石墨烯锂离子电池负极材料专利技术分析

合集下载

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用摘要:随着近几年石墨烯的研究进展,在复合材料领域石墨烯扮演的角色越来越重要。

随着科技的发展,锂离子电池应用的范围越来越广。

负极材料作为锂离子电池重要部分,越来越多的被人们研究开发。

基于此,文章就锂离子电池负极材料中石墨烯的应用加以分析和探讨。

关键词:锂离子电池;负极材料;石墨烯随着科技的发展,锂电池凭借高电压、高能量密度、良好的循环性能、低自放电等突出优势在人们生活中的应用越来越广泛。

在锂离子电池中电位比较低的一端叫负极,在原电池中起氧化作用。

锂电池中负极所需要的材料为负极材料。

根据实际生产中锂离子电池生产成本核算,负极材料成本约占比锂电池总成本的1/4~1/3,因此负极材料的研究至关重要。

一、什么是石墨烯石墨烯是由单层碳原子排列成六边形晶格而形成的一种异形体。

自然界中有许多它的“同胞兄弟”如石墨、钻石、碳、碳纳米管。

这些都是碳的其他异形体。

石墨烯他的化学结构很简单,作为一种新型的材料,将会变得极其容易获得,不会像之前难以获得的材料那么昂贵,这将会使价格变得低廉,也让人们更容易所接受。

再说它的空间结构,它的形状是一种类似足球比赛中守门员的球网,是一种薄膜,是一种六角型晶格平面的薄膜,是一种只有一个碳原子的厚度二维材料,是一种新型的、坚固的二维材料,这就区别了和三维材料的区别,在后面我们会说出石墨烯也是可以由二维材料变成三维材料的。

石墨烯具有一些不同于其他材料的一些特性,他是最坚固的材料,它能传导热量和电能,它几乎是透明的。

所以相较于之前用于储能材料,和用于光电催化方面的材料,石墨烯具有着一些得天独厚的优势,也意味这在这些方面上,石墨烯将会得到更为广泛的使用。

二、石墨烯的制备技术目前我们国家在研究石墨烯生产方法时主要有两个方向,分别是物理法制备和化学法制备。

利用微机械剥离法能够得到高质量的石墨烯,但是由于此种方法处理出来的石墨烯通常尺寸较小,应用范围不广阔因此并不适合大规模生产,目前比较适用的还是化学方法,化学方法总共分为两种,一种是化学气象沉积法,这种方法通常是用Ni,Ru等一些过度金属来做基底,在利用甲烷和乙烯等一些小分子来高温气态的条件下发生一些化学反映,在基底层可以生长出石墨烯,这种方法目前主要用来制备墨烯薄膜,但是由于使用过渡金属作为基底,成本相对比较高。

锂离子电池负极材料的研究现状

锂离子电池负极材料的研究现状

锂离子电池负极材料的研究现状随着现代电子技术的飞速发展,电池已经成为日常生活和工业生产中必不可少的能源供应装置。

锂离子电池作为一种高性能、环保的电池类型,已经成为了现代电子产品中的重要能源供应方式。

锂离子电池的实际应用和发展离不开负极材料的研究和开发。

因此,本文主要讨论负极材料在锂离子电池中的研究现状及其发展趋势。

锂离子电池的工作原理是,在充电过程中锂离子从正极(如LiCoO2)向负极移动,而在放电过程中锂离子从负极(如石墨)向正极移动。

因此,负极材料是锂离子电池中的重要组成部分。

在过去的十年中,锂离子电池的负极材料已经发生了很大的变化和进步,新的材料不仅有更高的存储容量,而且充放电速度更快,循环寿命更长。

石墨负极材料是锂离子电池的主要负极材料。

然而,由于石墨本身的容量限制以及其充放电速率性能的限制,石墨已经不能完全满足现代电子技术的发展需求。

为了解决这些问题,许多新的负极材料已经开始用于锂离子电池中。

硅材料作为一种有前途的锂离子电池负极材料,因其高存储电容量(4200mAh/g)而引起了广泛的关注。

然而,硅材料具有体积膨胀问题,这在充放电循环过程中会导致硅微粒的损失,从而降低电池性能。

为了解决这一问题,许多研究人员提出了许多方法,例如制备纳米尺寸的硅颗粒、使用聚合物涂层来固定硅微粒以及将硅微粒包在奈米碳管或氧化石墨烯中等等。

石墨烯是一种由碳原子构成的单层晶格结构材料,其具有高的表面积和优异的导电性能,成为了锂离子电池负极材料的又一有前途的候选材料。

叠层石墨烯纳米片与碳纳米管复合材料,可以有效克服传统石墨材料的容量限制和电导率问题,大大改善了负极材料的性能。

金属氧化物和磷酸盐等化合物也被广泛研究和应用作为锂离子电池负极材料。

这些化合物具有更高的存储容量,更长的寿命和更稳定的性能。

总的来说,在锂离子电池负极材料的研究中,石墨、硅材料、石墨烯以及金属氧化物和磷酸盐等新型负极材料,都是当前研究的热点。

石墨烯用作锂离子电池负极材料的电化学性能

石墨烯用作锂离子电池负极材料的电化学性能

第7卷第3期2012年3月乂0亿7 ^0.3麻.2012石墨烯用作锂离子电池负极材料的电化学性能高云雷,赵东林,白利忠,张霁明,张凡,谢卫刚(北京化工大学化工资源有效利用国家重点实验室,碳纤维及功能高分子教育部重点实验室,北京100029〉摘要:以天然鳞片石墨为原料,通过氧化、离心分离、低温氢气还原和超声分散处理制备了高品质的石墨烯片(卜^层)。

