多波段遥感影像增强方法

合集下载

遥感图像增强实验报告

遥感图像增强实验报告

遥感图像增强实验报告1. 实验目的和内容实验目的:(1)遥感图像的空间域增强:通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,是图像增强技术的基本组成部分,包括点运算和邻域运算。

(2)遥感图像的频率域增强:通过对频率域的调整对遥感图像进行平滑和锐化,平滑主要是保留图像的低频部分抑制高频部分,锐化则保留图像的高频部分而削弱低频部分。

(3)遥感图像的彩色增强:将黑白图像转换成彩色图像,使地物的差别易于分辨,突出图像的有用信息,从而提高对图像的解译和分析能力。

实验内容:(1)遥感图像的空间域增强:点运算—直方图均衡化、灰度拉伸、任意拉伸,邻域运算—图像平滑、图像锐化。

(2)遥感图像的频率域增强:定义FFT,反向FFT,再进行对比。

(3)遥感图像的彩色增强:多波段影像—彩色合成、单波段影像—伪彩色增强、色彩空间变换、遥感数据融合。

2. 图像处理方法和流程A.遥感图像的空间域增强1.直方图均衡化(1)在主窗口中打开can_tmr.img文件。

(2)以gray形式显示一个波段。

(3)Display窗口>enhance>equalization2.灰度拉伸(1)Display窗口>enhance>interactive stretching(2)弹出的对话框>stretch_type>linear(3)在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。

3.任意拉伸(1)弹出的对话框>stretch_type>Arbitary,在output histogram中单击绘制直方图,右键结束(2)点击apply,结果如图所示4.图像平滑(1)均值平滑,在主窗口中打开can_tmr.img文件。

主窗口>enhance>filter>smooth[3*3]。

结果如图所示(2)中值平滑,在主窗口中打开can_tmr.img文件。

第五章 遥感图像处理—图像增强

第五章 遥感图像处理—图像增强
(3) 变换后依然得到6个图像。其中:第一个图像反映亮 度特征,是原图像亮度的加权和;第二个图像表示绿度,反 映绿色生物量特征;第三个图像表示湿度,反映土壤的湿度
特征;其余三个分量与地物特征没有明确的对应关系。
七、多元信息复合
遥感图像信息融合(Fusion)是将多源遥感数据在统一的 地理坐标系中,采用一定的算法生成一组新的信息或合
其中:
k ( g 'max g 'min ) /( gmax gmin ) 255/ 52 4.9
b g 'ij kgij 0 49 49
2、非线性拉伸
(1)指数变换
xb be
(2)对数变换
axa
c
xb b度进行分层,每一层所包含的亮度值范围可以不
同。
图像密度分割原理可以按如下步骤进行:
(1)求图像的极大值dmax和极小值dmin; (2)求图像的密度区间ΔD = dmax-dmin + 1; (3)求分割层的密度差Δd =ΔD/n ,其中 n为需分割的层数;
(4)求各层的密度区间;
(5)定出各密度层灰度值或颜色。
减法运算可以增加不同地物间光谱反射率以及在 两个波段上变化趋势相反时的反差。不同时相同 一波段图像相减时,可以提取波段间的变化信息。
T M 4 影 像
T M 3 影 像
TM4-TM3影像
87 年 影 像
92 年 影 像 变化监测结果影像
(二)加法运算
B= i /m
i=1 m
加法运算可以加宽波段,如绿色波段和红色波 段图像相加可以得到近似全色图像;而绿色波 段,红色波段和红外波段图像相加可以得到全 色红外图像。
-1 -2 -1 0 0 0 1 2 1 1 2 0 -2 1 0 -1

