七年级上册数学期中复习题及答案

合集下载

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.下列数字中,最大的是( )A .2-B .0.5-C .0D .12.包装食品标准质量为500克,504克记为4+克,则下列说法正确的是( ) A .498克记为8-克 B .515克记为5+克C .496克记为4-克D .3+克表示重量为530克3.下列各式:m -,-a b ,13-,2y -,5xy -,1x,其中单项式的个数是( ) A .2 B .3 C .4 D .54.下列结论中,正确的是( )A .245x x -+的一次项系数为1B .abc 的系数为0C .43a b c 是七次单项式D .4324462x x y xy n ---是五次四项式 5.有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是( )A .0a bB .0a b <-<C .0b aD .0b a 6.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为( )A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里 7.已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x ,当P 到点A 、B 的距离之和为7时,则对应的数x 的值为( )A .92B .92-和52C .92-和52-D .92和52- 8.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +9.若|a|=5,|b|=19,且|a+b|=﹣(a+b ),则a ﹣b 的值为( )A .24B .14C .24或14D .以上都不对10.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为35n +;①当n 为偶数时,结果为2kn ;(其中k 是使2k n 为奇数的正整数),并且运算可以重复进行,例如,取26n =.则:若49n =,则第2021次“F 运算”的结果是( )A .68B .78C .88D .98二、填空题11.a 的3倍与b 的差用代数式表示为______.12.计算:|4|2--=____________.13.比较大小:56-_____45-. 14.规定“ * ”是一种运算符号,且a*b =ab ﹣3a ,则计算(﹣3)*2=_____.15.若4m x y -与313n x y 是同类项,则m n -=______. 16.若1x =时,式子242ax bx -的值为5-,则2x =时,式子2bx ax -的值为______. 17.求23201913333+++++的值,可令23201913333S =+++++①,①式两边都乘以3,则2342020333333S =+++++①,①-①得2020331S S -=-.则2020312S -=仿照以上推理,计算出2342019155555++++++的值为______.三、解答题18.计算:(1)()()()53544+-+-++-(2)()31536469⎛⎫-+-⨯- ⎪⎝⎭19.计算:()32212126332⎛⎫⎡⎤---÷⨯+- ⎪⎣⎦⎝⎭20.先化简,再求值:22222222(22)3()3()x y x y x x y y --+++,其中1x =-,2y =.21.画出数轴,然后在数轴上标出下列各数,并把数字填在相应的大括号内.2.5-,()4-+,0,3-负数集合:{ …};整数集合:{ …}.22.某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:km ):﹣4;+7;﹣9;+8;+6;﹣5;﹣2. (1)求收工时在A 地哪侧,距A 地多远?(2)若每千米耗油0.3升,问共耗油多少升?23.已知多项式2212A x my =+-,236B nx y =-+,且()2230m n ++-=,化简A B -.24.已知:数a ,b ,c 在数轴上的对应点如图所示,(1)比较大小(填“<”或“>”或“=”):2c -______0,a b +______0,c a -______0;(2)化简2b a c c a -----.25.某市居民使用自来水按如下标准收费(水费按月缴纳):(1)当2a =时,某用户一个月用了315m 水,求该用户这个月应缴纳的水费;(2)设某户月用水量为3m k ,当20k >时,求该用户应缴纳的水费(用含a 、k 的整式表示);(3)当2a =时,甲、乙两用户一个月共用水342m .已知甲用户用水量超过了330m ,设甲用户这个月用水3m x ,试求甲、乙两用户一个月共缴纳的水费(用含x 的整式表示).26.如图,点A 、B 和线段MN 都在数轴上,点A 、M 、N 、B 对应的数字分别为1-、0、2、11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为______;(2)当12AM BN +=时,求t 的值;(3)若点A 、B 与线段MN 同时移动,点A 以每秒2个单位速度向数轴的正方向移动,点B 以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.参考答案1.D【解析】正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法,可得:20.501-<-<<,最大的数是1,故选D.【点睛】本题考查有理数大小比较.解决此类问题时可先把有理数数分为负数,0,正数三类.根据负数<0<正数,可初步作比较,再分别比较正数和正数,负数和负数之间的大小关系.2.C【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:质量500克高于记为正,则质量低于500克就记为负,对各选项直接判断得出结论即可.【详解】解:①包装食品标准质量为500克,504克记为4+克,低于记为负A. 498克记为2-克,故选项A不正确;+克,故选项B不正确;B. 515克记为15C. 496克记为4-克,故选项C正确D. 3+克表示重量为503克,故选项D不正确故选C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.B【解析】【分析】根据单项式的定义:数与字母积的代数式叫做单项式,单独的一个数或字母也是单项式,求【详解】解:根据单项式的定义:m -,13-,5xy -是单项式,共3个. 故选:B .【点睛】本题考查了单项式的知识,解题的关键是掌握单项式的定义:数与字母积的代数式叫做单项式,单独的一个数或字母也是单项式.4.D【解析】【分析】系数应包括前面的符号;单项式的系数为1,通常省略不写;字母的指数为1,也省略不写;多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.有几项就是几项式.【详解】解:A 、245x x -+的一次项系数为-1,错误,不符合题意;B 、abc 的系数为1,错误,不符合题意;C 、43a b c 是八次单项式,错误,不符合题意;D 、4324462x x y xy n ---是五次四项式,正确,符合题意;故选:D .【点睛】本题考查了单项式的系数与次数、多项式的次数,项数,以及某项系数,解题的关键是注意系数为1或次数为1通常省略不写.5.B【解析】【分析】根据数轴确定a ,b 的符号和绝对值的大小,根据有理数的大小比较法则解答.【详解】解:由数轴可知,a <0<b ,|a|<|b|,①0<−a <b ,【点睛】本题考查的是数轴的概念,有理数的大小比较,根据数轴的概念正确判断有理数的大小是解题的关键.6.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.D【解析】【分析】分①点P位于点A、B之间,①点P位于点A左边,①点P位于点B右边三种情况讨论即可.【详解】分三种情况讨论:①当点P位于点A、B之间时,P到A、B之间的距离之和为4,不满足条件;①当点P位于点A左边时,2PA+AB=7,①2(-1-x)+4=7,解得:x=52 -;①当点P位于点B右边时,AB+2PB=7,①4+2(x-3)=7,解得:x=92;综上所述:x52=-或x92=.故选D.【点睛】本题考查了数轴上的点与点之间的距离及数轴的应用,分类讨论是解答本题的关键.8.A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.9.C【解析】【分析】根据绝对值的概念可得a=±5,b=±19,然后分类讨论,就可求出符合条件|a+b|=﹣(a+b)时的a﹣b的值.【详解】解:①|a|=5,|b|=19,①a=±5,b=±19.又①|a+b|=﹣(a+b),①a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.【点睛】本题考查的是绝对值的概念,在解决问题的过程中,用到了分类讨论的思想,是解决本题关键,需要注意的是绝对值等于正数的数有两个,而不是一个.10.D【解析】【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F运算”的结果.