采用透射电镜(丁扮^)、高分辨透射电镜毋尺丁0^、傅里叶变换红外光谱汗丁-汉)、拉曼光谱、乂-射线 衍射(―)等测试方法对石墨烯的结构和形貌进行了研究。

通过恒流充放电、循环伏安法(匸乂)和交流阻抗译。

)等手段研究了石墨烯用作锂离子电池负极材料的电化学性能。

结果表明在0.2 01入化1112的电流密度下石墨烯首次可逆比容量为1005 1^8,经过30个循环后放电比容量保持在609 在大电流密度下放电容量仍然能保持576111入11/8,表明石墨烯负极材料具有优异的倍率性能。

关键词:石墨烯;电化学性能,锂离子电池;负极材料中图分类号:0613.71;0646文献标志码:八文章编号:2095-2783(2012)03-0201-5^16011*0011611110&10丨运1^^)116116^1166^注89110^6111^^1*1^1文0丨11111111111-1011 13311:61*1680^0 ^1111161,21130 1)00^1111,8^1 1,1211011^,211311^ 11111111^,211311^ ?&II,^16^8^6 X印 1^0恤07 0^0^1617110011 ^65011^06 五邮竹66咖宕,^1)0^0^ 0^00^01^1 1^11)6^ 咖过1^11^10(10^1⑶8,141^11811^ 0^^3x100X10^ 861^1^1/171^6^51^ 0了0^1617110^1及…如/叹V,861/1^100029,(^如)^5811*301: ^6 ^1*61)^16(1 匕运匕 ^11&111^ ^^116116 8116618 界衍!这 011116(1 11101^11010^ 0011813^111^ 0【& 111111I?&1561'-111^6 81111011116 311(1『洲61 化游〔1—41町奶)^218 13661115哪咖过&0111113加:这1疫叩扮访0x1(^011,化如职!!16(111。

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析目前锂电池负极材料的研究主要集中在碳基材料、硅基材料、金属氧化物等方面。