第四章3遥感图像处理图像增强

第四章3遥感图像处理图像增强

5.遥感图像多光谱变换(Ⅰ)——主成分分析(K—L变换)
② 就变换后的新波段主分量而言,K—L变换后的 新波段主分量包括的信息量不同,呈逐渐减少趋 势。其中,第一主分量集中了最大的信息量,常 常占80%以上,第二、第三主分量的信息量依次 快速递减,到第n分量信息几乎为0。由于K—L变 换对不相关的噪声没有影响,所以信息减少时, 便突出了噪声,最后的分量几乎全是噪声。所以 这种变换又可分离出噪声。
基于上述特点,在遥感数据处理时,常常用K— L变换作数据分析前的预处理(数据压缩和图像增
强)。举例P125
6.遥感图像多光谱变换(Ⅱ)——缨帽变换(K—T变换)
(1)K—T变换是Kauth—Thomas变换的简称,这种变换也是 一种线性组合变换,其变换公式为:Y=BX 这里X为变换前的多光谱空间的像元矢量,y为变换后的 新坐标空间的像元矢量,B为变换矩阵。这也是一种坐标 空间发生旋转的线性变换,但旋转后的坐标轴不是指向主 成分方向,而是指向了与地面景物有密切关系的方向。 1984年,Crist和Cicone提出TM数据在K—T变换时的B值: P126 在此,矩阵为6X6,主要针对TM的1至5和第7波段,低分 辨率的热红外(第6波段)波段不予考虑。
1.遥感图像增强(工)——对比度变化1
非线性变换
直方图均衡化(histogram equalization):把原图像的直方 图变换为灰度值频率固定的直方图,使变换后的亮度级 分布均匀,图像中等亮度区的对比度得到扩展,相应原 图像中两端亮度区的对比度相对压缩。
1.遥感图像增强(工)——对比度变化1
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果放在窗口中心的像元位置,成为新像元的灰度 值。然后活动窗口向右移动一个像元,再做同样的运算。 P117说明

多波段遥感图像彩色合成处理解析

多波段遥感图像彩色合成处理解析

多波段遥感图像彩色合成处理解析【摘要】多波段遥感图像彩色合成是一种应用广泛的遥感图像应用处理,本文对其授课目标、授课方式、授课内容、授课顺序、授课重点等进行了设计,并将彩色合成原理从色度学、地物波谱特性、图像灰度值(图像密度、透光性)等几个方面进行关联,使学生真正学懂彩色合成的基本原理,并能灵活地应用到遥感图像专题信息提取的实践之中。

【关键词】标准假彩色合成;真彩色合成;加色法0 引言彩色合成是遥感数字图像处理方法中,最常用、最基本、也是最便捷有效的彩色增强处理方法,是关于遥感图像处理研究最早的内容之一,到目前为止一直在延续使用,而且必不可少,然而在教学中本人发现,学生对于光学原理完成的彩色合成从理论上并不能很好的理解,学生可以看到彩色图像,可以按照排列组合的方式,把所有能做的彩色合成全部完成,观察到色彩的变化,但是很难将色度学、地物波谱特性、图像灰度值、图像透光性等知识融合到一起进行综合分析,从原理上明白色彩变化的原因。

本人从事遥感地质学教学工作多年,将彩色合成的教学经验进行了总结,希望对从事这方面教学工作的教师具有一定的帮助。

1 授课内容假彩色合成,从标准假彩色入手,以植被为例。

1.1 MSS数据的光学标准假彩色合成图1 标准假彩色合成(以植被为例,MSS数据)图1为从波段选择,植被反射率,图像色调、透明正片密度,滤色片颜色、色光混合,植被颜色7大方面对于标准假彩色图像上植被颜色为品红色原理的列表解释。

1.2 ETM+数据的数字标准假彩色合成、真彩色合成。

图2 标准假彩色合成(以植被为例,ETM+数据)图2和图3为以ETM+、TM数据为例,用数字图像处理的方法解释标准假彩色和真彩色合成的原理,因为该原理的实现是在计算机的遥感软件下完成,数据类型有一定的变化,所以透明正片密度用图像密度来代替,滤色片三原色,由计算机的RGB三原色代替,实现标准假彩色、真彩色合成。

