2020高考物理一轮复习第九章电磁感应专题十二电磁感应中的动力学和能量综合问题教案

合集下载

【精品】2020版物理浙江高考选考一轮复习课件:选修3-2第九章专题课2电磁感应中的动力学问题和能量、动量问

【精品】2020版物理浙江高考选考一轮复习课件:选修3-2第九章专题课2电磁感应中的动力学问题和能量、动量问

于水平面内,导轨之间接有电阻R。金属棒ab与两导轨垂直并保持 良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面 向下。现使磁感应强度随时间均匀减小,ab 始终保持静止,下列 说法正确的是( ) A.ab中的感应电流方向由b到a B.ab中的感应电流逐渐减小 图1
C.ab所受的安培力保持不变
D.ab所受的静摩擦力逐渐减小
图3
(1)当金属杆的速度为4 m/s时,金属杆的加速度大小;
(2)当金属杆沿导轨的位移为6.0 m时,通过金属杆的电荷量。
解析
(1)对金属杆ab应用牛顿第二定律,有
F+mgsin θ-F安-f=ma,f=μFN,FN=mgcos θ
ab杆所受安培力大小为F安=BIL ab杆切割磁感线产生的感应电动势为E=BLv
E 由闭合电路欧姆定律可知 I=R B2L2 整理得:F+mgsin θ- R v-μmgcos θ=ma
代入vm=8 m/s时a=0,解得F=8 N
代入v=4 m/s及F=8 N,解得a=4 m/s2
(2)设通过回路横截面的电荷量为q,则q=It
E 回路中的平均电流强度为 I=R ΔΦ 回路中产生的平均感应电动势为 E= t
金属导轨相距l=0.50 m,倾角θ=53°,导轨上端串接一个0.05 Ω的电阻。在导轨间
长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B= 2.0 T。质量m=4.0 kg 的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆 GH相连。CD棒的初始位置与磁场区域的下边界相距s=0.24 m。一位健身者用恒力 F=80 N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直。 当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力 加速度g=10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)。

2020届高三物理一轮复习课件:电磁感应中的动力学、能量和动量问题

2020届高三物理一轮复习课件:电磁感应中的动力学、能量和动量问题

返回
[思路点拨]
分别画出金属杆进入磁场前、后的受力示意图,有 助于快速准确的求解问题。
返回
[解析] 二定律得 ma=F-μmg① 设金属杆到达磁场左边界时的速度为v,由运动学公式有 v=at0② 当金属杆以速度v在磁场中运动时,由法拉第电磁感应定律, 杆中的电动势为 E=Blv③ 联立①②③式可得
返回
[解析]
根据楞次定律,可判断ab中感应电流方向从a到b,A
错误;磁场变化是均匀的,根据法拉第电磁感应定律,感应电动 势恒定不变,感应电流I恒定不变,B错误;安培力F=BIL,由于 I、L不变,B减小,所以ab所受的安培力逐渐减小,根据力的平衡 条件,静摩擦力逐渐减小,C错误,D正确。
[答案]
D
(1)末速度的大小v; (2)通过的电流大小I; (3)通过的电荷量Q。
[解析]
(1)金属棒做匀加速直线运动,
返回
根据运动学公式有 v2=2as 解得 v= 2as。 (2)金属棒所受安培力 F 安=IdB 金属棒所受合力 F=mgsin θ-F 安 根据牛顿第二定律有 F=ma mgsin θ-a 解得 I= 。 dB v (3)金属棒的运动时间 t=a, 通过的电荷量 Q=It mgsin θ-a 2as 解得 Q= 。 dBa mgsin θ-a [答案] (1) 2as (2) dB
第4节
电磁感应中的动力学、能量和 动量问题
目 录

研究好——题型· 考法· 技巧

查缺漏——盲点· 短板· 妙法

课时跟踪检测
返回

研究好——题型· 考法· 技巧
返回
高考对本节内容的考查常以压轴计算题的形式呈现, 即便以选择题的形式考查,通常题目难度也较大,因为这 类题目可以说是以电磁感应为载体,把直线运动、相互作 用、牛顿运动定律、机械能、动量、电路、磁场,甚至包 括电场和交变电流等力学、电学知识全部综合到一起进行 考查。