这些材料在锂电池中都有其独特的优势和局限性,而且针对不同种类的锂电池,对负极材料的要求也有所不同。

对这些负极材料的研究和发展,将有助于提高锂电池的性能和推动新一代电池技术的发展。

碳基材料一直是锂电池负极材料的主要研究方向之一。

石墨、石墨烯、碳纳米管等碳材料,因其导电性好、比表面积大、化学稳定性高等特点,被广泛应用于锂电池负极材料中。

通过控制碳材料的结构和微观形貌,可以有效提高其对锂离子的嵌入/脱嵌能力,提高其循环稳定性和倍率性能。

不过,碳材料在储锂过程中很难实现高容量储存,这一问题已成为碳基负极材料的研究难点之一。

硅基材料也是当前锂电池负极材料的研究热点。

与碳材料相比,硅具有更高的理论储锂容量,因此被认为是一种非常有前景的锂离子电池负极材料。

硅材料在锂离子嵌入/脱嵌过程中会发生体积膨胀,导致材料结构破坏,电化学活性和循环寿命大大降低。

为了解决硅材料的这一问题,研究者们通过合成纳米结构的硅材料、设计多孔结构、以及与碳等材料的复合等方法,取得了一些积极的进展,但仍然存在一定的挑战。

在未来,锂电池负极材料的研究将朝着以下几个方向发展:通过材料设计与合成新型的碳基材料,以提高其储锂容量,并且降低材料的制备成本。

研究者也将继续探索碳材料的微观结构与电化学性能之间的关系,找出铁电影响碳材料电化学行为的机理。

将进一步发展硅基负极材料的制备技术,通过纳米结构设计、表面涂层等方法,提高硅材料的循环稳定性和倍率性能。

也将探索硅基材料与其他材料的复合应用,以扩展硅材料在锂电池中的应用范围。

对金属氧化物的研究也将继续深入,以寻找新型金属氧化物材料,并且改进其结构与性能。

研究者也将进一步研究金属氧化物的嵌入/脱嵌机制,以解决其循环稳定性问题。

随着锂电池技术的不断发展和应用需求的不断增加,对锂电池负极材料的研究也将持续深入。

锂离子电池负极材料石墨的改性分析课件

锂离子电池负极材料石墨的改性分析课件

石墨的改性需求和重要性
01
为了提高石墨的电化学性能和锂离子电池的整体性能,需要对 石墨进行改性处理。
02
பைடு நூலகம்
改性处理可以改善石墨的层间结构和稳定性,提高其可逆容量
和循环寿命。
改性处理还可以改善石墨的体积效应和安全性问题,提高锂离
03
子电池的能量密度和安全性。
02
石墨改性技术
表面涂层技术
表面涂层技术是指在石墨表面涂覆一层具有保护、增强和改性作用的涂层,以提 高石墨的电化学性能和稳定性。
烯片层堆叠而成。
石墨具有高导电性和高导热性, 以及良好的化学稳定性和耐腐蚀
性。
石墨的层间相互作用力较弱,容 易发生层间滑移。
石墨在锂离子电池中的应用
石墨作为锂离子电池 负极材料具有良好的 电化学性能和稳定性 。
石墨在锂离子电池中 具有良好的充放电性 能和循环寿命。
石墨具有较高的理论 容量和较低的嵌锂电 位,能够提供较高的 能量密度。
锂离子电池负极材料石墨的改性 分析课件
contents
目录
• 石墨材料概述 • 石墨改性技术 • 石墨改性的实验方法和结果分析 • 石墨改性在锂离子电池性能上的影响 • 石墨改性的未来研究方向和挑战 • 参考文献
01
石墨材料概述
石墨的物理和化学性质
石墨是一种层状结构的碳材料, 其晶体结构由二维蜂窝状的石墨
实验结果分析
石墨与硅基材料混合后,容量 和循环性能得到显著提升
高温处理后,石墨的层间距增 大,有利于锂离子的嵌入和脱
电化学测试结果表明,改性后 的石墨具有更高的比容量和更 稳定的循环性能
结果比较和讨论
与未改性的石墨相比,改性后的 石墨具有更高的能量密度和更长

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究本文着重介绍了锂离子电池负极材料金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)的性能、优缺点及改进方法,并对这些负极材料的应用作了进一步展望。

锂离子电池因具有能量密度高、工作电压高、循环寿命长、自放电小及环境友好等显著优点,已被广泛用于3C电子产品(Computer,ConsumerElectronic和Communication)、储能设备、电动汽车及船用领域。

锂离子电池的能量密度(170Wh/kg),约为传统铅酸蓄电池的3~4倍,使其在动力电源领域具有较强的吸引力。

而负极材料的能量密度是影响锂离子电池能量密度的主要因素之一,可见负极材料在锂离子电池化学体系中起着至关重要的作用,其中研究较为广泛的锂离子电池负极材料为金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)等负极材料。

金属基材料1.1锡基材料目前锡基负极材料主要有锡氧化物和锡合金等。

1.1.1锡氧化物SnO2因具有较高的理论比容量(781mAh/g)而备受关注,然而,其在应用过程中也存在一些问题:首次不可逆容量大、嵌锂时会存在较大的体积效应(体积膨胀250%~300%)、循环过程中容易团聚等。

研究表明,通过制备复合材料,可以有效抑制SnO2颗粒的团聚,同时还能缓解嵌锂时的体积效应,提高SnO2的电化学稳定性。

Zhou等通过化学沉积和高温烧结法制备SnO2/石墨复合材料,其在100mA/g的电流密度下,比容量可达450mAh/g以上,在2400mA/g电流密度下,可逆比容量超过230mAh/g,实验表明,石墨作为载体,不仅能将SnO2颗粒分散得更均匀,而且能有效抑制颗粒团聚,提高材料的循环稳定性。

1.1.2锡合金SnCoC是Sn合金负极材料中商业化较成功的一类材料,其将Sn、Co、C三种元素在原子水平上均匀混合,并非晶化处理而得,该材料能有效抑制充放电过程中电极材料的体积变化,提高循环寿命。

石墨烯在锂离子电池负极材料中的应用研究进展

石墨烯在锂离子电池负极材料中的应用研究进展

石墨烯在锂离子电池负极材料中的应用研究进展结合当前利用石墨烯材料特殊二维结构、优良物理化学特性来改善锂离子电池较低能量密度、较差循环性能等缺陷的研究热点,综述石墨烯材料及石墨烯复合材料在锂离子电池负极材料中的应用研究进展,指出现有电极材料的缺陷和不足,讨论作为锂离子电池电极的石墨烯复合材料结构与功能调控的重要性,并简要评述石墨烯在相关领域中所面临的挑战和发展前景。

标签:石墨烯;锂离子电池;负极材料石墨烯是一种结构独特并且性能优异的新型材料,它是由碳原子以sp2杂化连接的单原子层二维蜂窝状结构,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1,2]。

由于石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用,特别是在未来实现基于石墨烯材料的高能量密度、高功率密度应用有着非常重要的理论和工程价值。

理想的石墨烯是真正的表面性固体,其所有碳原子均暴露在表面,具有用作锂离子电池负极材料的独特优势:(1)石墨烯具有超大的比表面积,比表面积的增大可以降低电池极化,减少电池因极化造成的能量损失。

(2)石墨烯具有优良的导电和导热特性,即本身已具有了良好的电子传输通道,而良好的导热性确保了其在使用中的稳定性。

(3)在聚集形成的宏观电极材料中,石墨烯片层的尺度在微纳米量级,远小于体相石墨的,这使得Li+在石墨烯片层之间的扩散路径较短;而且片层间距也大于结晶性良好的石墨,更有利于Li+的扩散传输。

因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高。

1 石墨烯直接作为锂离子电池负极材料商业化锂离子电池石墨负极的理论容量为372 mAh/g。

为实现锂离子电池的高功率密度和高能量密度,提高锂离子电池负极材料的容量是一个关键性问题。

无序或比表面积高的热还原石墨烯材料具有大量的微孔缺陷,能够提高可逆储锂容量。

因此,相对石墨材料,石墨烯的储锂优点有:(1)高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达到700~2000 mAh/g,远超过石墨材料的理论比容量372 mAh/g(LiC6);(2)高充放电速率:多层石墨烯材料的面内结构与石墨的相同,但其层间距离要明显大于石墨的层间距,因而更有利于锂离子的快速嵌入和脱嵌。