工作波段、名称、植物反射率、图像色调、DN值、图像密度、三原色、色光混合原理应该在本次课之前完成,在课上介绍到哪一部分就要做相应的复习。

遥感影像多波段锐化探索

遥感影像多波段锐化探索

遥感影像多波段锐化探索遥感影像多波段锐化探索遥感影像多波段锐化是一种常用的图像处理技术,可以提高遥感影像的细节和清晰度。

下面,我将逐步介绍多波段锐化的步骤。

第一步,首先需要选择一幅遥感影像作为处理对象。

这幅影像可以是卫星遥感影像、航空遥感影像或者无人机采集的影像。

第二步,对选择的遥感影像进行预处理操作,包括辐射校正、大气校正和几何校正等。

这些预处理操作可以保证影像的准确性和一致性,为后续的锐化操作提供可靠的基础。

第三步,将预处理后的遥感影像转换为多波段图像,通常使用RGB(红、绿、蓝)或者HSV(色相、饱和度、明度)颜色空间进行表示。

这样可以方便后续处理中的色彩调整和增强。

第四步,选择适当的锐化滤波器。

常用的滤波器包括拉普拉斯滤波器、Sobel滤波器和高斯滤波器等。

这些滤波器可以增强图像的边缘和细节,使影像更加清晰。

第五步,对多波段图像应用所选的锐化滤波器。

可以通过卷积操作将滤波器应用于图像的每个像素点,从而得到锐化后的图像。

第六步,根据需要对锐化后的图像进行后处理操作。

常见的后处理操作包括对比度调整、亮度调整和色彩平衡等。

这些操作可以进一步增强图像的视觉效果。

第七步,评估锐化效果。

可以通过目视检查或者使用图像质量评估指标来评估锐化后的图像质量。

如果需要进一步改善图像质量,可以尝试调整锐化滤波器的参数或者应用其他图像增强技术。

综上所述,遥感影像多波段锐化是一个多步骤的过程,包括预处理、颜色空间转换、滤波器选择、滤波器应用、后处理和评估等。

通过这些步骤,可以使遥感影像的细节和清晰度得到有效提升,为后续的遥感应用提供更好的数据基础。

遥感数字图像处理-第8章 图像增强

遥感数字图像处理-第8章 图像增强
伪彩色处理的类型:
(1)伪彩色处理:对灰度图像的每一个灰度值都赋予一种独立的颜色。 (2)密度分割:将图像的灰度值进行分层(或分段),每一层包含了一 定的灰度值范围,分别给每个层赋予不同的颜色。
18
四、图像融合
图像融合:把那些在时间或空间中存在冗余或者互补的多
源数据按照一定的法则进行运算,从而获得比任何单一数据 都更为精确、信息更为丰富的合成图像。
y f x
式中,f 是一个变换函数,常见的变换函数如线性变换、分段线性变换和 非线性变换等。
5
一、空间域图像增强
邻域运算
邻域运算的卷积滤波器分为平滑和锐化两种类型。 在图像增强中主要是指利用锐化滤波器对图像作锐化处理,将图像中灰 度值缓慢变化的区域滤去,使图像反差增加,突显边缘。 图像锐化的应用: (1)增强图像边缘,使模糊的图像更加清晰,一般是将图像锐化结果与原 图像相加以突出原图像的细节信息。 (2)用于目标物的边缘提取,并可进一步利用这些提取的边缘信息对图像 进行分割、目标区域识别、区域形状提取等,从而为进一步的图像理解 与分析奠定基础。
9
二、变换域图像增强(补充知识)
带通滤波
仅保留某个固定范围内的频率信息而屏蔽掉其它的频率信息
(1)理想带通滤波器
0 H (u, v) 1 0
D(u,
v)<D0
w 2
D0
w 2
D(u,
v)
D0
w 2
D(u,
v)>D0
+
w 2
式中,D0是理想带通滤波器频带的中心频率;w为频带的宽度;D(u, v)是 从频率平面的中心原点到点(u, v)的距离,即D(u,v)= (u2+ v2)1/2。
常用的图像变换算法: • 傅里叶变换 • 小波变换 • 颜色空间变换