2024版新教材高考物理全程一轮总复习第十二章电磁感应专题强化十二电磁感应中动力学能量和动量问题学生

2024版新教材高考物理全程一轮总复习第十二章电磁感应专题强化十二电磁感应中动力学能量和动量问题学生

专题强化十二电磁感应中的动力学、能量和动量问题【素养目标】 1.掌握处理电磁感应中动力学,能量和动量问题的方法.2.能分析电磁感应规律在生产生活中的应用.题型一电磁感应中的动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下例1[2022·湖北卷]如图所示,高度足够的匀强磁场区域下边界水平、左右边界竖直,磁场方向垂直于纸面向里.正方形单匝线框abcd的边长L=0.2 m、回路电阻R=1.6×10-3Ω、质量m=0.2 kg.线框平面与磁场方向垂直,线框的ad边与磁场左边界平齐,ab边与磁场下边界的距离也为L.现对线框施加与水平向右方向成θ=45°角、大小为4√2 N的恒力F,使其在图示竖直平面内由静止开始运动.从ab边进入磁场开始,在竖直方向线框做匀速运,求:动;dc边进入磁场时,bc边恰好到达磁场右边界.重力加速度大小取g=10ms2(1)ab边进入磁场前,线框在水平方向和竖直方向的加速度大小;(2)磁场的磁感应强度大小和线框进入磁场的整个过程中回路产生的焦耳热;(3)磁场区域的水平宽度.[试答]针对训练1.(多选)如图甲所示,倾角为α=37°的足够长绝缘斜面体固定在水平面上,在两平行于斜面底边的虚线之间存在垂直斜面向上的匀强磁场,两平行虚线间的距离为d=0.1 m,质量为m=0.01 kg、阻值为r=1 Ω的正方形导体框由虚线1上侧无初速释放,经过一段时间导体框穿过磁场,整个过程中导体框的ab边始终与虚线平行,导体框由释放到离开磁场的过程,其速度随时间的变化规律如图乙所示,已知磁感应强度大小为B=1 T,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( )A.导体框与斜面体之间的动摩擦因数为0.5B.导体框的边长为0.2 mC.导体框由释放到cd边离开虚线2的时间为1 sD.整个过程,导体框中产生的焦耳热为4×10-3 J2.[2023·南昌摸底考试]如图甲所示,两条相距l=2 m的水平粗糙导轨左端接一定值电阻R=1 Ω,当t=0时,一质量为m=2 kg,阻值为r的金属杆,在水平外力F的作用下由静止开始向右运动,5 s末到达MN,MN右侧为一匀强磁场,磁感应强度大小B=0.5 T,方向垂直纸面向里.当金属杆到达MN(含MN)后,保持外力的功率不变,金属杆进入磁场8 s 末开始做匀速直线运动.整个过程金属杆的v-t图像如图乙所示,若导轨电阻忽略不计,金属杆和导轨始终垂直且接触良好,两者之间的动摩擦因数μ=0.1,重力加速度g=10 m/s2.(1)求金属杆进入磁场后外力F的功率P.(2)若前8 s回路产生的总焦耳热为Q=51 J,求金属杆在磁场中运动的位移大小.(3)求定值电阻R与金属杆的阻值r的比值.题型二电磁感应中的能量问题1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.例2[2023·江苏省扬州市质检](多选)我国新一代航母阻拦系统的研制引入了电磁阻拦技术,其基本原理如图所示,飞机着舰时关闭动力系统,通过绝缘阻拦索钩住轨道上的一根金属棒,飞机与金属棒瞬间获得共同速度v0=180 km/h,在磁场中共同减速滑行至停下,已知歼-15舰载机质量M=2.7×104 kg,金属棒质量m=3×103 kg、电阻R=10 Ω,导轨间距L=50 m,匀强磁场磁感应强度B=5 T,导轨电阻不计,除安培力外飞机克服其它阻力做的功为1.5×106 J,则下列说法中正确的是( )A.金属棒中感应电流方向a到bB.飞机着舰瞬间金属棒中感应电流大小为I=1.25×103 AC.金属棒中产生的焦耳热Q=3.6×107 JD.金属棒克服安培力做功为W=1.5×106 J[解题心得]针对训练3.(多选)一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图所示,磁感应强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是( )A.ab受到的拉力大小为2 NB.ab向上运动的速度为2 m/sC.在2 s内,拉力做功,有0.4 J的机械能转化为电能D.在2 s内,拉力做功为0.6 J4.如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v -t图像,其中AO是图像在O点的切线,AB是图像的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.题型三电磁感应与动量的综合问题考向1 动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B I lΔt=mv2-mv1,q=I t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=BlΔΦR总.(3)求位移:-BIlΔt=-B 2l2vΔtR总=0-mv0,即-B 2l2R总x=m(0-v0).例3 如图所示的导轨固定在水平面上,左、右两侧的导轨足够长,且间距分别为2d和d,左、右两侧导轨所在空间分别存在竖直向下的匀强磁场B1和B2,且磁感应强度B2=2B1=2B0.同种材料且粗细相同的导体棒甲、乙均垂直导轨放置,导体棒甲到衔接处的距离为2d,导体棒乙放在衔接处.t=0时刻给导体棒甲向右的冲量I0,在导体棒甲运动到衔接处前的瞬间两棒刚好达到共速,且此过程流过导体棒乙某一横截面的电荷量为q,此时导体棒甲在外力的控制下立即停止,导体棒乙继续向右运动,重力加速度为g.忽略导轨的电阻,已知导体棒甲的质量为m,且导体棒甲与导轨间的动摩擦因数为μ,导体棒乙与导轨间的摩擦不计.求:(1)t=0时刻,导体棒甲两端的电压;(2)导体棒甲运动的总时间.[试答]考向2 动量守恒定律在电磁感应中的应用例4[2022·浙江卷1月]如图所示,水平固定一半径r=0.2 m的金属圆环,长均为r、电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度ω=600 rad/s匀速转动,圆环内左半圆存在磁感应强度大小为B1的匀强磁场.圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09 F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连.电容器左侧存在宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域.在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde.棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01 kg,de与cf长度均为l3=0.08 m,已知l1=0.25 m,l2=0.068 m,B1=B2=1 T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1 Ω,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直.开始时开关S和接线柱1接通,待电容器充电完毕后,将S 从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2 m后返回进入磁场.(1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?(2)求电容器释放的电荷量ΔQ;(3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x.[试答]针对训练5.(多选)如图所示,两间距为d、足够长的平行金属导轨沿水平方向固定,水平导轨的圆弧轨道平滑连接,两质量均为m、电阻均为r的金属棒甲、乙左、右两端与半径为R的14放在圆弧轨道上,且均与导轨垂直,开始时金属棒甲与轨道的圆心等高,金属棒乙距离水平,某时刻将金属棒甲由静止释放,经过一段时间再将金属棒乙由静止释放,导轨的高度为R9结果两金属棒同时滑到水平导轨,已知水平导轨所在的空间存在竖直向上的匀强磁场,磁感应强度大小为B,忽略导轨的电阻以及一切摩擦,重力加速度为g.则下列说法正确的是( )√2gRA.两金属棒稳定时的速度为23B.两金属棒从滑到水平导轨到稳定的过程,金属棒甲上产生的热量为89mgRC.两金属棒从滑到水平导轨到稳定的过程,流过金属棒甲的电荷量为2m√2gR3BdD.当乙的速度为零时,乙的加速度为B 2d2√2gR 3mr专题强化十二电磁感应中的动力学、能量和动量问题题型一例1 解析:(1)ab边进入磁场前,对线框进行受力分析,在水平方向有F cos θ=ma x 代入数据有a x=20 m/s2在竖直方向有F sin θ-mg=ma y代入数据有a y=10 m/s2.(2)ab边进入磁场开始,ab边在竖直方向切割磁感线;ad边和bc边的上部分也开始进入磁场,且在水平方向切割磁感线.但ad和bc边的上部分产生的感应电动势相互抵消,则整个回路的电源为ab,根据右手定则可知回路的电流为adcba,则ab边进入磁场开始,ab 边受到的安培力竖直向下,ad边的上部分受到的安培力水平向右,bc边的上部分受到的安培力水平向左,则ad边和bc边的上部分受到的安培力相互抵消,故线框abcd受到的安培力的合力为ab边受到的竖直向下的安培力.由题知,线框从ab边进入磁场开始,在竖直方向线框做匀速运动,有F sin θ-mg-BIL=0,E=BLv y,I=ER,v y2=2a y L,联立有B=0.2T由题知,从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc 边恰好到达磁场右边界.则线框进入磁场的整个过程中,线框受到的安培力为恒力,则有Q =W安=BILy,y=L,F sin θ-mg=BIL,联立解得Q=0.4 J.(3)线框从开始运动到进入磁场的整个过程中所用的时间为v y=a y t1,L=v y t2,t=t1+t2联立解得t =0.3 s.由(2)分析可知线框在水平方向一直做匀加速直线运动,则在水平方向有x =12a x t 2=12×20×0.32m =0.9 m ,则磁场区域的水平宽度X =x +L =1.1 m.答案:(1)20 m/s 2 10 m/s 2(2)0.2 T 0.4 J (3)1.1 m1.解析:方法一 由图乙分析可知,导体框穿过磁场的过程速度不变,则正方形导体框的边长等于两虚线之间的距离,为0.1 m ,导体框的ab 边刚进入磁场的瞬间导体框沿斜面方向合力为零,即F 安+μmg cos α=mg sin α,又F 安=BId 、I =Bdv r,代入数据解得μ=0.5,A 正确,B 错误;导体框进入磁场前,由牛顿第二定律得mg sin α-μmg cos α=ma ,解得a =2 m/s 2,则导体框进入磁场前的运动时间为t 1=va =1 s ,导体框从进入磁场到离开磁场的运动时间为t 2=2dv =0.1 s ,导体框由释放到cd 边离开虚线2的时间为t =t 1+t 2=1.1 s ,C 错误;导体框从进入磁场到离开磁场的过程中,由功能关系得Q =-W 安,又W 安=-F 安·2d =-4×10-3 J ,则整个过程导体框中产生的焦耳热为4×10-3 J ,D 正确.方法二 导体框从进入磁场到离开磁场的过程中,由能量守恒定律得Q =mg ·2d sin α-μmg cos α·2d =4×10-3J ,D 正确.答案:AD2.解析:(1)在0~5 s 时间内,由图乙可得金属杆的加速度α=ΔvΔt =1 m/s 2由牛顿第二定律有F -μmg =ma则金属杆到达MN 边界时,金属杆的速度v 1=5 m/s ,外力功率P =Fv 1 代入数据解得P =20 W. (2)在0~5 s 时间内,金属杆做匀加速直线运动,根据位移和时间的关系可得金属杆运动的位移大小为x 1=12at 12=12×1×52m =12.5 m在5~8 s 时间内,设金属杆在磁场中运动的位移大小为x 2,则时间为Δt 1=3 s .由图乙可知第8 s 末金属杆的速度v 2=4 m/s ,对金属杆,在前8 s 内,由动能定理有Fx 1+P Δt 1-μmg (x 1+x 2)-W 安=12mv 22又W 安=Q代入数据解得x 2=9 m.(3)金属杆进入磁场后外力F 的功率恒为P =20 W ,最后金属杆做匀速直线运动,根据平衡条件可得F 1=F 安+f其中F 安=BIl ,F 1=Pv 2通过金属杆的电流为I =Blv2R+r金属杆所受的滑动摩擦力为f =μmg 联立以上各式并代入数据解得r =13Ω所以定值电阻R 与金属杆的阻值r 的比值为Rr =3.答案:(1)20 W (2)9 m (3)3题型二例2 解析:由右手定则:感应电流方向b 到a ,A 错误;飞机着舰瞬间金属棒中感应电动势E =BLv 0,感应电流I =ER,解得I =1.25×103A ,B 正确;飞机着舰至停下,由动能定理-W 克安-W 克f =0−12(M +m )v 02,解得Q =W 克安=3.6×107 J ,C 正确,D 错误.答案:BC3.解析:对导体棒cd 分析:mg =BIl =B 2l 2v R 总,得v =2 m/s ,B 正确;对导体棒ab 分析:F =mg +BIl =0.2 N ,A 错误;在2 s 内拉力做功转化为ab 棒的重力势能和电路中的电能,电能等于克服安培力做的功,即W 电=F 安vt =B 2l 2v 2t R 总=0.4 J ,C 正确;在2 s 内拉力做的功为W 拉=Fvt =0.8 J ,D 错误.答案:BC4.解析:(1)由题图乙得ab 棒刚开始运动瞬间a =2.5ms 2,则F -F f =ma ,解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BLBLv R=B 2L 2v R.联立可得R =B 2L 2vF−F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J题型三例3 解析:(1)由于两导体棒的材料以及粗细程度相同,导体棒甲、乙的长度之比为2∶1,则由电阻定律R =ρL S可知R 甲=2R 乙t =0时刻,导体棒甲的速度为v 0=I0m则导体棒甲切割磁感线产生的感应电动势为E =B 1(2d )v 0 根据闭合电路欧姆定律得导体棒甲两端的电压为U =ER 乙R 甲+R 乙由以上整理得U =2B 0dI 03m.(2)由于两棒的材料以及粗细程度相同,则导体棒乙的质量为导体棒甲的一半,即m ′=m2,设导体棒甲运动的总时间为tt 时间内对导体棒乙,由动量定理得F ̅乙t =m2v -0,由安培力公式得F ̅乙=B 2I d =2B 0I d ,又I=qt,对导体棒甲,由动量定理得-μmgt-F̅甲t=mv-mv0由安培力公式得F̅甲=B1I·2d=2B0I d解得t=I0−6qB0dμmg.答案:见解析例4 解析:(1)开关S和接线柱1接通,电容器充电过程中,对绕转轴OO′转动的棒由右手定则可知,其切割磁感线产生的电流沿径向向外,即边缘为电源正极,圆心为负极,则M板带正电;根据法拉第电磁感应定律可得E=B1v̅r=12B1ωr2当开关接1时,其等效电路图如图所示,电容器C与R0并联则Q=CU=CE2=0.54 C.(2)电容器放电过程对金属棒ab由动量定理有B2l1I t=B2l1ΔQ=mv1棒ab被弹出磁场后与“[”形框粘在一起的过程有mv1=(m+m)v2对框的上滑过程有12×2mv22=2mgh解得ΔQ=2mB2l1√2gh=0.16 C.(3)设框在磁场中减速滑行的总路程为Δx,由动量定理有B22l12v̅2R ·t=B l2212 Δx2R=2mv2则Δx=0.128 m>0.08 m,因此金属框会有一段磁通量不变的匀速运动,匀速运动的距离为l3-l2=0.012 m因此ab边进入磁场后的总位移为x=Δx+l3-l2=0.14 m.答案:(1)M板带正电0.54 C (2)0.16 C (3)0.14 m5.解析:两金属棒由释放到滑到水平导轨的过程中,对金属棒甲,由机械能守恒定律有mgR=12mv甲2,解得v甲=√2gR;同理,对金属棒乙有mg·R9=12mv乙2,解得v乙=13√2gR.两棒均在水平导轨上运动时,两棒组成的系统动量守恒,取水平向右为正方向,由动量守恒定律可得mv甲-mv乙=2mv,解得v=13√2gR,A错误.两金属棒从滑到水平导轨到稳定的过程,两棒上产生的焦耳热为Q=12mv甲2+12mv乙2-12×2mv2=89mgR,则金属棒甲上产生的热量为Q 甲=49mgR ,B 错误.两金属棒从滑到水平导轨到稳定的过程,对金属棒甲,由动量定理得一B I d t =mv -mv 甲,又q =I t ,整理得q =2m √2gR 3Bd ,C 正确.当乙的速度为零时,则由动量守恒定律得mv 甲-mv 乙=mv ′甲,解得v ′甲=23√2gR ,则感应电动势为E =Bdv ′甲、I =E 2r 、F =BId ,联立解得F =B 2d 2√2gR 3r ,又由牛顿第二定律得a =F m =B 2d 2√2gR 3mr ,D 正确. 答案:CD。