石墨烯在锂电池中的应用研究资料

石墨烯在锂电池中的应用研究资料

石墨烯在锂电池中的应用研究资料石墨烯是一种由碳原子构成的单原子厚的二维材料,具有良好的导电性、热导性和力学性能,因此在电池领域具有广阔的应用前景。

本文将从石墨烯在锂电池正负极材料以及电解液中的应用角度,综述石墨烯在锂电池中的研究进展。

一、石墨烯在锂电池正极材料中的应用研究锂离子电池的正极材料主要有锂钴酸盐(LiCoO2)、锂铁磷酸盐(LiFePO4)等。

石墨烯在锂电池正极材料中的应用主要体现在两个方面:增强材料的导电性和改善电化学性能。

1.增强材料的导电性:石墨烯具有优异的电导率,将其与正极材料进行复合可以显著提高其导电性能。

例如,将石墨烯与LiCoO2进行复合制备出的复合材料可以提高锂离子的扩散速率和材料的导电性能,从而提高了锂电池的放电容量和循环寿命。

2.改善电化学性能:石墨烯与正极材料之间的复合可以提高材料的电化学性能。

石墨烯不仅可以增加正极材料的导电性,还可以改善其电化学反应的动力学过程,减小锂离子的插入/脱出电阻。

因此,利用石墨烯与正极材料的复合可以提高正极材料的容量、循环寿命和功率密度。

二、石墨烯在锂电池负极材料中的应用研究锂离子电池的负极材料主要有石墨等。

石墨烯在锂电池负极材料中的应用主要体现在以下几个方面:提高材料的电子传导性、增加锂离子的扩散速率、改善循环稳定性以及抑制锂金属的钝化现象。

1.提高电子传导性:石墨烯与石墨等负极材料的复合可以提高材料的电子传导性,从而降低电阻,改善电池的功率输出性能。

2.增加锂离子的扩散速率:石墨烯具有二维结构,可以提供更多的锂离子插入位点,增加锂离子的扩散速率,提高电池的充放电速度。

3.改善循环稳定性:石墨烯与石墨等负极材料的复合可以形成更稳定的结构,抑制材料的体积膨胀,从而提高电池的循环寿命。

4.抑制锂金属的钝化:在锂金属负极中加入石墨烯可以改善锂电池的充放电性能,减少锂金属负极表面的簧曲现象,提高电池的循环寿命。

三、石墨烯在锂电池电解液中的应用研究1.增加电解液的导电性:将石墨烯引入锂离子电池的电解液中可以提高电解液的导电性,减小电池的内阻,提高电池的放电容量和功率密度。

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着现代电子设备与电动汽车的飞速发展,锂离子电池作为一种高效的能源储存装置,其性能和成本的优化成为了研究的热点。