【详解】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F①运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F①运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F①运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.11.3a b-【解析】【分析】根据题意,列出代数式,即可得到答案.【详解】-;解:根据题意,得:3a b-.故答案为:3a b【点睛】本题考查了列代数式,解题的关键是正确理解题意,列出代数式.12.2【解析】【分析】先根据绝对值的性质去掉绝对值号,再根据有理数的减法运算法则进行计算即可求解.【详解】解:|4|2422--=-=.故答案为:2.【点睛】本题考查了绝对值的性质与有理数的减法运算法则,解题的关键是会求一个数的绝对值.13.<【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案.【详解】解:①5525||6630-==>4424||5530-==①56-<45-,故答案为:<.【点睛】此题考查了有理数的大小比较,用到的知识点是:两个负数中绝对值大的反而小.14.3【解析】【分析】根据所给计算公式把a=-3,b=2代入计算即可.【详解】解:(﹣3)*2=﹣3×2﹣3×(﹣3)=﹣6+9=3.故答案为:3.【点睛】此题主要考查了有理数的混合运算,关键是正确理解题意,代入数据.15.—1【解析】【分析】直接利用同类项的定义得出关于m ,n 的值,再代入计算即可.【详解】解①单项式4m x y -与单项式313n x y 是同类项, ①m =3,n =4,则m ﹣n =3﹣4=—1,故答案为:—1.【点睛】本题考查了同类项,熟练掌握同类项的定义是快速准确解答的关键.16.5【解析】【分析】由于x=1时,代数式242ax bx -的值为-5,把x=1代入242=-5ax bx -,可以解得4a -2b 的值,然后把x=2代入所求代数式,整理得到-(4a -2b)的形式,然后将4a -2b 的值整体代入.【详解】解:①1x =时,242=-5ax bx -,①42=5a b --①当2x =时, 2=24(42)1(5)5b a a b bx ax -=--=-⨯--=故答案为5.【点睛】本题考查了求代数式的值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,从题设中获取代数式4a -2b 的值,然后利用“整体代入法”求代数式的值是本题的解题关键.17.2020514-【解析】【分析】根据题干中的方法令2342019155555S +++++=+,则234201920205555555S =++++++,作差即可求解.【详解】解:令2342019155555S +++++=+,则234201920205555555S =++++++,①2020551S S -=-, ①2020514S -=, 故答案为:2020514-.【点睛】本题考查有理数的错位相减法简便运算,理解题干中的方法是解题的关键.18.(1)-3;(2)41.【解析】【分析】(1)先同号相加,再算减法即可;(2)利用乘法分配律乘开,再计算乘法,最后加减即可.(1)解:()()()53544+-+-++-,=()()()54354++-+-+-⎡⎤⎣⎦,=9-12,=-3;(2) 解:()31536469⎛⎫-+-⨯- ⎪⎝⎭,=()()()315363636469-⨯-+⨯--⨯-,=27-6+20,=41.【点睛】本题考查有理数的运算,熟练掌握有理数的运算法则是解题关键.19.—65【解析】【分析】按照有理数混合运算顺序进行计算即可.【详解】 解:232(3)21(1)2[6]32----÷⨯+ =—4—21(1)2[6(27)]32-÷⨯+- =—4—112(?21)32÷⨯ =—4—12(?21)35⨯⨯ =—4—14(?)5 = —65.【点睛】本题考查了有理数的混合运算,关键在正确应用对应的运算法则.20.3【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】()()()222222222233x y x y x x y y --+++2222222222223333.x y x y x x y y x y =---++=-+当x=-1,y=2时,原式2214 3.x y =-+=-+=【点睛】考查了整式的混合运算的应用,主要考查学生的计算和化简能力.21.画数轴见详解,()4-+ ,3-;()4-+,0,3-.【解析】【分析】先化简绝对值,与多重符号,然后画数轴,表示各数,根据负数集合是所有小于0的数组成的数集填写集合元素,整数集合是所有整数组成的数集填写集合元素即可【详解】 解: 2.5-=2.5,()4-+=-4,负数集合:{ ()4-+ ,3-…};整数集合:{()4-+,0,3-…}.【点睛】本题考查画数轴,利用数轴表示数,有理数的分类,掌握有理数的基本知识是解题关键. 22.(1)A 的东面,距离1km ;(2)12.3升【解析】【分析】(1)收工时距A 地的距离等于所有记录数字的和的绝对值;(2)所有记录数的绝对值的和×0.3升,就是共耗油数.【详解】(1)根据题意列式:-4+7-9+8+6-5-2=1km .答:收工时距A 地1km ,在A 的东面;(2)根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km ),41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.【点睛】此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,掌握运算法则是解答此题的关键.23.218x y -+-.【解析】【分析】先根据非负数和的性质求出23,m n =-=,然后代入A 与B ,计算整式的加减,去括号合并同类项即可.【详解】解:①()2230m n ++-=,()22030,m n +≥-≥, ①2=030,m n +-=,①23,m n =-=, ()222212336A B x y x y -=----+,=222212336x y x y ---+-,=218x y -+-.【点睛】本题考查非负数和的性质,整式的加减化简,掌握非负数和的性质,整式的加减实质是去括号合并同类项是解题关键.24.(1)>,>,<;(2)﹣b+3c .【解析】【分析】(1)根据数轴判断a 、b 、c 的正负,根据有理数的加减乘运算法则即可比较大小; (2)根据b ﹣a 、—2c 、c—a 的正负去掉绝对值符号,合并同类项即可.(1)解①c <0,①﹣2c >0;①a >0,b <0,|a|>|b|,①c <a ,①c ﹣a <0;故答案为:>,>,<.(2)解:原式=(a ﹣b )﹣(﹣2c )﹣(a ﹣c ),=a ﹣b+2c ﹣a+c ,=﹣b+3c .【点睛】本题考查了数轴、有理数的大小比较及绝对值的性质,题目考查知识点较多,涵盖知识面比较广,是不错的题目.25.(1)33(元)(2)216ka a -(元)(3)252x +(元)【解析】【分析】(1)根据用户用水情况,根据不同单价计算其应缴的水费(2)根据用水量,代入不同的单价,计算出应缴纳的水费(3)先判断甲用户的用水量大致范围,再进行计算(1)解:2122 1.5(1512)33⨯+⨯⨯-=(元)(2)解:12 1.582(20)a a a k ⨯+⨯+⨯-1212240a a ka a =++-216ka a =-(元)(3)解:因为甲用户用水量超过了330m甲应交水费:2122 1.5822(20)x ⨯+⨯⨯+⨯⨯-432x =-(元)所以乙用水量范围:0424230x ≤-≤-乙应交水费:2(42)842x x ⨯-=-(元)甲乙共缴纳水费:432842252x x x -+-=+(元)【点睛】本题考查了有理数的混合运算,列代数式,整式的计算等知识点,熟练掌握以上知识点,根据不同情况列出式子是解题的关键.26.(1)t+1;(2)10t =; (3)103秒或8秒. 【解析】【分析】(1)根据点M 开始表示的数结合其运动速度和时间,即可得出运动后点M 的表示的数,再依据点A 表示的数为-1即可得出结论;(2)分别找出AM 、BN ,根据AM+BN=12即可列出关于t 的含绝对值符号的一元一次方程,解方程即可得出结论;(3)假设能够相等,根据数轴上两点距离求出AM 、BN ,根据AM=BN 即可列出关于t 的含绝对值符号的一元一次方程,解方程即可得出结论.(1)解:①点A 、M 、N 对应的数字分别为﹣1、0、2,线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒,①移动后M 表示的数为t ,N 表示的数为t+2,①AM=t ﹣(﹣1)=t+1.(2)解:由(1)知N 表示的数为t+2,B 对应的数字为11,①BN=|11﹣(t+2)|=|9﹣t|,①AM+BN=12,①t+1+|9﹣t|=12,当t <9,时,10≠12,当t≥9时,t+1+t -9=12,解得:10t=.(3)解:假设能相等,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,①AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,①AM=BN,①|t﹣1|=|2t﹣9|,当t<1时,1-t=9-2t,t=8>1舍去;当1≤t<92时,t-1=-2t+9,10t3=;当t≥92时,t﹣1=2t﹣9,t8=;故在运动的过程中AM和BN能相等,此时运动的时间为103秒或8秒.。

