北京专用2018年高考数学总复习专题14推理与证明新定义分项练习含解析文

合集下载

2018高考文科数学推理与证明专项100题(WORD版含答案)

2018高考文科数学推理与证明专项100题(WORD版含答案)

2018高考文科数学推理与证明专项100题(WORD版含答案)1.下列说法中正确的是()A.当a>1时,函数y=a x是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理C.命题的否定是¬P:∀x∈R,e x>xD.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小2.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×220143.用反证法证明命题:“若a,b∈R,则函数f(x)=x3+ax﹣b至少有一个零点”时,假设应为()A.函数没有零点B.函数有一个零点C.函数有两个零点D.函数至多有一个零点4.分析法又叫执果索因法,若使用分析法证明:设a<b<c,且a+b+c=0,求证:b2﹣ac<3c2,则证明的依据应是()A.c﹣b>0 B.c﹣a>0 C.(c﹣b)(c﹣a)>0 D.(c﹣b)(c﹣a)<0 5.有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值,此定值为()A.B.C.D.a7.定义:“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等.在数学中也有这样一类数字有这样的特征,称为回文数.设n是一任意自然数.若将n的各位数字反向排列所得自然数n1与n相等,则称n 为一回文数.例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数.则下列数中不是回文数的是()A.187×16 B.1112C.45×42 D.2304×218.学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是()A.《雷雨》只能在周二上演B.《茶馆》可能在周二或周四上演C.周三可能上演《雷雨》或《马蹄声碎》D.四部话剧都有可能在周二上演9.小赵、小钱、小孙、小李四位同学被问到谁去过长城时,小赵说:我没去过;小钱说:小李去过;小孙说;小钱去过;小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是()A.小赵B.小李C.小孙D.小钱10.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为R,四面体S﹣ABC的体积为V,则R=()A.B.C.D.11.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为])2bca(ca[41S222222-+-=.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A.3B.2 C.3 D.612.平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形的对角线条数为()A.42 B.65 C.143 D.16913.下面结论正确的是()①一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).②由平面三角形的性质推测空间四面体的性质,这是一种合情推理.③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④14.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+3z+3=0的距离为()A.3 B.5 C.D.315.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A. B.2 C.3 D.16.如图,在公路MN两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③17.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙18.已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段l 的距离,记作d(P,l).设l是长为2的线段,点集D={P|d(P,l)≤1}所表示图形的面积为()A.πB.2π C.2+πD.4+π19.下面使用类比推理恰当的是()A.“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”B.“若(a+b)c=ac+bc”类推出“(a•b)c=ac•bc”C.“(a+b)c=ac+bc”类推出“=+(c≠0)”D.“(ab)n=a n b n”类推出“(a+b)n=a n+b n”20.下面四个推理,不属于演绎推理的是()A.因为函数y=sinx(x∈R)的值域为[﹣1,1],2x﹣1∈R,所以y=sin(2x﹣1)(x∈R)的值域也为[﹣1,1]B.昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论21.“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是()A.甲B.乙C.丙D.乙和丙都有可能22.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可能知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩23.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为( )A .B .C .D .24.已知x >0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n ∈N *),则a=( )A .2nB .3nC .n 2D .n n25.对于100个黑球和99个白球的任意排列(从左到右排成一行),则一定( ) A .存在一个白球,它右侧的白球和黑球一样多 B .存在一个黑球,它右侧的白球和黑球一样多 C .存在一个白球,它右侧的白球比黑球少一个 D .存在一个黑球,它右侧的白球比黑球少一个 26.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc(a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .1093527.《庄子·天下篇》中记述了一个著名命题:“一尺之棰,日取其半,万世不竭.”反映这个命题本质的式子是( ) A .21111122222n n +++⋅⋅⋅+=-B .211112222n +++⋅⋅⋅++⋅⋅⋅<C .21111222n ++⋅⋅⋅+= D .21111222n ++⋅⋅⋅++⋅⋅⋅< 28.对于各数互不相等的正数数组(i 1,i 2,…,i n )(n 是不小于2的正整数),如果在p <q 时有i p <i q ,则称“i p 与i q ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组(a 1,a 2,a 3,a 4,a 5)的“顺序数”是4,则(a 5,a 4,a 3,a 2,a 1)的“顺序数”是( ) A .7 B .6 C .5 D .4 29..两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8530.将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A 和B 所示的两个柱体,则柱体A 和B 的表面(不含地面)数字之和分别是( )A .4748,B .4749,C .4950,D .5049, 31.数0,1,2,3,4,5,…按以下规律排列:…,则从2013到2016四数之间的位置图形为( )A B12436655523136A.B.C.D.32.某人在x天观察天气,共测得下列数据:①上午或下午共下雨7次;②有5个下午晴;③有6个上午晴;④当下午下雨时上午晴.则观察的x天数为()A.11 B.9 C.7 D.不能确定33.定义区间(a,b),,的长度均为d=b﹣a.用表示不超过x的最大整数,记{x}=x﹣,其中x∈R.设f(x)={x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间的长度,则当0≤x≤3时,有( )A.d=1 B.d=2 C.d=3 D.d=434.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊊平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误35.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sinαsinβ;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a•b+b2.其中结论正确的个数是()A.0 B.1 C.2 D.336.如图,自然数列按正三角形图顺序排列,如数9排在第4行第3个位置;设数2015排在第m行第n个位置,则m+n= .37.观察下列等式,按此规律,第n个等式的右边等于.38.在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定出来x=2,类似地不难得到= .39.观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2= .40.有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n 日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙提听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是.41.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是.42.观察下列各式:13=1,13+23=32,13+23+33=62,13+23+33+43=102,…,由此推得:13+23+33…+n3= .43.自然数列按如图规律排列,若2017在第m行第n个数,则log2= .44.观察下列式子:1+<,1++<,1+++<,…据以上式子可以猜想:1++++…+<.45.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则以此规律A(8,2)为.46.已知x>0时有不等式x+≥2,x+=++≥3,…成立,由此启发我们可以推广为x+≥n+1(n∈N*),则a的值为.47.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.48.设n为正整数,,计算得,f(4)>2,,f (16)>3,观察上述结果,可推测一般的结论为.49.从1=12,2+3+4=32,3+4+5+6+7=52中,可得到一般规律为.(用数学表达式表示)50.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n﹣1)+F(n ﹣2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n},b2017= .51.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆1by a x 2222=+(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于 .52.有一个游戏,将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为 、 、 、 . 53.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是 . 54.已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠 公里. 55.大衍数列,来源于中国古代著作《乾坤谱》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50.通项公式:a n=如果把这个数列{a n}排成右侧形状,并记A(m,n)表示第m行中从左向右第n个数,则A (10,4)的值为.56.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.57.古代数学家杨辉在沈括的隙积数的基础上想到:若由大小相等的圆球剁成类似于正四棱台的方垛,上底由a×a个球组成,杨辉给出求方垛中圆球总数的公式如下:S=3n(a2+b2+ab+2ab),根据以上材料,我们可得12+22+…+n2=.58.如图,根据图中的数构成的规律,a所表示的数是.59.观察下列式子:,,,…,根据以上规律,第n个不等式是.60.将一些正整数按如下规律排列,则10行第3个数为第1行 1 2第2行 2 4 6 8第3行 4 7 10 13第4行 8 12 16 20 24…61.某运动队对A,B,C,D四位运动员进行选拔,只选一人参加比赛,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是C或D参加比赛”;乙说:“是B参加比赛”;丙说:“是A,D都未参加比赛”;丁说:“是C参加比赛”.若这四位教练中只有两位说的话是对的,则获得参赛的运动员是.62.已知[x]表示不超过x的最大整数,例如[π]=3S1=S2=S3=,…依此规律,那么S10= .63.2016年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为.64.观察下列等式l+2+3+…+n=n(n+l);l+3+6+…+n(n+1)=n(n+1)(n+2);1+4+10+…n(n+1)(n+2)=n(n+1)(n+2)(n+3);可以推测,1+5+15+…+n(n+1)(n+2)(n+3)= .65.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数是.66.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.67.我国的《洛书》中记载着世界上最古老的幻方:将1,2,…,9填入方格内,使三行、三列,两条对角线的三个数之和都等于15,如图所示.一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行,每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的对角线上数的和为N n,例如N3=15,N4=34,N5=65…那么N n= .68.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.69.甲乙丙三人一起参加机动车驾驶证科目考三试后,与丁相聚,丁询问甲乙丙的考试结果,甲说:“我通过了.”,乙说:“我和甲都通过了.”,丙说:“我和乙都通过了.”甲乙丙三人有且只有一个人说的内容与考试结果不完全相同,甲乙丙中没有通过的是.70.德国数学家莱布尼兹发现了右面的单位分数三角形,单位分数是分子为1,分母为正整数的分数称为莱布尼兹三角形:根据前6行的规律,写出第7行的第3个数是.71.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.72.“开心辞典”中有这样的问题,给出一组数,要你根据规律填出后面的几个数,现给出一组数:它的第8个数可以是.73.某公司在进行人才招聘时,由甲乙丙丁戊5人入围,从学历看,这5人中2人为硕士,3人为博士:从年龄看,这5人中有3人小于30岁,2人大于30岁,已知甲丙属于相同的年龄段,而丁戊属于不同的年龄段,乙戊的学位相同,丙丁的学位不同,最后,只有一位年龄大于30岁的硕士应聘成功,据此,可以推出应聘成功者是.74.某比赛现场放着甲、乙、丙三个空盒,主持人从一副不含大小王的52张扑克牌中,每次任取两张牌,将一张放入甲盒,若这张牌是红色的(红桃或方片),就将另一张放入乙盒;若这张牌是黑色的(黑桃或梅花),就将另一张放入丙盒;重复上述过程,直到所有扑克牌都放入三个盒子内,给出下列结论:①乙盒中黑牌不多于丙盒中黑牌②乙盒中红牌与丙盒中黑牌一样多③乙盒中红牌不多于丙盒中红牌④乙盒中黑牌与丙盒中红牌一样多其中正确结论的序号为.75.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两项作品未获得一等奖”;丁说:“是C作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.76.观察下列等式:1=++;1=+++;1=++++;…,以此类推,1=++++++,其中m<n,m,n∈N*,则m﹣n= .77.设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=;f3(x)=f(f2(x))=.f4(x)=f(f3(x))=…根据以上事实,当n∈N*时,由归纳推理可得:f n(1)= .78.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖。