高考物理一轮复习专题九电磁感应中的动力学和能量问题精讲深剖

高考物理一轮复习专题九电磁感应中的动力学和能量问题精讲深剖

专题九 电磁感应中的动力学和能量问题【专题解读】1.本专题是动力学观点和能量观点在电磁感应中的综合应用,高考常以计算题的形式命题.2.学好本专题,可以极大培养同学们的分析能力、推理能力和规范表达的能力,针对性的专题强化,可以提升同学们解决电磁感应问题中最难问题的信心.3.用到的知识有:法拉第电磁感应定律、楞次定律、牛顿运动定律、共点力的平衡条件、动能定理、焦耳定律、能量守恒定律等.考点精讲考向一 电磁感应中的动力学问题1.题型简述:感应电流在磁场中受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、楞次定律)及力学中的有关规律(共点力的平衡条件、牛顿运动定律、动能定理等).2.两种状态及处理方法3.动态分析的基本思路解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度最大值或最小值的条件.具体思路如下:导体受外力运动――→E =Blv 感应电动势感应电流――→F =BIl 导体受安培力→合力变化――→F 合=ma 加速度变化→速度变化→临界状态【例1】 如图1所示,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图1(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.【答案】(1)kt0S R(2)B 0lv 0(t -t 0)+kSt (B 0lv 0+kS )B0l R匀强磁场穿过回路的磁通量为。

高考物理一轮复习主题九电磁感应9_2_2电磁感应中的动力学和能量问题课件

高考物理一轮复习主题九电磁感应9_2_2电磁感应中的动力学和能量问题课件
[答案]
F (1)Blt0m-μg
B2l2t0 (2) m
解决电磁感应动力学问题的两个关键分析 (1)受力分析:准确分析运动导体的受力,特别是安培力,求 出合力. (2)运动分析:分析导体的运动性质,是加速、减速,还是匀 速,从而确定相应的运动规律.
[变式训练] 1.(2017· 广东广州综合测试)如图所示,两条间距 L=0.5 m 且足够长的平行光滑金属直导轨, 与水平地面成 α=30° 角固定放 置, 磁感应强度 B=0.4 T 的匀强磁场方向垂直导轨所在的斜面向 上,质量 mab=0.1 kg、mcd=0.2 kg 的金属棒 ab、cd 垂直导轨放 在导轨上,两金属棒的总电阻 r=0.2 Ω,导轨电阻不计.ab 在沿 导轨所在斜面向上的外力 F 作用下,沿该斜面以 v=2 m/s 的恒 定速度向上运动.某时刻释放 cd,cd 向下运动,经过一段时间 其速度达到最大. 已知重力加速度 g=10 m/s2, 在 cd 速度最大时, 求:
主 题 九
电磁感应
高考研究课
解读高考 精准备考
课时二
电磁感应中的动力学和能量问题
高考真题研读 G
精析考题 明确考向
真题案例 (2017· 天津卷)电磁轨道炮利用电流和磁场的作用使炮弹获得 超高速度,其原理可用来研制新武器和航天运载器.电磁轨 道炮示意如图,图中直流电源电动势为 E,电容器的电容为 C.两根固定于水平面内的光滑平行金属导轨间距为 l, 电阻不 计.炮弹可视为一质量为 m、电阻为 R 的金属棒 MN,垂直 放在两导轨间处于静止状态,并与导轨良好接触.首先开关 S 接 1,使电容器完全充电.①然后将 S 接至 2,导轨间存在 垂直于导轨平面、 磁感应强度大小为 B 的匀强磁场(图中未画

2024届高考一轮复习物理课件(新教材粤教版):电磁感应中的动力学和能量问题

2024届高考一轮复习物理课件(新教材粤教版):电磁感应中的动力学和能量问题

电磁感应中的能量问题
1.电磁感应中的能量转化 其他形式的能量 ――克――服―安――培――力――做―功―→ 电能 ―电――流――做――功→ 焦耳热或其他形式的能量
2.求解焦耳热Q的三种方法
3.解题的一般步骤 (1)确定研究对象(导体棒或回路); (2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化; (3)根据功能关系或能量守恒定律列式求解.
2.用动力学观点解答电磁感应问题的一般步骤
3.导体常见运动情况的动态分析
v ↓ E=Blv ↓ I=R+E r ↓ F安=BIl ↓
F合
若F合=0
匀速直线运动 v增大,若a恒定,拉力F增大
若F合≠0 ↓
F合=ma
a、v同向 v增大,F安增大,F合减小,a减小, 做加速度减小的加速运动,减小到
a=0,匀速直线运动
A.拉力F是恒力
√B.拉力F随时间t均匀增加 √C.金属杆运动到导轨最上端时拉力F为12 N √D.金属杆运动的加速度大小为2 m/s2
t时刻,金属杆的速度大小为v=at,产生的感应电动势为E=Blv, 电路中的感应电流 I=BRlv,金属杆所受的安培力大小 为 F 安=BIl=B2Rl2at, 由牛顿第二定律可知外力 F=ma+mgsin 37°+B2Rl2at, F 是 t 的一次函数,选项 A 错误,B 正确;
答案
4 gm2R2 2L0L14
导线框匀速进入磁场时,受力平衡,受力情况如图所示. 根据平衡条件有FT=F安+mgsin θ 其中F安=BIL1 I=ER E=BL1v 导线框与木块通过细线相连,线框匀速进入磁场时,木块匀速下降, 根据平衡条件有FT=mg 对导线框和木块构成的系统,进入磁场前二者一起做匀加速直线运 动,根据牛顿第二定律有mg-mgsin θ=2ma

高三物理第九章知识点归纳总结

高三物理第九章知识点归纳总结

高三物理第九章知识点归纳总结高三物理第九章主要介绍了电磁感应、电磁场和电磁波等相关知识。

本章知识点归纳总结如下:一、电磁感应电磁感应是指在导体中或磁场中产生电动势的现象。

主要包括法拉第电磁感应定律和楞次定律。

1. 法拉第电磁感应定律法拉第电磁感应定律描述了导体中感应电动势的产生与变化。

定律表达式为:感应电动势的大小与导体中磁场的变化率成正比。

2. 楞次定律楞次定律描述了通过电磁感应产生的电流方向。

根据楞次定律,感应电动势的方向总是使通过电路的电流产生一个方向上的磁场,以阻碍磁场变化的方式。

二、电磁场电磁场是由带电粒子产生的电场和磁场组成的。

学习电磁场需要了解库仑定律、电场强度、电势能、真空中的光速等相关知识。

1. 库仑定律库仑定律描述了两个电荷之间的力与电荷之间的距离、大小和性质之间的关系。

定律表达式为:两个点电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。

2. 电场强度电场强度是描述电场的物理量,定义为单位正电荷所受的力。

电场强度的大小与电荷量成正比,与距离的平方成反比。

3. 电势能电势能是电荷在电场中位置的一种衡量,定义为单位正电荷所具有的电势能。

电势能的大小与电荷量成正比,与距离成反比。

4. 真空中的光速真空中的光速是指电磁波在真空中传播的速度,约为3.00 x 10^8 m/s。

三、电磁波电磁波是由变化的电场和磁场相互作用而产生的能量传播现象。

本节重点学习电磁波的特性和电磁波谱。

1. 电磁波的特性电磁波有很多特性,包括振幅、波长、频率、传播速度等。

其中,波长和频率是互相关联的,与传播速度有一定的关系。

2. 电磁波谱电磁波谱是根据电磁波的不同波长和频率进行分类的。

按照波长从小到大的顺序,电磁波谱可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等七个区域。

总结:高三物理第九章主要介绍了电磁感应、电磁场和电磁波等知识点。

电磁感应涉及法拉第电磁感应定律和楞次定律,电磁场包括库仑定律、电场强度、电势能和真空中的光速等,电磁波涵盖电磁波的特性和电磁波谱。

2020年高考物理一轮复习专题10.4 电磁感应中的动力学和能量问题(讲)(原卷版)

2020年高考物理一轮复习专题10.4 电磁感应中的动力学和能量问题(讲)(原卷版)

专题10.4 电磁感应中的动力学和能量问题1.受力分析与运动分析2.应用牛顿运动定律和运动学规律解答电磁感应问题知识点一 电磁感应中的动力学问题1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F A =BIl 感应电动势:E =Blv 感应电流:I =E R ⇒F A=B 2l 2v R 2.安培力的方向(1)用左手定则判断:先用右手定则判断感应电流的方向,再用左手定则判定安培力的方向。

(2)用楞次定律判断:安培力的方向一定与导体切割磁感线的运动方向相反。

3.安培力参与下物体的运动导体棒(或线框)在安培力和其他力的作用下,可以做加速运动、减速运动、匀速运动、静止或做其他类型的运动,可应用动能定理、牛顿运动定律等规律解题。

【特别提醒】1.两种状态及处理方法 状态特征 处理方法 平衡态加速度为零 根据平衡条件列式分析 非平衡态 加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析2.力学对象和电学对象的相互关系知识点二电磁感应中的能量问题1.能量的转化感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为其他形式的能。

2.实质电磁感应现象的能量转化,实质是其他形式的能和电能之间的转化。

3.电磁感应现象中能量的三种计算方法(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒定律求解:机械能的减少量等于电能的增加量。

(3)利用电路特征来求解:通过电路中所产生的电能来计算。

知识点三动量观点在电磁感应问题中的应用1.对于两导体棒在平直的光滑导轨上运动的情况,如果两棒所受的外力之和为零,则考虑应用动量守恒定律处理问题;2.由B I L·Δt=m·Δv、q=I·Δt可知,当题目中涉及电荷量或平均电流时,可应用动量定理来解决问题。

考点一电磁感应中的平衡问题【典例1】(2016·全国卷Ⅰ)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。