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】

人教版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.6的相反数为( )A .-6B .6C .16-D .16 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5364 的平方根为________.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320第二次 2 6 300第三次 5 7 258解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、A6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、03、70.4、(3)m m-5、±26、1三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、略4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.下列各对数中,互为相反数的()A.﹣(﹣2)和2B.﹣(﹣5)和+(﹣5)C.和﹣2D.+(﹣3)和﹣(+3)2.圆锥的截面不可能是()A.三角形B.圆C.长方形D.椭圆3.下列是同类项的是()A.3x2y与2xy2B.4abc与4acC.mn与﹣nm D.﹣125x与﹣1254.7的倒数是()A.B.C.D.5.“无风才到地,有风还满空.缘渠偏似雪,莫近鬓毛生”是唐朝诗人雍裕之描写每年四月许多地方杨絮、柳絮如雪花般漫天飞舞的诗句,柳絮带给人们春天的讯息外也让人们不堪其扰,据测定,杨絮纤维的直径约为0.00000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣5C.1.05×10﹣6D.105×10﹣76.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的左视图是()A.B.C.D.7.下列去括号中,正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.c+2(a﹣b)=c+2a﹣bC.a﹣(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b+c8.下列各数中,其中最小的是()A.B.﹣C.0D.﹣5二.填空题(共6小题,满分18分,每小题3分)9.长方形绕其一边旋转一周形成的几何体是,直角三角板绕其一直角边旋转一周形成的几何体是.10.比较大小:;﹣(﹣7)﹣|﹣7|(用“>,<,=”填空).11.单项式﹣4πa3b的系数是.12.规定:类比有理数的乘方,我们把若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.下列说法准确的选项有.(只需填入正确的序号)①任何非零数的圈2次方都等于1;②对于任何正整数n,1ⓝ=1;③3④=4③;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.13.若要使如图中的平面展开图折叠成正方体后,相对面上的两个数为相反数,则2xy=.14.小明的存款是a元,小华的存款比小明存款的一半多2元,则小华的存款为元.三.解答题(共10小题,满分78分)15.(6分)计算:(1)6﹣(﹣2)+(﹣3)﹣5(2)﹣(﹣2)2﹣[2+0.4×(﹣)]÷()216.(6分)已知A=2a2﹣a+3b﹣ab,B=a2+2a﹣b+ab.(1)化简A﹣2B;(2)当a﹣b=2,ab=﹣1,求A﹣2B的值;(3)若A﹣2B的值与b的取值无关,求A﹣2B的值.17.(8分)一个几何体由几个大小相同的小立方块搭成,从上面和正面观察这个几何体,看到的形状都一样(如图所示).(1)这个几何体最少有个小立方块,最多有个小立方块;(2)当摆放的小立方块最多时,请画出从左面观察到的视图.18.(8分)某中学的小卖部最近进了一批计算器,每个16元,今天共卖出20个,实际卖出时以每个18元为标准,超过的记为正,不足的记为负,记录如下:+3﹣1+2+15个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天的计算器赚了多少元?19.(8分)2x2y﹣5xy2+6y2与哪个多项式的和为3xy2﹣4x2y+5y2,求出这个多项式.20.(8分)阅读下面的材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图①,|OB|=|b|=|a﹣b|.当A、B两点都不在原点时:(i)如图②,点A、B都在原点的右边:|AB|=|OB|﹣|OA|=|b|﹣|a|;(ⅱ)如图③,点A、B都在原点的左边:|AB|=|OB|﹣|OA|=|b|﹣|a|:(ⅲ)如图④,点A、B在原点的两边:|AB|=|OA|+|OB|=|a|+|b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离|AB|=2,那么x为.21.(8分)如图所示,有长为l的篱笆,利用它和一面墙围成长方形园子,在园子的长边上开了1米的门,园子的宽为t.(1)用关于l,t的代数式表示园子的面积.(2)当l=100m,t=30m时,求园子的面积.22.(8分)用简便方法计算:(1)(﹣2)×(﹣)××(﹣28);(2)(﹣24)×(﹣1+﹣)﹣1.4×6+3.9×6;(3)0.7××(﹣15)+0.7××(﹣15).23.(9分)用火柴棒按照如图示的方式摆图形.按照这样的规律继续摆下去.(1)请根据图填写下表:图形编号12345…火柴棒根数7…(2)计算第2013个图形需要多少根火柴棒?(3)第n个图形需要多少根火柴棒(用含n的代数式表示)24.(9分)观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=…请解答下列问题:(1)按以上规律写出:第n个等式a n=(n为正整数);(2)求a1+a2+a3+a4+…+a100的值;(3)探究计算:.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵﹣(﹣5)=5,+(﹣5)=﹣5,5和﹣5互为相反数,故选:B.2.解:如果用平面取截圆锥,圆锥的截面可能是三角形,圆,椭圆,不可能是长方形.故选:C.3.解:A、3x2y与2xy2中所含有相同字母的次数不同,不是同类项,故本选项不符合题意.B、4abc与4ac中所含有的字母不相同,不是同类项,故本选项不符合题意.C、mn与﹣nm符合同类项的定义,是同类项,故本选项符合题意.D、﹣125x与﹣125中所含有的字母不相同,不是同类项,故本选项不符合题意.故选:C.4.解:∵7×=1,∴7的倒数是.故选:D.5.解:0.00000105=1.05×10﹣6.故选:C.6.解:从左面看去,一共两列,左边有2个小正方形,右边有1个小正方形,左视图是.故选:C.7.解:A、a﹣(b﹣c)=a﹣b+c,故不对;B、c+2(a﹣b)=c+2a﹣2b,故不对;C、a﹣(b﹣c)=a﹣b+c,故不对;D、正确.故选:D.8.解:在、﹣、0、﹣5中,最小的数为:﹣5.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.10.解:∵|﹣|==,|﹣|==,>,∴<;∵﹣(﹣7)=7,﹣|﹣7|=﹣7,7>﹣7,∴﹣(﹣7)>﹣|﹣7|,故答案为:<;>.11.解:单项式﹣4πa3b的系数是:﹣4π.故答案为:﹣4π.12.解:①任意非零数x的圈2次方为x÷x=1,那么①正确.②1ⓝ==1,那么②正确.③3④=3÷3÷3÷3=,4③=4÷4÷4=,故3④≠4③,那么③不正确.④把(a≠0)记作aⓝ,读作“a的圈n次方”.当a为负数,n为奇数,根据有理数的除法,结果是负数;当a是负数,n是偶数,根据有理数的除法,结果是正数,那么④正确.综上:正确的有①②④.故答案为:①②④.13.解:根据正方体表面展开图“相间、Z端是对面”可知,“1”与“x”相对,“3”与“y”相对,所以x=﹣1,y=﹣3,故2xy=2×(﹣1)(﹣3)=6,故答案为:6.14.解:依题意得,小华存款:a+2.故答案为:a+2.三.解答题(共10小题,满分78分)15.解:(1)原式=6+2﹣3﹣5=0;(2)原式=﹣4﹣(2﹣1)×4=﹣4﹣4=﹣8.16.解:(1)A﹣2B=(2a2﹣a+3b﹣ab)﹣2(a2+2a﹣b+ab)=2a2﹣a+3b﹣ab﹣2a2﹣4a+2b﹣2ab=﹣5a+5b﹣3ab;(2)由(1)得,因为a﹣b=2,ab=﹣1,所以A﹣2B=﹣5a+5b﹣3ab=﹣5(a﹣b)﹣3ab=﹣5×2﹣3×(﹣1)=﹣10+3=﹣7;(3)由(1)得,﹣5a+5b﹣3ab=(5﹣3a)b﹣5a,由于A﹣2B的值与b的取值无关,因此5﹣3a=0,即a=,所以A﹣2B=﹣5a=﹣5×=﹣.答:A﹣2B的值为﹣.17.解:(1)如图,这个几何体最少有5个小正方体,最多有6个小正方体.故答案为:5,6;(2)当摆放的小立方块最多时,从左面观察到的视图如图所示:18.解:(1)根据题意得:(21×5+17×4+20×6+19×5)=19.4元;(2)根据题意得:3×5﹣1×4+2×6+1×5=15﹣4+12+5=28(元),则(18﹣16)×20+28=68(元),即净赚68元.19.解:(3xy2﹣4x2y+5y2)﹣(2x2y﹣5xy2+6y2)=3xy2﹣4x2y+5y2﹣2x2y+5xy2﹣6y2=8xy2﹣6x2y﹣y2.20.解:(1)数轴上表示2和5的两点之间的距离为5﹣2=3,数轴上表示﹣2和﹣5的两点之间的距离为﹣2﹣(﹣5)=3,数轴上表示1和﹣3的两点之间的距离为1﹣(﹣3)=4;(2)根据题意得|x﹣(﹣1)|=2,即x+1=±2,所以x=1或﹣3.故答案为3,3,4;1或﹣3.21.解:(1)由题意和图知,园子的长为:(l+1﹣2t)m,所以园子的面积为:S=(l+1﹣2t)t(m2).(2)当l=100m,t=30m时,S=(100+1﹣2×30)×30=42×30=1230(m2).答:园子的面积为1230m2.22.解:(1)原式=﹣×××28=﹣35;(2)原式=(﹣24)×(﹣)+×(﹣24)﹣×(﹣24)+6×(3.9﹣1.4)=32﹣20+21+6×2.5=32﹣20+21+15=48;(3)原式=0.7×(+)+(﹣15)×(2+)=0.7×2+(﹣15)×3=1.4﹣45=﹣43.6.23.解:(1)如表格所示:图形编号(1)(2)(3)…n 火柴根数71217…5n+2(2)当n=2013时,5n+2=10067;(3)5n+2.24.解:(1)∵第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…,∴第n个等式:a n=,故答案为:;(2)a1+a2+a3+a4+…+a100=+…+=1﹣+++…+=1﹣=;(3)=×(1﹣++…+)===.第11页共11页。

