含铬废水处理实验报告

合集下载

污水中六价铬的测定实验报告

污水中六价铬的测定实验报告

污水中六价铬的测定实验报告一、实验目的本实验旨在测定污水中六价铬的含量,了解污水中六价铬的污染程度,为环境保护和污水处理提供数据支持。

二、实验原理在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色络合物,其颜色的深浅与六价铬的含量成正比。

通过分光光度计在特定波长下测定吸光度,从而确定六价铬的含量。

三、实验仪器与试剂1、仪器分光光度计比色皿移液管(1mL、5mL、10mL)容量瓶(50mL、100mL)玻璃棒烧杯(50mL、100mL)电子天平酸式滴定管2、试剂重铬酸钾(基准试剂)二苯碳酰二肼丙酮硫酸(1+1)磷酸(1+1)四、实验步骤1、标准溶液的配制准确称取 02829g 预先在 120℃干燥至恒重的重铬酸钾基准试剂,用水溶解后,移入 1000mL 容量瓶中,用水稀释至标线,摇匀。

此溶液每毫升含 0100mg 六价铬。

分别吸取上述标准储备液 000mL、100mL、200mL、400mL、600mL、800mL、1000mL 于50mL 容量瓶中,用水稀释至标线,摇匀。

各容量瓶中六价铬的浓度分别为 000mg/L、200mg/L、400mg/L、800mg/L、1200mg/L、1600mg/L、2000mg/L。

2、显色剂的配制称取 02g 二苯碳酰二肼,溶于 50mL 丙酮中,加水稀释至 100mL,摇匀。

此溶液避光保存,可使用一个月。

3、水样的预处理若水样浑浊或色度较深,先进行消解处理。

取适量水样于锥形瓶中,加入 5mL 硫酸(1+1)和 5mL 磷酸(1+1),摇匀。

加入 2mL 高锰酸钾溶液(40g/L),在电炉上加热至溶液近沸,保持微沸 10min,取下冷却。

加入 10%的尿素溶液 2mL,摇匀。

用亚硫酸钠溶液(200g/L)滴至溶液红色刚好褪去。

4、测定取 50mL 处理后的水样或标准溶液于 50mL 比色管中,加入 1mL硫酸(1+1)和 1mL 磷酸(1+1),摇匀。

加入 2mL 显色剂,摇匀。

污水除铬实验报告

污水除铬实验报告

一、实验目的1. 掌握污水除铬的基本原理和实验方法。

2. 熟悉不同除铬工艺的特点和适用范围。

3. 评估实验条件下除铬效果,为实际污水处理提供参考。

二、实验原理重金属铬在污水中主要存在形式为Cr(Ⅵ)和Cr(Ⅲ)。

本实验采用硫酸亚铁法和聚丙烯酰胺(PAC)吸附法两种方法对含铬污水进行处理。

1. 硫酸亚铁法:硫酸亚铁在酸性条件下与Cr(Ⅵ)发生氧化还原反应,生成Cr(Ⅲ)和Fe(Ⅱ)。

Cr(Ⅲ)与硫酸亚铁中的Fe(Ⅱ)进一步反应,生成Fe(OH)3沉淀,从而达到除铬的目的。

2. PAC吸附法:PAC是一种高效絮凝剂,能够吸附污水中的Cr(Ⅵ)离子,形成絮体沉淀,从而实现除铬。

三、实验材料与仪器1. 实验材料:- 含铬污水- 硫酸亚铁- 聚丙烯酰胺(PAC)- 氢氧化钠- 碳酸钠- 硫酸- pH试纸或pH计- 滤纸- 烧杯- 烧瓶- 移液管- 恒温水浴锅2. 实验仪器:- 紫外可见分光光度计- 电子天平- 搅拌器- 酸度计四、实验步骤1. 硫酸亚铁法:(1)取一定量的含铬污水,用pH试纸或pH计测定pH值,调整至2-3。

(2)向溶液中加入硫酸亚铁,按1:6的比例进行反应,搅拌30分钟。

(3)用pH试纸或pH计测定pH值,调整至9。

(4)过滤,收集滤液,测定铬含量。

2. PAC吸附法:(1)取一定量的含铬污水,用pH试纸或pH计测定pH值,调整至9。

(2)向溶液中加入PAC,按5000ppm的比例进行吸附,搅拌30分钟。

(3)过滤,收集滤液,测定铬含量。

五、实验结果与分析1. 硫酸亚铁法:- 实验结果表明,在pH值为9时,铬去除率最高,可达95%以上。

2. PAC吸附法:- 实验结果表明,在pH值为9时,铬去除率最高,可达90%以上。

六、结论1. 硫酸亚铁法和PAC吸附法均可有效去除污水中的铬离子。

2. 硫酸亚铁法在pH值为9时,铬去除率最高,可达95%以上。

3. PAC吸附法在pH值为9时,铬去除率最高,可达90%以上。

应用铁氧体法处理含铬废水实验报告

应用铁氧体法处理含铬废水实验报告

应用铁氧体法处理含铬废水实验报告本实验采用铁氧体法处理含铬废水,以探究该方法在废水处理中的应用效果。

实验结果表明,铁氧体法能够有效地将废水中的铬离子去除,去除率达到了97.5%以上。

同时,本实验还探讨了处理时间、废水初始pH值、铁氧体用量等因素对处理效果的影响,并对其进行了分析。

关键词:铁氧体法;含铬废水;去除率;处理时间;pH值;铁氧体用量一、实验目的1. 探究铁氧体法在含铬废水处理中的应用效果;2. 研究处理时间、废水初始pH值、铁氧体用量等因素对处理效果的影响;3. 分析铁氧体法的优缺点,为废水处理提供参考。

二、实验原理铁氧体法是一种利用铁氧体对水中杂质进行吸附、氧化还原等反应,从而达到净化水质的方法。

该方法具有反应速度快、处理效果好等优点,适用于处理含铬废水等各种废水。

三、实验步骤1. 实验前准备:准备好实验所需的设备和试剂,包括铁氧体、废水、pH试纸、分析天平等。

2. 根据实验设计,取一定量的废水,并测定其初始pH值。

3. 加入一定量的铁氧体,并在一定时间内进行搅拌。

4. 将处理后的废水取出,测定其pH值和含铬量。

5. 根据实验结果进行数据处理和分析。

四、实验结果1. 铁氧体法处理含铬废水的去除率:处理时间(min)去除率(%)10 89.520 93.030 97.52. 处理时间对铁氧体法处理效果的影响:由表可知,处理时间对铁氧体法处理效果有显著影响。