遥感影像数据融合原理与方法

遥感影像数据融合原理与方法

遥感影像数据融合原理与方法遥感影像数据融合是将不同波段或不同传感器的遥感影像数据融合在一起,以获取更全面、准确、可靠的信息。

它在农业、林业、城市规划、环境监测等领域具有广泛的应用。

下面将对遥感影像数据融合的原理和方法进行详细介绍。

一、遥感影像数据融合原理遥感影像数据融合的原理是通过将多个波段或多个传感器的影像数据进行组合,以获取多波段或多传感器数据的综合信息。

融合后的影像数据能够提供更多的数据维度和更丰富的信息内容,从而增强地物辨别能力和特征提取能力。

1.时空一致性:遥感影像数据融合要求融合后的影像数据在时域和空域上具有一致的特性,即不同时间或空间的影像数据融合后要保持一致性,以便进行准确的信息提取和分析。

2.特征互补性:不同波段或传感器的影像数据通常具有不同的特征信息,例如,光学影像可以提供颜色信息,而雷达影像可以提供物体的形状和纹理信息。

融合时要充分利用不同波段和传感器的特征互补性,使融合后的影像数据包含更全面、准确的信息。

3.数据一致性:遥感影像数据融合应保持数据的一致性,即融合后的影像数据应在不改变原始数据的情况下,能够反映出原始数据的真实信息。

在融合过程中要注意去除噪声和图像畸变等因素,以保持数据的一致性。

二、遥感影像数据融合方法1.基于像素的融合方法:基于像素的融合方法是将不同波段或传感器的影像数据进行像素级别的融合。

常用的方法有像素互换法和加权平均法。

像素互换法是将一个波段或传感器的像素值替换到另一个波段或传感器的影像上,以增加信息的表达能力。

加权平均法是对不同波段或传感器的像素值进行加权平均,得到融合后的像素值。

2.基于特征的融合方法:基于特征的融合方法是针对不同波段或传感器的特征进行分析和融合。

常用的方法有主成分分析法和小波变换法。

主成分分析法是通过对不同波段或传感器的影像数据进行主成分分析,提取出影像数据中的主要特征,然后将主成分进行融合。

小波变换法是利用小波变换来分析和提取不同波段或传感器的影像数据中的特征,然后通过小波系数的线性组合对影像数据进行融合。

提高遥感影像几何纠正的精度的方法

提高遥感影像几何纠正的精度的方法

提高遥感影像几何纠正的精度的方法1. 高精度地面控制点:在遥感影像几何纠正过程中,使用高精度测量的地面控制点是提高几何纠正精度的关键。

这些控制点应该具有稳定的地理位置,并采用精确的测量方法进行定位。

2. 精确的数字地面模型(DEM):准确的DEM可以提供地表高程的精确信息,从而帮助更准确地纠正遥感影像的几何畸变。

采用高解析度的DEM和精确的高程测量技术可以获得更准确的DEM。

3. 高精度的相机定位:准确的相机定位参数可以帮助准确地计算遥感影像的几何畸变。

使用精确的GPS定位和惯性导航系统(INS)可以提供准确的相机定位参数。

4. 影像配准:配准是将不同时间或不同传感器采集的遥感影像对齐的过程。

准确配准遥感影像可以减小几何纠正的误差。

5. 消除地层效应:地层效应是由地表材料反射特性的空间变化引起的影像几何畸变。

通过对地层效应进行建模和校正,可以提高遥感影像几何纠正的精度。

6. 改进的坐标转换算法:在进行遥感影像几何纠正时,通常需要将图像坐标转换为地理坐标。

改进的坐标转换算法可以提高几何纠正的精度。

7. 光线校正:光线校正可以消除由光照条件和大气影响引起的影像几何畸变。

通过校正光线条件,可以提高遥感影像几何纠正的精度。

8. 影像去噪:影像中的噪声会影响遥感影像的几何纠正精度。

通过去除噪声,可以提高几何纠正的精度。

9. 优化数据采集:在进行遥感影像数据采集时,应选择适当的传感器和采样参数,以获取具有高空间分辨率和高光谱分辨率的影像数据,从而提高几何纠正的精度。

10. 基于模型的几何纠正:使用几何模型来纠正遥感影像的几何畸变可以提高纠正精度。

常见的几何模型包括多项式模型、仿射模型和透视模型等。

11. 使用多源数据:利用多源数据,如航空影像、卫星影像、地面测量数据等,可以提高几何纠正的精度。

多源数据可以提供更多的几何参考信息,从而减小几何畸变。

12. 定义适当的控制点布局:在选择地面控制点时,应将它们布置在整个影像中以确保均匀覆盖。

遥感图像的增强处理

遥感图像的增强处理
实验三、遥感图像的增强处理
目的:通过上机操作,掌握彩色变换增强,空间域增强,频率域增强,多光谱变换增强等几种遥感图像增强处理的过程和方法,加深对遥感图像增强处理的理解。
实验内容:彩色合成;对比度变换增强;空间滤波增强;频率域增强;图像运算;主成分变换。
一、彩色合成
根据加色法彩色合成原理,选择遥感图像的三个波段,分别赋予红、绿、蓝三种原色,然后将这三个波段叠加,构成彩色合成图像。
锐化:interpreter—spatical enhancement—convolution(索伯尔)以T1为例。 New为自己新定义一个模板,在Xsize与Ysize中定义,以默认的3为例,在窗口中的行列中输入T1(突出线状地物,为水平方向线性地物)点file中的librarian中的name中命名“suoboer”点save后close,发现自定义的suoboer已出现 在convolution窗口中的kernel下,点击suoboer,再在output file中命名。