电磁感应中的动力学问题和能量问题课件

电磁感应中的动力学问题和能量问题课件

安培力是通电导线在磁场中受到 的力,其方向与电流和磁场方向
垂直。
安培力的大小与电流和磁感应强 度的乘积成正比,与导线的长度
成正比。
安培力在电机、变压器等电气设 备中有着广泛应用,是实现电能
和机械能转换的重要手段。
洛伦兹力
洛伦兹力是带电粒子在磁场中受到的力,其方向与粒子运动方向和磁场方向垂直。
洛伦兹力的大小与粒子所带电荷和磁感应强度的乘积成正比,与粒子速度成正比。
实际应用案例
总结词
增强实际应用能力
详细描述
介绍一些电磁感应在现实生活中的应用案例 ,如发电机、变压器等,帮助学生了解理论 知识的实际应用,增强实际应用能力。
THANKS
感谢观看
法拉第电磁感应定律
法拉第定律
当一个变化的磁场在导体中产生时,会在导体中产生电动势。
定律的应用
发电机、变压器等电力设备的原理。
楞次定律
楞次定律
当一个导线或导线回路在磁场中发生 相对运动时,感应电流的方向总是阻 碍相对运动。
定律的实质
能量的转化与守恒在电磁感应过程中 的体现。
02
动力学问题
安培力
电磁感应中的动力学问 题和能量问题课件
目录
• 电磁感应的基本概念 • 动力学问题 • 能量问题 • 实例分析 • 习题与思考
01
电磁感应的基本概念
电磁感应的定义
电磁感应
当一个导线或导线回路在磁场中 发生相对运动时,会在导线中产 生电动势或电流的现象。
电磁感应定律
揭示了磁场与电场之间相互转化 关系,是麦克斯韦电磁理论的重 要组成部分。
04
实例分析
电动机原理
总结词
利用磁场和电流相互作用产生转矩, 使电机转动。