2018高考数学(理科)习题第十四章推理与证明143和答案

2018高考数学(理科)习题第十四章推理与证明143和答案

1.已知数列{a n }的各项均为正数,b n =n ⎝ ⎛⎭⎪⎫1+1n na n (n ∈N +),e 为自然对数的底数.(1)求函数f (x )=1+x -e x 的单调区间,并比较⎝ ⎛⎭⎪⎫1+1n n 与e 的大小;(2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b na 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x . 当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x . 令x =1n ,得1+1n <e 1n ,即⎝⎛⎭⎪⎫1+1n n <e.①(2)b 1a 1=1·⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2⎝⎛⎭⎪⎫1+122=(2+1)2=32;b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3⎝ ⎛⎭⎪⎫1+133=(3+1)3=43.由此推测:b 1b 2…b n a 1a 2…a n =(n +1)n.②下面用数学归纳法证明②.a .当n =1时,左边=右边=2,②成立.b .假设当n =k 时,②成立,即b 1b 2…b ka 1a 2…a k=(k +1)k .当n =k +1时,b k +1=(k +1)⎝⎛⎭⎪⎫1+1k +1k +1·a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k(k +1)·⎝ ⎛⎭⎪⎫1+1k +1k +1=(k +2)k +1. 所以当n =k +1时,②也成立.根据a 、b ,可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术­几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n n +1=b 1⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n n +1+ b 2⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n n +1+…+b n ·1nn +1=b 1⎝ ⎛⎭⎪⎫1-1n +1+b 2⎝ ⎛⎭⎪⎫12-1n +1+…+b n ⎝ ⎛⎭⎪⎫1n -1n +1<b 11+b 22+…+b n n =⎝ ⎛⎭⎪⎫1+111a 1+⎝ ⎛⎭⎪⎫1+122a 2+…+⎝⎛⎭⎪⎫1+1n na n <e a 1+e a 2+…+e a n =e S n .即T n <e S n .2.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解 (1)S 6={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,4),(2,6),(3,1),(3,3),(3,6)},所以f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+k +-12+k +-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f(k+1)=f(k)+2=k+2+k2+k-23+2=(k+1)+2+k+-12+k+13,结论成立;e.若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+k-12+k3+2=(k+1)+2+k+12+k+-13,结论成立;f.若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+k2+k-13+1=(k+1)+2+k+-12+k +-23,结论成立.综上所述,结论对满足n≥6的自然数n均成立.3.函数f(x)=ln (x+1)-axx+a(a>1).(1)讨论f(x)的单调性;(2)设a1=1,a n+1=ln (a n+1),证明:2n+2<a n≤3n+2.点击观看解答视频解(1)f(x)的定义域为(-1,+∞),f′(x)=x[x-a2-2ax +x+a2.①当1<a<2时,若x∈(-1,a2-2a),则f′(x)>0,f(x)在(-1,a2-2a)是增函数;若x∈(a2-2a,0),则f′(x)<0,f(x)在(a2-2a,0)是减函数;若x∈(0,+∞),则f′(x)>0,f(x)在(0,+∞)是增函数.②当a=2时,f′(x)≥0,f′(x)=0成立当且仅当x=0,f(x)在(-1,+∞)是增函数;③当a >2时,若x ∈(-1,0),则f ′(x )>0,f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0,f (x )在(0,a 2-2a )是减函数; 若x ∈(a 2-2a ,+∞),则f ′(x )>0,f (x )在(a 2-2a ,+∞)是增函数. (2)证明:由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0, 即ln (x +1)>2xx +2(x >0). 又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0, 即ln (x +1)<3xx +3(0<x <3). 下面用数学归纳法证明2n +2<a n ≤3n +2. ①当n =1时,由已知23<a 1=1,故结论成立;②设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln (a k +1)>ln ⎝ ⎛⎭⎪⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln (a k +1)≤ln ⎝⎛⎭⎪⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时有2k +3<a k +1≤3k +3,结论成立. 根据①,②知对任何n ∈N *结论都成立. 4.已知函数f 0(x )=sin xx(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22都成立.解 (1)由已知,得f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x -sin x x 2,于是f 2(x )=f 1′(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin ⎝ ⎛⎭⎪⎫x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝ ⎛⎭⎪⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝ ⎛⎭⎪⎫x +k π2成立.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝ ⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +k +2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +k +2. 因此当n =k +1时,等式也成立.综合①,②可知等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4 =sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *).所以⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22(n ∈N *).。

2018版高考数学(理)一轮复习文档:选修系列第十四章14.2第2课时含解析

2018版高考数学(理)一轮复习文档:选修系列第十四章14.2第2课时含解析

第2课时不等式的证明1.不等式证明的方法(1)比较法:①作差比较法:知道a〉b⇔a-b〉0,a<b⇔a-b<0,因此要证明a〉b只要证明a-b〉0即可,这种方法称为作差比较法.②作商比较法:由a〉b〉0⇔错误!>1且a>0,b>0,因此当a>0,b〉0时,要证明a>b,只要证明错误!>1即可,这种方法称为作商比较法.(2)综合法:从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法:①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法:一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:①证明当n=n0时命题成立;②假设当n=k(k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)柯西不等式:①柯西不等式的代数形式:设a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2(当且仅当ad=bc时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.③柯西不等式的三角不等式:设x1,y1,x2,y2,x3,y3∈R,则x1-x22+y1-y22+错误!≥错误!.④柯西不等式的一般形式:设a1,a2,a3,…,a n,b1,b2,b3,…,b n 是实数,则(a错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0 (i=1,2,…,n)或存在一个数k,使得a i=kb i (i=1,2,…,n)时,等号成立.(2)算术—几何平均不等式若a1,a2,…,a n为正数,则错误!≥错误!,当且仅当a1=a2=…=a n时,等号成立.1.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,求错误!的最小值.解根据柯西不等式(ma+nb)2≤(a2+b2)(m2+n2),得25≤5(m2+n2),m2+n2≥5,m2+n2的最小值为错误!.2.若a,b,c∈(0,+∞),且a+b+c=1,求错误!+错误!+错误!的最大值.解(错误!+错误!+错误!)2=(1×错误!+1×错误!+1×错误!)2≤(12+12+12)(a+b+c)=3.当且仅当a=b=c=错误!时,等号成立.∴(错误!+错误!+错误!)2≤3。

【K12高考数学】2018高考数学理(13-17高考题)分类汇编:第14章推理与证明

【K12高考数学】2018高考数学理(13-17高考题)分类汇编:第14章推理与证明
5. 解析 由 [ t ] 1 , [ t 2 ] 2 ,… [ t 5 ] 5 ,得 1, t 2 ①, 2, t 2 3 ②, 3, t 3 4 ③,
4, t 4 5 ④, 5, t 5 6 ⑤,由②③得 t 5…6 ,与⑤矛盾,所以正整数 n 的最大值是 4.
故选 B.
命题意图 考查归纳推理与不等式的性质 .
2
22
数为 N (n, k ) ( k … 3 ) ,以下列出了部分 k 边形数中第 n 个数的表达式:
三角形数 N (n,3) 1 n 2 1 n , 22
正方形数 N (n,3) n2 ,
五边形数 N (n,5) 3 n 2 1 n ,
2
2
六边形数 N (n,6) 2n2 n ,
可以推测 N (n, k ) 的表达式,由此计算 N (10,24) .
个数对序列 P 使 T5 P 最小,并写出 T5 P 的值 . (只需写出结论) .
7.( 2017 全国 2 卷理科 7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩. 老
师说:你们四人中有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成
绩,给丁看甲的成绩. 看后甲对大家说: 我还是不知道我的成绩. 根据以上信息, 则().
D.
8. ( 2017 全国 1 卷理科 12)几位大学生响应国家的创业号召,开发了一款应用软件 . 为
激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动
. 这款软件
的激活码为下面数学问题的答案:已知数列 1,1,2, 1,2,4,1,2,4,8,1,2,4,
8,16,…,其中第一项是 20 ,接下来的两项是 20 ,21,再接下来的三项是 20 ,21 ,22 , 依此类推 . 求满足如下条件的最小整数 N: N 100且该数列的前 N 项和为 2 的整数幂 .

