识,对PLC有一定了解,但对实际应用尚不熟悉。

教学要求:结合理论教学和实际操作,注重培养学生的动手能力和实际工程问题解决能力,提高学生的创新意识和团队协作能力。

通过本课程的学习,使学生能够将所学知识应用于实际工作中。

二、教学内容1. PLC基础知识回顾:包括PLC的基本原理、结构、工作方式及其在工业控制中的应用。

- 教材章节:第一章《PLC概述》2. 恒压供水系统组成及工作原理:介绍恒压供水系统的组成部分,如水泵、压力传感器、PLC控制器等,以及系统的工作原理。

- 教材章节:第二章《恒压供水系统原理与应用》3. PLC控制逻辑设计:学习如何运用PLC进行恒压供水系统的控制逻辑设计,包括编程语言、程序结构和调试方法。

- 教材章节:第三章《PLC控制逻辑设计》4. PLC编程软件操作:学习PLC编程软件的使用,进行程序编写、下载、调试和监控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书目录1引言 (1)1.2本文的设计思想 (1)2系统方案的确定 (2)2.1控制系统方案 (2)2.2供水系统的控制流程 (4)3变频恒压供水系统的硬件设计 (6)3.1 PLC简介 (6)3.2 PLC的工作原理 (7)3.3 PLC及压力传感器的选择 (7)3.4 PLC的I/O接线图 (7)3.5系统主电路设计 (8)4系统软件设计 (9)4.1 PLC程序设计 (9)4.1.1手动运行 (9)4.1.2自动运行 (9)4.2系统程序梯形图设计 (10)5总结 (18)参考文献 (19)1引言1.1研究背景在经济迅速迅速发展的今天,各种企业如雨后春笋般涌现。

企业的供水系统的建设尤为重要,而且随着企业用水量不断增加,对供水系统的建设提出了更高的要求。

供水的经济性、可靠性、稳定性直接影响到企业的经济效益。

本系统是针对某化工企业用水而设计的一套由变频器、PLC、水泵机组等设备组成的自动变频恒压供水控制系统。

该系统将PLC、变频器、相应的传感器和执行机构有机地结合起来,并发挥各自优势,能够最大程度满足需要,具有运行稳定、操作简单和高效节能等特点。

本文首先介绍了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能原理;其次,对水泵机组的各种供水状态及转换的条件、水泵由变频转工频运行方式的切换过程进行分析,着重研究并提出了基于PLC和变频器的恒压供水系统的方案,并给出了硬件设计和PLC控制程序设计。

1.2本文的设计思想本设计针对恒压供水控制系统包括软硬件方面在工业实际应用中具体作用进行详细的介绍。

系统将PLC、变频器(含PID)、相应的传感器和执行机构有机地结合起来,并发挥各自优势,这个操作方便的自动控制系统,以变频调速为核心,以智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。

使得系统调试和使用都十分方便,而且大大简化了水厂在管理、数据统计和分析等方面的工作量。

变频器为主体构成的恒压供水系统不仅能够最大程度满足需要,其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率优质运行,降低自来水的生产成本和提高生产管理水平的目的。

2系统方案的确定2.1控制系统方案该系统主要有压力传感器、变频器、恒压控制单元、水泵机组以及低压电器组成。

系统主要的设计任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。

由于PLC+变频器组成的恒压控制方式灵活方便,便于数据传输的优点,又能达到系统稳定性及控制精度的要求。

同时由于PLC的抗干扰能力强、可靠性高,根据系统的设计任务要求,结合系统的使用场所,本文采用PLC与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。

整个系统由一台PLC,一台变频器,水泵机组(本系统设计为3台),一个压力传感器,低压电器及一些辅助部件构成。

各部分功能如下:(1)水泵用来提高水压以实现向高处供水;(2)安装于供水管道上的远传压力表将管网水压力转换成电信号;(3)变频调速器用于调节水泵转速以调节管网中水流量;(4)PLC用于水泵的逻辑切换、控制等;(5)外围辅助电路可以当自动控制系统出现故障时可以通过人工调节方式维持系统运行,以保障连续供水。

系统主要的设计任务是利用PLC控制系统使变频器循环控制3(2用1备)台水泵,实现管网水压的恒定和水泵电机的软起动以及变频水泵与工频水泵的切换,同时对运行过程中的数据信号进行传输,处理。

通过压力传感器检测管道压力信号不断反馈给变频器,有变频器自动调节所控制水泵的电机转速,当变频器所控制的水泵达到工频时还不能满足要求时由PLC自动把那台水泵切换到工频运行,把变频器自动切换到下一台水泵使其软启动运行,当供水量减少时在自动进行切换,减少水泵运行台数,实现自动控制。