随着处理时间的增加,废水中的铬离子去除率逐渐提高。

3. 废水初始pH值对铁氧体法处理效果的影响:废水初始pH值对铁氧体法处理效果也有影响。

当废水初始pH值为7时,铬离子去除率最高,为97.5%。

4. 铁氧体用量对铁氧体法处理效果的影响:铁氧体用量对铁氧体法处理效果也有影响。

当铁氧体用量为2g 时,铬离子去除率最高,为97.5%。

五、实验分析1. 铁氧体法能够有效地将废水中的铬离子去除,去除率达到了97.5%以上,具有较好的处理效果。

2. 处理时间、废水初始pH值、铁氧体用量等因素对处理效果有一定的影响,需要在实际应用中进行调整。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告
含铬废水的危害
铬化物可以通过消化道、呼吸道、皮肤和粘膜侵人人体,主要积聚在肝、肾、内分泌系统和肺部。

它具有致癌作用,会引起鼻中隔穿孔、肠胃疾患、白血球下降、类似哮喘的肺部病变,对水质和土壤也有不良的影响。

含铬废水处理方法
含铬废水处理方法较多,常用的有化学法、电解法、离子交换法等。

其中电解法、和离子交换法的技术、成本要求较高,一般用于浓度较高的含铬废水处理。

化学法的应用最为广泛,无论是高浓度废水的后期处理,还是中低浓度废水处理都有应用。

三、解决方案
最终希洁工程师给出的方案是在原来工艺沉淀池的位置投加希洁重金属捕捉剂。

1、详细步骤如下:
(1)把重金属捕捉剂溶解成10%的溶液
(2)将稀释后的药剂用计量泵投加到沉淀池
(3)依据监测数据适量调整加药量直至污水稳定处理达标
2、投加量确定:
最终经过现场调试,重金属捕捉剂确定在200ppm(每吨废水加0.20kg的重金属捕捉剂)就可以将铬离子控制在0.5ppm以下。

3、加药位置:
重金属捕捉剂可以直接投加在原本工艺中的“沉淀池”内,药剂的反应时间快速,还无需另外增加设备和工艺。


铬及其化合物在工业上应用广泛,冶金、化工、矿物工程、电镀、制铬、颜料、制药、轻工纺织、铬盐及铬化物的生产等一系列行业,都会产生大量的含铬废水。

小希今天就用案例来讲讲含铬废水的处理方法。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告
实验目的:
本实验旨在研究含铬废水的处理方法,找到一种高效、经济且环保的处理方案,以减少对环境和人体健康的影响。

实验原理:
含铬废水是指含有铬离子(Cr3+和Cr6+)的废水,铬离子对
环境和人体健康有一定的危害。

一般的处理方法包括沉淀法、离子交换法、电化学法等,本实验将探讨离子交换法对含铬废水进行处理的效果。

实验步骤:
1. 实验前准备:准备所需的实验器材和试剂,包括离子交换树脂、含铬废水样品、蒸馏水等。

2. 样品处理:将含铬废水样品通过滤纸进行过滤,去除悬浮物,并调整pH值至适宜的范围。

3. 离子交换树脂处理:将含铬废水与离子交换树脂充分接触,使树脂吸附或交换掉废水中的铬离子。

4. 洗脱:用适当的溶液洗脱被吸附或交换的铬离子,将洗脱液收集。

5. 检测:利用化学分析方法或仪器对洗脱液中的铬离子浓度进行测定,计算去除率。

6. 结果和分析:根据实验结果对离子交换法的处理效果进行讨论,并与其他处理方法进行对比。

实验结果:
经过离子交换处理的含铬废水样品,铬离子的浓度明显降低,
去除率达到 XX%。

实验结论:
离子交换法是一种有效的处理含铬废水的方法,在本实验条件下,能够达到较高的去除率。

然而,在实际应用中,还需要考虑成本、废水处理量、处理效率等因素,以选择最合适的处理方案。

改进方向:
在进一步研究中,可以优化实验条件,如调整pH值、改变离子交换树脂类型和用量等,以提高处理效果。

同时,还可以探索其他处理方法的结合应用,如与沉淀法或电化学法相结合,以进一步提高废水的处理效率。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告1.生物法生物法治理含铬废水,国内外都是近年来开始的。

生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。

国内外对SRB菌(硫酸盐还原菌)、SR系列复合功能菌、SR复合能菌、脱硫孤菌、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramiger a)、酵母菌、含糊假单胞菌、荧光假单胞菌、乳链球菌、阴沟肠杆菌、铬酸盐还原菌等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。

将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。

研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-.已用于埃及轻型车辆公司的含铬废水的处理.生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。

该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。

投资少,能耗低,运行费用少。

2.膜分离法膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。

目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。

别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。

电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。

反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。

超滤法也是在静压差推动下进行溶质分离的膜过程。

液膜包括无载体液膜、有载体液膜、含浸型液膜等。

液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。

含铬废水处理实验报告

含铬废水处理实验报告

含铬废水处理实验报告一、实验目的通过实验研究含铬废水的处理方法,掌握各种处理方法的优缺点及适用范围。

二、实验原理含铬废水的处理方法主要有化学法、物理法和生物法三种。

其中,化学法是通过添加一定化学药剂使铬离子转变成不溶于水的沉淀物,从而达到净化水质的目的;物理法是利用不同物质的特性使其与废水中的铬粒子产生不同作用力,从而实现分离净化;生物法则通过利用某些细菌在废水中对铬离子进行还原,使其转化成不溶于水的沉淀与生长,达到净化水质的目的。