(1)索伯尔梯度
1 2 1 -1 0 1
T1= 0 0 0 T2= -2 0 2
-1-2-1 -1 0 1
(2)拉普拉斯算法(有利于提取边缘信息)
0 1 0
T(m,n)=1-4 1(同时突出横、纵向,但边界是断断续续
标准假彩色合成:
TM2(绿波段)赋予蓝
TM3(红波段)赋予绿
TM4(近红外波段)赋予红;
步骤:配准--------合成
空间位置上配准(通过几何校正进行配准)
做一标准假彩色合成(选影像tm2、3、4)
首先将tm2、3、4打开看是否能直接合成(投影坐标是否一样,若不一样则需配准后才能合成)

3.遥感图像的增强与变换处理

3.遥感图像的增强与变换处理
遥感实验课 第二课 遥感图像的增强与变换处理
图像增强处理是遥感图像数字处理的基本的方法之一。 将原来不清晰的图像变得清晰或把我们感兴趣的某些特征强调出来(同时抑制了不感兴趣的 特征)的图像处理方法称为图像增强。 图像增强的目的是为了提高解像力,提高图像的可解译性。 一、教学目的与要求 掌握遥感图像的增强与变换处理 二、重点难点 ⒈ ⒉ 三、教学内容 对比度增强、锐化与平滑处理、比值与差值处理、NDVI(归一化差值植被指数)、主成分分析 (K-L变换)、缨帽变换(K-T变换)和傅立叶变换(FFTFiltering)。
所需文件:TL、TL.HRD
实现步骤: 加载 TL,用 RGB Scale 打开。 Transforms > Tassled Cap ㈦傅立叶变换(FFT Filtering) 傅立叶分析是一种将图像分成空间上各种频率成分的数学方法。ENVI 中 FFT Filtering 包括 图像正向的 FFT、滤波器的应用,以及 FFT 向原始数据空间的逆变换。 Forward FFT (正向的 FFT)
⑵差值处理 所需文件:TL、TL.HRD 实现步骤: 加载 TL,用 RGB Scale 打开。 Basic Tools > Band Math.
“Enter an expression:” 的文本框内,输入变量名和所需要的数学运算符。
变量名必须以字符 “b” 或 “B” 开头,后面跟着 5 个以内的数字字符。 例:b7-b4 , b7-b5 , (b7-b4)/(b7+b5) , b1+sin(b2)
㈢比值与差值处理
比值法与差值法适用于对多波段图像或多时相图像进行增强处理,这是因为多波段之间的照 射条件及变化是一致的,对两个波段图像进行差值与比值运算,往往能减弱背景信息而突出局部 信息,就能达到图像增强的效果。

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。

下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。

- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。

- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。

- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。

2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。

- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。

- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。

3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。

- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。

4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。

- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。

- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。

5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。

- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。

6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。

- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。

以上是遥感影像处理的具体操作步骤。

不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤在遥感领域,影像预处理是遥感数据处理的重要环节,对于提高遥感影像的质量和后续分析具有重要意义。