精编2018高考数学(理科)习题第十四章推理与证明提分训练14和答案

精编2018高考数学(理科)习题第十四章推理与证明提分训练14和答案

………………………………………………………………………………………………时间:50分钟基础组1.[2016·冀州中学模拟]下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 由A 可知其为椭圆的定义;B.由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式,属于归纳推理;C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab ,是类比推理;D.科学家利用鱼的沉浮原理制造潜艇,也属于类比推理,故选B.2.[2016·衡水二中周测]分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 答案 C 解析b 2-ac <3a⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0 ⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0.3.[2016·枣强中学仿真]“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错 答案 A解析 “指数函数y =a x 是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的.4.[2016·衡水二中月考]已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2015=( ) A .3 B .-3 C .6 D .-6答案 D解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2015=6×335+5,∴a 2015=a 5=-6.选D.5.[2016·武邑中学热身]观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92 答案 B解析 个数按顺序构成首项为4,公差为4的等差数列,因此|x |+|y |=20的不同整数解(x ,y )的个数为4+4(20-1)=80,故选B.6.[2016·冀州中学猜题]用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 答案 B解析 因为结论“自然数a ,b ,c 中恰有一个偶数”可得题设为:“a ,b ,c 中恰有一个偶数”,所以反设为a ,b ,c 中至少有两个偶数或都是奇数.7.[2016·武邑中学仿真]当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于 ( ) A .n n B .n 2 C .n D .n +1答案 A解析 ∵x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,∴在p 位置出现的数恰好是不等式左边分母x n 的指数n 的n 次方,即p =n n .8.[2016·衡水中学模拟]观察下列等式13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案13+23+…+n3=n2n+24解析观察表达式的底数可知,1=1,1+2=3,1+2+3=6,1+2+3+4=10,故第n个等式的底数为1+2+3+…+n=n+n2,故第n个等式为13+23+…+n3=n2n+24.9.[2016·冀州中学期中]用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n n+2(n∈N*)的第二步中,当n=k+1时等式左边与n=k时的等式左边的差等于______.答案3k+2解析当n=k+1时,左边=(k+2)+(k+3)+…+(2k+2);当n=k时,左边=(k+1)+(k+2)+…+(2k),其差为(2k+1)+(2k+2)-(k+1)=3k+2.10.[2016·衡水中学仿真]请阅读下列材料:若两个正实数a1,a2满足a21+a22=1,那么a1+a2≤ 2.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤ 2.根据上述证明方法,若n个正实数满足a21+a22+…+a2n=1时,你能得到的结论为________.答案a1+a2+…+a n≤n解析构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+an)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2+…+a n)2-4n≤0,所以a1+a2+…+a n≤n.11.[2016·枣强中学预测]已知a>0,1b-1a>1,求证:1+a>11-b.证明由已知1b-1a>1及a>0可知0<b<1,要证1+a>11-b,只需证1+a ·1-b >1, 只需证1+a -b -ab >1,只需证a -b -ab >0即a -bab>1,即1b -1a>1,这是已知条件,所以原不等式得证. 12.[2016·冀州中学一轮检测]已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数根.证明 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2<0,a2--2a⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.能力组13.[2016·武邑中学一轮检测]若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d 2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q2 B .q 2C.qD.nq答案 C解析 由题设有,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=b n 1q (n -1)n2 ,∴n T n =b 1q n -12 ,∴等比数列{n T n }的公比为q ,故选C.14.[2016·武邑中学月考]设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3.观察上述结果,按照上面规律,可推测f(128)>________. 点击观看解答视频答案 92解析 观察f (2)=32,f (4)>2,f (8)>52,f (16)>3可知,等式及不等式右边的数构成首项为32,公差为12的等差数列,故f (128)=f (27)>32+6×12=92.15.[2016·衡水中学热身]已知函数f (x )=ln (ax )-x -a x (a ≠0).(1)求函数f (x )的单调区间及最值;(2)求证:对于任意正整数n ,均有1+12+13+…+1n ≥ln e nn !.点击观看解答视频解 (1)由题意得,f (x )=ln (ax )+ax-1,∴f′(x)=aax-ax2=x-ax2.①当a>0时,f(x)的定义域为(0,+∞),此时f(x)在(0,a)上是减函数,在(a,+∞)上是增函数,f(x)min=f(a)=ln a2,无最大值.②当a<0时,函数f(x)的定义域为(-∞,0),此时函数在(-∞,a)上是减函数,在(a,0)上是增函数,f(x)min=f(a)=ln a2,无最大值.(2)证明:取a=1,由(1)知,f(x)=ln x-x-1x≥f(1)=0,故1x≥1-ln x=lnex,分别取x=1,2,3,…,n,得1+12+13+…+1n≥ln e+lne2+…+lnen=lne nn!.16.[2016·武邑中学模拟]若不等式1n+1+1n+2+…+13n+1>a24对一切正整数n都成立,猜想正整数a的最大值,并证明结论.解当n=1时,11+1+11+2+13+1>a24,即2624>a24,所以a<26,而a是正整数,所以取a=25.下面用数学归纳法证明:1n+1+1n+2+…+13n+1>2524.①当n=1时,已证;②假设当n=k时,不等式成立,即1k+1+1k+2+…+13k+1>2524.则当n=k+1时,有1k ++1+1k ++2+…+1k ++1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-2k +. 因为13k +2+13k +4=k +9k 2+18k +8>k +9k 2+18k +9=2k +,所以13k +2+13k +4-2k +>0,所以当n =k +1时,不等式也成立. 由①②知,对一切正整数n , 都有1n +1+1n +2+…+13n +1>2524,所以a 的最大值等于25.。

2018高考真题数学小题大做专题6.12018年北京高考理科第14题

2018高考真题数学小题大做专题6.12018年北京高考理科第14题

一、典例分析,融合贯通典例. 【2018年全国高考北京卷理14题】已知椭圆M :22221(0)x y a b a b +=>>, 双曲线N :22221x y m n-=若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 . 解法一:【答案】1 2 如图点评:解题的切入点从正六边形的性质出发,在结合椭圆和双曲线的定义和几何性质,进行求解。

达到了多想少算的功效。

解法二:【解析】如图由正六边形性质得()2c A ,点评:解题的从坐标法入手,先利用正六边形的性质求出A 点的坐标,然后分别代入椭圆方程和双曲线的渐近线方程,求解离心率。

体现了解析法的方程思想。

解法三: 如图由正六边形性质在直角三角形12AF F 中,12212AF F S c =创=V ,又1220222tan 45AF F S b b c a ===-V ,所以222c a -=则椭圆M 的离心率为221012e e e --=?;双曲线N 的渐近线方程为n y x m =?,由题意得双曲线N 的一条渐近线的倾斜角为3π 222tan 33n πm \== 222222234m n m m e m m++\=== 2e \= 点评:解题从椭圆的焦点三角形面积的两种算法入手,求解椭圆的离心率。

体现了知识的综合能力。

二.方法总结,胸有成竹圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地考查考生对数学思想和方法的掌握程度; 1. 圆锥曲线离心率的求值与范围问题求解的基本思路:一是:求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解; 二是:求出,a c 或,a b 或,c b 之间关系,然后利用离心率的计算公式求解;三是:构造出关于离心率e 的方程(不等式、函数)来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解. 2. 基本知识与基本方法 基本知识:(1)椭圆离心率:c e a ==(0,1)e ∈,e 越大,椭圆越扁平一些,e 越小,椭圆越圆些.(2)双曲线离心率:c e a ==1()e ∈∞,+,e 越大,双曲线开口越开阔一些,e 越小,双曲线开口越窄.基本方法:方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步设出相关未知量;第二步根据题目条件列出关于,,a b c的方程;第三步化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步将这些量结合曲线的几何性质用,,a b c进行表示,进而得到不等式,第三步解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步通过确定函数的定义域;第三步利用函数求值域的方法求解离心率的范围.三.精选试题,能力升级1.【2018年全国高考课标3文科4】已知椭圆222:14x yCa+=的一个焦点为(2,0),则C的离心率为A. 13B.12【答案】C2.【2018年全国高考课标2第11题】已知12,F F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且02160PF F ∠=,则C 的离心率为A. 1B. 21 【答案】D3.【2018衡水金卷】设椭圆的两个焦点分别为12F F 、,过2F 作椭圆长轴的垂线交椭圆与点若12F PF ∆为等腰直角三角形,则椭圆的离心率为A.2 B. 1 2C. 2D. 1 【答案】D【解析】解法一:由于12F PF ∆为等腰直角三角形,故有122F F PF =,而122F F c =,22b PF a =所以22b c a=,整理得2222ac b a c ==-等式两边同时除以2a ,得221e e =-,即2210e e +-=,解得1e ==-,舍去1e =-因此1e =-+ D解法二:(采用离心率的定义以及椭圆的定义求解)如右图所示,有1222 12||||c c c e a a PF PF ======+ 4.【2018全国高考课标2第12题】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A.23B .12C .13D .14【答案】4 113- 【解析】由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0),直线AP 的方程为:)y x a =+,由012120F F P ∠=,1222c F F PF ==,则(2)P c ,代入直线AP )6c a =+,整理得:4c a =,∴离心率14c e a ==.故选:D . 5.【2018届广西河池市高级中学高三上学期第三次月考】双曲线2221(0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 作倾斜角为030的直线与y 轴和双曲线右支分别交于,A B 两点,若点A 平分1F B ,则该双曲线的离心率是( )【答案】A6.【2018年全国高考课标3第11题】设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1F P ,则C 的离心率为AB .2CD 解法一:【答案】C 【解析】如图,不妨设1a =,则渐近线方程 :l y bx =,作2PF l ⊥,点评:运用直线2PF 的方程为与渐近线方程,求出交点P 的坐标,由两点间的距离公式表示出1PF ,再结合条件1F P,建立方程,可求出e 。