系统设计时考虑到水泵切换时电机的自感电动势现象,各种连锁保护及报警、应急措施。

系统总体框图如下:图1 系统总体框图(1)控制系统控制系统包括PLC 系统、变频器和电控设备三个部分。

①PLC 系统:它是整个变频恒压供水控制系统的核心。

供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。

②变频器:它是对水泵进行转速控制的单元。

变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

③电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。

用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。

(2)信号检测在系统控制过程中,需要检测水压信号反馈信息和系统报警信号。

水压信号:反映了用户管网的水压值,是恒压供水系统保持恒压的关键反馈信号。

(3)执行机构变频器PLC用户 水 源压力传感器控制信号电源KM1KM3KM5KM0KM2KM41#2#3#M3~M3~M3~执行机构就是一组水泵,它们协调工作,通过控制系统的增减泵工作,使得用户管网的水压保持恒定。

2.2供水系统的控制流程系统流程图如图2所示。

变频调速恒压供水系统中压力传感器将主水管网压力信号转换成电信号再经PID 运算送给变频器,并给出信号直接控制水泵电动机的转速和泵水量以使管网的压力稳定,由此构成压力闭环控制系统。

变频器的上、下限频率信号及其持续时间短可作为PLC 进行逻辑切换、起停泵的依据。

图2 变频调速恒压供水系统流程图合上空气开关,供水系统投入运行。

将手动、自动开关打到自动上,系统进入全自动运行状态,PLC 中程序起动变频器。

根据压力设定值(根据管网压力要求设定)与压力实际值(来自于压力传感器)的偏差进行PID 调节,并输出频率给定信号给变频器。

变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上、下限范围之内,实现恒压控制。

同时变频器在运行频率到达上限,会将频率到达信号送给PLC ,PLC 则根据管网压力的上、下限信号和变频器的运行频率是否到达上限的信号,由程序判断是否要起动第2台泵。

当变频器运行频率达到频率上限值,并保持一段时间,则PLC 会将当前变频运行泵切换为工频运行,并迅速起动下1台泵变频运行。

此时PID 会继续通过由远传压力表送来的检测信号进行分析、计算、判断,进一步控制变频器的运行频率,使管压保持在压力设定值的上、下限偏差范围之内。

增泵工作过程:假定增泵顺序为l 、2泵。

开始时,1泵电机在PLC 控制下先投入调速运行,其运行速度由变频器调节。

当供水压力小于压力预置值时变频器输出频率升高,水泵转速上升,反之下降。

当变频器的输出频率达到上限,并稳定运行后,如果供水压力仍没达到预置值,则需进入增泵过程。

在PLC 的逻辑控制下将1泵电机与变频器连接的电磁开关断开,1泵电机切换到工频运行,同时变频器与2泵电机连接, 控制2泵投入调速运行。

如果1泵或2泵出现故障,则备用泵3投入运行。

变频器水泵电机压力传感器PLC 用户出口水压检测点减泵工作过程:假定减泵顺序依次为2、1泵。

当供水压力大于预置值时,变频器输出频率降低,水泵速度下降,当变频器的输出频率达到下限,并稳定运行一段时间后,把变频器控制的水泵停机,如果供水压力仍大于预置值,则将下一台水泵由工频运行切换到变频器调速运行,并继续减泵工作过程。

如果在晚间用水不多时,当将最后一台正在运行的水泵置于低速运行。

同样,如果1泵或2泵出现故障,则备用泵3投入运行。

3变频恒压供水系统的硬件设计3.1 PLC简介在PLC的发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。

它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。

PLC的特点如下:1、高可靠性所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。

各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms。

各模块均采用屏蔽措施,以防止辐射干扰。

采用性能优良的开关电源。

对采用的器件进行严格的筛选。

良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。

大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。

2、丰富的I/O接口模块PLC针对不同的工业现场信号,如:交流或直流;开关量或模拟量;电压或电流;脉冲或电位;强电或弱电等。

有相应的I/O模块与工业现场的器件或设备,如:按钮行程开关、接近开关、传感器及变送器电磁线圈控制阀直接连接。

另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。

3、采用模块化结构为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。

PLC的各个部件,包括CPU,电源,I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。

4、编程简单易学PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。

5、安装简单,维修方便PLC不需要专门的机房,可以在各种工业环境下直接运行。

使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。

各种模块上均有运行和故障指示装置,便于用户了解运行情况和查找故障。

由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。

3.2 PLC的工作原理PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从第一条指令开始执行程序,直到遇到结束符后又返回第一条,如此周而复始不断循环。

PLC 的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。

相关文档
最新文档