2020高三物理一轮复习-电磁感应中的动力学和能量问题

2020高三物理一轮复习-电磁感应中的动力学和能量问题

电磁感应中的动力学问题分析1.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡状态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 2.电磁感应中的动力学问题分析思路 (1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I =BL vR +r .(2)受力分析:导体棒受到安培力及其他力,安培力F 安=BIL 或B 2L 2vR 总,根据牛顿第二定律列动力学方程:F 合=ma .(3)过程分析:由于安培力是变力,导体棒做变加速或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力平衡条件列平衡方程F 合=0.例1 如图1所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求:图1(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量.解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL +μmg cos θ I =BL vR解得v =2.0 m/s(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有mgs sin θ=12m v 2+μmgs cos θ+Q 解得Q =0.10 J答案 (1)2.0 m /s 2 (2)2.0 m/s (3)0.10 J 变式题组1.[电磁感应中动力学问题]如图2所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m ,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN .Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg 、电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2,问:图2(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少. 答案 (1)由a 流向b (2)5 m/s (3)1.3 J解析 (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置时ab 刚好不下滑,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有I =E R 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J电磁感应中的能量问题1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.2.[电磁感应中的能量问题]如图4所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向下的匀强磁场中.质量为m 、电阻为r 的导体棒与固定弹簧连接后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v 0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行.图4(1)求初始时刻通过电阻R 的电流I 的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;(3)若导体棒最终静止时弹簧的弹性势能为E p ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q .答案 (1)BL v 0R +r ,电流方向为a →b(2)g sin θ-B 2L 2vm (R +r )(3)R R +r⎝⎛⎭⎫12m v 20+m 2g 2sin 2 θk -E p 解析 (1)初始时刻,导体棒产生的感应电动势E 1=BL v 0 通过R 的电流大小I 1=E 1R +r =BL v 0R +r电流方向为a →b(2)导体棒产生的感应电动势为E 2=BL v 感应电流I 2=E 2R +r =BL v R +r导体棒受到的安培力大小F =BIL =B 2L 2vR +r,方向沿导轨向上根据牛顿第二定律有mg sin θ-F =ma 解得a =g sin θ-B 2L 2vm (R +r )(3)导体棒最终静止,有mg sin θ=kx 压缩量x =mg sin θk设整个过程回路产生的焦耳热为Q 0,根据能量守恒定律有 12m v 20+mgx sin θ=E p +Q 0 Q 0=12m v 20+(mg sin θ)2k-E p 电阻R 上产生的焦耳热Q =R R +r Q 0=R R +r ⎝⎛⎭⎫12m v 20+m 2g 2sin 2 θk -E p 考点三 动力学和能量观点的综合应用根据杆的数目,对于“导轨+杆”模型题目,又常分为单杆模型和双杆模型.(1)单杆模型是电磁感应中常见的物理模型,此类问题所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、摩擦力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等.此类问题的分析要抓住三点:①杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零).②整个电路产生的电能等于克服安培力所做的功.③电磁感应现象遵从能量守恒定律.(2)双杆类问题可分为两种情况:一是“假双杆”,甲杆静止不动,乙杆运动.其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.线框进入磁场和离开磁场的过程和单杆的运动情况相同,在磁场中运动的过程与双杆的运动情况相同.例3 (2014·江苏·13)如图5所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g .求:图5(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ; (3)整个运动过程中,电阻产生的焦耳热Q . 解析 (1)在绝缘涂层上导体棒受力平衡mg sin θ=μmg cos θ 解得导体棒与涂层间的动摩擦因数μ=tan θ(2)在光滑导轨上 感应电动势:E =BL v 感应电流:I =ER安培力:F 安=BIL 受力平衡的条件是:F 安=mg sin θ 解得导体棒匀速运动的速度v =mgR sin θB 2L 2(3)摩擦产生的热量:Q T =μmgd cos θ 根据能量守恒定律知:3mgd sin θ=Q +Q T +12m v 2解得电阻产生的焦耳热Q =2mgd sin θ-m 3g 2R 2sin 2 θ2B 4L 4.变式题组3.[双杆模型问题]如图6所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω.MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:图6(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量; (3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到x =5 m 的过程中,系统产生的热量.答案 (1)2 T (2)3 C (3)大小为5.2 N ,方向沿斜面向下 (4)203 J解析 (1)当t =3 s 时,设MN 的速度为v 1,则v 1=at =3 m/s E 1=BL v 1 E 1=I (R MN +R PQ ) P =I 2R PQ 代入数据得:B =2 T.(2)E =ΔΦΔtq =ER MN +R PQ Δt =ΔΦR MN +R PQ代入数据可得:q =3 C(3)当t =6 s 时,设MN 的速度为v 2,则 v 2=at =6 m/s E 2=BL v 2=12 V I 2=E 2R MN +R PQ=4 AF 安=BI 2L =8 N 规定沿斜面向上为正方向,对PQ 进行受力分析可得:F 2+F 安cos 37°=mg sin 37° 代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下) (4)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m /s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,安培力做功W 安=-12BL ·BL v R MN +R PQ ·x =-203 J Q =-W 安=203J .习题1. 如图所示,足够长的平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ) A .2.5 m /s 1 W B .5 m/s 1 W C .7.5 m /s 9 W D .15 m/s 9 W 答案 B 解析导体棒MN 匀速下滑时受力如图所示,由平衡条件可得F 安+μmg cos 37°=mg sin 37°,所以F 安=mg (sin 37°-μcos 37°)=0.4 N ,由F 安=BIL 得I =F 安BL =1 A ,所以E =I (R 灯+R MN )=2 V ,导体棒的运动速度v =EBL =5 m/s ,小灯泡消耗的电功率为P 灯=I 2R 灯=1 W .正确选项为B.2.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,如图所示.一个质量为m 、电阻为R 、边长也为L 的正方形线框在t =0时刻以速度v 0进入磁场,恰好做匀速直线运动,若经过时间t 0,线框ab 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( )A .当ab 边刚越过ff ′时,线框加速度的大小为g sin θB .t 0时刻线框匀速运动的速度为v 04C .t 0时间内线框中产生的焦耳热为32mgL sin θ+1532m v 2D .离开磁场的过程中线框将做匀速直线运动 答案 BC解析 当ab 边进入磁场时,有E =BL v 0,I =ER ,mg sin θ=BIL ,有B 2L 2v 0R =mg sin θ.当ab 边刚越过ff ′时,线框的感应电动势和电流均加倍,则线框做减速运动,有4B 2I 2 v 0R=4mg sin θ,加速度向上大小为3g sin θ,A 错误;t 0时刻线框匀速运动的速度为v ,则有4B 2I 2v R =mg sin θ,解得v =v 04,B 正确;线框从进入磁场到再次做匀速运动的过程,沿斜面向下运动距离为32L ,则由功能关系得线框中产生的焦耳热为Q =3mgL sin θ2+(m v 202-m v 22)=3mgL sin θ2+15m v 2032,C 正确;线框离开磁场时做加速运动,D 错误.3.如图所示,ABCD 为固定的水平光滑矩形金属导轨,处在方向竖直向下,磁感应强度为B 的匀强磁场中,AB 间距为L ,左右两端均接有阻值为R 的电阻,质量为m 、长为L 且不计电阻的导体棒MN 放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开始时,弹簧处于自然长度,导体棒MN 具有水平向左的初速度v 0,经过一段时间,导体棒MN 第一次运动到最右端,这一过程中AB 间R 上产生的焦耳热为Q ,则( )A .初始时刻导体棒所受的安培力大小为2B 2L 2v 0RB .当导体棒再一次回到初始位置时,AB 间电阻的热功率为2B 2L 2v 20RC .当导体棒第一次到达最右端时,弹簧具有的弹性势能为12m v 20-2QD .当导体棒第一次到达最左端时,弹簧具有的弹性势能大于12m v 20-23Q答案 AC解析 由F =BIL ,I =BL v 0R 并,R 并=12R ,得初始时刻导体棒所受的安培力大小为F =2B 2L 2v 0R .故A 正确;由于回路中产生焦耳热,导体棒和弹簧的机械能有损失,所以当导体棒再次回到初始位置时,速度小于v 0,导体棒产生的感应电动势E <BL v 0,由电功率公式P =E 2R 知,则AB 间电阻R 的功率小于B 2L 2v 20R ,故B 错误;由能量守恒得知,当导体棒第一次达到最右端时,物体的机械能全部转化为整个回路中的焦耳热和弹簧的弹性势能.电阻R 上产生的焦耳热为Q ,整个回路产生的焦耳热为2Q .弹簧的弹性势能为:E p =12m v 20-2Q ,故C 正确;由题意知,导体棒第一次运动至最右端的过程中AB 间电阻R 上产生的焦耳热为Q ,回路中产生的总焦耳热为2Q .由于安培力始终对MN 做负功,产生焦耳热,导体棒第一次达到最左端的过程中,导体棒平均速度最大,平均安培力最大,位移也最大,导体棒克服安培力做功最大,整个回路中产生的焦耳热应大于23Q ,弹簧的弹性势能将小于12m v 20-23Q ,选项D 错误.单项选择题1.如图1所示,两根足够长的光滑金属导轨MN 、PQ 平行放置,导轨平面与水平面的夹角为θ,导轨的下端接有电阻.当导轨所在空间没有磁场时,使导体棒ab 以平行导轨平面的初速度v 0冲上导轨平面,ab 上升的最大高度为H ;当导轨所在空间存在方向与导轨平面垂直的匀强磁场时,再次使ab 以相同的初速度从同一位置冲上导轨平面,ab 上升的最大高度为h .两次运动中ab 始终与两导轨垂直且接触良好.关于上述情景,下列说法中正确的是( )A .两次上升的最大高度比较,有H =hB .两次上升的最大高度比较,有H <hC .无磁场时,导轨下端的电阻中有电热产生D .有磁场时,导轨下端的电阻中有电热产生 答案 D解析 没有磁场时,只有重力做功,机械能守恒,没有电热产生,C 错误.有磁场时,ab 切割磁感线,重力和安培力均做负功,机械能减小,有电热产生,故ab 上升的最大高度变小,A 、B 错误,D 正确. 2. 一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则( )A .若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B .若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C .若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D .若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动 答案 C解析 从线圈全部进入磁场至线圈开始离开磁场,线圈做加速度为g 的匀加速运动,可知即使线圈进入磁场过程中,重力大于安培力,线圈离开磁场过程中受的安培力也可能大于重力,故只有C 项正确.3.如图3所示,水平光滑的平行金属导轨,左端接有电阻R ,匀强磁场B 竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ 垂直导轨放置.现使金属棒以一定的初速度v 0向右运动,当其通过位置a 、b 时,速率分别为v a 、v b ,到位置c 时金属棒刚好静止,设导轨与金属棒的电阻均不计,a 到b 与b 到c 的间距相等,则金属棒在由a 到b 和由b 到c 的两个过程中( ) A .回路中产生的内能相等 B .金属棒运动的加速度相等 C .安培力做功相等D .通过金属棒横截面积的电荷量相等 答案 D解析 金属棒由a 到b 再到c 过程中,速度逐渐减小.根据E =BL v ,E 减小,故I 减小.再根据F =BIL ,安培力减小,根据F =ma ,加速度减小,B 错误.由于ab 、bc 间距相等,故从a 到b 安培力做的功大于从b 到c 安培力做的功,故A 、C 错误.再根据平均感应电动势E =ΔΦΔt =B ΔS Δt ,I =E R ,q =I Δt ,得q =B ΔS R,故D 正确.4. 如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是( )A .线框进入磁场前运动的加速度为Mg -mg sin θmB .线框进入磁场时匀速运动的速度为(Mg -mg sin θ)RBl 1C .线框做匀速运动的总时间为B 2l 21Mg -mgR sin θD .该匀速运动过程中产生的焦耳热为(Mg -mg sin θ)l 2 答案 D解析 由牛顿第二定律得,Mg -mg sin θ=(M +m )a ,解得线框进入磁场前运动的加速度为Mg -mg sin θM +m,A 错误.由平衡条件,Mg -mg sin θ-F 安=0,F 安=BIl 1,I =ER ,E =Bl 1v ,联立解得线框进入磁场时匀速运动的速度为v =(Mg -mg sin θ)R B 2l 21,B 错误.线框做匀速运动的总时间为t =l 2v =B 2l 21l 2(Mg -mg sin θ)R ,C 错误.由能量守恒定律,该匀速运动过程中产生的焦耳热等于系统重力势能的减小量,为(Mg -mg sin θ)l 2,D 正确.5.如图,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,右端接一个阻值为R 的定值电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、电阻也为R 的金属棒从高度为h 处静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好.则金属棒穿过磁场区域的过程中( )A .流过金属棒的最大电流为Bd 2gh2RB .通过金属棒的电荷量为BdLRC .克服安培力所做的功为mghD .金属棒产生的焦耳热为12mg (h -μd )答案 D解析 金属棒滑下过程中,根据动能定理有mgh =12m v 2m,根据法拉第电磁感应定律有E m =BL v m ,根据闭合电路欧姆定律有I m =E m 2R ,联立得I m =BL 2gh 2R ,A 错误;根据q =ΔΦ2R 可知,通过金属棒的电荷量为BdL2R ,B 错误;金属棒运动的全过程根据动能定理得mgh +W f +W 安=0,所以克服安培力做的功小于mgh ,故C 错误;由W f =-μmgd ,金属棒克服安培力做的功完全转化成电热,由题意可知金属棒与电阻R 上产生的焦耳热相同,设金属棒上产生的焦耳热为Q ,故2Q =-W 安,联立得Q =12mg (h -μd ),D 正确.多项选择题6. 如图6所示,水平放置的相距为L 的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他电阻均不计,磁感应强度为B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一水平恒力F 作用下由静止开始向右运动.则( )A .随着ab 运动速度的增大,其加速度也增大B .外力F 对ab 做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能 答案 CD解析 设ab 的速度为v ,运动的加速度a =F -B 2L 2v Rm ,随着v 的增大,ab 由静止先做加速度逐渐减小的加速运动,当a =0后做匀速运动,则A 选项错误;由能量守恒知,外力F 对ab 做的功等于电路中产生的电能和ab 增加的动能之和,ab 克服安培力做的功一定等于电路中产生的电能,则B 选项错误,D 选项正确;当ab 做匀速运动时,F =BIL ,外力F 做功的功率等于电路中的电功率,则C 选项正确.7. 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B .将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是( )A .导体棒MN 的最大速度为2mgR sin θB 2L 2B .导体棒EF 与轨道之间的最大静摩擦力为mg sin θC .导体棒MN 受到的最大安培力为mg sin θD .导体棒MN 所受重力的最大功率为m 2g 2R sin 2 θB 2L 2答案 AC解析 由题意可知,导体棒MN 切割磁感线,产生的感应电动势为E =BL v ,回路中的电流I =E2R,MN 受到的安培力F=BIL =B 2L 2v2R ,随着速度的增长,MN 受到的安培力逐渐增大,加速度逐渐减小,故MN 沿斜面做加速度减小的加速运动,当MN 受到的安培力大小等于其重力沿轨道方向的分力时,速度达到最大值,此后MN 做匀速运动.故导体棒MN受到的最大安培力为mg sin θ,导体棒MN 的最大速度为2mgR sin θB 2L 2,选项A 、C 正确.由于当MN 下滑速度最大时,EF与轨道间的摩擦力刚好达到最大静摩擦力,由力的平衡知识可知EF 与轨道之间的最大静摩擦力为2mg sin θ,选项B错误.由P =mg v sin θ可知导体棒MN 所受重力的最大功率为2m 2g 2R sin 2 θB 2L 2,D 错误.8. 如图8所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 、长为l 的导体棒从ab 位置获得平行于斜面、大小为v 的初速度向上运动,最远到达a ′b ′位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则( )A .上滑过程中导体棒受到的最大安培力为B 2l 2v RB .上滑过程中电流做功发出的热量为12m v 2-mgs (sin θ+μcos θ)C .上滑过程中导体棒克服安培力做的功为12m v 2D .上滑过程中导体棒损失的机械能为12m v 2-mgs sin θ答案 BD解析 导体棒刚开始运动时所受安培力最大,F m =BIl =B 2l 2v2R ,A 选项错误.由能量守恒定律可知:导体棒动能减少的数值应该等于导体棒重力势能的增加量以及克服安培力做功产生的电热和克服摩擦阻力做功产生的内能,用公式表示为:12m v 2=mgs sin θ+μmgs cos θ+Q 电热,则有:Q 电热=12m v 2-mgs (sin θ+μcos θ),即为导体棒克服安培力做的功,故B选项正确,C 选项错误.导体棒损失的机械能即为克服安培力做功和克服摩擦阻力做功的和,W 损失=12m v 2-mgs sin θ,故D 正确.9. 如图9所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻.一质量m =0.1 kg ,电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T .金属棒在水平向右的外力作用下,由静止开始以a =2 m/s 2的加速度做匀加速运动,当金属棒的位移x =9 m 时撤去外力,金属棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,金属棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:图9(1)金属棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F.解析(1)设金属棒匀加速运动的时间为Δt,回路的磁通量的变化量为ΔΦ,回路中的平均感应电动势为E,由法拉第电磁感应定律得E=ΔΦΔt①其中ΔΦ=Blx②设回路中的平均电流为I,由闭合电路欧姆定律得I=ER+r③则通过电阻R的电荷量为q=IΔt④联立①②③④式,得q=BlxR+r代入数据得q=4.5 C(2)设撤去外力时金属棒的速度为v,对于金属棒的匀加速运动过程,由运动学公式得v2=2ax⑤设金属棒在撤去外力后的运动过程中克服安培力所做的功为W,由动能定理得W=0-12m v2⑥撤去外力后回路中产生的焦耳热Q2=-W⑦联立⑤⑥⑦式,代入数据得Q2=1.8 J⑧(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得Q1=3.6 J⑨在金属棒运动的整个过程中,外力F克服安培力做功,由功能关系可知W F=Q1+Q2⑩由⑧⑨⑩式得W F=5.4 J.10.如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线aa′和bb′与斜面底边平行,且间距为d =0.1 m,在aa′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与aa′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)。