三、实验步骤1. 收集含铬废水,并进行基础理化指标测试和铬离子含量分析。

2. 采用化学法处理含铬废水:将草酸钙加入废水中,搅拌后放置沉淀。

收集沉淀物,称取干燥后的质量,计算去除铬的百分比。

3. 采用物理法处理含铬废水:将活性炭加入废水中,搅拌后放置沉淀。

收集沉淀物,称取干燥后的质量,计算去除铬的百分比。

4. 采用生物法处理含铬废水:将适量的养料和细菌接种进含铬废水中,放置培养。

待沉淀形成后收集沉淀物,称取干燥后的质量,计算去除铬的百分比。

5. 对三种方法处理后的水样进行基础理化指标测试和铬离子含量分析。

四、实验结果1. 含铬废水基础理化指标测试结果如下:pH 值:6.8;悬浮物含量:150mg/L;COD:300mg/L;BOD5:150mg/L。

2. 铬离子含量分析结果如下:初始铬离子浓度:40mg/L。

3. 三种处理方法去除铬的百分比如下:化学法:90%;物理法:70%;生物法:50%。

4. 三种处理方法处理后的废水基础理化指标测试结果如下:化学法:pH 值:7.0;悬浮物含量:<50mg/L;COD:<100mg/L;BOD5:<50mg/L。

物理法:pH 值:6.9;悬浮物含量:<80mg/L;COD:<200mg/L;BOD5:<100mg/L。

生物法:pH 值:6.8;悬浮物含量:<120mg/L;COD:<250mg/L;BOD5:<120mg/L。

铬回收设计实验报告

铬回收设计实验报告

铬回收设计实验报告1. 引言铬是一种重要的金属元素,广泛用于不锈钢、合金、电镀等工业领域。

然而,铬的大量排放对环境造成了严重的污染,对生态系统和人类健康构成了威胁。

因此,开展铬回收设计实验对于减少铬排放、保护环境具有重要意义。

2. 实验目的本实验旨在设计一种有效的方法,将废水中的铬离子从溶液中回收,并评价该回收方法的效果和可行性。

3. 实验方法3.1 实验器材和试剂- 铬离子溶液- NaOH溶液- NH3溶液- 滤纸- 量筒- 试管- 烧杯3.2 实验步骤1. 准备一定浓度的铬离子溶液。

2. 用NaOH溶液和NH3溶液将铬离子沉淀下来。

3. 将溶液过滤,将沉淀和滤液分离。

4. 将沉淀用适当溶剂溶解得到可回收的铬溶液。

4. 实验结果与分析通过本实验,我们成功回收了废水中的铬离子溶液。

经过沉淀和过滤处理后,滤液中的铬离子得以分离,沉淀可以进一步溶解成可回收的铬溶液。

5. 实验讨论实验中使用的沉淀方法是常见的化学沉淀法,该方法通过与金属离子反应生成难溶物质的原理进行沉淀。

而沉淀的选择和分离以及溶解的方法则可以根据实际需求进行调整。

本实验仅是一个示范,具体操作应根据实际情况进行优化。

6. 实验结论本实验设计的铬回收方法可以有效将废水中的铬离子从溶液中回收,达到环境保护的目的。

然而,应注意操作过程中的安全防护措施,避免对环境和人体带来更多的伤害。

7. 参考文献[1] 环境保护部. 水污染防治法. 北京: 中国环境科学出版社,2010.[2] 徐玉芳, 杨耀先. 金属离子回收方法及应用研究进展[J]. 材料导报, 2009, 25(4): 147-149.附录:铬溶解方案试剂用量溶剂- - -A x ml H2OB y ml H2SO4说明本实验报告旨在描述一种设计实验的方法,并强调安全操作和环境保护意识。

具体数据和化学方程式请根据实际情况进行填写。

含铬废水的处理%20

含铬废水的处理%20

含铬废水的处理
4,实验内容 (1)含铬废水中Cr(Ⅵ)的测定 含铬废水中Cr(Ⅵ)的测定: (1)含铬废水中Cr(Ⅵ)的测定: K2Cr2O7法 (2)含铬废水的处理 (2)含铬废水的处理 100mL含铬废水于250mL烧杯中 含铬废水于250mL烧杯中, ①取100mL含铬废水于250mL烧杯中,在不断搅 拌下滴加3molL 调整至pH约为l pH约为 拌下滴加3molL-1H2S04调整至pH约为l,然后 滴加10 10% 溶液, 滴加10%FeS04溶液,直至溶液颜色由浅蓝色 变为亮绿色(为什么?)为止。 ?)为止 变为亮绿色(为什么?)为止。
含铬废水的处理
(3)处理后水中铬含量的检验 (3)处理后水中铬含量的检验 配制Cr(Ⅵ)溶液标准系列和制作工作曲线: Cr(Ⅵ)溶液标准系列制作工作曲线 ①配制Cr(Ⅵ)溶液标准系列和制作工作曲线: 处理后水中Cr(Ⅵ 含量的检验: ②处理后水中Cr(Ⅵ)含量的检验:
含铬废水的处理
5.思考题 (1)本实验中各步骤发生了哪些化学反应 本实验中各步骤发生了哪些化学反应? (1)本实验中各步骤发生了哪些化学反应?为什 么要加入H 此过程发生了什么反应? 么要加入H202?此过程发生了什么反应? (2)本实验所测定的Cr的化学形态是什么 本实验所测定的Cr的化学形态是什么? (2)本实验所测定的Cr的化学形态是什么?简述 测定方法的基本原理。 测定方法的基本原理。 (3)处理废水中 为什么加FeS0 处理废水中, (3)处理废水中,为什么加FeS04前要加酸调整 pH到 之后为什么又要加碱调整pH=8 pH=8~ pH到l,之后为什么又要加碱调整pH=8~9,pH 控制不好,会有什么不良影响? 控制不好,会有什么不良影响?
含铬废水的处理
反应结束后加入适量碱液,调节溶液pH并适 pH并适 反应结束后加入适量碱液,调节溶液pH 当控制温度,加少量H 或通人空气搅拌, 当控制温度,加少量H202或通人空气搅拌,将 溶液中过量的Fe 部分氧化为Fe 溶液中过量的Fe2+部分氧化为Fe3+,得到比例 适度的Cr 并转化为沉淀: 适度的Cr3+、Fe2+、 Fe3+并转化为沉淀: Fe3+ +30H-=Fe(OH)3↓ Fe2++20H-=Fe(OH)2↓ Cr3+ +30H-=Cr3+(OH)3↓ 采用比色法分析水中的铬含量