尤其是锂离子电池的负极材料,对电池的性能和成本起着决定性的作用。

近年来,基于石墨烯的锂离子电池负极材料因其卓越的电化学性能和成本效益受到了广泛关注。

本文将就基于石墨烯的锂离子电池负极材料的研究进行详细的探讨。

二、石墨烯的性质及其在锂离子电池中的应用石墨烯是一种由单层碳原子以蜂窝状排列构成的二维材料,具有优异的导电性、高比表面积、出色的机械强度和良好的化学稳定性。

这些独特的性质使得石墨烯成为锂离子电池负极材料的理想选择。

在锂离子电池中,石墨烯可以作为负极材料,其层状结构可以有效地吸附锂离子,提高电池的容量和循环性能。

此外,石墨烯的高导电性也有助于提高电池的充放电速率。

三、基于石墨烯的锂离子电池负极材料的研究进展1. 合成方法:目前,制备石墨烯基锂离子电池负极材料的方法主要包括化学气相沉积、还原氧化石墨烯以及热解碳化等方法。

这些方法各有优缺点,如化学气相沉积法可以制备出高质量的石墨烯,但成本较高;而还原氧化石墨烯法则可以大规模生产,但需要进一步优化以提高材料的电化学性能。

2. 改性研究:为了提高石墨烯基负极材料的电化学性能,研究者们进行了大量的改性研究。

例如,通过引入杂原子(如氮、硫等)对石墨烯进行掺杂,可以提高其电子传导能力和锂离子的吸附能力。

此外,还可以通过制备石墨烯与其他材料的复合材料,如石墨烯与金属氧化物、硫化物等复合,以提高材料的稳定性和容量。

3. 性能评价:研究者们通过一系列实验和理论计算,对基于石墨烯的锂离子电池负极材料的电化学性能进行了评价。

结果表明,这种材料具有高比容量、长循环寿命和良好的充放电速率等优点。

此外,与传统的碳基负极材料相比,石墨烯基负极材料在充放电过程中表现出更小的体积膨胀和更稳定的结构。

四、挑战与展望尽管基于石墨烯的锂离子电池负极材料取得了显著的进展,但仍面临一些挑战。

关于锂离子电池负极材料的研究分析

关于锂离子电池负极材料的研究分析

关于锂离子电池负极材料的研究分析摘要:锂离子电池是绿色环保的可充电电池系统之一,具有电压高,循环寿命长,毒性低和安全性高的优点。

负极材料是锂离子电池的重要组成部分,传统商业石墨具有价格低廉和导电性好的优点,是最广泛的工业负极材料。

然而,石墨的放电容量较低,这限制了其在高能量密度电池中的应用。

能够提供高放电容量的新型负极材料的开发已成为突破锂离子电池广泛应用限制的关键。

关键词:锂离子电池;负极材料;研究引言:锂离子电池的比容量主要取决于正负极材料。

正极材料已经达到其各自理论比容量极限的情况下,锂离子电池比容量的提升只能依靠负极材料的发展。

在新型碳材料中,石墨烯自诞生以来就受到了研究人员的青睐。

锂离子可以储存在石墨烯片的两侧。

基于双电层吸附结构,石墨烯的理论比容量非常高,相当于传统石墨负极的2倍。

一锂离子电池负极材料的基本特点锂电子电池负极材料对锂离子电池性能的提升有着十分重要的作用,锂电子负极材料在使用的过程中要具备以下几个条件:第一,锂离子负极材料要为层状结构或者隧道结构,这样结构能够使得锂离子脱嵌,并在锂离子出现脱出、嵌入时不会出现明显的结构变化,从而使得锂离子电池电极具备良好的充放电能量,提高电池的使用寿命。

第二,锂离子要能够尽可能多的完成嵌入和脱出,从而使得电子具有较高的可逆性。

同时,在锂离子脱嵌的过程中电池本身要能够实现平稳的充电和放电。

第三,第一次不可逆电池的放电量比较小。

第四,锂离子电池负极材料要具备较强的安全性能。

第五,锂离子电池材料和电解质溶剂的相容性比较好。

第六,锂离子电池负极材料资源获取丰富、多样,价格低廉。

二锂离子电池负极材料的基本类型(1)碳材料①石墨。

碳材料按照结构可以划分为石墨和无定形碳元素。

石墨是锂离子电池常用的碳负极材料,具备良好的导电性和结晶度,且石墨本身还具备完整的层状晶体结构,十分适合锂离子的嵌入和脱出。

在工业领域会选择多鳞片的石墨来作为碳负极原材料。

②无定形碳。

基于石墨烯的锂离子电池负极材料研究进展

基于石墨烯的锂离子电池负极材料研究进展

基于石墨烯的锂离子电池负极材料研究进展院系:材料科学系专业:材料学姓名:雷冰冰学号:14210300023基于石墨烯的锂离子电池负极材料研究进展摘要:锂离子电池因其质量轻、能量密度大、安全的优点,广泛应用于便携式电子设备领域,逐步成为了应用最佳和最有发展前途的能源。

为了进一步提高锂离子电池的能量密度、循环寿命,需要进一步开发新的负极材料。

由于石墨烯具有优越的导电性、超高的比表面积和很好的机械强度等特点, 其在锂离子电池负极材料方面显示出潜在的应用前景[1]。

本文综述了目前世界上对于基于石墨烯材料的锂离子电池负极材料的研究现状。

并对现有研究存在的不足做出了评价和预测了未来的研究方向。

关键词:锂离子电池;负极材料;石墨烯前言:相比其他可充二次电池,锂离子电池中具有高的比容量、相对低的自放电、长的循环寿命和小的环境污染等优点,被广泛应用于便携式电子设备中。

近几年能源环境问题及世界各国发展电动车的需求,因此迫切需要开发更高能量密度(高比容量)、更高功率密度(高的倍率性能)和更长循环寿命(优越的循环性能)的锂离子电池。

锂离子电池电化学性能的提高关键因素在于其正负极材料的提升。

目前,商业化的锂离子电池负极材料石墨具有理论比容量低(372 mAhg-1)和锂离子传输系数低(10-7~10-10cm2s-1)等缺点严重限制了锂离子电池性能的进一步提升。

因此,开发设计高比容量、高倍率性能和优越循环性能的新型锂离子电池负极材料至关重要。

新型纳米碳材料-石墨烯具有优异的导电性、超高的比表面积和很好的机械强度等优点,被认为是最有潜力的锂离子电池负极材料[2]。

是当前科学领域研究的热点。

但是,石墨烯纳米片层之间由于范德华力作用容易发生堆积或团聚等问题,并且常用的化学合成法得到的石墨烯一般具有较多的残余含氧官能团;这些因素都会影响石墨烯作为负极材料的循环性能和倍率性能。