2020年高考物理一轮复习考点归纳专题电磁感应含答案

2020年高考物理一轮复习考点归纳专题电磁感应含答案

2020年高考一轮复习知识考点专题10 《电磁感应》第一节电磁感应现象楞次定律【基本概念、规律】一、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标矢性:磁通量是标量,但有正、负.二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.【重要考点归纳】考点一电磁感应现象的判断1.判断电路中能否产生感应电流的一般流程:2.判断能否产生电磁感应现象,关键是看回路的磁通量是否发生了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点二楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考点三“一定律三定则”的综合应用1.“三个定则与一个定律”的比较2.无论是“安培力”还是“洛伦兹力”,只要是涉及磁力都用左手判断.“电生磁”或“磁生电”均用右手判断.【思想方法与技巧】楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”第二节法拉第电磁感应定律自感涡流【基本概念、规律】一、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=ER+r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n ΔΦΔt,n为线圈匝数.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹角为θ,则E=Blv sin_θ.二、自感与涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L ΔI Δt.(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.【重要考点归纳】考点一公式E=nΔΦ/Δt的应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B引起时,则E=n SΔBΔt;当ΔΦ仅由S引起时,则E=nBΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E=n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E=nS ΔBΔt求感应电动势时,S为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关.推导如下:q=IΔt=nΔΦΔtRΔt=nΔΦR.考点二公式E=Blv的应用1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blv sin θ,θ为B与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即E=Bl v.若v为瞬时速度,则E为相应的瞬时感应电动势.3.有效性公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的比较考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.第三节电磁感应中的电路和图象问题【基本概念、规律】一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压(1)电动势:E=Blv或E=n ΔΦΔt.(2)路端电压:U=IR=ER+r·R.二、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利用给出的图象判断或画出新的图象.【重要考点归纳】考点一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E=n ΔΦΔt或E=Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高.考点二电磁感应中的图象问题1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.【思想方法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭示的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的面积、图线的斜率(或其绝对值)、截距所表示的物理意义.(3)定量计算运用有关物理概念、公式、定理和定律列式计算.第四节电磁感应中的动力学和能量问题【基本概念、规律】一、电磁感应现象中的动力学问题1.安培力的大小⎭⎬⎫安培力公式:F =BIl 感应电动势:E =Blv 感应电流:I =E R⇒F =B 2l 2v R 2.安培力的方向(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向. (2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反. 二、电磁感应中的能量转化 1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.(3)当感应电流通过用电器时,电能转化为其他形式的能. 2.安培力做功和电能变化的对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点一 电磁感应中的动力学问题分析1.导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. 2.导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 3.分析电磁感应中的动力学问题的一般思路(1)先进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; (2)再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.考点二 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法 (1)能量转化(2)求解焦耳热Q的三种方法3.在解决电磁感应中的能量问题时,首先进行受力分析,判断各力做功和能量转化情况,再利用功能关系或能量守恒定律列式求解.【思想方法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.2.分析方法通过受力分析,确定运动状态,一般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析一、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.2.(1)电容器的充电电流用I=ΔQΔt=CΔUΔt表示.(2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,所受安培阻力不变,导体棒做匀加速直线运动.二、电磁感应回路中电容器与电阻并联问题1.这一类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的一支流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外力作用下做变加速运动,最后做匀速运动.。

2020年高考物理一轮复习专题10.4 电磁感应中的动力学和能量问题(练)(解析版)

2020年高考物理一轮复习专题10.4 电磁感应中的动力学和能量问题(练)(解析版)

专题10.4 电磁感应中的动力学和能量问题1. (江苏省南通一中2019届期中)如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长.从置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A .Q 1>Q 2 q 1=q 2B .Q 1>Q 2 q 1>q 2C .Q 1=Q 2 q 1=q 2D .Q 1=Q 2 q 1>q 2【答案】A【解析】设ab 和bc 边长分别为L 1、L 2,线框电阻为R ,若假设穿过磁场区域的时间为t .通过线框导体横截面的电荷量q =I t =ΔΦR =BL 1L 2R , 因此q 1=q 2.线框上产生的热量为Q ,第一次:Q 1=BL 1I 1L 2=BL 1BL 1v R L 2, 同理可以求得Q 2=BL 2I 2L 1=BL 2BL 2v R L 1, 由于L 1>L 2,则Q 1>Q 2,故A 正确.2. (浙江省湖州一中2019届期末)如图所示,质量均为m 的金属棒ab 、cd 与足够长的水平金属导轨垂直且接触良好,两金属棒与金属导轨间的动摩擦因数为μ,磁感应强度为B 的匀强磁场的方向竖直向下.则ab棒在恒力F=2μmg作用下向右运动的过程中,有()A.安培力对ab棒做正功B.安培力对cd棒做正功C.ab棒做加速度逐渐减小的加速运动,最终匀速运动D.cd棒做加速度逐渐减小的加速运动,最终匀速运动【答案】C【解析】对于ab棒,因为F=2μmg>μmg,所以从静止开始加速运动,ab棒运动会切割磁感线产生感应电流,从而使ab棒受到一个向左的安培力,这样加速度会减小,最终会做匀速运动;而cd棒所受到的最大安培力与摩擦力相同,所以总保持静止状态,即安培力对ab棒做负功,对cd棒不做功,所以选项C 正确,A、B、D错误.3. (福建省漳州一中2019届期中)如图所示,足够长的金属导轨竖直放置,金属棒ab、cd均通过棒两端的环套在金属导轨上.虚线上方有垂直纸面向里的匀强磁场,虚线下方有竖直向下的匀强磁场,两匀强磁场的磁感应强度大小均为B.ab、cd棒与导轨间动摩擦因数均为μ,两棒总电阻为R,导轨电阻不计.开始两棒静止在图示位置,当cd棒无初速释放时,对ab棒施加竖直向上的力F,沿导轨向上做匀加速运动.则下列说法中错误的是()A.ab棒中的电流方向由b到aB.cd棒先加速运动后匀速运动C.cd棒所受摩擦力的最大值大于cd棒的重力D.力F做的功等于两棒产生的电热、摩擦生热与增加的机械能之和【答案】B【解析】ab向上运动的过程中,穿过闭合回路abdc的磁通量增大,根据楞次定律可得ab棒中的感应电流方向为b→a,故A正确;cd棒中感应电流由c到d,其所在的区域有向下磁场,所受的安培力向里,cd棒所受的摩擦力向上.ab棒做加速直线运动,速度增大,产生的感应电流增加,cd棒所受的安培力增大,对导轨的压力增大,则滑动摩擦力增大,摩擦力先小于重力,后大于重力,所以cd棒先加速运动后减速运动,最后停止运动,故B错误;因安培力增加,cd棒受摩擦力的作用一直增加,会大于重力,故C正确;根据动能定理可得W F-W f-W安培-W G=12mv2-0,力F所做的功应等于两棒产生的电热、摩擦生热与增加的机械能之和,故D正确.4.(广东省湛江一中2019届质检)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场立即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E k d表示d的动能,x c、x d分别表示c、d相对释放点的位移.下图中正确的是()【答案】BD【解析】导体棒c 落入磁场之前做自由落体运动,加速度恒为g ,有h =12gt 2,v =gt ,c 棒进入磁场以速度v 做匀速直线运动时,d 棒开始做自由落体运动,与c 棒做自由落体运动的过程相同,此时c 棒在磁场中做匀速直线运动的路程为h ′=vt =gt 2=2h ,d 棒进入磁场而c 棒还没有穿出磁场的过程,无电磁感应现象,两导体棒仅受到重力作用,加速度均为g ,直到c 棒穿出磁场,B 正确;c 棒穿出磁场后,d 棒切割磁感线产生电动势,在回路中产生感应电流,因此时d 棒速度大于c 棒进入磁场时切割磁感线的速度,故电动势、电流、安培力都大于c 棒刚进入磁场时的大小,d 棒减速,直到穿出磁场仅受重力,做匀加速运动,结合匀变速直线运动v 2-v 20=2gh ,可知加速过程动能与路程成正比,D 正确.5. (陕西省渭南一中2019届期中)如图所示,在倾角为θ的光滑斜面上,有三条水平虚线l 1、l 2、l 3,它们之间的区域Ⅰ、Ⅱ宽度均为d ,两区域分别存在垂直斜面向下和垂直斜面向上的匀强磁场,磁感应强度大小均为B ,一个质量为m 、边长为d 、总电阻为R 的正方形导线框,从l 1上方一定高度处由静止开始沿斜面下滑,当ab 边刚越过l 1进入磁场Ⅰ时,恰好以速度v 1做匀速直线运动;当ab 边在越过l 2运动到l 3之前的某个时刻,线框又开始以速度v 2做匀速直线运动,重力加速度为g .在线框从释放到穿出磁场的过程中,下列说法正确的是( )A .线框中感应电流的方向不变B .线框ab 边从l 1运动到l 2所用时间大于从l 2运动到l 3所用时间C .线框以速度v 2做匀速直线运动时,发热功率为m 2g 2R 4B 2d 2sin 2θD .线框从ab 边进入磁场到速度变为v 2的过程中,减少的机械能ΔE 机与重力做功W G 的关系式是ΔE 机=W G +12mv 21-12mv 22 【答案】CD【解析】线框从释放到穿出磁场的过程中,由楞次定律可知感应电流方向先沿abcda 后沿adcba 再沿abcda 方向,A 项错误;线框第一次匀速运动时,由平衡条件有BId =mg sin θ,I =Bdv 1R ,解得v 1=mgR sin θB 2d 2,第二次匀速运动时,由平衡条件有2BI ′d =mg sin θ,I ′=2Bdv 2R ,解得v 2=mgR sin θ4B 2d 2,线框ab 边匀速通过区域Ⅰ,先减速再匀速通过区域Ⅱ,而两区域宽度相同,故通过区域Ⅰ的时间小于通过区域Ⅱ的时间,B 项错误;由功能关系知线框第二次匀速运动时发热功率等于重力做功的功率,即P =mgv 2sin θ=m 2g 2R sin 2 θ4B 2d 2,C 项正确;线框从进入磁场到第二次匀速运动过程中,损失的重力势能等于该过程中重力做的功,动能损失量为12mv 21-12mv 22,所以线框机械能损失量为ΔE 机=W G +12mv 21-12mv 22,D 项正确.6.(四川省眉山一中2019届调研)如图所示,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均与磁场边界平行,边长小于磁场上、下边界的间距。

2020版物理浙江高考选考一轮复习课件:选修3-2第九章专题课2电磁感应中的动力学问题和能量、动量问题

2020版物理浙江高考选考一轮复习课件:选修3-2第九章专题课2电磁感应中的动力学问题和能量、动量问题
专题课2 电磁感应中的动力学问题和能量、动量问题
仅供学习交流!!!
【变式训练 2】 (2018· 11 月浙江选向垂直于纸面(向内为正)的磁场,磁感应强度的分布沿 y 方 向不变,沿 x 方向如下: x>0.2 m 1 T B=5x T -0.2 m≤x≤0.2 m -1 T x<-0.2 m 导轨间通过单刀双掷开关 S 连接恒流源和电容 C=1 F 的未充电的电容器,恒流源可 为电路提供恒定电流 I=2 A,电流方向如图所示。有一质量 m=0.1 kg 的金属棒 ab 垂直导轨静止放置于 x0=0.7 m 处。开关 S 掷向 1,棒 ab 从静止开始运动,到达 x3= -0.2 m 处时,开关 S 掷向 2。已知棒 ab 在运动过程中始终与导轨垂直。求:
运动形式 收尾状态 力学特征 电学特征
匀速直线运动 FR a=0,v 最大,vm= 2 2 BL I 恒定
谢谢观看!