2018年高考数学专题10推理与证明算法复数分项试题含解析理

2018年高考数学专题10推理与证明算法复数分项试题含解析理

专题 推理与证明、算法、复数一、选择题1.【2018河南洛阳尖子生联考】已知复数满足(为虚数单位),则为( )A. B. C. D.【答案】B点睛:复数代数形式运算问题的常见类型及解题策略:(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.(3)利用复数相等求参数..2.【2018天津市滨海新区八校联考】复数21ii=+( ) A. 1i - B. 1i -- C. 1i + D. 1i -+ 【答案】C 【解析】21i i =+ ()2i 1i 1i 2-=+ ,选C. 3.【2018广西三校九月联考】己知()2,a ib i a b R i+=+∈.其中i 为虚数单位,则a b -=( )A. -1B. 1C. 2D. -3 【答案】D 【解析】()2222a i ia i aib i i i ++==-=+,所以213b a a b ==--=-,, 故选D4.【2018河南中原名校质检二】若,,其中为虚数单位,则复数( )A.B.C.D.【答案】B5.【2018吉林百校联盟九月联考】已知实数m 、n 满足()()4235m ni i i +-=+(i 为虚数单位),则在复平面内,复数z m ni =+对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】A【解析】由题意可得: ()()()()424242m ni i m n n m i +-=++-,结合题意有: 423{ 425m n n m +=-=,解得: 110{1310m n == 则z 对应的点位于第一象限. 本题选择A 选项.6.【2018湖南省两市九月调研】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C【解析】复数z 满足()()5z i i --=,所以56z i i i=+=-,所以命题p 为真; 复数()()()112131212)125i i i ii i i +-+-==++-,虚部为15-,所以命题q 为假. A.()()p q ⌝⌝∧为假;B. ()p q ⌝∧为假;C. ()p q ⌝∧为真;D. p q ∧为假.故选C.7.【2018江西省红色七校一模】已知复数201811i zi i +⎛⎫= ⎪-⎝⎭(i 为虚数单位),则z 的虚部( ) A. 1 B. -1 C. i D. -i 【答案】A8.【2018广西柳州市一模】已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B. 1i -- C. 1i -+ D. 1i - 【答案】B【解析】试题分析:,故选B.考点:复数9.【2018衡水金卷高三大联考】执行如图的程序框图,若输出的的值为-10,则①中应填( )A.B.C.D.【答案】C 【解析】由图,可知.故①中应填.故选C.10.【2018吉林百校联盟九月联考】运行如图所示的程序框图,若输入的i a (1,2,i =…,10)分别为1.5、2.6、3.7、4.8、7.2、8.6、9.1、5.3、6.9、7.0,则输出的值为( )A. 49B.25C.12D.59【答案】C点睛:(1)解决程序框图问题要注意的三个常用变量①计数变量:用来记录某个事件发生的次数,如i=i+1.②累加变量:用来计算数据之和,如S=S+i;③累乘变量:用来计算数据之积,如p=p×i.(2)使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.【2018湖南两市九月调研】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入,n x的值分别为3,3.则输出v的值为()A. 15B. 16C. 47D. 48【答案】D12.【2018广东省海珠区一模】执行如图所示的程序框图,如果输出49S=,则输入的n=()A. 3B. 4C. 5D. 6 【答案】B13.【2018江西省红色七校一模】《九章算术》是我国古代内容极为丰富的数学典籍,其中第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A. 5B. 4C. 3D. 2 【答案】B【解析】模拟执行程序可得,a=1,A=1,S=0,n=1S=2 不满足条件S 10≥,执行循环体,n=2,a=12,A=2,S=92 不满足条件S 10≥,执行循环体,n=3,a=14,A=4,S=354不满足条件S 10≥,执行循环体,n=4,a=18,A=8,S=1358满足条件S 10≥,退出循环,输出n=4故选B14.【2018广西柳州市一模】执行如图所示的程序框图,若输出K 的值为8,则判断框图可填入的条件是( ) A. 34s ≤B. 56s ≤C. 1112s ≤D. 2524s ≤ 【答案】C考点:程序框图及循环结构.15.【2018海南省八校联考】执行如图所示的程序框图,若输入的5x =-,则输出的y = ( )A. 2B. 4C. 10D. 28 【答案】B【解析】5x =-, 5x =,符合题意, 从而有x 4x =-=1,不符合题意, ∴1314y =+=, 故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【2018湖南永州市一模】执行如图所示程序框图,若输入的[]0,1x ∈,则输出的x 的取值范围为( )A. []0,1B. []1,1-C. []3,1-D. []7,1- 【答案】C【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 17.【2018广东珠海六校联考】执行如图所示的程序框图,输出的S 值为( )A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:程序执行中的数据变化如下:0,1,03,1,1,13,2,2,23,8,3,33k s s k s k s k==<==<==<==<不成立,输出8s=考点:程序框图18.【2018陕西西工大附中一模】执行如图所示的程序框图,则输出的结果为()A. 40322017B.20152016C.20162017D.20151008【答案】D点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.19.【2018陕西西工大附中一模】执行下面的程序框图,如果输入1x =, 0y =, 1n =,则输出的坐标对应的点在以下幂函数图象上的是( )A. y x =B. y x =C. 2y x =D. 3y x =【答案】D【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.20.【2018山东德州晏婴中学二模】执行如图所示的程序框图,则输出的结果是( )A. 7B. 8C. 9D. 10【答案】B,输出n=8,选B。

2018年高三数学(理) 专题14 推理与证明、新定义(第01期) Word版含解析

2018年高三数学(理) 专题14 推理与证明、新定义(第01期) Word版含解析

第十四章 推理与证明、新定义一.基础题组1. 【湖北宜昌一中、龙泉中学2016届高三年级十月联考8】老师带甲乙丙丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况, 四名学生回答如下:甲说:“我们四人都没考好”; 乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中 两人说对了. ( ) A .甲 丙B .乙 丁C .丙 丁D .乙 丙【答案】D 【解析】试题分析:如果甲对,则丙、丁都对,与题意不符,故甲错,乙对,如果丙错,则丁错,因此只能是丙对,丁错,故选D . 考点:合情推理.2. 【山东潍坊一中2016届高三10月考5】下面几种推理过程是演绎推理的是( ) A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则A ∠+B ∠=︒180B .由平面三角形的性质,推测空间四面体的性质C .某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D .在数列{}n a 中,11=a ,)2()11(211≥-+=-n a a a n n n ,计算432,,a a a ,由此推测通项n a 【答案】A考点:归纳推理、演绎推理、类比推理的区别。

3. 【湖北宜昌一中、龙泉中学2016届高三年级十月联考16】 定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >= 122max{,2}()nn n a a a n N *++=∈,若20154a a =,记数列{}n a 的前n 项和为n S ,则2015S 的值为 .【答案】7254考点:周期数列.【名师点晴】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(象本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题. 4. 【山东潍坊一中2016届高三10月考13】观察下列式子:232112<+,353121122<++,474131211222<+++,…,根据上述规律,第n 个不等式应该为 . 【答案】1n 12n )1(131211222++<+++++n 【解析】试题分析:由归纳推理易知,答案为1n 12n )1(131211222++<+++++n 。

高考数学一轮总复习数学推理与证明题经典题目

高考数学一轮总复习数学推理与证明题经典题目

高考数学一轮总复习数学推理与证明题经典题目数学推理与证明题是高考数学中的一种重要题型,对学生的逻辑思维和推理能力提出了较高的要求。

在高考中,这类题目常常考查学生的分析和推理能力,对于学生而言,掌握一定的解题技巧和方法是非常重要的。

本文将为大家介绍一些经典的高考数学推理与证明题,帮助大家加深对这一题型的理解和应对能力。

一、数列推导与证明题数列是高考数学中经常出现的题型,其推导与证明题目主要考查学生的数学归纳法和推理能力。

下面我们来看一个经典的数列推导与证明题。

例题1: 已知数列{an}满足a1=2,an+1=an+1/n,证明该数列单调递增。

解析: 首先我们将证明该数列是递增的,即an+1≥an。

当n=1时,根据题目条件有a2=a1+1/1=3/1=3,显然3≥2,满足条件。

假设当n=k时,an+1≥an成立,即ak+1≥ak。

当n=k+1时,根据题目条件有a(k+1)+1=a(k+1)+1/(k+1)=ak+1+1/(k+1)。

由假设条件可得a(k+1)+1≥ak+1+1/(k+1)≥ak+1。

综上所述,根据数学归纳法,可证明该数列是递增的。

通过这个例子,我们可以看到数学归纳法在数列推导与证明题中的重要性。

在解这类题目时,我们要善于利用归纳法的思想,合理运用数学推理的方法。

二、平面几何推理与证明题平面几何推理与证明题是高考数学中的又一个重要考点,其解题过程需要注意严谨的逻辑推理和几何图形的分析。

下面我们来看一个经典的平面几何推理与证明题。

例题2: 在平面直角坐标系xOy中,点A(a,0),B(b,0)与C(0,c)所构成的三角形ABC为正三角形,证明ab=3c²。

解析: 首先我们知道如果三角形ABC为正三角形,则其三个内角均为60°。

利用点A、B和C的坐标可以得到三条边的长度分别为√((a-b)²+c²),|a-b|和√(a²+b²)。

新编(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

新编(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( ) (A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A考点:创新题型.3. 【20xx高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B考点:合情推理,中等题.4. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 考点:信息题。

2018高考北京卷理科数学(附含答案解析)

2018高考北京卷理科数学(附含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|〈2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2}(D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 (A)32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A)1 (B)2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A)对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