实验23-含铬废液的处理

实验23-含铬废液的处理

实验二十三含铬废液的处理1.了解化学还原法处理含铬工业废水的原理和方法;2.学习用分光光度法测定和检验废水中铬的含量。

铬(Ⅵ)化合物对人体的毒害很大,能引起皮肤溃疡、贫血、肾炎及神经炎。

所以含铬的工业废水必须经过处理达到排放标准才准排放。

铬污染主要来源于电镀、制革及印染等工业废水的排放。

Cr(Ⅵ)和Cr(Ⅲ)以Cr2O72-或CrO42-的形式存在。

Cr(Ⅲ)的毒性远比Cr(Ⅵ)小,所以可用硫酸亚铁石灰法来处理含铬废液,使Cr(Ⅵ)转化成Cr(OH)3 难溶物除去。

Cr(Ⅵ)与二苯碳酰二肼作用生成紫红色配合物,可进行比色测定,确定溶液中Cr(Ⅵ)的含量。

Hg(Ⅰ,Ⅱ)也与配合剂生成紫红色化合物,但在实验的酸度下不灵敏。

Fe(Ⅲ)浓度超过1mg/dm3时,能与试剂生成黄色溶液,后者可用H3PO4消除。

Cr2O72-+6Fe2++15H+= Cr3++6Fe3++7H2OHCrO4-+3Fe2++5H+= Cr3++3Fe3++4H2O仪器试剂721 型分光光度计,抽滤装置,移液管(10ml,20ml) 吸量管(10 ml,5 ml),比色管(25 ml);含铬(Ⅵ)废液,H2SO4(1:1),FeSO4·7H2O(固).NaOH(固).H3PO4(1:1),二苯碳酰二肼溶液,H2O2。

实验内容1.氢氧化物沉淀在含铬(Ⅵ)废液中逐滴加入H2SO4使呈酸性,然后加入FeSO4·7H2O 固体充分搅拌,使溶液中Cr(Ⅵ)转变成Cr(Ⅲ)。

加入CaO或NaOH固体,将溶液调至pH 近似为9,此时Cr(OH)3和Fe(OH)3等沉淀,可过滤除去。

2.残留铬的处理将除去Cr(OH)3的滤液,在碱性条件下加入H2O2,使溶液中残留的Cr(Ⅲ)转变成Cr(Ⅵ)。

然后除去过量的H2O2。

3.标准曲线的绘制用移液管量取10cm3 Cr(Ⅵ)贮备液(此液含Cr(Ⅵ)0.100mg/ml)放入1000ml 容量瓶中,用蒸馏水稀释至刻度,摇匀备用。

应用铁氧体法处理含铬废水实验报告

应用铁氧体法处理含铬废水实验报告

应用铁氧体法处理含铬废水实验报告本次实验旨在探究铁氧体法在处理含铬废水中的应用效果。

通过实验,了解铁氧体法的基本原理及其在废水处理中的作用机制,同时,评估铁氧体法在处理含铬废水中的实际应用效果。

二、实验原理1. 铁氧体法的基本原理铁氧体法是一种常用的废水处理方法,其基本原理是利用铁氧体材料对污染物进行吸附、氧化和还原等反应,将废水中的有机物质、重金属离子等污染物去除或转化为无害物质。

铁氧体材料的吸附和氧化还原反应主要与其表面的氢氧根离子(OH-),氧化态铁(Fe3+)和还原态铁(Fe2+)等物质有关。

2. 铁氧体法在处理含铬废水中的应用机制铬是一种有毒的重金属元素,在废水中的存在会对环境和人类健康造成严重的危害。

铁氧体法可以通过氧化还原反应,将废水中的六价铬还原为三价铬,从而使其被吸附在铁氧体表面上,达到去除的目的。

同时,铁氧体材料的表面还能与废水中的其他污染物质发生吸附和氧化反应,从而实现废水的全面净化。

三、实验步骤1. 实验前的准备工作(1)准备铁氧体材料,并将其研磨成细粉末状。

(2)准备含铬废水样品,并进行初步处理,去除其中的悬浮物质等杂质。

2. 实验操作步骤(1)取一定量的铁氧体材料,加入到含铬废水中,搅拌均匀。

(2)在搅拌的过程中,不断调整废水的pH值,使其处于最适宜的反应条件下。

(3)将含铬废水样品分别取出,进行分析和检测,评估处理效果。

四、实验结果通过实验,我们得出了以下结论:1. 铁氧体法对含铬废水具有较好的去除效果,可以将废水中的六价铬还原为三价铬,并将其吸附在铁氧体表面上,从而实现废水的净化。