七年级(上)期中数学复习测试卷(一)及答案

七年级(上)期中数学复习测试卷(一)及答案

七年级(上)期中数学复习测试卷(一)考生须知:1、 全卷满分为100分,考试时间90分钟,试卷共4页,有五大题,25小题.2、 请用钢笔或圆珠笔答卷,并将姓名、考号分别填写在考卷的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 一、 精心选一选(10小题,每小题3分,共30分) 1.有理数-13的倒数( ) A . 13B .- 13C .3D .-32.下列计算正确的是( )A .(-3)-(-5)=-8B .=-9C .24=--D .±=9 3 3.用科学记数法表示106 000,其中正确的是( )A .1.06×105B .1.06×106C .106×103D .10.6×104 4.一个数的立方根是它本身,则这个数是( )A 1B 0或1C -1或1D 1, 0或-1 5.实数0、2 、13-、π、0.1010010001……中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 6.估算227-的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 7.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高( )A 、-13℃B 、-7℃C 、7℃D 、13℃8.已知c b a ,,在数轴上的位置如图所示,则下列结论正确的是 ( ) A .0>-c a B .0<abcC .0<cabD .||||c a > 9.有下列说法:c a o b①任何无理数都是无限小数; ②有理数与数轴上的点一一对应; ③在1和3之间的无理数有且只有2,3,5,7这4个;④2π是分数,它是有理数. ⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305. 其中正确的个数是( )A .1 B. 2 C. 3 D. 4 10.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

七年级上册数学期中考试卷及答案【含答案】

七年级上册数学期中考试卷及答案【含答案】

七年级上册数学期中考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 任何偶数乘以偶数都是偶数。

()3. 任何奇数乘以奇数都是奇数。

()4. 1是质数。

()5. 两个质数相乘的积一定是合数。

()三、填空题(每题1分,共5分)1. 1千米=______米。

2. 1米=______分米。

3. 1分米=______厘米。

4. 1厘米=______毫米。

5. 2的3次方等于______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请简述偶数和奇数的区别。

3. 请简述分数的约分方法。

4. 请简述三角形的基本性质。

5. 请简述因数分解的方法。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

3. 2的5次方等于多少?4. 一个数既是3的倍数,又是4的倍数,这个数最小是多少?5. 一个等边三角形的边长是10厘米,求这个三角形的周长。

六、分析题(每题5分,共10分)1. 小红有15个糖果,小明有20个糖果,他们一共有多少个糖果?如果小红给小明5个糖果,他们各自有多少个糖果?2. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求这个长方体的体积。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。

初中数学七年级上期中复习题(含答案解析)

初中数学七年级上期中复习题(含答案解析)