系统集成2018高考数学理一轮总复习教案:第十四章 推理与证明 含解析

系统集成2018高考数学理一轮总复习教案:第十四章 推理与证明 含解析

第十四章推理与证明高考导航知识网络14.1 合情推理与演绎推理考点诠释重点:利用归纳与类比进行推理,利用“三段论”进行推理与证明. 难点:利用归纳与类比推理来发现结论并形成猜想命题.典例精析题型一 运用归纳推理发现一般性结论【例1】观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A.28B.76C.123D.199 【思路分析】先观察各等式的变化规律,再归纳出一般结论.【解析】C.记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7; f (5)=f (3)+f (4)=11.通过观察不难发现,f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【方法归纳】归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.归纳推理的一些常见形式:一是具有共同特征型,二是递推型,三是循环型(周期性).【举一反三】1.将正整数1,2,3,……,n ,……,排成数表如图所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i 行、第j 列的数可用(i ,j )表示,则2 016可表示为 (37,18) .【解析】因为第一行有a 1=3个数,第二行有a 2=6个数,所以每一行的数字个数组成以3为首项,3为公差的等差数列,所以第n 行有a n =3+3(n -1)=3n 个数,由求和公式可得前n 行共n (3+3n )2个数,经检验可得第36行的第1个数为36×(3+3×36)2=1 998,按表中的规律可得第37行共3×37=111个数,第一个为1999,所以2016为第37行的第18个数,故答案为(37,18).题型二 运用类比推理拓展新知识【例2】(1)给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①若“a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②若“a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比得到的结论正确的个数是( )A.0B.1C.2D.3(2)在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,写出三棱锥中的类似结论.【思路分析】(1)利用实数、复数、有理数的特点可作出判断;(2)三角形类比空间中的四面体(三棱锥),三条边上的高类比四个面上的高,点到三边的距离类比点到平面的距离,根据此类比情况求解.【解析】(1)C.当a ,b ∈R 时,a -b =0得a =b ;当a ,b ∈C 时,a -b =0,即两个复数相等,故有a =b 成立,故①正确.对于②中,a +b i =c +d i 显然有实部相等,虚部也相等成立,当a ,b ∈Q 时,a +b 2=c +d 2,则(a -c )+(b -d )2=0是有理数.故a -c =0同时b -d =0,即a =c ,b =d ,故②正确.③显然错误,因为两个复数如果不全是实数显然不能比较大小.(2)设h a ,h b ,h c ,h d 分别是三棱锥ABCD 四个面上的高,P 为三棱锥ABCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d .于是我们可以得到结论:P a h a +P b h b +P c h c +P dh d=1.【方法归纳】类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.一般平面中的一些元素与空间中的一些元素的类比列表如下:【举一反三】2.椭圆中有如下结论:椭圆x 2a 2+y2b2=1(a >b >0)上斜率为1的弦的中点在直线x a 2+y b 2=0上.类比上述结论得到正确的结论:双曲线x 2a 2-y 2b 2=1(a ,b >0)上斜率为1的弦的中点在直线上.【解析】设A (x 1,y 1),B (x 2,y 2)为双曲线上斜率为1的弦的两端点,则y 1-y 2x 1-x 2=1,且x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减得:(x 1-x 2)(x 1+x 2)a 2-(y 1-y 2)(y 1+y 2)b 2=0,即x 1+x 2a 2-y 1+y 2b2=0, 设A ,B 的中点为(x ,y ),则x a 2-yb2=0.题型三 运用“三段论”进行演绎推理【例3】(1)证明函数f (x )=-x 2+2x 在(-∞,1]上是增函数; (2)当x ∈[-5,-2]时,f (x )是增函数还是减函数?【思路分析】(1)证明本题的大前提是增函数的定义,即增函数f (x )满足:在给定区间内任取自变量的两个值x 1,x 2,且x 1< x 2,f (x 1)<f (x 2),小前提是函数f (x )=-x 2+2x ,x ∈(-∞,1],结论是满足增函数定义;(2)关键是[-5,-2]与f (x )的增区间或减区间的关系.【解析】(1)证明:任取x 1,x 2∈(-∞,1],且x 1<x 2, 则f (x 1)-f (x 2)=(x 2-x 1)(x 2+x 1-2),因为x 1<x 2≤1,所以x 2+x 1-2<0, 因为f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 于是,根据“三段论”可知,f (x )=-x 2+2x 在(-∞,1]上是增函数. (2)因为f (x )在(-∞,1]上是增函数, 而[-5,-2]是区间(-∞,1]的子区间, 所以f (x )在[-5,-2]上是增函数. 【方法归纳】演绎推理是推理证明的主要途径,而“三段论”是演绎推理的一种重要的推理形式,在高考中以证明题出现的频率较大.用“三段论”进行证明的关键是找出正确的大前提与小前提.【举一反三】3.已知函数f (x )=ln ax -x -ax(a ≠0).(1)求此函数的单调区间及最值;(2)求证:对于任意正整数n ,均有1+12+13+…+1n ≥ln e nn !.【解析】(1)由题意f ′(x )=x -ax2.当a >0时,函数f (x )的定义域为(0,+∞),此时函数在(0,a )上是减函数,在(a ,+∞)上是增函数, f min (x )=f (a )=ln a 2,无最大值.当a <0时,函数f (x )的定义域为(-∞,0),此时函数在(-∞,a )上是减函数,在(a,0)上是增函数, f min (x )=f (a )=ln a 2,无最大值.(2)证明:取a =1,由(1)知,f (x )=ln x -x -1x ≥f (1)=0,故1x ≥1-ln x =ln ex,取x =1,2,3,…,n ,则1+12+13+…+1n ≥ln e +ln e 2+…+ln e n =ln enn !.体验高考(2015山东)观察下列各式:C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时, C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1= .【解析】4n -1.由题知C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1. 【举一反三】(2015福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:其中运算定义为:00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1 101 101,那么利用上述校验方程组可判定k 等于 5 .【解析】设a ,b ,c ,d ∈{0,1},在规定运算法则下满足:a b c d =0,可分为下列三类情形:①4个1:1111=0, ②2个1:1100=0,③0个1:0000=0,因此,错码1 101 101通过校验方程组可得: x4x 5x 6x 7=1101≠0; x2x 3x 6x 7=1001=0; x 1x 3x 5x 7=1011≠0.所以错码可能出现在x 1,x 4,x 5上.若x 5=0,则检验方程组都成立,故k =5.若x 1为错码,或x 4为错码,经检验均不合题意. 综上分析,x 5为错码,故k =5.14.2 直接证明与间接证明考点诠释重点:能运用直接证明(分析法、综合法)与间接证明(反证法)的方法证明一些简单的命题.难点:根据综合法、分析法及反证法的思维过程与特点选取适当的证明方法证明命题.典例精析题型一 运用综合法证明【例1】证明不等式:x 2+y 2+z 2≥xy +yz +xz .【思路分析】所要证明的不等式左右两边是和的形式,利用不等式a 2+b 2≥2ab ,然后再求和即可.【证明】因为x 2+y 2≥2xy ,y 2+z 2≥2yz ,x 2+z 2≥2xz , 所以2x 2+2y 2+2z 2≥2xy +2yz +2xz , 所以x 2+y 2+z 2≥xy +yz +xz .【方法归纳】在用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从已知逐渐引出结论.【举一反三】1.已知x +y +z =1,求证:x 2+y 2+z 2≥13.【证明】因为x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz , 所以2x 2+2y 2+2z 2≥2xy +2xz +2yz .所以3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz . 所以3(x 2+y 2+z 2)≥(x +y +z )2=1.所以x 2+y 2+z 2≥13.题型二 运用分析法证明【例2】已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 【思路分析】利用分析法.【证明】要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin(x 1+x 2)2cos x 1cos x 2>sin(x 1+x 2)1+cos(x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2,知上式显然成立, 因此,12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22成立.【方法归纳】(1)应用分析法易于找到思路的起始点,可探求解题途径;(2)应用分析法证明问题时要注意:严格按分析法的语言表达,下一步是上一步的充分条件.【举一反三】2.设a ,b 为正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 【证明】要证a 3+b 3>a 2b +ab 2成立, 只需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因为a +b >0,只需证a 2-ab +b 2>ab 成立. 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立,由此命题得证. 题型三 运用反证法证明【例3】已知a >0,b >0,a +b >2,求证:1+a b ,b +1a中至少有一个小于2.【思路分析】用反证法证明.【证明】假设1+b a ,1+a b 都不小于2,则1+b a ≥2,1+ab≥2.因为a >0,b >0,所以1+b ≥2a,1+a ≥2b , 所以1+1+a +b ≥2(a +b ),即2≥a +b . 这与已知a +b >2矛盾,故假设不成立. 即1+b a ,1+a b中至少有一个小于2.【方法归纳】一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定命题、唯一性命题、存在性命题、“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明形式比较困难而往往用反证法.【举一反三】3.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.【解析】(1)由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝⎛⎭⎫23n -1,故1-a 2n =34·⎝⎛⎭⎫23n -1⇒a 2n =1-34·⎝⎛⎭⎫23n -1.又a 1=12>0,a n a n +1<0,故b n =a 2n +1-a 2n ==(2)证明:假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立.所以2·14·⎝⎛⎭⎫23s-1=14·⎝⎛⎭⎫23r -1+14·⎝⎛⎭⎫23t -1,两边同乘3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.体验高考(2015福建)已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x );(3)确定k 的所有可能取值,使得存在t >0,对任意的x ∈(0,t ),恒有|f (x )-g (x )|<x 2. 【解析】(1)证明:令F (x )=f (x )-x =ln(1+x )-x ,x ∈[0,+∞),则有F ′(x )=11+x -1=-x x +1,当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在(0,+∞)上单调递减.故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x .(2)证明:令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈[0,+∞),则有G ′(x )=1x +1-k =-kx +(1-k )x +1.当k ≤0时,G ′(x )>0,故G (x )在(0,+∞)上单调递增,G (x )>G (0)=0,故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在(0,x 0)上单调递增,所以G (x )>G (0)=0, 即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0), 恒有f (x )>g (x ).(3)当k >1时,由(1)知,∀x ∈(0,+∞),g (x )>x >f (x ), 故|f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x )>kx -x =(k -1)x . 令(k -1)x >x 2,解得0<x <k -1.从而得到,当k >1时,对于x ∈(0,k -1),恒有|f (x )-g (x )|>x 2,故满足题意的t 不存在.当k <1时,取k 1=k +12,从而k <k 1<1,由(2)知,存在x 0>0,使得对任意的x ∈(0,x 0),f (x )>k 1x >kx =g (x ),此时|f (x )-g (x )|=f (x )-g (x )>(k 1-k )x =1-k2x .令1-k 2x >x 2,解得0<x <1-k 2,此时f (x )-g (x )>x 2.记x 0与1-k2中的较小者为x 1,当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2,故满足题意的t 不存在.当k =1时,由(1)知,x >0时,|f (x )-g (x )|=g (x )-f (x )=x -ln(1+x ), 令M (x )=x -ln(1+x )-x 2,x ∈[0,+∞),则有M ′(x )=1-11+x -2x =-2x 2-x x +1.当x >0时,M ′(x )<0,所以M (x )在[0,+∞)上单调递减,故M (x )<M (0)=0. 故当x >0时,恒有|f (x )-g (x )|<x 2,此时,任意正实数t 均满足题意. 综上,k =1.