2. 在实验中,我们发现,铁氧体法的处理效果与废水的pH值密切相关。

当pH值处于6-8之间时,铁氧体法的处理效果最佳。

3. 铁氧体法对废水中的其他污染物质也具有一定的去除效果,可以将有机物质、重金属离子等污染物质去除或转化为无害物质。

五、实验结论通过本次实验,我们得出了以下结论:1. 铁氧体法可以有效地处理含铬废水,具有较好的去除效果。

除铬实验报告

除铬实验报告

一、实验目的1. 了解铬污染的来源及危害。

2. 掌握除铬实验的基本原理和方法。

3. 评估不同除铬方法的效率。

二、实验原理铬污染主要来源于工业废水、废气和固体废弃物。

其中,六价铬(Cr6+)是一种强致癌物质,对人体和环境具有极大的危害。

本实验主要采用化学沉淀法进行除铬,通过加入适量的沉淀剂使Cr6+形成不溶于水的沉淀物,从而实现除铬的目的。

三、实验材料与仪器1. 材料:工业废水、NaOH、Ca(OH)2、Na2S、H2O2、硫酸铝、硫酸铁、氢氧化钠等。

2. 仪器:pH计、滴定管、烧杯、玻璃棒、滤纸、漏斗等。

四、实验步骤1. 准备实验试剂和仪器。

2. 取一定量的工业废水置于烧杯中,用pH计测定其pH值。

3. 将NaOH溶液滴加至废水中,调节pH值至8.5~9.5,观察沉淀现象。

4. 用滴定管向沉淀物中加入Ca(OH)2溶液,观察沉淀是否溶解。

5. 分别向沉淀物中加入Na2S、H2O2、硫酸铝、硫酸铁等试剂,观察沉淀变化。

6. 对比不同沉淀剂对Cr6+的去除效果,记录实验数据。

五、实验结果与分析1. 调节pH值至8.5~9.5时,废水中Cr6+形成沉淀,说明此时Cr6+与OH-反应生成Cr(OH)3沉淀。

2. 加入Ca(OH)2溶液后,沉淀物未溶解,说明Ca(OH)2对Cr6+的去除效果不明显。

3. 加入Na2S、H2O2、硫酸铝、硫酸铁等试剂后,沉淀物溶解,说明这些试剂对Cr6+有较好的去除效果。

4. 对比不同沉淀剂对Cr6+的去除效果,发现Na2S、H2O2、硫酸铝、硫酸铁的去除效果较好,其中Na2S的去除效果最佳。

六、实验结论1. 化学沉淀法是一种有效的除铬方法,可用于处理含Cr6+的工业废水。

2. 在本实验中,Na2S、H2O2、硫酸铝、硫酸铁等试剂对Cr6+有较好的去除效果,其中Na2S的去除效果最佳。

3. 在实际应用中,可根据废水中Cr6+的浓度和含量,选择合适的沉淀剂和除铬方法。

七、实验注意事项1. 实验过程中,注意控制pH值,避免过高或过低影响除铬效果。

含铬废水的处理

含铬废水的处理

含铬废水的处理1. 实验目的1.1了解化学还原法处理含铬废水的原理和方法。

1.2 学习用目视比色法或分光光度法测定废水中Cr(Ⅵ)的含量。

2. 实验原理(Cr2O72-或CrO42-)和三价Cr(Ⅲ)形式存在。

其中Cr(Ⅵ)毒性最大,对皮肤有刺激,可致溃烂,;进入呼吸道会引起发炎或溃疡,饮用了含Cr(Ⅵ)废水会导致贫血、神经炎等;Cr(Ⅵ)还是一种致癌物质。

所以,国家规定废水中Cr(Ⅵ)的排放标准应小于0.5mg/L。

Cr(Ⅲ)的毒性比Cr(Ⅵ)低100倍,因此,含铬废水处理的基本原则是将Cr(Ⅵ)还原为Cr(Ⅲ),然后尽可能将Cr(Ⅲ)除去。

处理含铬废水的方法很多,本实验采用铁氧体法。

铁氧体是指具有磁性的Fe3O4中的部分铁被其他+2价或+3价金属离子(如Cr3+等)所取代而形成的以铁为主体的复合氧化物。

铁氧体法就是使含铬废水中的Cr2O72-或CrO42-在酸性条件下,与过量的FeSO4作用生成Cr3+和Fe3+,反应式为:Cr2O72- + 6 Fe2+ + 14 H+ = 2Cr3+ + 6Fe3+ + 7 H2OHCrO4- + 3 Fe2+ + 7H+ = Cr3++ 3Fe3+ + 4 H2O反应完后,加入碱溶液,使废水pH值升至8~10,控制适当温度,使Cr3+、Fe3+、Fe2+转变为沉淀:Fe3+ + 3OH- = Fe(OH)3(s)Fe2+ + 2OH- = Fe(OH)2(s)Cr3+ + 3OH- = Cr(OH)3(s)加入少量的H2O2使部分Fe2+氧化为Fe3+,当二者的氢氧化物的量的比例为1:2左右时,可生成组成类似于Fe3O4·xH2O的磁性氧化物(铁氧体),其组成可写成Fe2+·Fe3+[Fe3+O4 ]·xH2O ,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组分而沉淀出来,反应原理可表示为:Fe3+ + Fe2+ + Cr3+ + OH- →Fe2+·Fe3+[Fe(1-y)3+ ·Cr y3+ ·O4 ]·xH2O(s)沉淀物经脱水处理可得到铁氧体。

含铬废液处理实验报告

含铬废液处理实验报告

上海应用技术大学实验报告课程名称无机化学综合实验(水环境指标综合分析)实验项目含铬废液的处理班级(课程序号)组别同组者实验日期指导教师成绩一、实验目的1. 学习水样中铬的处理方法。

2.掌握分光光度计测六价铬含量的方法。

二、实验原理在铬矿冶炼、电镀、金属加工、皮革鞣制、油漆等工业废水中都含有铬。

在铬的化合物中,Cr(Ⅵ)的毒性最大,故农田灌溉用水标准规定Cr(Ⅵ)含量不得超过0.1 mg•L-1,而饮用水规定Cr(Ⅵ)含量不得高于0.05 mg•L-1 (强制标准)。

目前含铬废水的处理大体上分为两类:一类是化学法,即采用还原剂把Cr(Ⅵ)还原为Cr(Ⅲ),然后以Cr(OH)3的形式沉淀除去;另一类是离子交换法。

水中Cr(Ⅵ)的分析可采用分光光度法,利用Cr(Ⅵ)与二苯碳酰二肼作用生成紫色配合物的特性,确定溶液中Cr(Ⅵ)的含量。

三、实验内容1.设计处理含Cr(Ⅵ)废液的价廉、简便的处理方案(以框图表示处理工艺过程)。

2. 绘制标准Cr(VI)的含量(μg)与吸光度的曲线图(若用分光光度法)。

3.给出处理后的废液中Cr(VI)的浓度(mg·L-1)。

四、思考题1. Cr(VI)的廉价还原剂有哪些?何者最佳?答焦亚硫酸钠亚硫酸氢钠亚硫酸钠连二亚硫酸钠硫代硫酸钠考虑经济效益和环境效益焦亚硫酸最佳。

2. 为使Cr(OH)3沉淀完全,用碱调pH在什么范围内?答通过计算可知,当三价铬沉淀完全,PH应该大于8.43. 如果要分析处理后的废水中铬的含量,残留的Cr(Ⅲ)也应转化为Cr(VI)才能分析。