一、选择题1.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A .43 B .44 C .45 D .46 2.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( ) A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣54.7-的绝对值是 ( ) A .17-B .17C .7D .7-5.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .20196.下面四个图形中,是三棱柱的平面展开图的是( ) A .B .C .D .7.23的相反数是 ( ) A .32B .32-C .23D .23-8.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013 C .8×1014 D .0.8×1013 9.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6 D .4 10.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( ) A .30°B .150°C .30°或150°D .90°11.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 13.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >015.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-二、填空题16.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).17.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.18.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃19.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.20.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.21.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.22.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.2323______. 24.用科学记数法表示:-206亿=______. 25.若一个角的余角是其补角的13,则这个角的度数为______. 三、解答题26.先化简,再求值:2(x 2y +3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2. 27.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式: (1)当有5张桌子时,第一种方式能坐 人,第二种方式能坐 人. (2)当有n 张桌子时,第一种方式能坐 人,第二种方式能坐 人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?28.已知BAD ∠,点C 是AD 边上的一点,按要求画图,并保留作图痕迹.(1)用尺规作图法在AD 的右侧以点C 为顶点作DCP DAB ∠=∠; (2)射线CP 与AB 的位置关系是____________,理由是____________. (3)画出表示点C 到AB 的距离的线段和表示点B 到AD 的距离的线段. 29.用四个长为m ,宽为n 的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积. 方法①: ; 方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: . (3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.30.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题二、填空题16.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关17.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应18.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答19.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2故答案为2考点:求多项式20.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答21.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是322.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=23.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数24.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b+【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.17.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应解析:124【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x棵,根据题意列出方程:441516x x-+=,解得124x=.故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键.18.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.19.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2故答案为2考点:求多项式解析:2【解析】试题分析:由题意可得:2x2+3x+7=10,所以移项得:2x2+3x=10-7=3,所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.20.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答解析:诚【解析】【分析】正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,根据这一特点,结合题意可正确解答.【详解】如果原正方体上“友”所在的面为前面,则“信”所在的面为左面,所以相对的正方体的右面是“国”,后面是“诚”故答案为:诚【点睛】本题考查正方体相对两个面上的文字,立意新颖,是一道不错的题.关键是分清每一个面的位置.21.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 n解析:21【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.22.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.23.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.24.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时解析:-2.06×1010【解析】【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将-206亿=-20600000000用科学记数法表示为-2.06×1010 .故答案为:-2.06×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,再根据题意列出方程,求出x的值即可.【详解】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=13(180°-x),解得x=45°.故答案为:45°.【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x的方程是解答此题的关键.三、解答题26.﹣x2y+4xy+1,-23【解析】【分析】原式去括号再合并即可得到最简结果,将x与y的值代入计算即可求出值.【详解】原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.【点睛】本题考查了整式的加减运算-化简求值,解题的关键是熟练的掌握整式的加减运算.27.(1)22,14; ( 2)(2+4n), (4+2n); (3)解: 打算以第一种方式来摆放餐桌,见解析【解析】【分析】(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人,即有n张桌子时是6+4(n-1)=4n+2;第二种中,有一张桌子时6人,后边多一张桌子多2人,即6+2(n-1)=2n+4,将n=5代入即可得出答案;(2)根据(1)找出的规律即可得出答案;(3)分别求出n=60时,两种不同的摆放方式对应的人数,即可得出答案.【详解】解:(1)第一种22人,第二种14人;(2)第一种(2+4n)人,第二种(4+2n)人;(3)打算以第一种方式来摆放餐桌∵第一种中,当n=60时,4×60+2=242>200第二种中,当n=60时,2×60+4=124<200∴选择第一种摆放方式.【点睛】本题主要考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题. 28.(1)详见解析;(2)平行;同位角相等,两直线平行;(3)详见解析.【解析】【分析】(1)由题意直接根据尺规作图的方法进行作图即可;(2)根据平行线的判定定理进行分析判定即可;(3)由题意点C 到AB 的距离的线段和表示点B 到AD 的距离的线段可知作点C 到AB 的垂线即高线和表示点B 到AD 的垂线即高线即可.【详解】解:(1)作图如下:(2)∵DCP DAB ∠=∠,∴CP //AB .故答案为:平行;同位角相等,两直线平行.(3)作图如上,CE BF 、就是所求作的线段即高.【点睛】本题考查尺规作图,熟练掌握平行线的判定定理和点和线段间垂线最短是解题的关键. 29.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量. 30.32名工人加工大齿轮,16人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由1个大齿轮与3个小齿轮配成一套可知小齿轮的个数是大齿轮个数的3倍,从而得出等量关系,就可以列出方程求出即可.【详解】解:设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由题意得10x×3=15(48﹣x),解得:x=32.所以 48﹣x=16.答:需安排32名工人加工大齿轮,16人加工小齿轮.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.如果温度上升2℃记作+2℃,那么气温下降10℃记作( )A .10℃B .-10℃C .-8℃D .12℃2.12021-的倒数是( )A .12021 B .-2021 C .12021- D .20213.下列数:5,0,-2,-0.01,其中最小的数是( )A .5B .0C .-2D .-0.014.数240940937用科学记数法表示为( )A .24.0940937×107B .2.40940937×109C .0.240940937×109D .2.40940937×1085. 下列结论正确的是( )A .xyz 的系数为0B .3x 2-x+1 中一次项系数为-1C .a 2b 3c 的次数为5D .a 2-33是一个三次二项式6.下列各组单项式中,为同类项的是( )A .a 3与a 2B .212a b 与2ba 2 C .2xy 与2x D .﹣3与a7.下列计算正确的是( )A .-32=9B .3a -a=2C .2a 3+a 2=3a 5D .-a 2b+ 3a 2b=2a 2b 8.下列各数:3,0,-5,0.48,-(-7),-|-8|,()24-中,非正数有( ) A .1个 B .2个 C .3个 D .4个 9.实数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .b >aB .a >bC .-a >-bD .无正确答案 10.