【举一反三】(2015湖北)已知数列{a n }的各项均为正数,b n =n ⎝⎛⎭⎫1+1n n a n (n ∈N *),e 为自然对数的底数.(1)求函数f (x )=1+x -e x 的单调区间,并比较⎝⎛⎭⎫1+1n n与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b n a 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n ),数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .【解析】(1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x . 当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x .令x =1n ,得1+1n<e ,即⎝⎛⎭⎫1+1n n <e.①(2)b 1a 1=1×⎝⎛⎭⎫1+111=1+1=2; b 1b 2a 1a 2=b 1a 1·b 2a 2=2×2×⎝⎛⎭⎫1+122=(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32×3×⎝⎛⎭⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b na 1a 2…a n=(n +1)n .②下面用数学归纳法证明②.(Ⅰ)当n =1时,左边=右边=2,②成立.(Ⅱ)假设当n =k (k ≥1,k ∈N *)时,②成立,即b 1b 2…b ka 1a 2…a k=(k +1)k .当n =k +1时,b k +1=(k +1)⎝⎛⎭⎫1+1k +1k +1a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)·⎝⎛⎭⎫1+1k +1k +1=(k +2)k +1, 所以当n =k +1时,②也成立.根据(Ⅰ)(Ⅱ),可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术-几何平均不等式,b n 的定义及①得≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n (n +1)=b 1⎣⎡⎦⎤11×2+12×3+…+1n (n +1)+b 2⎣⎡12×3+13×4+…+⎦⎤1n (n +1)+…+b n ·1n (n +1)=b 1⎝⎛⎭⎫1-1n +1+b 2⎝⎛⎭⎫12-1n +1+…+b n ⎝⎛⎭⎫1n -1n +1<b 11+b 22+…+b n n=⎝⎛⎭⎫1+111a 1+⎝⎛⎭⎫1+122a 2+…+⎝⎛⎭⎫1+1n na n <e a 1+e a 2+…+e a n =e S n ,即T n <e S n .14.3 数学归纳法考点诠释重点:数学归纳法的基本思想与证明步骤;运用数学归纳法证明与自然数n (n ∈N *)有关的数学命题.难点:理解数学归纳法的思维实质,特别是第二个步骤要根据归纳假设进行推理与证明.典例精析题型一 用数学归纳法证明等式或不等式【例1】是否存在常数a ,b ,c ,使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立?若存在,求出a ,b ,c 并证明;若不存在,试说明理由.【思路分析】对于存在性问题,先假设存在,对n 取特殊数值1,2,3时得三个方程,解出a ,b ,c ,然后利用数学归纳法证明.【解析】假设存在a ,b ,c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立.当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19.解方程组⎩⎪⎨⎪⎧a (b +c )=1,a (4b +c )=3,3a (9b +c )=19,解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:当n =1时,显然成立;假设n =k (k ∈N *,k ≥1)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12=13k (2k 2+1);则当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12=13k (2k 2+1)+(k +1)2+k 2=13k (2k 2+3k +1)+(k +1)2=13k (2k +1)(k +1)+(k +1)2=13(k +1)(2k 2+4k +3)=13(k +1)[2(k +1)2+1].因此存在a =13,b =2,c =1,使等式对一切n ∈N *都成立.【方法归纳】 用数学归纳法证明等式(或不等式),关键点在于“先看项”,弄清等式(或不等式)两边各有多少项,初始值n 是多少.同时观察由n =k 到n =k +1,等式(或不等式)两边变化的项,并利用归纳假设,正确写出归纳证明的步骤,从而使问题得以证明.【举一反三】1.函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.【解析】(1)用数学归纳法证明:2≤x n <x n +1<3.①当n =1时,直线PQ 1的方程为y -5=f (2)-52-4(x -4),令y =0,解得x 2=114,又x 1=2,所以2≤x 1<x 2<3.②假设当n =k (k ≥1,k ∈N *)时,结论成立,即2≤x k <x k +1<3.当n =k +1时,x k +1=3+4x k2+x k.直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3;x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 所以,对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝⎛⎭⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.题型二 用数学归纳法证明整除性问题 【例2】 已知f (n )=(2n +7)·3n +9,是否存在自然数m ,使得对任意的n ∈N *,都有m 整除f (n )?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.【思路分析】首先取n =1,2,3,计算出f (1),f (2),f (3),观察猜想出最大的m 值,然后利用数学归纳法证明.【解析】由f (1)=36,f (2)=108,f (3)=360,猜想:f (n )能被36整除,下面用数学归纳法证明.①当n =1时,结论显然成立;②假设当n =k (k ≥1,k ∈N *)时结论成立,即f (k )=(2k +7)·3k +9能被36整除.则当n =k +1时,f (k +1)=(2k +9)·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由假设知3[(2k +7)·3k +9]能被36 整除,又3k -1-1是偶数,故18(3k -1-1)也能被36 整除. 即n =k +1时结论也成立.故由①②可知,对任意正整数n 都有f (n )能被36整除.由f (1)=36知,36是整除f (n )的最大值,即存在自然数m ,使得对任意的n ∈N *,都有m 整除f (n ),且最大的m 值是36.【方法归纳】与正整数n 有关的整除性问题也可考虑用数学归纳法证明.在证明n =k +1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.【举一反三】2.用数学归纳法证明:(3n +1)·7n -1(n ∈N *)能被9整除. 【证明】(1)当n =1时,(3×1+1)×7-1=27能被9整除,命题成立;(2)假设当n =k (k ∈N *,k ≥1)时命题成立,即(3k +1)·7k -1能被9整除,则当n =k +1时,[3(k +1)+1]·7k +1-1=(3k +1)·7k +1-1+3·7k +1=(3k +1)·7k -1+6(3k +1)·7k +3·7k +1=(3k +1)·7k -1+9·(2k +3)·7k .由于(3k +1)·7k -1和9·(2k +3)·7k 都能被9整除,所以(3k +1)·7k -1+9·(2k +3)·7k 能被9整除,即当n =k +1时,命题也成立,故(3n +1)·7n -1(n ∈N *)能被9整除.题型三 数学归纳法在函数、数列、不等式证明中的运用【例3】在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并且用数学归纳法证明你的猜想.【思路分析】(1)数列{a n }的各项均为正数,且S n =12⎝⎛⎭⎫a n +1a n ,所以可根据解方程求出a 1,a 2,a 3;(2)观察a 1,a 2,a 3,猜想出{a n }的通项公式a n ,然后再证明.【解析】(1)由S 1=a 1=12⎝⎛⎭⎫a 1+1a 1,得a 21=1. 因为a n >0,所以a 1=1,由S 2=a 1+a 2=12⎝⎛⎭⎫a 2+1a 2,得a 22+2a 2-1=0, 所以a 2=2-1.又由S 3=a 1+a 2+a 3=12⎝⎛⎭⎫a 3+1a 3, 得a 23+22a 3-1=0,所以a 3=3- 2.(2)猜想a n =n -n -1(n ∈N *).证明:①当n =1时,a 1=1=1-0,猜想成立.②假设当n =k (k ∈N *,且k ≥1)时猜想成立,即a k =k -k -1,则当n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎫a k +1+1a k +1-12⎝⎛⎭⎫a k +1a k , 即a k +1=12⎝⎛⎭⎫a k +1+1a k +1-12⎝⎛ k -k -1+ ⎭⎪⎫1k -k -1=12⎝⎛⎭⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时猜想成立.由①②知,a n =n -n -1(n ∈N *).【方法归纳】解“归纳—猜想—证明”题的关键环节(1)准确计算出前若干具体项,这是归纳、猜想的基础;(2)通过观察、分析、比较、联想,猜想出一般结论;(3)对一般结论用数学归纳法进行证明.【举一反三】3.已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由. 【解析】(1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12,a 2a 5=27. 又因为{a n }的公差大于0,所以a 5>a 2,所以a 2=3,a 5=9.所以d =a 5-a 23=9-33=2,a 1=1. 因为T n =1-12b n ,b 1=23, 当n ≥2时,T n -1=1-12b n -1, 因为b n =T n -T n -1=1-12b n -⎝⎛⎭⎫1-12b n -1, 化简得b n =13b n -1, 所以{b n }是首项为23,公比为13的等比数列, 即b n =23·(13)n -1=23n . 所以a n =2n -1,b n =23n . (2)因为S n =1+(2n -1)2·n =n 2, 所以S n +1=(n +1)2,以下比较1b n与S n +1的大小: 当n =1时,1b 1=32,S 2=4,所以1b 1<S 2; 当n =2时,1b 2=92,S 3=9,所以1b 2<S 3; 当n =3时,1b 3=272,S 4=16,则1b 3<S 4; 当n =4时,1b 4=812,S 5=25,得1b 4>S 5. 猜想:当n ≥4时,1b n>S n +1. 下面用数学归纳法证明:①当n =4时,不等式成立;②假设当n =k (k ∈N *,k ≥4)时,1b k >S k +1, 即3k 2>(k +1)2,那么,当n =k +1时, 1b k +1=3k +12=3·3k 2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1, 所以n =k +1时,1b n>S n +1也成立. 由①②可知,n ∈N *,n ≥4时,1b n>S n +1成立. 综上所述,当n =1,2,3时,1b n<S n +1; 当n ≥4时,1b n >S n +1.体验高考(2015江苏)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.【解析】(1)f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧ n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明: ①当n =6时,f (6)=6+2+62+63=13,结论成立; ②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:1)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立; 2)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1 =(k +1)+2+(k +1)-12+(k +1)-13,结论成立; 3)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2 =(k +1)+2+k +12+(k +1)-23,结论成立; 4)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2 =(k +1)+2+(k +1)-12+k +13,结论成立; 5)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k 3+2 =(k +1)+2+k +12+(k +1)-13,结论成立; 6)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1 =(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.【举一反三】(2015北京)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=⎩⎪⎨⎪⎧ 2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…).记集合M ={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;(3)求集合M 的元素个数的最大值.【解析】(1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数.所以不妨设a k 是3的倍数.由a n +1=⎩⎪⎨⎪⎧2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…)可归纳证明对任意n ≥k ,a n 是3的倍数. 如果k =1,则M 的所有元素都是3的倍数.如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由a 1≤36,a n =⎩⎪⎨⎪⎧ 2a n -1,a n -1≤18,2a n -1-36,a n -1>18,可归纳证明a n ≤36(n =2,3,…). 因为a 1是正整数,a 2=⎩⎪⎨⎪⎧2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数, 从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数,因此,当n ≥3时,a n ∈{12,24,36}.这时M 的无素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数, 因此当n ≥3时,a n ∈{4,8,16,20,28,32}.这时M 的元素个数不超过8.当a 1=1时,M ={1,2,4,8,16,20,28,32}有8个元素.综上可知,集合M 的元素个数的最大值为8.。