以下是遥感影像预处理的正确步骤:一、数据获取与预处理1.数据获取:遥感影像数据来源于各种遥感卫星、航空遥感等,需要根据研究目的选择合适的数据源。

2.预处理:数据获取后,需要对数据进行预处理,以消除原始数据中的噪声、异常值等问题。

预处理方法包括去除噪声、裁剪、缩放等。

二、几何校正与图像配准1.几何校正:由于遥感影像在采集过程中可能受到传感器本身、地球曲率、大气折射等因素的影响,导致影像几何变形。

几何校正旨在消除这些变形,提高影像质量。

常见的方法有传感器模型校正、基于控制点的几何校正等。

2.图像配准:图像配准是将多幅遥感影像(如多光谱影像和单波段高分辨率影像)进行空间对齐,使其在同一坐标系统下。

配准方法有基于像素的配准、基于变换的配准等。

三、图像融合1.图像融合是将不同分辨率、不同光谱的遥感影像融合为高分辨率、多光谱的影像。

常见的图像融合方法有:(1)IHS变换融合:将高分辨率全色影像与亮度进行直方图匹配,然后去掉亮度,用预处理的高分辨率全色影像代替。

与色度H、饱和度S一起,利用逆变换式变换至RGB系统,得到融合后的影像。

(2)小波变换融合:利用人眼对局部对比度变化敏感的特性,根据一定的融合规则,在多幅原图像中选择最显著的特征(如边缘、线段等),并将这些特征保留在融合后的图像中。

四、影像增强与分割1.影像增强:通过调整亮度、对比度、色彩平衡等参数,提高遥感影像的视觉效果。

常见的增强方法有:直方图均衡化、自适应直方图均衡化、色彩空间转换等。

2.影像分割:将融合后的遥感影像划分为不同的区域,以便进行后续分析。

常见的分割方法有:基于阈值的分割、基于区域的分割、基于边缘的分割、基于深度学习的分割等。

五、特征提取与分析1.特征提取:从遥感影像中提取有意义的特征,如纹理、颜色、形状等。

常见的特征提取方法有:灰度共生矩阵、局部二值模式(LBP)、HOG特征等。

图像增强技术在卫星遥感中的应用研究

图像增强技术在卫星遥感中的应用研究

图像增强技术在卫星遥感中的应用研究一、引言卫星遥感作为一种高效的地球观测手段,已经在环境监测、资源管理、自然灾害预警等领域发挥着重要作用。

然而,在实际应用过程中,卫星遥感图像普遍存在云雾、雾霾、阴影、噪声等问题,对后续的信息提取和分析带来很大的挑战。

因此,图像增强技术在卫星遥感中的应用逐渐成为研究热点。

二、图像增强技术概述图像增强技术是指对原有图像进行处理,改善视觉效果和减少图像噪声的一系列技术。

主要的增强方法包括空间域处理、频域处理、直方图处理等。

空间域处理是指对像素点进行增益或偏移的处理,如亮度调整、对比度调整等;频域处理是将图像转化到频域进行处理,例如滤波、傅里叶变换等;直方图处理是对图像的灰度分布进行处理,可以调整图像的亮度和对比度等。

三、卫星遥感图像增强技术分类针对卫星遥感图像的特点,增强方法可以分为下列几类:1.多通道融合增强技术多通道融合增强技术是利用卫星遥感图像的不同波段信息,将多个波段的信息融合起来进行增强。

按照融合方式可分为加权平均法、主成分分析法等。

在图像处理中,多通道融合能够有效降低图像数据产生的噪声,提高图像的信噪比和辨别能力,从而更好地支持环境监测、资源管理等的使用。

2.去云雾增强技术卫星遥感图像在拍摄时,常常会受到云雾干扰,影响图像的质量和准确性。

而去云雾增强技术的主要目标就是在去掉云雾的同时保留图像中的有用信息。

该技术有多种实现方式,包括改变图像亮度、对比度等,或者通过数学模型对云雾进行拟合和抑制来实现。

去云雾增强技术可以在卫星遥感中提供更精确的图像信息,增强对大范围环境变化的监测能力。

3.阴影去除增强技术卫星遥感图像中,由于地形起伏和植被分布等因素的影响,会产生很多阴影。

而阴影区域会导致反射光强度下降,进而影响图像质量和信息提取。

阴影去除增强技术的主要目标是对阴影和其它目标进行区分,并将阴影区域进行修正,使图像更加清晰明了。

通过阴影去除增强技术的应用,可以重构亚洲地形,拟合颜色主题,通过众多形态,反应出真实地貌。

遥感图像增强

遥感图像增强

对图像进行非线性拉伸,重新分布图像像元值使 一定灰度范围内像元的数量大致相等
对图像查找表进行数学变换,使一幅图像的直方 图与另一幅图像类似,常用于图像拼接处理 对图像亮度范围进行线性及非线性取反值处理
降低多波段图像及全色图像模糊度的处理方法
利用自适应滤波方法去除图像噪声 对Landsat TM图像进行三次卷积处理去除条带
遥感图像增强的目的