如图是一个数值的运算程序,若输出y 的值为11,则输入的数是( )A .3B .-3C .3或-3D .9二、填空题11.我市某天最高气温是15℃,最低气温是零下3℃,那么当天的最大温差是_____℃.12.若(a-2)2+5b+=0,那么a+b=____________ .13.-15的倒数是__________,相反数是________,绝对值是__________.14.代数式-13xay与6x3yb是同类项,则a+b=__________ .15.若式子x-3y的值是1,则式子1-x+3y的值是___________.16.把-2.3962精确到百分位的近似数是_____________.17.在数轴上,与表示数-2的点的距离是5的点表示的数是____________.18.规定符号“℃”的意义为:a℃b=ab-a2,那么-2℃5=___________.三、解答题19.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.-(-72),-3.5,0,2-,-1.20.计算下列各题(1)(-1)3-(-6)+2-3÷(-13)(2)(2119418-+)÷(-118)(3)-2.7×56+7.9×(-56)+6×5.6(4)-14+16×[2-(-3)2]21.化简(1)(4x2y-3xy2)-2(1+2x2y-32xy2)(2)4y2-[3y-(3-2y)+2y2] 22.解答下列问题(1)先化简,再求值:x2-2(x2+13y)-(-3x2+13y),其中x=-5,y=2;(2)已知A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3,求A-(B+C)的值,其中x=-2.23.如图,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c .化简a b a c b c --+--.24.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(-5x 2+6x -1)-3,其中x=2021”.小明做题时把“x=2021”错抄成了“x=-2021”但他计算的结果却是正确的,请你说明这是什么原因.25.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.参考答案1.B【解析】【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“-”,据此解答即可.【详解】解:℃温度上升2C ︒,记作2C ︒+,℃气温下降10C ︒,记作10C ︒-.故选:B .【点睛】此题主要考查了正负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“-”.2.B【解析】【分析】直接利用倒数的定义得出答案.【详解】12021-的倒数是:2021-, 故选:B .【点睛】本题考查了倒数的定义(两个数乘积为1,称这两个数互为倒数),正确掌握相关定义是解题的关键.3.C【解析】【分析】根据负数小于0小于正数,两个负数比较大小,绝对值大的反而小即可得出最小的数.【详解】解:-2,-0.01两个数小于5,0,因为,|-2|=2,|-0.01|=0.01,2>0.01,所以,-2<-0.01,最小的数是-2,故选:C .【点睛】此题考查了有理数大小比较,掌握比较两个负数的方法是解题关键.4.D【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解: 8240940937 2.4094093710=⨯,故选:D .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 5.B【解析】【详解】试题分析:A 、xyz 的系数为1,错误;B 、3x 2﹣x+1中一次项系数为﹣1,正确;C 、a 2b 3c 的次数为6,错误;D 、a 2﹣33是一个二次二项式,错误,故选:B考点:多项式与单项式.6.B【解析】【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.7.D【解析】【分析】分别计算,然后判断即可.【详解】解:-32=-9,故A选项计算错误,不符合题意;3a-a=2a,故B选项计算错误,不符合题意;2a3和a2不是同类项,不能合并,故C选项计算错误,不符合题意;-a2b+ 3a2b=2a2b,故D选项计算正确,符合题意.故选:D.【点睛】本题考查乘方运算,合并同类项.熟练掌握相关运算法则是解题关键.8.C【解析】【分析】先将能化简和计算的数据进行化简和计算,然后根据非正数的定义,非正数即负数和0,可得答案.【详解】解:-(-7)=7,-|-8|=-8,()24-=16又℃非正数即负数和0℃0,-5,-|-8|是非正数,共3个,故选:C.【点睛】本题考查双重符号的化简,绝对值的化简和有理数的乘方计算,同时考查非正数的定义,掌握化简及计算方法和非正数即负数和0是本题的解题关键.9.B【解析】【分析】根据数轴上表示的数,它们从左往右的顺序,就是它们由小到大的顺序,得出b<0<a,再由绝对值的定义,可知|b|>|a|,从而得出结果.【详解】由数轴上a,b两点的位置可知b<0<a,|b|>|a|,℃a < -b,-a >b,-a <-b,b < a,故选B.【点睛】数轴上表示的数的特点:原点左边的数为负数,右边的数为正数,右边的数总比左边的大.10.C【解析】【分析】本题逆向思考,先用11减去3得到+3前的值,再加上1得到-1前的值,最后开平方求得输入的值.【详解】=±.3故选C.【点睛】考查了有理数的混合运算,本题采用逆向思考的方法解题.11.18【解析】【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【详解】解:15-(-3)=15+3=18.故答案为:18.【点睛】本题主要考查有理数的减法运算,熟练掌握运算法则是解题的关键.12.-3【解析】【分析】根据非负数的性质求出a和b的值,进而求得代数式的值.【详解】解:℃(a-2)2+5b+=0,℃a-2=0,5b+=0,解得a=2,b=-5,℃a+b=2-5=-3.故答案为:-3.【点睛】本题主要考查了非负数的性质,掌握非负数的性质:几个非负数的和等于0,则每个数等于0,是解题的关键.13.-515##0.215##0.2【解析】【分析】根据倒数,绝对值和相反数的定义进行求解即可.【详解】解:15-的倒数是-5,相反数是15,绝对值是15.故答案为:5-;15;15.【点睛】本题主要考查了相反数,倒数和绝对值,解题的关键在于能够熟知三者的定义.14.4【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得a,b的值,再代入所求式子计算即可.【详解】解:根据题意得,a=3,b=1,℃a+b=3+1=4.故答案为:4.【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.15.0【解析】【分析】原式后两项提取-1变形后,将已知代数式的值代入计算即可求出值.【详解】解:℃x-3y=1,℃原式=1-(x-3y)=1-1=0,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.-2.40【解析】【分析】把千分位上的数字6进行四舍五入即可.【详解】解:用四舍五入法将-2.3962精确到百分位的近似数为-2.40.故答案为:-2.40.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.17.-7或3【解析】【分析】由于所求点在2-的左侧和在2-的右侧两种情况讨论.-的哪侧不能确定,所以应分在2【详解】--=-;解:由题意得:当所求点在2-的左侧时,则距离5个单位长度的点表示的数是257当所求点在2-的右侧时,则距离5个单位长度的点表示的数是253-+=.故答案为:-7或3.【点睛】考查了数轴上的两点之间的距离,从2-的左,右两个方向考虑是解题的关键. 18.-14【解析】【分析】根据a℃b=ab -a 2,即可得到-2℃5()()2252=-⨯--,由此进行计算即可.【详解】解:由题意得:-2℃5()()225210414=-⨯--=--=-,故答案为:-14.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够准确读懂题意,理解新定义的运算法则. 19.见解析;-3.5<-1<0<2-<-(-72) 【解析】【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【详解】 解:7722⎛⎫--= ⎪⎝⎭,22-= 将各数用点在数轴上表示如下:其大小关系为:73.51022⎛⎫-<-<<-<-- ⎪⎝⎭【点睛】此题主要考查了有理数的比较大小,以及数轴,关键是掌握当数轴方向向右时,右边的数总比左边的数大.20.(1)16;(2)-12 ;(3)-560;(4)-136【解析】【分析】(1)先计算有理数的乘方,然后根据有理数的混合计算法则进行求解即可;(2)直接根据有理数的乘除计算法则进行求解即可;(3)根据有理数的混合计算法则进行求解即可;(4)先计算有理数的乘方,然后根据有理数的混合计算法则进行求解即可.【详解】解:(1)()()3116233⎛⎫---+-÷- ⎪⎝⎭()1629=-++--1629=-+++16=;(2)2111941818⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()211189418⎛⎫=-+⨯- ⎪⎝⎭9412=-+-12=-;(3)()2.7567.9566 5.6-⨯+⨯-+⨯2.7567.9560.656=-⨯-⨯+⨯()2.77.90.656=--+⨯1056=-⨯560=-;(4)()2411236⎡⎤-+⨯--⎣⎦[]11296=-+⨯-716⎛⎫=-+- ⎪⎝⎭136=-. 【点睛】本题主要考查了有理数的乘方计算和有理数的混合计算,解题的关键在于能够熟练掌握相关计算法则.21.(1)-2;(2)2y 2-5y+3【解析】【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】解:(1)原式=222243243x y xy x y xy ---+=2-;(2)原式=2243(32)2y y y y -+--=2243322y y y y -+--=2253y y -+【点睛】本题考查正式的加减.整式的加减即去括号合并同类项.22.(1)2x 2-y ,48;(2)-3x 2+12,0【解析】【分析】(1)先根据整式的加减计算法则化简,然后代值计算即可;(2)先根据整式的加减计算法则求出()A B C -+,然后代值计算即可.【详解】解:(1)222112333x x y x y ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭222212333x x y x y =--+-22x y =-,当5x =-,2y =时,原式()225248=⨯--=;(2)℃32243A x x x =-++,226B x x =+-,323C x x =+-,℃()()32232432623A B C x x x x x x x -+=-++-+-++- 323224349x x x x x x =-++---+2312x =-+,当2x =-时,原式()232120=-⨯-+=.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握整式的加减计算法则. 23.2b【解析】【分析】根据数轴上点的位置,确定,,a b a c b c -+-的符号进而化简绝对值.【详解】由数轴得,c >0,a <b <0,a c >,因而a -b <0,a+c <0,b -c <0.℃原式=()()()b a a c b c ---+---⎡⎤⎡⎤⎣⎦⎣⎦=b a a c b c -+++-=2b .【点睛】本题考查了数轴上的点表示有理数,整式的加减,根据数轴上点的位置确定式子符号,有理数的加减法法则,化简绝对值,数形结合是解题的关键.24.见解析【解析】【分析】原式去括号、合并同类项即可得结果与x 无关,所以无论x 是多少结果不变.【详解】解:原式=17x 2-8x 2-5x -4x 2-x+3-5x 2+6x -1-3=-1因为化简后的结果与x 无关,所以x 抄错,计算结果仍然正确.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握去括号、合并同类项法则. 25.(1)22111222a ab b ++;(2)492【解析】【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a a b b ⨯++,22111222a ab b =++;(2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=.。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。