(北京专用)2018年高考数学总复习专题14推理与证明、新定义分项练习理.

(北京专用)2018年高考数学总复习专题14推理与证明、新定义分项练习理.

专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( )(A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A 【解析】试题分析:本题采作数形结合法易于求解,如图,设()(),,,1A m n P x x -,则()2,22B m x n x ---,∵2,A B y x =在上,∴2221(2)n m n x m x ⎧=⎨-+=-⎩ 消去n ,整理得关于x 的方程22(41)210x m x m --+-= (1) ∵222(41)4(21)8850m m m m ∆=---=-+>恒成立, ∴方程(1)恒有实数解,∴应选A. 考点:创新题型.3. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人 B .3人 C .4人 D .5人 【答案】B考点:合情推理,中等题.4.【2017高考北京理第8题】 根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.5. 【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】D考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.6. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( . 如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 【解析】试题分析: 由题意知道0kx 的值需要1k -次运算,即进行1k -次0x 的乘法运算可得到0kx 的结果对于32300010203()P x a x a x a x a =+++这里300a x =0000a x x x ⨯⨯⨯进行了3次运算,210100a x a x x =⨯⨯进行了2次运算,20a x 进行1次运算,最后320010203,,,a x a x a x a 之间的加法运算进行了3次这样30()P x 总共进行了3213+++9=次运算对于0()n P x 10010...n n n a x a x a -=+++总共进行了(1)12 (12)n nn n n ++-+-++=次 乘法运算及n 次加法运算所总共进行了(1)(3)22n n n n n +++=次 由改进算法可知:0010()()n n n P x x P x a -=+,100201()()n n n P x x P x a ---=+...10001()()P x P x a =+,000()P x a =运算次数从后往前算和为:22...22n +++=次 考点:信息题。

2018年北京市高考数学理 14专题十四 不等式选讲

2018年北京市高考数学理 14专题十四 不等式选讲

第十四篇:不等式选讲解答题1.【2018全国一卷23】已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.2.【2018全国二卷23】设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.3.【2018全国三卷23】设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.4.【2018江苏卷21D 】若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.参考答案解答题1.解: (1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2]. 2.解:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤.(2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞.3.解:(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.4.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.。

高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( ) (A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A考点:创新题型.3. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B考点:合情推理,中等题.4. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 考点:信息题。

【备战2018】高考数学分项汇编 专题13 推理与证明、新定义(含解析)文

【备战2018】高考数学分项汇编 专题13 推理与证明、新定义(含解析)文

专题13 推理与证明、新定义一.基础题组1. (2009上海,文14)某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售点.请确定一个格点__________为发行站,使5个零售点沿街道到发行站之间路程的和最短.【答案】(3,3)2. 【2008上海,文15】如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D )A.AAB B .A BC C .A CD D .A DA【答案】D3. 【2006上海,文12】如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(),p q 是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________.【答案】44. 【2005上海,文16】用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵.对第i 行in i i a a a ,,,21 ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i =.例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=⨯-⨯+-=+++b b b ,那么,在用1,2,3,4,5形成的数阵中,12021b b b +++ 等于( )A .—3600B .1800C .—1080D .—720【答案】-1080。

北京市第四中学2018高考理科数学总复习例题讲解:高考

北京市第四中学2018高考理科数学总复习例题讲解:高考

高考冲刺第14讲归纳与类比一、知识要点1.合情推理前提为真时结论可能为真的推理称为合情推理.它是一种或然性推理,包含归纳推理和类比推理.2.类比推理以个别性知识为前提而推出一般性结论的推理称为归纳推理.3.归纳推理根据两个(或两类)对象在一些属性上的相同或相似,从而推出它们在其它属性上相同或相似的推理形式,称为类比推理.4.演绎推理由一般性的真命题推出特殊命题为真的推理称为演绎推理.它是一种必然性推理.演绎推理有三种基本模式:三段论,关系推理和完全归纳推理.5.数学问题由条件、结论、解题依据、解题方法等因素构成。

条件的不完备,结论的不唯一,解题方法的多样性是数学开放题的基本特殊。

目前高考多为:题目本身没有给出明确的结论,由考生自己通过探索、归纳、猜想出结论,并证明结论的正确性。

此类试题具有覆盖面广、综合性强,对学生分析问题和解决问题的能力要求较高等特点。

6.开放与探索创新问题,较少现成的套路和常规程序,需要较多的分析和数学思想方法的综合运用,对观察、联想、类比、猜测、抽象、概括诸方面的能力均有较高要求。

常用的思想方法有:直接法;观察——猜测——证明;赋值法,逆推反证法,分类讨论法;数形转化;类比联想;实验归纳等方法。

二、典型例题例1.某小朋友用手指按如图所示的规则练习数数,数到2012时对应的指头是.((填出指头名称:各指头对应依次为大拇指、食指、中指、无名指、小拇指)例2.若函数),,,()(2R d c b a cbx ax d x f ∈++=,其图象如图所示,则=d c b a ::: .例3.如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.设数列{}n a 是首项为2,公方差为2的等方差数列,若将12310a a a a ,,,,这种顺序的排列作为某种密码,则这种密码的个数为( )A. 18个B. 256个C. 512个D. 1024个例4.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:l ,2,3,4,5,6的横、纵坐标分别对应数列{}()n a n N *∈的前l2项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则2009201020112012a a a a +++等于例5.已知曲线C 上的动点(),P x y 满足到点()1,0F 的距离比到直线 :2l y =-的距离小1.(1)求曲线C 的方程;(2)动点E 在直线 l 上,过点E 作曲线C 的切线,EA EB ,切点分别为A 、B .求证:直线AB 恒过一定点,并求出该定点的坐标;。

(新Ⅱ)2018年高考数学总复习专题14推理与证明、新定义分项练习理!

(新Ⅱ)2018年高考数学总复习专题14推理与证明、新定义分项练习理!