在除去Cr(OH)3沉淀的滤液中,用哪种氧化剂把Cr(Ⅲ)氧化为Cr(VI)?写出反应的离子式。

如果选用H2O2作氧化剂,在分析液相中残留Cr(VI)时,H2O2是否应当除去?为什么?答不需要除去,对分析结果无影响。

五、心得体会在实验中,要好好注意每一步操作。

仔细观察实验现象。

学会通过已有的数据来推断实验所需要的结果。

含铬废水的处理实验报告

含铬废水的处理实验报告

一、实验目的1. 了解含铬废水的成分和危害。

2. 掌握化学还原沉淀法处理含铬废水的原理和步骤。

3. 分析实验过程中各因素对铬离子去除率的影响。

4. 评估化学还原沉淀法在含铬废水处理中的实际应用效果。

二、实验原理含铬废水中的铬主要以Cr(VI)和Cr(III)的形式存在,其中Cr(VI)的毒性较大。

化学还原沉淀法是通过加入还原剂将Cr(VI)还原为Cr(III),然后与钙、镁等金属离子形成沉淀,从而实现铬的去除。

本实验采用硫酸亚铁作为还原剂,氢氧化钠作为沉淀剂。

三、实验材料与仪器1. 材料:含铬废水(Cr(VI)浓度约为50 mg/L)、硫酸亚铁、氢氧化钠、丙酮、无水亚硫酸钠等。

2. 仪器:烧杯、玻璃棒、pH计、分光光度计、电子天平等。

四、实验步骤1. 样品处理:取100 ml含铬废水于250 ml烧杯中,在不断搅拌下滴加3mol·L-1H2SO4调整至pH约等于1。

2. 还原反应:向上述溶液中加入10%的FeSO4溶液,直至溶液颜色由浅黄变为深绿色。

3. 沉淀反应:向上述溶液中加入适量的氢氧化钠溶液,调节pH至7-8,观察沉淀的形成。

4. 过滤与洗涤:将形成的沉淀用滤纸过滤,并用蒸馏水洗涤3次。

5. 分析测定:取少量滤液,用分光光度计测定铬离子的浓度,计算去除率。

五、实验结果与分析1. 还原反应:实验结果显示,在酸性条件下,FeSO4可以将Cr(VI)还原为Cr (III),反应过程如下:2Cr(VI)+ FeSO4 + 3H2O → 2Cr(III) + Fe(OH)3 + H2SO42. 沉淀反应:在碱性条件下,Cr(III)与钙、镁等金属离子形成沉淀,反应过程如下:Cr(III) + 3OH- → Cr(OH)3↓3. 去除率:实验结果显示,化学还原沉淀法对含铬废水的铬离子去除率较高,去除率可达90%以上。

六、讨论与结论1. 本实验采用化学还原沉淀法处理含铬废水,结果表明该方法具有操作简便、去除率高等优点,适用于含铬废水的处理。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告含铬废水是制造业、冶金工业等行业经常产生的重要废水种类,铬是一种有毒的重金属,由于一些原因,含铬废水被排放到自然界中,对环境造成了严重污染。

因此,对含铬废水的处理和净化,保护环境,对保障人民健康和可持续发展具有重要意义。

本实验通过对含铬废水进行处理,采集数据,探究废水处理的效果。

实验原理:含铬废水的处理基于还原或氧化原理,将六价铬转化为三价铬或铬离子,使其变得容易沉淀或被吸附,然后通过沉淀或吸附作用去除含有的铬离子。

本实验采用的是还原处理法。

实验步骤:1.制备含铬废水采用一定比例的铬酸钾(K2CrO4)溶解在蒸馏水中,制备一定浓度的含铬废水。

2.添加还原剂将含铬废水分别加入还原剂(还原糖)、氢氧化钠和硫酸等试剂中。

加入过量的还原糖,利用它的还原性,将六价铬还原为三价铬,使其形成颜色不同的沉淀。

加入氢氧化钠和硫酸,通过碱沉淀和酸沉淀分别去除含铬废水中的铬离子。

3.测量去除率通过滴定法,测量含铬废水经过一定时间处理后的铬浓度,计算去除率。

实验结果与分析:本次实验采用还原糖作为还原剂,在适当温度下将六价铬转化为三价铬,通过体积比为1:10的氢氧化钠沉淀法和硫酸沉淀法分别处理含铬废水。

通过实验结果可得出,在经过一定时间的处理后,氢氧化钠沉淀法和硫酸沉淀法去除含铬废水的效果相似,但硫酸沉淀法所得的沉淀颜色较深,处理效率略高于氢氧化钠沉淀法。

由于含铬废水中铬含量较高,硫酸沉淀法还需要进一步调整沉淀pH值,以达到更好的去除效果。

通过滴定法测定含铬废水经过处理后的铬离子浓度,可以得知处理效果,实验结果显示经过一定时间处理后,铬离子的去除率达到了95%以上。

结论:。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告一、引言含铬废水是一种常见的工业废水,其中的铬离子对环境和生态系统有严重的污染和破坏作用。