A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。

A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。

A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。

A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。

A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。

()2. 任何两个整数的积一定是整数。

()3. 0 是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 1 是最小的正整数。

()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。

2. 已知 |x 3| = 4,那么 x 的值是______或______。

3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。

4. 如果 a = 2,b = 3,那么 a 2b 的值是______。

5. 下列式子中,同类项是______和______。

四、简答题:每题2分,共10分1. 解释有理数的概念。

2. 举例说明同类项的概念。

3. 解释绝对值的概念。

4. 解释相反数的概念。

5. 解释整除的概念。

五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案一、选择题1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. -5答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列各数中是等差数列的是:A. 2, 5, 8, 11, 14B. 3, 6, 12, 18, 24C. 1, 1/2, 1/3, 1/4, 1/5D. 2, 4, 8, 16, 32答案:A4. 某数的平方根是3,则这个数是:A. 9B. -9C. 8D. -8答案:A5. 下列各数中,最小的数是:A. -1/2B. 0C. 1/2D. 1答案:A二、填空题1. 已知a=3,b=4,则a²+b²的值是______。

答案:252. 2的立方根是______。

答案:∛83. 下列数中,是无理数的是______。

答案:3√24. 若|x|=5,则x的值为______。

答案:±55. 一个等差数列的第一项是2,公差是3,则第五项是______。

答案:14三、解答题1. 解方程:2x+5=15答案:x=52. 已知数列是等差数列,首项为1,公差为2,求第10项的值。

答案:193. 计算:(-3)²×(-2)³答案:244. 解方程:3x-7=2x+1答案:x=85. 已知一个正方形的边长是6,求它的面积。

答案:36。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一个数的相反数为6,则这个数为( )A.B.±6C.6D.﹣62.下列各组中的两个项不属于同类项的是( )A.3x2y和﹣2x2y B.﹣xy和2yxC.﹣1和1D.a2b和ab23.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为( )A.3个B.4个C.5个D.6个4.若5个有理数的积是负数,则5个因数中正因数的个数可能是( )A.1个B.3个C.1或3或5个D.以上答案都不对5.太阳的半径大约是696 000千米,用科学记数法可表示为( )A.696×103千米B.6.96×105千米C.6.96×106千米D.0.696×106千米6.如图,将7张相同的长方形纸片不重叠的放在长方形ABCD内,已知小长方形纸片的长为a,宽为b,且a>b,若未被覆盖的两个长方形周长相等,则( )A.B.a=3b C.D.a=4b7.在同一数轴上表示数﹣0.5,0.2,﹣2,+2,其中表示0.2的点的左边的点有( )A.1个B.2个C.3个D.4个8.若数轴上A,B两点之间的距离为8个单位长度,点A表示的有理数是﹣10,并且A,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A.﹣6B.﹣9C.﹣6或﹣14D.﹣1或﹣99.单项式﹣a2b3的系数和次数分别是( )A.2、3B.﹣1、3C.﹣1、5D.0、510.在矩形ABCD内,将一张边长为a和两张边长为b(a>b)的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为l,若要知道l的值,只要测量图中哪条线段的长( )A.AB B.AD C.a D.b二.填空题(共8小题,满分24分,每小题3分)11.如果关于x的多项式ax2+x+b与多项式(2﹣3a)x2+2x﹣3的和是一个单项式,那么a+b 的值是 .12.某商店三月份的销售额为a万元,三月份比二月份减少10%,二月份比一月份增加10%,则一月份的销售额为 万元.13.若单项式3x m+5y2与x3y n是同类项,则m+n= ,合并同类项后得到 .14.数学考试成绩以90分为标准,老师将5位同学的成绩简单记作:+15,﹣4,+11,﹣7,0,则这五名同学的平均成绩为 .15.已知|a+3|+|b+2|=0,则= .16.当|x|=2,|y|=4,且xy<0,则x+y= .17.﹣22的读法是 .18.a与3b互为倒数,x与y互为相反数,那么2000ab﹣2001(x+y)= .三.解答题(共9小题,满分66分)19.(1)计算:12﹣(﹣8)+(﹣6)﹣15;(2)计算:4+(﹣2)3×5﹣(﹣28)÷4+(﹣6)2;(3)化简:3x2+x﹣5﹣x﹣2x2+4;(4)化简:(2x2+1)﹣2(5﹣x2).20.把下列各数填在相应的大括号里:+2,﹣|﹣2|,﹣3,0,﹣3,﹣1.414,17,,(﹣1)2正整数:{}整数:{}负分数:{}正有理数:{}.21.根据题意列出式子计算.(1)一个加数是1.8,和是5.9,求另一个加数;(2)求5的绝对值与﹣6的相反数的差.22.点A,B在数轴上的位置如图①所示,表示的数分别为a,b.(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是 ;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是 .(2)将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.①求点P表示的数;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,那么m n.(填“>,<或=”)(3)点C在数轴上的位置如图②所示,表示的数为c.若a+b=4,请用刻度尺或圆规在图②中画出点D,使点D表示的数为(4﹣c).(保留画图痕迹,写出必要的文字说明)23.已知a=﹣1,求(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣6)的值.24.有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )25.先简化,再求值:(2a 2﹣5a )﹣2(a 2+3a ﹣5),其中a =﹣.26.出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,+11,﹣15,﹣3.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?27.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n 的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵6的相反数为﹣6,∴这个数为﹣6.故选:D.2.解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、字母相同且相同字母的指数也相同,故C正确;D、相同字母的指数不同,故D错误;故选:D.3.解:﹣(+5.3)=﹣5.3,﹣(﹣6)=6.∴大于0的数有9,﹣(﹣6),3.14,共3个.故选:A.4.解:∵5个有理数的积是负数,则5个因数中负因数的个数为1个,3个或5个,∴正因数的个数为4个或2个.故选:D.5.解:696000=6.96×105;故选:B.6.解:依题意,小长方形纸片的长为a,宽为b,如图所示,长方形AEFJ的周长为:2(JH+HF+EF)=2(3b+HF+4b)=14b+2HF,长方形HGCJ的周长为:2(GF+HF+HI)=2(a+HF+a)=4a+2HF,∵长方形AEFJ的周长与长方形HGCJ的周长相等,∴4a+2HF=14b+2HF,∴4a=14b,∴,故选:C.7.解:根据数轴上,左边的数小于右边的数的原则可知:﹣2<﹣0.5<0.2<2,所以,表示0.2的点的左边的点有﹣2,﹣0.5共2个.故选:B.8.解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是=﹣6.故选:C.9.解:单项式﹣a2b3的系数和次数分别是:﹣1,5.故选:C.10.解:图1中阴影部分的周长=2AD+2AB﹣4b,图2中阴影部分的周长=2AD﹣2b+4AB﹣2b,l=2AD﹣4b+4AB﹣(2AD+2AB﹣4b)=2AD﹣4b+4AB﹣2AD﹣2AB+4b=2AB.故若要知道l的值,只要测量图中线段AB的长.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:根据题意得:ax2+x+b+(2﹣3a)x2+2x﹣3=(a+2﹣3a)x2+3x+(b﹣3)=(2﹣2a)x2+3x+(b﹣3),∵和为单项式,∴2﹣2a=0,解得:a=1,b﹣3=0,解得:b=3,∴a+b=1+3=4.故答案为:4.12.解:设一月份的销售额为x,由题意可得,x(1+10%)(1﹣10%)=a解得,x=故答案为.13.解:由同类项的定义可知,m+5=3,n=2,解得:m=﹣2,∴m+n=﹣2+2=0,根据m=﹣2,n=2,得出单项式:3x3y2与x3y2,合并同类项得:3x3y2+x3y2=4x3y2,故答案为:0,4x3y2.14.解:90+×(15﹣4+11﹣7+0),=90+×15,=90+3,=93(分).故答案为:93分.15.解:∵|a+3|+|b+2|=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,∴===.故答案为:.16.解:∵|x|=2,|y|=4,∴x=±2,y=±4,又∵xy<0,∴当x=2,y=﹣4时,x+y=﹣2;当x=﹣2,y=4时,x+y=2.∴x+y=±2.故答案为:±2.17.解:﹣22读作2的2次方的相反数.故答案为:2的2次方的相反数.18.解:由题意得:a•3b=1,即ab=1,x+y=0,则原式=2000﹣0=2000,故答案为:2000三.解答题(共9小题,满分66分)19.解:(1)原式=12+8﹣6﹣15=﹣1;(2)原式=4+(﹣8)×5﹣(﹣7)+36=4﹣40+7+36=7;(3)原式=(3x2﹣2x2)+(x﹣x)+(4﹣5)=x2﹣1;(4)原式=2x2+1﹣10+2x2=4x2﹣9.20.解:正整数:{+2,17,(﹣1)2};整数:{+2,﹣|﹣2|,﹣3,0,(﹣1)2};负分数:{﹣3,﹣1.414};正有理数:{+2,17,,(﹣1)2};故答案为:+2,17,(﹣1)2;+2,﹣|﹣2|,﹣3,0,(﹣1)2;﹣3,﹣1.414;+2,17,,(﹣1)2.21.解:(1)5.9﹣1.8=4.1,∴另一个加数为4.1;(2)|5|﹣[﹣(﹣6)]=5﹣6=﹣1.22.解:(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是a+1;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是b﹣2.故答案为:a+1,b﹣2;(2)①将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.∴点P表示的数为:a+3b﹣3a+2﹣b+a﹣2=b+a;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,∴a=(a+b)﹣m,b=n+(a+b),∴m=(b﹣a),n=(b﹣a),∴m=n.故答案为:=.(3)如图,点D即为所求.方法:①作出AB的中点E;②在EB上取一点D,使得ED=EC,点D即为所求.23.解:原式=4a2﹣2a﹣6﹣4a2+4a+12=2a+6,当a=﹣1时,原式=﹣2+6=4.24.解:第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,∵(6a+6b+4c)﹣(4a+4b+8c)=2a+2b﹣4c,又a+b>2c,得到2a+2b>4c,故第(3)比(1)长;∵(6a+6b+4c)﹣(4a+4b+4c)=2a+2b>0,故第(3)比(2)长,又(4a+4b+8c)﹣(4a+4b+4c)=4c>0,故第(3)种方法绳子最长,第(2)种方法绳子最短.25.解:原式=2a2﹣5a﹣2a2﹣6a+10=﹣11a+10,当a=﹣时,原式=3+10=13.26.解:(1)∵约定向东为正,向西为负,当天的行驶记录为+17,﹣9,+7,+11,﹣15,﹣3,∴出租司机最后到达的地方为(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)=8>0,∴在出发点的东边,距离8km;(2)∵第1次送旅客位置出发点的距离为|+17|=17,第2次送旅客位置出发点的距离为|+17+(﹣9)|=8,第3次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)|=15,第4次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)|=26,第5次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)|=11,第6次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)|=8,∴出租司机最远处离出发点最远的距离为26;(3)∴出租司机实际行驶的路程为:|+17|+|﹣9|+|+7|+|+11|+|﹣15|+|﹣3|=62,∴这天共耗油量为:62×0.08=4.96(升)27.解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱),10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5,这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的,盈利466元.。