因此,对石墨烯材料的结构改进、表面官能团改性以及运用掺杂、复合等手段来改进石墨烯作为锂离子电池负极材料的研究是当今的热点。

石墨烯在锂离子电池电极材料中的应用

石墨烯在锂离子电池电极材料中的应用

石墨烯在锂离子电池电极材料中的应用沈文卓;郭守武【摘要】随着电子产品的普及,对锂离子电池的可逆容量、倍率充放电能力和循环稳定性提出了更高的要求.石墨烯由于其独特的电子共轭态和单一的原子层结构,具有优越的电子迁移性、大的表面积和良好的热和化学稳定性.因此,众多研究者致力于借助石墨烯的独有特性来改善锂离子电池正极和负极材料的综合电化学性能.本文对石墨烯在锂离子电池正负极材料中的应用情况以及面临的主要问题做了简要综述.%It is challenging to develop lithium ion batteries (LIBs) possessing simultaneously large reversible capacity,high rate capability,and good cycling stability.Graphene sheets,owing to the unique electronic conjugate state within the basal plane and also the single atomic layered morphology,have superior electronic mobility,large surface area,and decent thermal and chemical stability.Hence,many works have been devoted to the improvements of the cathode and anode materials with graphene.In the work,the achievements and the main problem in the area are overviewed.【期刊名称】《电子元件与材料》【年(卷),期】2017(036)009【总页数】4页(P79-82)【关键词】石墨烯;正极材料;综述;负极材料;电化学性能;锂离子电池【作者】沈文卓;郭守武【作者单位】上海交通大学电子信息与电气工程学院,上海200240;上海交通大学电子信息与电气工程学院,上海200240【正文语种】中文【中图分类】O613.71与其他种类的二次电池相比,锂离子电池具有高能量密度、高电压、无记忆效应、低自放电率等优点[1-2],在日用电子产品(如手机、手提电脑、摄像机、电玩)、电动汽车(EV/PHEV/HEV)以及储能电站等领域得到普遍应用。

石墨烯在锂电池行业应用发展浅析

石墨烯在锂电池行业应用发展浅析

石墨烯在锂电池行业应用发展浅析石墨烯是一种具有特殊结构的纳米材料,它是由单层碳原子以六边形结构构成的二维晶体。

由于其特殊的物理、化学及电学特性,石墨烯被广泛应用于各个领域,包括能源存储与转换领域的锂电池。

1.提高锂电池的电容量:石墨烯作为锂电池负极材料的添加剂,能够显著提高锂离子在负极材料中的嵌入/脱嵌效率,进而提高锂电池的电容量。

石墨烯的高导电性和大比表面积可以增加锂离子在负极材料中的扩散速率,从而提高电池的充放电性能。

2.提高锂电池的循环寿命:锂电池在反复充放电过程中,极材料会发生结构破坏和粉化,导致循环寿命下降。

石墨烯作为添加剂可以有效抑制极材料的结构破坏,增强其稳定性,从而延长锂电池的循环寿命。

3.提高锂电池的快速充放电性能:石墨烯具有极高的电子迁移率和较低的电阻,这种特性使得石墨烯成为提高锂电池快速充放电性能的理想材料。

石墨烯的导电性和快速电荷传输能力可以实现锂电池快速充电,同时也可以提高电池在高功率耗散下的放电性能。

4.提高锂电池的安全性能:锂电池的安全性问题一直是制约其大规模应用的关键因素之一、石墨烯作为锂电池阳极材料的添加剂,能够提高电池的热稳定性,降低电池的过热和起火的风险。