因此,研究和开发高效的废水处理方法对保护环境和人类健康具有重要意义。

本实验旨在探究含铬废水的处理方法,以寻找一种有效的除铬技术。

二、实验方法1. 实验材料本实验使用含铬废水样品、氢氧化钠溶液、铁(III)氯化物溶液和活性炭等材料。

2. 实验步骤(1)制备试样:将含铬废水样品取出一定量置于实验容器中。

(2)调节pH值:向含铬废水中滴加适量的氢氧化钠溶液,调节废水的pH值至碱性条件。

(3)添加铁(III)氯化物溶液:逐渐滴加铁(III)氯化物溶液至废水中,与废水中的铬离子发生反应生成沉淀。

(4)搅拌反应:使用搅拌器对废水进行搅拌,以促进反应的进行。

(5)过滤:将反应后的废水通过滤纸过滤,使生成的沉淀分离出来。

(6)吸附处理:将过滤后的废水通过活性炭吸附处理,去除废水中的余留铬离子。

(7)水质分析:对处理后的废水进行水质分析,包括测定铬离子浓度、pH值等指标。

三、实验结果经过处理后,含铬废水中的铬离子得到了有效去除。

实验结果显示,经过调节pH值和添加铁(III)氯化物溶液后,废水中的铬离子与铁离子发生反应生成了一种沉淀物。

通过过滤和吸附处理,废水中的沉淀物和余留的铬离子得到了有效分离和去除。

水质分析结果显示,处理后的废水中铬离子浓度明显降低,符合环境排放标准。

四、讨论与分析本实验采用了调节pH值和添加铁(III)氯化物的方法处理含铬废水。

调节pH值至碱性条件有助于铬离子与铁离子发生反应生成沉淀物,使铬离子得到有效去除。

此外,活性炭的吸附作用也起到了重要的作用,去除了废水中的余留铬离子。

在实际工业应用中,还可以进一步探究其他方法来处理含铬废水。

例如,利用电化学方法可以将铬离子还原为金属铬,从而实现废水中铬离子的去除和回收。

此外,光催化、生物降解等方法也可以被应用于含铬废水的处理过程中,以提高处理效率和降低成本。

含铬废水处理实验报告

含铬废水处理实验报告

实验含铬废水的处理及其相关参数的测定一、实验目的(1)了解工业废水处理流程,掌握各单元操作的实验原理。

掌握由这些单元操作组成的处理流程。

(2)了解除铬过程中各因素之间的关系。

(3)掌握相关的水质参数的测定方法。

二、实验原理1.化学还原法——铁氧体法铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为:Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2OHCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物:Fe3++3OH-=Fe(OH)3↓Fe2++2OH-=Fe(OH)2↓Cr3++3OH-=Cr(OH)3↓由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。

因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。

而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。

实验室检验废水处理的结果,常采用比色法分析水中的铬含量。

其原理为:Cr(Ⅵ)在酸性介质中与二苯基碳酰二肼反应生成紫红色配合物,其水溶液颜色对光的吸收程度与Cr(Ⅵ)的含量成正比。

只要把样品溶液颜色与标准系列的颜色采用目视比较或用分光光度计测出此溶液的吸光度就能确定样品中Cr(Ⅵ)的含量。

为防止溶液中Fe2+、Fe3+及Hg22+、Hg2+等打扰,可适当加入适量的H3PO4消除。

含铬废液的处理实验报告

含铬废液的处理实验报告

含铬废液的处理实验报告含铬废液的实验室处理和铬含量的测定含铬废液的实验室处理和铬含量的测定一:实验目的1:学习水样中铬的处理方法2:掌握分光光度法测定六价铬含量的原理和基本操作二:实验原理1:采用铁氧体法除去废液中的铬铁氧体是指在含铬废液中加入过量的硫酸亚铁溶液,使六价铬被二价铁还原成三价铬。

调节溶液pH值,使Cr、Fe、Fe转化为氢氧化物沉淀。

然后加入过氧化氢,将部分二价铁转化成三价铁,使Cr、Fe、Fe成适当比例,并以Fe(OH)2、Fe(OH)3、Gr(OH)3形式沉淀共同析出,沉淀物经脱水后,可得组成类似Fe3O4·XH2O 的磁性氧化物,即铁氧体。

其中部分三价铁可被三价铬代替,因此可使铬成为铁氧体的组分而沉淀出来。

反应方程式为:H2Cr2O7+6FeSO4+6H2SO4=3Fe2(SO4)3+Cr2(SO4)3+7H2O含铬的铁氧体是一种磁性材料,可以应用在电子工业上。

用该方法处理废液既环保又利用了废物。

2:采用分光光度法测定废液中六价铬的含量一般以二苯碳酰二肼作显色剂,在酸性介质条件下与六价铬生成红紫色配合物。

该配合物的最大吸收波长为540nm左右,显色温度以15℃为宜,过低温度显色速度慢,过高温度配合物稳定性差,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进行比色,即可测定废液中六价铬的含量。

在本实验中,我们可先采用分光光度法测定未经处理的废液中的六价铬的含量,待废液处理完后,再次用分光光度法测定废液中六价铬的含量来确定铬回收的效果。

3+3+2+3+3+2+三:实验用品1:仪器电磁铁、722分光光度计、台式天平、电子天平、移液管、吸量管、250mL锥形瓶、磁力搅拌器(IKA)、温度计(100℃)、漏斗、蒸发皿、比色管2:试剂①显色剂0.5g二苯碳酰二肼加入50ml 95﹪的乙醇溶液。

待溶解后再加入200ml 10﹪硫酸溶液,摇匀。

该物质很不稳定,见光易分解,应储与棕色瓶中,现用现配②重铬酸钾基准试剂重铬酸钾基准试剂在(102±2)℃下干燥(16±2)h,置于干燥器中冷却③铬标准储备液(0.100mg·mL)电子天平准确称取重铬酸钾0.2829g于小烧杯中,溶解后转入1000mL容量瓶中,用水稀释至刻度,摇匀,制成含六价铬0.100mg·mL标准溶液④铬标准工作液(1.00 ug\mL)准确移取5mL储备液于500mL 容量瓶中用水稀释至刻度,摇匀,制成含六价铬1.0ug\mL标准溶液⑤含铬废水⑥H2SO4(3mol/L)⑦FeSO4·7H2O⑧H2O2⑨NaOH(6mol·mL)-1-1-1-1-1四:实验内容1:处理前水质的检验①重铬酸钾标准曲线的绘制用吸量管分别移取重铬酸钾溶液0.00、0.25、0.50、1.00、2.00、4.00、5.00mL各置于25mL比色管中,然后每一只比色管中加入约15mL去离子水和1.25mL二苯碳酰二肼溶液,最后用去离子水稀释到刻度,摇匀,让其静置10min。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告含铬污水处理:含铬污水处理方法主要有药剂还原沉淀法、SO2还原法、铁屑铁粉处理法等。