专题 14 推理与证明、新定义一.基础题组1. 【 2012 全国,理 12】正方形的边长为 1,点E 在边上,点F在边上,==ABCD AB BC AE BF 3 . 动点P从E出发沿直线向F运动,每当遇到正方形的边时反弹,反弹时反射角等于入射角.当7点 P 第一次遇到 E 时, P与正方形的边碰撞的次数为( )A.16 B .14 C .12 D .10【答案】 B2. 【2005 全国 3,理 12】计算机中常用十六进制是逢16 进 1 的计数制,采纳数字0~ 9 和字母 A~ F 共 16 个计数符号,这些符号与十进制的数的对应关系以下表:十六进制0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 比如,用十六进制表示:E+D=1B,则 A× B= ()A. 6E B. 72C. 5F D. B0【答案】 B【分析】13.【2016高考新课标 2 理数】有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是.【答案】 1和3【分析】试题剖析:由题意剖析可知甲的卡片上的数字为 1 和 3,乙的卡片上的数字为2和 3,丙的卡片上的数字为1和2.【考点】推理【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,经过推导即“演绎”,得出详细陈说或个别结论的过程 .4.【 2017 课标 II ,理 7】甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩.老师说:你们四人中有 2 位优异, 2 位优异,我此刻给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我仍是不知道我的成绩.依据以上信息,则A.乙能够知道四人的成绩B.丁能够知道四人的成绩C.乙、丁能够知道对方的成绩D.乙、丁能够知道自己的成绩【答案】 D【考点】合情推理【名师点睛】合情推理主要包含概括推理和类比推理.数学研究中,在获得一个新结论前,合情推理能帮助猜想和发现结论,在证明一个数学结论以前,合情推理经常能为证明供给思路与方向.合情推理仅是“符合情理”的推理,它获得的结论不必定正确.而演绎推理获得的结论必定正确 ( 前提和推理形式都正确的前提下 ) .2。

备战(北京版)高考数学分项汇编专题14推理与证明、新定义(含解析)文

备战(北京版)高考数学分项汇编专题14推理与证明、新定义(含解析)文

专题14 推理与证明、新定义1. 【2009高考北京文第8题】设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( ) A . 三角形区域 B .四边形区域C . 五边形区域D .六边形区域2. 【2006高考北京文第8题】下图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A 、B 、C 的机动车辆数如图所示.图中x 1,x 2,x 3分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),A.x 1>x 2>x 3B.x 1>x 3>x 2C.x 2>x 3>x 1D.x 3>x 2>x 13. 【2011高考北京文第14题】设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。

记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = ; ()N t 的所有可能取值为 。

4. 【2014高考北京文第14题】顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为 工作日.5. 【2009高考北京文第14题】设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.6. 【2011高考北京文第20题】(本小题共13分)若数列12,:,(2)n n A a a a n ⋯≥满足1k k a a +|-|=1 (1,2,,1)k n =⋯-,则称n A 为E 数列。

高考数学总复习专题13推理与证明、新定义分项练习(含解析)(2021学年)

高考数学总复习专题13推理与证明、新定义分项练习(含解析)(2021学年)

(上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(上海专用)2018版高考数学总复习专题13 推理与证明、新定义分项练习(含解析)的全部内容。

第十三章 推理与证明、新定义一.基础题组1。

【2011上海,理14】已知点O (0,0)、Q0(0,1)和点R 0(3,1),记Q0R 0的中点为P 1,取Q 0P 1和P 1R 0中的一条,记其端点为Q 1、R 1,使之满足(|OQ 1|-2)(|OR 1|-2)<0,记Q 1R 1的中点为P 2,取Q1P 2和P 2R 1中的一条,记其端点为Q 2、R 2,使之满足(|OQ 2|-2)(|OR 2|-2)<0,依次下去,得到P 1,P2,…,Pn,…,则0lim n n Q P →∞=______。

【答案】3 【解析】2。

(2009上海,理13)某地街道呈现东—西、南-北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(—2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)___________为发行站,使6个零售点沿街道到发行站之间路程的和最短。

【答案】(3,3)【解析】设确定的格点为(x,y),由题意知确定的格点到已知的6个格点路程的和最短,即为x,y 分别到6个格点的横.纵坐标距离和最小,6个格点的横坐标由小到大排列为—2,-2,3,3,4,6,所以x=3时到这6个数的距离和最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题14 推理与证明、新定义1. 【2009高考北京文第8题】设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( )A . 三角形区域B .四边形区域C . 五边形区域D .六边形区域【答案】DABCDEF ,其中,()021,3i P A P A PA i =≤= 即点P 可以是点A.2. 【2006高考北京文第8题】下图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A 、B 、C 的机动车辆数如图所示.图中x 1,x 2,x 3分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 A.x 1>x 2>x 3B.x 1>x 3>x 2C.x 2>x 3>x 1D.x 3>x 2>x 1【答案】C3.【2017高考北京文数第8题】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093 【答案】D【解析】 试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.4. 【2011高考北京文第14题】设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。

记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = ; ()N t 的所有可能取值为 。

【答案】6 6,7,8,①当t 为3n 型整数时,都是整点,()6N t =②当t 为31n +型整数时,1A ,2A 都不是整点, ()8N t =③当t 为32n +型整数时,1A ,2A 都不是整点, ()8N t =(以上表述中n 为整数) 上面3种情形涵概了t 的所有整数取值,所以()N t 的值域为{6,7,8 }5. 【2014高考北京文第14题】顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料粗加工精加工原料A 9 15原料B621则最短交货期为 工作日. 【答案】42【解析】因为第一件进行粗加工时,工艺师什么都不能做,所以徒弟完成原料B 的6小时后,师傅开始工作,在师傅后面的36小时的精加工内,徒弟也同时完成了原料A 的粗加工.所以前后共计61521++=42小时.考点:本小题以实际问题为背景,主要考查逻辑推理能力,考查分析问题与解决问题的能力. 6. 【2009高考北京文第14题】设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个. 【答案】67. 【2017高考北京文数第14题】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________. ②该小组人数的最小值为_________. 【答案】6 12【解析】试题分析:设男生人数、女生人数、教师人数分别为a b c 、、,则*2,,,c a b c a b c >>>∈N . ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++= 【考点】不等式的性质,推理【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.8. 【2011高考北京文第20题】(本小题共13分)若数列12,:,(2)n n A a a a n ⋯≥满足1k k a a +|-|=1 (1,2,,1)k n =⋯-,则称n A 为E 数列。

记12()n n S A a a a =++⋯+。

(Ⅰ)写出一个E 数列5A 满足130a a ==;(Ⅱ)若112,2000a n ==,证明:E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)在14a =的E 数列n A 中,求使得()0n S A =成立的n 的最小值。

所以5A 是首项为12,公差为1的等差数列,所以()2000122000112011a =+-⨯= ; 充分性:由于200019991a a -≤,199********,......1a a a a -≤-≤ 所以200011999a a -≤,即200011999a a ≤+,又因为1200012,2011a a ==,所以200011999a a =+,故()1101,2,1999n n a a k +-=>=Λ,即n A 是递增数列,综上结论得证.(Ⅲ)对首项为4的E 数列5A ,由于21327513,12,......1 3......a a a a a a >-=≥-≥≥-≥-,所以120(2,38)k a a a k ++Λ+>=Λ,所以对任意的首项为4的E 数列n A ,若()0m S A =,则必有9n ≥,又14a =的E 数列1:4,3,2,1,0,1,2,3,4A ----满足()10S A =,所以n 的最小值是9.9. 【2010高考北京文第20题】(13分)已知集合S n ={X|X =(x 1,x 2,…,x n ),x i ∈{0,1},i =1,2,…,n}(n≥2).对于A =(a 1,a 2,…, a n ),B =(b 1,b 2,…,b n )∈S n ,定义A 与B 的差为A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |);A 与B 之间的距离为d(A ,B)=1ni ii a b=-∑(1)当n =5时,设A =(0,1,0,0,1),B =(1,1,1,0,0),求A -B ,d(A ,B); (2)证明:A ,B ,C∈S n ,有A -B∈S n ,且d(A -C ,B -C)=d(A ,B);(3)证明:A ,B ,C∈S n ,d(A ,B),d(A ,C),d(B ,C)三个数中至少有一个是偶数; 【答案】 (1)解:A -B =(|0-1|,|1-1|,|0-1|,|0-0|,|1-0|)=(1,0,1,0,1). d(A ,B)=|0-1|+|1-1|+|0-1|+|0-0|+|1-0|=3.(2)设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n . 因为a i ,b i ∈{0,1},所以|a i -b i |∈{0,1}(i=1,2,…,n).从而A -B =(|a 1-b 1|,|a 2-b 2|,…,|a n -b n |)∈S n . 又d(A -C ,B -C)=i 1||||||niiiia cbc =∑---,由题意知a i ,b i ,c i ∈{0,1}(i=1,2,…,n). 当c i =0时,||a i -c i |-|b i -c i ||=|a i -b i |;当c i =1时,||a i -c i |-|b i -c i ||=|(1-a i )-(1-b i )|=|a i -b i |. 所以d(A -C ,B -C)=i 1ni ia b=∑-=d(A ,B).(3)设A =(a 1,a 2,…,a n ),B =(b 1,b 2,…,b n ),C =(c 1,c 2,…,c n )∈S n , d(A ,B)=k ,d(A ,C)=l ,d(B ,C)=h. 记O =(0,0,…,0)∈S n ,由(1) 可知 d(A ,B)=d(A -A ,B -A)=d(O ,B -A)=k , d(A ,C)=d(A -A ,C -A)=d(O ,C -A)=l , d(B ,C)=d(B -A ,C -A)=h.所以|b i-a i|(i=1,2,…,n) 中1的个数为k,|c i-a i|(i=1,2,…,n)中1的个数为l. 设t是使|b i-a i|=|c i-a i|=1成立的i的个数,则h=l+k-2t,由此可知,k,l,h三个数不可能都是奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.10. 【2012高考北京文第20题】设A是如下形式的2行3列的数表,a b cd e f满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.记r i(A)为A的第i行各数之和(i=1,2),c j(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.(1)对如下数表A,求k(A)的值;1 1 -0.80.1 -0.3 -1(2)设数表A形如1 1 -1-2dd d -1其中-1≤d≤0.求k(A)的最大值;(3)对所有满足性质P的2行3列的数表A,求k(A)的最大值.(3)任给满足性质P的数表A(如下所示).a b cd e f任意改变A的行次序或列次序,或把所得数表A*仍满足性质P,并且k(A)=k(A*).因此,不妨设r1(A)≥0,c1(A)≥0,c2(A)≥0.由k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A).从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b-f)=a+b-f≤3.所以k(A)≤1.由(2)知,存在满足性质P的数表A使k(A)=1.故k(A)的最大值为1.。

相关文档
最新文档