尽管石墨烯在锂电池行业的应用发展前景广阔,但目前仍面临一些挑战和问题。

首先,石墨烯的大规模制备成本较高,且生产过程中难以实现规模化生产。

其次,石墨烯的稳定性较差,在锂电池中容易发生剥离和聚集现象,降低了其应用效果。

此外,石墨烯与锂离子之间的相互作用机制还需要进一步研究和理解。

综上所述,石墨烯在锂电池行业的应用发展前景广阔,有望改善锂电池的电容量、循环寿命、快速充放电性能和安全性能。

未来的研究重点应该放在石墨烯大规模制备技术的研发、石墨烯与锂离子之间的相互作用机制的解析以及石墨烯与其他功能材料的协同效应等方面。

通过进一步的研究和开发,石墨烯有望成为锂电池领域的重要创新材料。

石墨烯在锂电池中的应用研究

石墨烯在锂电池中的应用研究

石墨烯在锂电池中的应用研究石墨烯是一种由碳原子组成的二维晶体材料,具有出色的导电性、热导性、机械强度和化学稳定性。

由于其优异的性能,石墨烯在各个领域都引起了广泛的研究兴趣。

在锂电池领域,石墨烯也被认为是一种有潜力的材料,可用于提高锂电池的性能和稳定性。

首先,石墨烯可以作为锂离子电池负极材料来替代传统的石墨材料。

石墨烯具有高电导率和大的比表面积,使其具有优异的电化学性能。

相比传统石墨材料,石墨烯具有更高的锂离子嵌入/脱嵌容量和更快的离子传输速率。

因此,利用石墨烯作为负极材料可以提高锂离子电池的容量和循环寿命。

其次,石墨烯可用作锂离子电池正极材料的添加剂。

石墨烯的加入可以改善正极材料的电化学性能,如提高材料的电导率、缓解电极材料和电解液之间的应力差异以及提高电极材料的稳定性。

同时,石墨烯还可以增加电极材料的比表面积,提供更多的嵌锂位点,从而提高锂离子电池的容量。

此外,石墨烯还可以用于改善锂离子电池的界面问题。

锂电池往往存在电解液和电极材料之间的界面问题,如电解液的溶解、电解液的浸润性和锂离子的扩散等。

石墨烯可以通过覆盖在电极表面来改善界面问题,形成稳定且一致的电解液/电极界面,提高电极材料和电解液的相互作用能力,从而提高锂离子电池的性能和稳定性。

总之,石墨烯在锂离子电池中具有广泛的应用研究前景。

通过利用石墨烯的优异性能,可以显著提高锂离子电池的容量、能量密度、循环寿命和安全性。

然而,目前还存在一些困难和挑战,如大规模制备石墨烯、石墨烯的稳定性和与锂离子电池体系中其他元素的相互作用等问题。

因此,需要进一步开展研究来解决这些问题,并将石墨烯应用于实际的锂离子电池系统中。

石墨烯锂离子电池负极材料专利技术分析

石墨烯锂离子电池负极材料专利技术分析

石墨烯锂离子电池负极材料专利技术分析一、石墨烯材料的制备方法在石墨烯锂离子电池负极材料的研究中,石墨烯材料的制备方法至关重要。

目前,常见的制备方法包括机械剥离法、氧化还原法、化学气相沉积法、热化学气相沉积法、溶胶-凝胶法等。

机械剥离法是指将石墨材料经过层层剥离,得到单层或少层石墨烯的制备方法。

国内外已有很多关于机械剥离法制备石墨烯材料的专利技术。

例如,美国IBM公司发明了一种利用机械剥离法制备石墨烯材料的方法,通过对石墨材料进行剥离和分离,制备出具有单层或多层石墨烯的薄膜。

氧化还原法是指通过氧化反应和还原反应将石墨材料中的氧化物去除,得到石墨烯材料的制备方法。

如中国科学院物理研究所发明了一种利用氧化还原法制备石墨烯的方法,通过配制还原剂和氧化物,在高温条件下进行还原反应,制备得到大面积的石墨烯材料。

二、石墨烯材料的表征技术石墨烯锂离子电池负极材料的表征技术主要包括形貌分析、结构分析、热稳定性分析等。

其中,扫描电镜(SEM)、透射电镜(TEM)等成像技术常用于分析石墨烯的形貌和结构特征,X射线衍射(XRD)、红外光谱(FTIR)等技术常用于分析其结构特征,热重分析(TGA)、差示扫描量热法(DSC)等技术常用于分析石墨烯材料的热稳定性和热性能。

石墨烯负极材料在锂离子电池中的应用技术主要包括改性技术、复合技术、增容技术等。

其中,改性技术是指通过改变石墨烯负极材料的性质和结构,实现其在锂离子电池中的优化应用。

例如,中国电子科技集团公司发明了一种利用化学还原法对石墨烯负极材料进行改性的方法,使其表面氧化物含量降低,从而提高其电化学性能和循环稳定性。

复合技术是指将石墨烯和其他材料进行复合,从而提高其电化学性能和循环稳定性。

如中国石油大学发明了一种利用石墨烯和硅负极材料复合的方法,提高了材料的循环性能和倍率性能。

总之,石墨烯锂离子电池负极材料的研究,需要从制备方法、表征技术、应用技术等方面进行深入研究,不断开发出具有高性能和高稳定性的石墨烯锂离子电池负极材料,以满足未来低碳环保的储能需求。

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用

石墨烯制备及其在新能源汽车锂离子电池负极材料中的应用田晓鸿(西安航空职业技术学院,西安710089)摘要:新能源汽车锂离子电池对于负极材料的节能环保性要求较高,而石墨烯作为新型的碳材料,因低成本、高性能而成为新型的负极材料,而针对氧化石墨法制备流程复杂、存在污染性,且制成的微米级团聚颗粒石墨烯电化学性能受限问题,文章采用机械液相剥离的规模化制备工艺,将石墨烯与石墨复合制备成石墨烯复合材料,通过实验方法测定其作为锂离子电池负极材料的电化学应用性能,结果表明与石墨复合后,可有效优化石墨烯负极材料的使用性能,更好的满足新能源汽车发展要求。

关键词:石墨烯;负极材料;电化学性质;锂离子电池中图分类号:U469.72;TM912文献标识码:A文章编号:1001-5922(2021)01-0183-04 Preparation of Graphene and Its Application as Anode Materials for Lithium Ion Batteries of New Energy VehiclesTian Xiaohong(Xi'an Aeronautical Polytechnic Institute,Xi'an710089,China)Abstract:New energy automobile lithium-ion battery has high requirements for energy-saving and environmental protection of anode materials.Graphene,as a new carbon material,has become a new type of anode material due to its low cost and high performance.However,in view of the complicated preparation process of the graphite oxide method,the presence of pollution,and the limited electrochemical performance of the micron-sized agglomerated particles,this paper adopts the large-scale preparation process of mechanical liquid phase exfoliation to prepare graphene and graphite composites into Graphene composite material,through the experimental method to determine its electrochemical application performance as a lithium-ion battery anode material.The results show that the per⁃formance of graphene anode material can be effectively optimized after compounding with graphite,which can bet⁃ter meet the development requirements of new energy vehicles.Key words:graphene;anode material;electrochemical properties;lithium ion battery0引言随着电动汽车技术及保有量的不断发展,为实现节能减排的目的,对锂离子电池制备及使用性能提出了更高的要求。