2020届高考物理一轮复习能力课12电磁感应中的动力学与能量问题课件新人教版

2020届高考物理一轮复习能力课12电磁感应中的动力学与能量问题课件新人教版

旅游公司研学部门计划书模板摘要:一、引言1.研学旅行的背景与意义2.旅游公司研学部门的目标和任务二、研学旅行产品设计1.产品类型与主题2.适合的年龄段和学科3.行程安排与活动内容三、合作伙伴与资源整合1.教育部门合作2.景区、博物馆等资源的合作3.专业导师团队的建设四、安全保障措施1.安全管理制度2.应急预案与救援体系3.保险及健康保障五、市场推广策略1.目标客户群体定位2.营销渠道与合作平台3.品牌宣传与口碑建设六、未来发展方向与规划1.产品创新与迭代2.研学旅行行业的趋势分析3.持续优化与扩大市场份额正文:随着国家对教育事业的大力支持和家长对子女全面发展的关注,研学旅行逐渐成为教育领域的一大热点。

旅游公司研学部门正是顺应这一趋势,结合自身优势,为广大师生提供优质的研学旅行服务。

一、引言研学旅行是一种将旅行与教育相结合的活动,旨在让学生在游玩中学习,丰富知识、拓宽视野。

旅游公司研学部门通过策划和组织各类研学旅行活动,帮助学生提升综合素质,培养实践能力。

二、研学旅行产品设计1.产品类型与主题:旅游公司研学部门针对不同年龄段和学科,设计多样化的研学产品,如历史文化、自然科普、户外拓展等。

2.适合的年龄段和学科:根据学生的年龄特点和学科需求,设计不同难度的研学任务和活动,让每个学生都能在研学过程中获得成长。

3.行程安排与活动内容:在确保安全的前提下,充分利用各种资源,为学生提供丰富多样的实践活动,如参观、讲座、动手体验等。

三、合作伙伴与资源整合1.教育部门合作:与教育部门建立良好的合作关系,共同推进研学旅行事业的发展。

2.景区、博物馆等资源的合作:与各类景区、博物馆等机构达成合作,为研学旅行提供丰富的教育资源。

3.专业导师团队的建设:聘请具有丰富教育经验和专业背景的导师,为学生提供高质量的研学指导。

四、安全保障措施1.安全管理制度:建立健全安全管理制度,确保研学旅行的安全有序进行。

2.应急预案与救援体系:针对各种突发情况,制定应急预案,并与专业救援团队合作,确保学生的安全。

2020版高考物理总复习第九章电磁感应专题突破2电磁感应中的动力学和能量问题教案(-2)

2020版高考物理总复习第九章电磁感应专题突破2电磁感应中的动力学和能量问题教案(-2)

专题突破2 电磁感应中的动力学和能量问题电磁感应中的动力学问题1。

两种状态及处理方法状态特征处理方法平衡态加速度为零根据平衡条件列式分析非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析2.电学对象与力学对象的转换及关系【例1】(2018·盐城市第三次模拟)如图1所示,两根电阻不计、相距L、足够长的平行金属直角导轨,一部分处在水平面内,另一部分处在竖直平面内。

导轨所在空间存在大小为B、方向竖直向下的匀强磁场。

金属棒ab质量为2m,电阻为R;cd质量为m,电阻为2R,两棒与导轨间动摩擦因数均为μ,ab棒在水平向左拉力作用下,由静止开始沿水平轨道做匀加速运动,同时cd棒由静止释放,cd棒速度从0达到最大的过程中拉力做功为W,重力加速度为g。

求:图1(1)cd棒稳定状态时所受的摩擦力;(2)cd棒速度最大时,ab棒两端的电势差;(3)cd棒速度从0达到最大的过程中,ab棒克服阻力做的功。

解析(1)cd棒最终保持静止状态,所受的合力为0mg-F f静=0,F f静=mg,方向:竖直向上(2)cd棒速度达到最大时,所受合力为0mg-F f滑=0,F f滑=μF N,F N=F安=BILab棒两端的电势差U=I·2R=错误!(3)cd棒速度从0达到最大的过程中,ab棒克服阻力做的功为W阻=W +W安摩W-W阻=错误!·2mv错误!电路中的感应电动势E=BLv ab由闭合电路欧姆定律I=错误!对cd棒有μBIL=mg联立解得v ab=错误!W阻=W-错误!答案见解析用“四步法”分析电磁感应中的动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力",具体思路如下:电磁感应中的能量问题1。

电磁感应中的能量转化2.求解焦耳热Q的三种方法【例2】(2018·江苏南通高三上学期第一次调研)如图2所示,光滑绝缘斜面倾角为θ,斜面上平行于底边的虚线MN、PQ间存在垂直于斜面向上,磁感应强度为B的匀强磁场,MN、PQ相距为L,质量为m、边长为d(d<L)的正方形金属线框abef置于斜面上,线框电阻为R,ab边与磁场边界MN平行,相距为L,线框由静止释放后沿斜面下滑,ef边离开磁场前已做匀速运动,重力加速度为g,求:图2(1)线框进入磁场过程中通过线框横截面的电荷量q;(2)线框ef边离开磁场区域时的速度v;(3)线框穿过磁场区域产生的热量Q。

2020届高考物理人教版一轮复习涉及电磁感应的力电综合问题PPT课件(103张)

2020届高考物理人教版一轮复习涉及电磁感应的力电综合问题PPT课件(103张)