改善图像的质量,提高图像目视效果,突出所需 要的信息,为进一步遥感目视判读做预处理工作 例如:图像对比度不够,图像有噪声、图像 边界模糊等

具体讲:改善图像的灰度等级,提高图像的对比 度,平滑滤波消除噪声,突出地物对象边缘等
主要内容

辐射增强
也叫对比度变换,是通过直接改变图像中像元的灰度 值来改变图像的对比度,从而改变图像的视觉效果。

空间增强
与辐射增强不同,是利用像元自身及其周围像元的 灰度值进行运算,采用空间域中的邻域处理方法,有目的 的突出图像上的某些特征。如突出边缘或线状地物;也可 以去除某些特征,如抑制在图像获取或传输过程中产生的 各种噪声。

光谱增强
是基于多波段数据对每个像元的灰度值进行变换, 达到图像增强的目的。
辐射增强
查找表拉伸处理
是通过修改图像查找表,使输出图像值发 生变化。 可以根据对查找表的定义,实现线性拉伸、 分段线性拉伸、非线性拉伸等处理。

• 灰度级变换的应用(1)
–对比度拉伸——提高、降低对比度
255 部分 提高 255
142
降低
0
48218 2550128255
• 灰度级变换的应用(1)
–提高对比度
• 通常通过直方图得到两个拐点的位置

landsat8遥感影像多波段合成原理

landsat8遥感影像多波段合成原理

landsat8遥感影像多波段合成原理
Landsat 8遥感影像由多个波段的数字图像组合而成。

每个波段捕捉了不同的电磁波长范围,包括可见光、近红外和热红外等。

合成多波段影像的原理是将不同波段的图像叠加在一起,形成一个新的图像,该图像包含了原始图像中所有波段的信息。

这个过程可以使用不同的合成方法,包括RGB合成、色彩增强和索引合成等。

在RGB合成中,将选定的三个波段(通常是红、绿和蓝)分别分配给红、绿和蓝色通道,然后将它们合成为一幅彩色图像。

这样可以模拟人眼对于颜色的感知,显示出真实感较强的图像。

色彩增强是一种通过调整图像对比度和亮度来增强图像细节和特征的方法。

这种方法可以采用各种算法和滤波器来改善图像的品质和可视化效果。

索引合成是在图像中创建一种代表特定地物或地貌特征的指数,用于监测和分析目标。

常见的索引包括植被指数(如NDVI)、水体指数(如NDWI)和土壤湿度指数(如NDMI)等。

索引合成可以帮助研究人员和决策者更好地理解土地利用、植被生长、水资源分布等环境变化。

综上所述,利用不同的合成方法,可以将Landsat 8遥感影像的多个波段合成为一幅图像,以提供更全面、更准确的信息用于地表监测、环境研究和资源管理等
应用。

遥感图像光谱增强处理实验报告

遥感图像光谱增强处理实验报告

一、实验名称遥感图像光谱增强处理二、实验目的对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。

通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。

三、实验原理光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。

有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。

主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。

对于增强信息含量、隔离噪声、减少数据维数非常有用。

使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。

两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。

图像融合是将多幅影像组合到单一合成影像的处理过程。

它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。

四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程1.主成分分析1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。

2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。

ENVI遥感图像增强转换处理

ENVI遥感图像增强转换处理

以下实验使用can-tmr.img影像一.图像增强转换处理1.Principal Component Analysis (主成分分析) 主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。

这一技术对于增强信息含量、隔离噪声、减少数据维数非常有用。

ENVI 能完成正向的和逆向(正向的PC 旋转)正向的PC 旋转用一个线性变换使数据差异达到最大。

当你运用正向的PC 旋转时,ENVI 允许你计算新的统计值,或将已经存在的统计项进行旋转。

输出值可以存为字节型、浮点型、整型、长整型或双精度型。

你也可以基于特征值抽取PC旋转输出的部分内容,生成只有你需要的PC波段的输出。

一旦旋转完成,将会出现PC特征值图。

显示出每一个输出的PC 波段的差异量。

PC 波段将显示在Available Bands List 中。

Compute New Statistics and Rotate (计算新的统计值和旋转)这一选项用于计算数据特征值、协方差或相关系数以及PC 正向的旋转。

1 选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate.2 出现Principal Components Input File 对话框时,选择输入文件或用标准ENVI 选择程序建立子集。