石墨烯负极材料

石墨烯负极材料

石墨烯负极材料
石墨烯是一种新型的碳材料,具有非常出色的电导性、机械强度和热稳定性等特点,因此被广泛应用于能源存储和转化领域。

作为锂离子电池和超级电容器的负极材料,石墨烯展现出了很大的潜力。

传统的锂离子电池负极材料为石墨,但其容量有限,无法满足日益增长的能源需求。

相比之下,石墨烯具有更高的比容量和更好的电导率,能够提供更高的储能效率和更长的循环寿命。

采用石墨烯作为负极材料,能够增加充放电速率,提高电池效能。

石墨烯作为超级电容器的负极材料,也表现出了优秀的性能。

超级电容器具有高速充放电特性和长循环寿命,但能量密度相对较低。

利用石墨烯的高比表面积和高电导率,可以提高超级电容器的能量密度和功率密度,从而满足更多领域的应用需求。

此外,石墨烯还可以与金属、金属氧化物等其他材料复合,以进一步提高电池和超级电容器的性能。

例如,石墨烯与硅复合,可以增加锂离子电池的容量和循环寿命;石墨烯与氧化钛复合,可以提高超级电容器的能量密度和功率密度。

虽然石墨烯作为负极材料具有很多优势,但还存在一些挑战。

首先,石墨烯的制备成本较高,限制了其大规模商业化生产。

其次,石墨烯的可扩展性和稳定性还需要进一步改进,以满足实际应用的需求。

此外,石墨烯与电解液之间的界面问题也需要解决,以提高电池和超级电容器的性能。

总体而言,石墨烯作为锂离子电池和超级电容器的负极材料,具有很大的潜力。

随着相关技术的不断发展和完善,相信石墨烯在能源存储和转化领域将得到更广泛的应用。

石墨烯负极材料

石墨烯负极材料

石墨烯负极材料石墨烯是一种由碳原子单层构成的二维材料,具有许多独特的物理和化学性质,因此被广泛应用于电子器件、能源存储、传感器等领域。

在石墨烯材料中,负极材料的研究和应用备受关注,因为它在锂离子电池、超级电容器等电化学器件中具有重要作用。

石墨烯作为负极材料具有许多优异的性能。

首先,石墨烯具有高比表面积,大量的活性位点有利于锂离子的嵌入和脱嵌,从而提高了电化学性能。

其次,石墨烯具有优异的导电性和电子迁移率,能够有效地提高电化学反应速率,增强电极的导电性能。

此外,石墨烯还具有优异的机械性能和化学稳定性,能够增加电化学器件的循环寿命和安全性能。

在锂离子电池中,石墨烯作为负极材料具有重要的应用前景。

由于石墨烯具有高比表面积和优异的导电性能,能够提高电池的能量密度和功率密度,同时提高电池的循环寿命和安全性能。

石墨烯负极材料还可以有效缓解锂离子电池中的“石墨烯涂层”现象,提高电池的充放电效率和循环寿命。

因此,石墨烯负极材料在锂离子电池中具有重要的应用前景,有望取代传统的石墨负极材料,成为下一代高性能锂离子电池的关键材料。

除了锂离子电池,石墨烯负极材料还在超级电容器、钠离子电池等领域具有重要应用价值。

石墨烯负极材料具有优异的离子传输和电子传输性能,能够大幅提高超级电容器的能量密度和功率密度,同时提高循环寿命和安全性能。

在钠离子电池中,石墨烯负极材料也表现出良好的嵌入/脱嵌反应动力学和循环稳定性,有望成为下一代钠离子电池的重要材料。

总的来说,石墨烯作为负极材料具有许多优异的性能,有望在电化学器件中取得重要应用。

随着石墨烯制备技术的不断进步和研究的深入,相信石墨烯负极材料将会在未来的电化学领域发挥重要作用,推动电化学器件的性能和应用水平不断提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯锂离子电池负极材料专利技术分析
石墨烯在电池领域的应用一直备受关注,特别是在锂离子电池负极材料方面,石墨烯
具有优异的导电性、高比表面积和良好的机械性能,使其成为一种理想的锂离子电池负极
材料。

在石墨烯锂离子电池负极材料方面,一些专利技术成果已经出现,并在该领域取得
了一定的进展。

本文将对石墨烯锂离子电池负极材料的专利技术进行分析,探讨其在电池
领域的应用前景和发展趋势。

专利技术一:一种石墨烯复合负极材料及其制备方法
该专利技术涉及一种石墨烯复合负极材料及其制备方法,其制备方法包括以下步骤:1)将石墨烯与导电剂进行混合,得到石墨烯混合物;2)将石墨烯混合物与锂离子电池负
极材料进行混合,得到石墨烯复合负极材料。

该专利技术通过将石墨烯与导电剂进行混合,能够提高石墨烯的导电性能,增强其在锂离子电池负极材料中的应用性能,有利于提高锂
离子电池的循环性能和倍率性能。

综合上述专利技术,可以看出石墨烯在锂离子电池负极材料领域的应用主要集中在提
高其导电性能、改善其分散性和与锂离子电池负极材料的结合性,从而提高锂离子电池的
循环性能和倍率性能。

随着石墨烯制备技术的不断进步和成本的降低,相信石墨烯在锂离
子电池负极材料领域的应用前景将会更加广阔。

需要注意的是,目前石墨烯在锂离子电池负极材料领域的应用还存在一些挑战,如石
墨烯的大规模制备技术、石墨烯与锂离子电池负极材料的结合机制等问题仍待解决。

在未
来的研究中,需要进一步深入探讨石墨烯在锂离子电池负极材料领域的应用机制,寻找更
加有效的解决方案,以推动石墨烯在锂离子电池领域的应用取得更大的突破。

相关文档
最新文档