热点题型探究
热点三 电磁感应与动量结合问题
考向一 动量定理的应用
例3 一实验小组想要探究电磁刹车的效果.在遥控小车底面安装宽为L、长为2.5L 的N匝矩形导线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平 行,小车总质量为m,其俯视图如图Z10-6所示.小车在磁场外行驶时保持功率始终为 P,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全 进入磁场时速度恰好为零.已知有界匀强磁场边界PQ和MN间的距离为2.5L,磁感应 强度大小为B,方向竖直向上,小车在行驶过程中受到地面的阻力恒为f.
热点题型探究
(1)小车车头刚进入磁场时,求线框产生的感应电动势E; (2)求电磁刹车过程中产生的焦耳热Q; (3)若只改变小车功率,使小车恰好穿出磁场时的速度为零,假设小车两次与磁场作 用时间相同,求小车的功率P'.
图Z10-6
热点题型探究
[答案] (1)������������������������
势能与产生的热量 Q 之和,即 F(L+h)=mg(L+h)+Q
解得 Q=(F-mg)(L+h)=3.0 J
热点题型探究
变式题1 (多选)如图Z10-4所示,光滑平行金属轨道平面与水平面成θ角,两轨道上 端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直于轨道平面向上.质量为m 的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某一高度h后又返回到底端.若 运动过程中,金属杆始终保持与轨道垂直且接触良好,轨道与金属杆的电阻均忽略 不计,重力加速度为g,则 ( )
(2 分) (1 分)
(2 分)
(1 分)
热点题型探究
(3)运动时间 t=������������ (2 分) 通过的电荷量 Q=It(2 分) 解得 Q=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考物理一轮复习第九章电磁感应专题十二电磁感应中的动力学和能量综合问题教案突破电磁感应中的动力学问题1.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合力等于零)列式分析.(2)导体的非平衡状态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.2.力学对象和电学对象的相互关系考向1 平衡状态的分析与计算[典例1] (2016·新课标全国卷Ⅰ)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m 和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求:(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.[解题指导] 解答此题的关键是对ab、cd棒受力分析,由平衡条件求出ab棒受到的安培力,再由金属棒切割磁感线产生的感应电动势确定出金属棒的速度. [解析] (1)设两根导线的总的张力的大小为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2.对于ab棒,由力的平衡条件得2mgsin θ=μN1+T+F ①N1=2mgcos θ②对于cd棒,同理有mgsin θ+μN2=T ③N2=mgcos θ④联立①②③④式得F=mg(sin θ-3μcos θ). ⑤(2)由安培力公式得F=BIL ⑥这里I是回路abdca中的感应电流.ab棒上的感应电动势为ε=BLv ⑦式中,v是ab棒下滑速度的大小由欧姆定律得I=⑧联立⑤⑥⑦⑧式得v=(sin θ-3μcos θ). ⑨[答案] (1)mg(sin θ-3μcos θ) (2)(sin θ-3μcos θ)mgRB2L2考向2 非平衡状态的分析与计算[典例2] (2017·江苏常州检测)如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d=0.5 m,左端接有容量C=2 000 μF的电容.质量m=20 g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计.整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2 T.现用一沿导轨方向向右的恒力F1=0.44 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5 m/s.此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A 处,整个过程电容器未被击穿.求:(1)导体棒运动到B处时,电容C上的电量;(2)t的大小;(3)F2的大小. [解题指导] 本题的关键是判断导体棒在恒力作用下的运动性质,可用微元法判断,即设经过很短的时间Δt,速度增加Δv,则a=,再根据牛顿第二定律求出加速度.[解析] (1)当导体棒运动到B处时,电容器两端电压为U=Bdv=2×0.5×5 V=5 V此时电容器的带电量q =CU =2 000×10-6×5 C=1×10-2 C.(2)棒在F1作用下有F1-BId =ma1又I ==,a1=ΔvΔt联立解得:a1==20 m/s2则t ==0.25 s.(3)由(2)可知棒在F2作用下,运动的加速度a2=,方向向左,又a1t2=-⎣⎢⎡⎦⎥⎤a1t·2t-12a2(2t )2 将相关数据代入解得F2=0.55 N.[答案] (1)1×10-2 C (2)0.25 s (3)0.55 N用牛顿运动定律处理电磁感应问题的基本思路突破 电磁感应中的能量问题1.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q 的三种方法2.求解电磁感应现象中的能量问题的一般步骤(1)在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源.(2)分析清楚有哪些力做功,就可以知道哪些形式的能量发生了相互转化.(3)根据能量守恒列方程求解.考向1 导体棒平动切割磁感线问题[典例3] 如图所示,两根足够长且平行的光滑①金属导轨所在平面与水平面成α=53°角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为d =0.5 m.导体棒a 的质量为m1=0.1 kg 、电阻为R1=6 Ω;导体棒b 的质量为m2=0.2 kg 、电阻为R2=3 Ω,它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M 、N 处同时将a 、b 由静止释放②,运动过程中它们都能匀速穿过③磁场区域,且当a刚出磁场时b正好进入磁场④.(sin 53°=0.8,cos 53°=0.6,取g=10 m/s2,a、b电流间的相互作用不计),求:(1)在b穿越磁场的过程中a、b两导体棒上产生的热量之比;(2)在a、b两导体棒穿过磁场区域的整个过程中,装置上产生的热量;(3)M、N两点之间的距离.[解题指导] (1)审题(2)解题关键:的关系.[解析] (1)在b穿越磁场的过程中,b相当于电源,a与R是外电路,则有Ib=Ia+IR.a与R是并联关系,则有IaR1=IRR,a产生的热量为Qa=IR1t,b产生的热量为Qb=IR2t.则Qa∶Qb=IR1∶IR2,代入数据可解得Qa∶Qb=2∶9.(2)a、b穿过磁场区域的整个过程中,由能量守恒可得,Q=m1gsin α·d+m2gsin α·d,代入数据解得Q=1.2 J.(3)设a进入磁场的速度大小为v1,此时电路中的总电阻R总1=R1+=Ω=7.5 Ω设b进入磁场的速度大小为v2,此时电路中的总电阻R总2=R2+=Ω=5 Ω由m1gsin α=和m2gsin α=,可得==.设a匀速运动时,m2gsin α=m2a0,v2=v1+a0,联立并代入数据解得v=12 m2/s2,则v=v.M、N两点之间的距离Δs=-= m.[答案] (1)2∶9(2)1.2 J (3) m考向2 导体棒转动切割磁感线问题[典例4] (2016·新课标全国卷Ⅱ)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍[解题指导] 解答本题时应从以下两点进行分析:(1)把圆盘理解成“同心圆周导线”和“辐条”切割模型.(2)将实际问题转化为等效电路(各个电源并联,总电动势等于一个电源的电动势).[解析] 设圆盘的半径为r,圆盘转动的角速度为ω,则圆盘转动产生的电动势为E=Br2ω,可知转动的角速度恒定,电动势恒定,电流恒定,A项正确;根据右手定则可知,从上向下看,圆盘顺时针转动,圆盘中电流由边缘指向圆心,即电流沿a到b的方向流动,B项正确;圆盘转动方向不变,产生的电流方向不变,C项错误;若圆盘转动的角速度变为原来的2倍,则电动势变为原来的2倍,电流变为原来的2倍,由P=I2R可知,电阻R上的热功率变为原来的4倍,D项错误.[答案] AB考向3 电磁感应中线圈穿过磁场问题[典例5] (2017·四川德阳一模)如图所示,四条水平虚线等间距地分布在同一竖直面上,间距为h,在Ⅰ、Ⅱ两区间分布着完全相同、方向水平向内的磁场,磁场大小按B­t图象变化(图中B0已知).现有一个长方形金属形框ABCD,质量为m,电阻为R,AB=CD=L,AD=BC=2h.用一轻质的细线把线框ABCD竖直悬挂着,AB边恰好在Ⅰ区的中央.t0(未知)时刻细线恰好松弛,之后剪断细线,当CD边到达M3N3时线框恰好匀速运动.(空气阻力不计,取g=10 m/s2)(1)求t0的值;(2)求线框AB边到达M2N2时的速率v;(3)从剪断细线到整个线框通过两个磁场区的过程中产生的电能为多大?[解析] (1)细线恰好松弛,对线框受力分析有B0IL=mg,I=,感应电动势E==S=S=×Lh,得t0=.(2)当CD边到达M3N3时线框恰好匀速运动,速度为v′,对线框受力分析有B0I′L =mg,I′=,因CD棒切割产生的感应电动势E′=B0Lv′,v′=,线框AB到达M2N2时一直运动到CD边到达M3N3的过程中线框中无感应电流产生,只受到重力作用.线框下落高度为3h,根据动能定理得mg×3h=mv′2-mv2,线框AB边到达M2N2时的速率为v=.(3)线框由静止开始下落到CD边刚离开M4N4的过程中线框中产生电能为E电,线框下落高度为 4.5h,根据能量守恒得重力势能减少量等于线框动能与电能之和为mg×4.5h=E电+mv′2,则E电=mgh-.[答案] (1) (2) (3)mgh-m3g2R22B40L4解决电磁感应综合问题的一般方法首先根据法拉第电磁感应定律和闭合电路欧姆定律判断电路中的电压和电流情况,然后隔离系统中的某个导体棒进行受力分析,结合共点力的平衡条件或牛顿第二定律进行求解.在求解电路中产生的热量问题时,一般是根据能量守恒定律采用整体法进行分析.1.[电磁感应中的动力学问题]如图所示,“U”形金属框架固定在水平面上,处于竖直向下的匀强磁场中.ab棒以水平初速度v0向右运动,下列说法正确的是( )A.ab棒做匀减速运动B.回路中电流均匀减小C.a点电势比b点电势低D.ab棒受到水平向左的安培力答案:D 解析:棒具有向右的初速度,根据右手定则,产生b指向a的电流,则a点的电势比b点的电势高.根据左手定则,安培力向左,ab棒做减速运动,因为电动势减小,电流减小,则安培力减小,根据牛顿第二定律,加速度减小,做加速度减小的减速运动,由于速度不是均匀减小,则电流不是均匀减小,故A、B、C错误,D正确.2.[电磁感应中的动力学问题]如图所示,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v­t图象中,可能正确描述上述过程的是( )A BC D答案:D 解析:导线框刚进入磁场时速度设为v0,此时产生的感应电动势E=BLv0,感应电流I==,线框受到的安培力F=BLI=.由牛顿第二定律F=ma知,=ma,由楞次定律知线框开始减速,随v减小,其加速度a减小,故进入磁场时做加速度减小的减速运动.当线框全部进入磁场开始做匀速运动,在出磁场的过程中,仍做加速度减小的减速运动,故只有D选项正确.3.[电磁感应中的平衡问题](多选)如图甲所示,在一个倾角为θ的绝缘斜面上有一“U”形轨道abcd,轨道宽度为L,在轨道最底端接有一个定值电阻R,在轨道中的虚线矩形区域有垂直于斜面向下的匀强磁场B.现让一根长为L、质量为m、电阻也为R的导体棒PQ从轨道顶端由静止释放,从导体棒开始运动到恰好到达轨道底端的过程中其机械能E和位移x间的关系如图乙所示,图中a、b、c均为直线段.若重力加速度g及图象中E1、E2、x1、x2均为已知量,则下列说法正确的是( )A.导体棒切割运动时P点比Q点电势高B.图象中的a和c是平行的C.导体棒在磁场中做匀变速直线运动D.可以求出导体棒切割运动时回路中产生的焦耳热答案:BD 解析:导体棒进入磁场后做切割运动,由右手定则知电流由P向Q,故Q点的电势高,即A项错误;导体棒进入磁场前沿导轨下滑克服摩擦力做功,机械能线性减小,进入磁场后切割磁感线,回路中有安培力,因图线b仍是线性关系,故安培力为恒力;若有加速度,则安培力会变,故导体棒在磁场中是匀速的,即C项错误;出场后导体棒的受力情况与进入磁场前的受力情况相同,故图线a和c是平行的,即B项正确;由(mgsin θ-f)x1=mv2,mgsin θ=f+F,F=,(f+F)(x2-x1)=E1-E2,Q=F(x2-x1)可求焦耳热,即D项正确.4.[电磁感应中的动力学问题]如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个闭合线圈Ⅰ、Ⅱ分别用同种导线绕制而成,其中Ⅰ为边长为L的正方形,Ⅱ是长为2L、宽为L的矩形,将两个线圈同时从图示位置由静止释放.线圈下边进入磁场时,Ⅰ立即做了一段时间的匀速运动,已知两线圈在整个下落过程中,下边始终平行于磁场上边界,不计空气阻力,则( )A.下边进入磁场时,Ⅱ也立即做匀速运动B.从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的加速运动C.从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的减速运动D.线圈Ⅱ先到达地面答案:C 解析:线圈Ⅱ的电阻是Ⅰ的倍,线圈Ⅱ进入磁场时产生的感应电动势是Ⅰ的2倍,即RⅡ=RⅠ,EⅡ=2EⅠ,由I=得,IⅡ=IⅠ;由F安=BIL,FⅡ=BIⅡ·2L,FⅠ=BIⅠ·L,则FⅡ=FⅠ,但GⅡ=GⅠ,由于Ⅰ进入磁场做匀速运动,即FⅠ=GⅠ,则FⅡ>GⅡ,所以Ⅱ进入磁场立即做加速度不断减小的减速运动,A、B错误,C正确;因线圈Ⅰ、Ⅱ进入磁场时速度相同,但此后Ⅰ匀速,Ⅱ减速,故Ⅱ后到达地面,D错误.5.[动力学和能量综合应用](多选)如图所示,有两根平行光滑导轨EF、GH,导轨间距离为L,与水平面成θ角,电阻不计,其上端接有定值电阻R.导轨间加有一磁感应强度为B的匀强磁场,磁场方向垂直导轨平面向上.m、p、n、q是导轨上的四个位置,mp 与nq平行,且与导轨垂直,mp与nq的间距为2L.电阻为R、长为L、质量为m的导体棒从mp处由静止开始运动,导体棒到达nq处恰好能匀速运动.已知重力加速度为g,下列说法正确的是( )A.流过定值电阻R的电流方向为G→EB.导体棒在nq处的速度大小为2mgRsin θB2L2C.导体棒在nq处的热功率为2m2g2Rsin θB2L2D.导体棒从mp运动到nq,通过定值电阻的电荷量为BL2R答案:BD 解析:导体棒下滑切割磁感线,由右手定则可判定m点电势高,流过定值电阻R的电流方向为E→G,选项A错误;因导体棒到达nq处匀速下滑,所以mgsin θ=BIL=,联立得v=,选项B正确;导体棒的热功率P=I2R=2R=,选项C错误;导体棒从mp运动到nq,通过定值电阻的电荷量q=It=,选项D正确.。

相关文档
最新文档