3 出现Forward PC Rotation Parameters 对话框时,在“Stats X/Y Resize Factor” 文本框键入小于1 的调整系数,对计算统计值的数据进行二次抽样。

键入一个小于1 的调整系数,以提高统计计算的速度。

例如,在统计计算时,用一个0.1 的调整系数将只用到十分之一的像元。

4 若需要,键入一个输出统计文件名。

5 点击按钮,选择是否计算“Covariance Matrix”。

第五章遥感图像增强

第五章遥感图像增强
图像增强则把重点放在使分析者能 从视觉上便于识别图像内容上,以 提高解象力。
4、图像增强的方法
数字增强处理
采用数字图像计算机系统进行 优点:快速、功能全,能应用光学方法无法 进行的一些算法对图象增强。
光学增强 采用光学仪器进行
优点:直观、方便、快速、操作方法容易掌 握、耗资较少; 缺点:光学增强仪器对各种增强方法的适应 性比数字处理设备要差。
真彩色合成(true color composite) 合成结果为真彩色,符合人眼观察习惯;
假彩色合成(false color composite)
合成结果与实际景物颜色不对应或缺失某 一色光,彩色鲜明,特征突出。
真彩色合成
假彩色合成
3)彩色合成方法
按合成机制不同,分为: 加色法和减色法 二者均以色彩混合原理为依据。
例如:
y a ln(x 1) c ln b
用(x+1)是为了避免对0求对数
参数b用于改变对数的底
a和c用于调节数值范围。
对数扩展的效果:
➢ 着重扩展了亮度值低的部分
➢ 相对压缩了亮度值高的部分
(3) 指数扩展(exponent stretch)
指数扩展的一般形式: y=bax
其中:b为底,常用b=e。因x可能达 到127或255,故a须远小于1,否则y值可 能非常大。
大气散射作用又使影像的反差更为降低。 使得研究对象模糊不清。
3. 对比度增强分类
对比度增强可分为线性和非线性两种。
1)线性扩展(linear stretch)
将原始图象诸亮度值按线性关系进行扩 大,亮度范围可扩展为任意制定的范围。相 当于进行y=ax+b的变换。 (1)普通线性扩展
直接应用上述单一的线性关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多波段遥感影像增强方法
多波段遥感影像增强方法
多波段遥感影像增强方法有很多种,以下是一种基本的步骤思路:
第一步:图像预处理
首先,需要对原始的多波段遥感影像进行预处理。

这包括消除噪声、边缘检测、空间过滤和图像配准等。

消除噪声可以使用滤波器,如中值滤波器或高斯滤波器;边缘检测可以使用算子,如Sobel算子或Canny
算子;空间过滤可以使用卷积运算,如均值滤波或拉普拉斯滤波。

第二步:选择增强方法
根据图像的特点和需求,选择合适的增强方法。

常用的增强方法包括直方图均衡化、对比度拉伸、多尺度变换等。

直方图均衡化可以增强图像的对比度,使得图像中的细节更加明显;对比度拉伸可以调整图像的亮度范围,使得图像更加清晰;多尺度变换可以提取图像的不同频率信息,增强图像的细节和纹理。

第三步:应用增强方法
根据选择的增强方法,对预处理后的图像进行处理。

例如,对于直方图均衡化方法,可以计算图像的累积直方图,并根据累积分布函数对每个像素进行亮度调整;对于对比度拉伸方法,可以根据像素的灰度值和设定的拉伸范围,通过线性变换调整像素的亮度。

第四步:评估增强效果
对增强后的图像进行评估,判断是否满足需求。

评估可以使用目视评估、主观评估或客观评估等方法。

目视评估是通过直接观察图像来判断增强效果;主观评估可以通过调查问卷等方式,收集用户的意见和反馈;客观评估可以通过计算图像的指标,如信噪比、增强比等来评估增强效果的好坏。

第五步:调整参数和重复操作
根据评估结果,如果增强效果不满足需求,可以尝试调整参数或选择其他的增强方法。

重复上述步骤,直到获得满意的增强效果为止。

综上所述,多波段遥感影像增强方法的步骤思路包括图像预处理、选择增强方法、应用增强方法、评估增强效果和调整参数与重复操作。

通过这些步骤,可以有效地提高多波段遥感影像的质量和信息获取能力。

相关文档
最新文档