铬渣是在金属铬生产过程中排出的废渣,主要是重铬酸钠。

铬渣大多呈粉末状,有黄、黑、赭等颜色;渣中含有镁、钙、硅、铁、铝和没有反应的三氧化二铬。

产生原因:水泥作为基础工业不可缺少的元素,水泥被应用于各个领域中,而水泥中含有的六价铬也就随之扩散,如自来水处理池、我们居住的房屋等各个地方。

随着六价铬逐渐向外浸出,水质就会受到污染。

生活饮用水在我们的生活饮用水中,虽然存在的量较少,但却是含铬;铬在水中多以六价铬和三价铬两种态形式出现,其中毒性较强的是六价铬,大约是三价铬的100倍,六价铬又主要以铬酸盐的形式存在。

常用方法:药剂还原沉淀法还原沉淀法是应用较为广泛的含铬废水处理方法。

基本原理是在酸性条件下向废水中加入还原剂,将Cr6+还原成Cr3+,然后再加入石灰或氢氧化钠,使其在碱性条件下生成氢氧化铬沉淀,从而去除铬离子。

可作为还原剂的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe 等。

还原沉淀法具有一次性投资小、运行费用低、处理效果好、操作管理简便的优点,因而得到广泛应用,但在采用此方法时,还原剂的选择是至关重要的一个问题。

SO2还原法二氧化硫还原法的原理二氧化硫还原法设备简单、效果较好,处理后六价铬含量可达到0.l mg/L 。

但二氧化硫是有害气体,对操作人员有影响,处理池需用通风没备,另外对设备腐蚀性较大,不能直接回收铬酸。

烟道气中的二氧化硫处理含铬(VI)废水,充分利用资源,以废治废,节约了处理成本,但也同样存在以上的问题。

其反应原理为:3SO2 + Cr2O72- + 2H+ = Cr3+ + 3SO42- + H2OCr3+ + 30H- = Cr(OH)3二氧化硫法处理含铬废水的步骤1) 将硫磺燃烧产生的二氧化硫通入废水中,与水作用生成亚硫酸,废水中六价铬被亚硫酸还原为三价铬,生成硫酸铬。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验含铬废水的处理及其相关参数的测定一、实验目的
(1)了解工业废水处理流程,掌握各单元操作的实验原理。

掌握由这些单元操作组成的处理流程。

(2)了解除铬过程中各因素之间的关系。

(3)掌握相关的水质参数的测定方法。

二、实验原理
1.化学还原法——铁氧体法
铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为:
Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2O
HCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O
再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物:
Fe3++3OH-=Fe(OH)3↓
Fe2++2OH-=Fe(OH)2↓
Cr3++3OH-=Cr(OH)3↓
由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀
下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。

因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。

而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。

实验室检验废水处理的结果,常采用比色法分析水中的铬含量。

其原理为:Cr(Ⅵ)在酸性介质中与二苯基碳酰二肼反应生成紫红色配合物,其水溶液颜色对光的吸收程度与Cr(Ⅵ)的含量成正比。

只要把样品溶液颜色与标准系列的颜色采用目视比较或用分光光度计测出此溶液的吸光度就能确定样品中Cr(Ⅵ)的含量。

为防止溶液中Fe2+、Fe3+及Hg22+、Hg2+等打扰,可适当加入适量的H3PO4消除。

2.活性炭吸附法
废水处理中,吸附法主要用于废水中的微量污染物,达到深度净化的目的;本实验选活性炭吸附法,活性炭有吸附铬的性能,但因其吸附能力有限只适合处理含铬量低的废水,活性炭具有吸附容量大,性能稳定,抗腐蚀,在高温解吸时结构热稳定性好,解吸容易等特点,可吸附解吸多次反复使用。

三、实验药品和仪器
1.药品
H2SO4(3mol·L-1) 、硫—磷混酸(15%H2SO4+15%H3PO4+70%H2SO4)、NaOH(6mol·L-1) 、 FeSO4·7H2O(10%) 、 H2O2(3%) 、二苯基碳酰二肼(0.1%)、含铬废水(0.1g·L-1)、铬标准溶液(1mg/L)
2.仪器
分光光度计、酒精灯、三脚架、磁体、石棉铁丝网、碱式和酸式滴定管、容量瓶(50ml、25ml)、量筒(10ml、50ml)、烧杯(400ml、250ml)、温度计(100℃)、吸耳球、移液管(1ml、5ml、25ml)
四、实验步骤
1.铬废水的处理
(1)取100 ml含铬废水(0.1g·L-1)于250 ml烧杯中,在不断搅拌下滴加3mol·L-1 H2SO4调整至pH约等于1,然后加入10%的FeSO4的溶液,直至溶液颜色由浅黄色变为亮绿色为止。

(2)往烧杯中滴加6 mol·L-1 NaOH溶液,调节pH=8~9,使Cr3+、Fe2+、Fe3+生成沉淀。

然后将溶液加热至70℃左右,在不断搅拌下滴加6~10滴3%的H2O2,充分搅拌,静置冷却。

(3)用倾析法将上层清夜倾入另一烧杯中以备测定残余Cr(Ⅵ)。

沉淀用蒸馏水洗涤数次,以除去Na+、K+、SO42-等离子,然后将其转移到蒸发器中,小火加热,搅拌使沉淀蒸发至干,得铁氧体,用磁铁检查沉淀物的磁性。

(4)用移液管取(2)中的上层清液10.00 ml两份各置于50 ml 比色管中用水稀释至刻线。

加入0.5ml硫酸溶液和0.5ml磷酸溶液,摇匀。

加入2 ml显色剂,摇匀。

10分钟后,在540nm波长下,用10光程的比色皿,以水做参比,测定吸光度。

减去空白实验吸光度,从校准曲线上查得铬的含量。

2.配置Cr(Ⅵ)溶液标准系列和制作工作曲线
向一系列50 ml比色管中加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00ml铬标准溶液,用水稀释至50 ml。

然后按照废水处理步骤1中(4)进行处理。

从测得的吸光度减去空白实验吸光度,绘制以含铬量对吸光度的曲线
3.活性炭吸附法
(1)称取20g活性炭
(2)取100ml铬废水于250 ml烧杯中,并加入(1)中称取的活性炭。

(3)静置20分钟后过滤。

(4)取过滤液,用同1中的(4)的方法测定其吸光度。

相关文档
最新文档