人教版七年级上册期中数学复习试卷(含答案)

人教版七年级上册期中数学复习试卷(含答案)
【详解】解:因为 、 互为相反数
所以a+b=0,
∵ 、 互为倒数,∴cd=1
的绝对值是2,m=±2
=0±2-3
原式=-1或原式=-5
23.【答案】(1)前三天共生产297个;
(2)24个;(3)42490元.
【解析】
【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;
(2)求出超产最多数与产量最少数的差即可;
A 640×104B. 64×105C. 6.4×106D. 6.4×107
4.在数轴上把数2对应的点移动3个单位长度后所得的点表示的数是()
A. 5B.-1C. 5或-1D.不确定
5.下列各式可以写成 的是()
A. B.
C. D.
6.若数轴上表示-1和-3的两点分别是点A和点B,则点A和点B之间的距离是()
①数轴上的点都表示有理数
②﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项
③单项式﹣23a2b3的系数是﹣2,次数是5
④ 是二次二项式
⑤互为相反数的两数之积一定为负数
⑥整数包括正整数和负整数.
A. 1B. 2C. 3D. 4
10.观察下列算式:
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )
【解析】
【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.
【详解】解:AB=|-1-(-3)|=2.
故选:C.
7.【答案】A
【解析】
【详解】设这个代数式为A,则根据已知条件可得:
A-(-6a)=4a2-2a+5,
∴A=4a2-2a+5+(-6a)=4a2-2a+5-6a=4a2-8a+5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勤思教育七年级数学期中复习测试
一、填空(每小题3分,共30分) 1.-1-(-3)= 。

2.-0.5的绝对值是 ,相反数是 ,倒数是 。

3.单项式
2
2
xy π的系数是 ,次数是 。

4.若逆时针旋转90o
记作+1,则-2表示 。

5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )
x
y -xy+a 2-b 2
= 。

6.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 。

7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。

将这个数字用科学计数法表示并保留三个有效数字为 元。

8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。

9.若m 、n 满足2)3(2++-n m =0,则.__________=m
n
10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值
为x 万元,则可列出的方程为 二、选择(每小题3分,共30分)
11.如果向东走2km 记作+2km ,那么-3km 表示( ).
A.向东走3km
B.向南走3km
C.向西走3km
D.向北走3km 12.下列说法正确的是( C )
A.x 的系数为0
B. a
1
是一项式 C.1是单项式 D.-4x 系数是4
13.下列各组数中是同类项的是( )
A.4x 和4y
B.4xy 2
和4xy C.4xy 2
和-8x 2
y D.-4xy 2
和4y 2
x 14.下列各组数中,互为相反数的有( )

2
)2(----和 ②221)1(--和 ③2332和 ④
33
2)2(--和
A.④
B.①②
C.①②③
D.①②④
15.若a+b<0,ab<0,则下列说法正确的是( )
A.a 、b 同号
B.a 、b 异号且负数的绝对值较大
C.a 、b 异号且正数的绝对值较大
D.以上均有可能 16.下列计算正确的是( )
A.4x-9x+6x=-x
B.xy-2xy=3xy D.21a-2
1a=0 C.x 3
-x 2
=x
17.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )
A. -6
B. 2
C. -6或2
D.都不正确 18.若x 的相反数是3,
5y =,则x+y 的值为( ).
A.-8
B. 2
C. 8或-2
D.-8或2 19.若 3x=6,2y=4则5x+4y 的值为( ) A.18 B.15 C.9 D. 6
20.若-3xy 2m 与5x 2n-3y 8
的和是单项式,则m 、n 的值分别是( ) A.m =2,n =2 B.m =4,n =1 C.m =4,n =2 D.m =2,n =3 三、用心解答(共60分) 21.(16分)计算
(1) -26-(-15) (2)(+7)+(-4)-(-3)-14
(3)(-3)×
31÷(-2)×(-21
) (4)-(3-5)+32
×(-3)
22.解方程(本题8分)
(1)x+3x= -12 (2)3x+7=32-2x
23.(6分)将下列各数在数轴上表示出来,并用“<”连接:
-22
, -(-1), 0,
3
- , -2.5
第2页,共6页
24.(6分)若a 是绝对值最小的数,b 是最大的负整数。

先化简,再求值:
)33()2(22222b ab a b ab a ++-+--
25.(6分)列方程解应用题。

把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。

这个班有多少名学生?
26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km )如下:-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升? (3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:
(1)

n=8
时,则 S 的值为_____________.
(2)根据表中的规律猜想:用n 的式子表示S 的公式为: S=2+4+6+8+…+2n=____________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的
七年级数学试题答案
一填得圆圆满满(每小题3分,共30分)
1、2
2、0.5 ,0.5,-2
3、2π
,3 4、顺时针旋转180o
5、-1
6、-3.5或1.5
7、3.50×106
8、2a-b 9、9 10、3x-13=125 二.做出你的选择(每小题3分,共30分)
11、C 12、C 13、D 14、B 15、D 16、D 17、B 18、D 19、A 20、C 三、用心解答(共60分)
21、(16分)(1)-11 (2)8
(3)-4
1
(4)-25
22、(8分)(1)x=-3 (2)x=25
23、(6分)-22
<-2.5<0<-(-1)<
3
-
24、(6分)解:由题意,得 a =0,b =-1 原式=2a 2
-4ab -2b 2
-a 2
+3ab +3b 2
=a 2
-ab +b 2
当a =0,b =-1时, 原式=(-1)2
=1
25、(6分)这个班有45名学生 26、(9分)解:(1)-2+5-1+1-6-2=-5 答:小李在起始的西5km 的位置
(2)
2
61152-+-+++-+++-
=2+5+1+1+6+2=17 17×0,2=3.4
答:出租车共耗油3.4升 (3)6×8+(2+3)×1.2=54
答:小李这天上午共得车费54元。

27、(9分)(1)72; (2)(1)n n +; (3)2+4+6+8+10+…+98+100=50×51=2550。

相关文档
最新文档