伺服电机选型及负载转矩计算

合集下载

伺服电机负载转矩计算公式

伺服电机负载转矩计算公式

伺服电机负载转矩计算公式伺服电机在工业自动化领域中可是个相当重要的角色,而要搞清楚它的负载转矩计算公式,咱们得一步步来。

先来说说啥是负载转矩。

想象一下,你正在费力地推动一个大箱子,这个让你感到费劲的“力”,在电机的世界里,就可以理解为负载转矩。

那伺服电机的负载转矩到底咋算呢?一般来说,它可以通过下面这个公式来计算:负载转矩 = (摩擦力×半径) + (惯性转矩)这里面的摩擦力和半径比较好理解。

就比如说,一辆自行车的轮子,轮子和地面之间的摩擦力,还有轮子的半径,就能算出一部分转矩。

惯性转矩就稍微复杂点啦。

这就好像你要让一个静止的大转盘转起来,一开始得费很大的劲儿,这就是因为有惯性的存在。

给大家讲个我自己的经历。

有一次,我在工厂里看到一台机器出了故障,师傅们在那着急忙慌地找问题。

我凑过去一看,发现就是伺服电机的负载转矩出了差错。

他们按照以前的经验来设置,结果机器运行得磕磕绊绊的。

我就跟他们说,得重新算一下负载转矩。

我们先仔细检查了机器各个部件之间的摩擦力,测量了相关部件的半径。

然后,对于惯性转矩,我们得搞清楚转动部件的质量、形状还有转动速度的变化。

这可真是个细致活儿,一点都不能马虎。

经过一番努力,终于算出了新的负载转矩值。

调整之后,那台机器就像被施了魔法一样,顺畅地运行起来啦!在实际应用中,还有很多因素会影响负载转矩的计算。

比如工作环境的温度变化,会导致部件的摩擦系数改变;还有机器的运行速度不稳定,也会让惯性转矩的计算变得更复杂。

所以啊,要准确计算伺服电机的负载转矩,不仅要熟悉公式,还得对具体的工作场景有深入的了解。

每一个参数都得仔细琢磨,不能有一点儿马虎。

总之,搞清楚伺服电机负载转矩的计算公式,对于让机器高效稳定地运行,那可是至关重要的。

希望大家在实际操作中都能算得准准的,让机器乖乖听话,为我们好好干活!。

伺服电机功率计算选型

伺服电机功率计算选型

连续工作速度 < 电机额定转速
7
举例计算1
已知:圆盘质量M=50kg,圆盘直径 D=500mm,圆盘最高转速60rpm, 请选择伺服电机及减速机。
8
举例计算1
计算圆盘转动惯量 JL = MD2/ 8 = 50 * 2500 / 8 = 15625 kg.cm2 假设减速机减速比1:R,则折算到伺服电机轴上 负载惯量为15625 / R2。
高速度时间200ms,忽略各传送带轮重量,驱动这
样的负载最少需要多大功率电机?
11
举例计算2
1. 计算折算到电机轴上的负载惯量 JL = M * D2 / 4 / R12 = 50 * 144 / 4 / 100 = 18 kg.cm2 按照负载惯量 < 3倍电机转子惯量JM的原则 JM > 6 kg.cm2
= 0.0125 * (1500 * 6.28 / 60 / 0.2) / 0.9 = 10.903 N.m 加速所需总转矩TA = TA1 + TA2 = 12.672 N.m
16
举例计算3
3. 计算电机驱动负载所需要的扭矩 另一种计算所需加速扭矩的方法: TA= 2π* N * (JW + JB) / (60 * t1) / η
14
举例计算3
1. 计算折算到电机轴上的负载惯量 重物折算到电机轴上的转动惯量JW = M * ( PB / 2π)2
= 200 * (2 / 6.28)2 = 20.29 kg.cm2 螺杆转动惯量JB = MB * DB2 / 8 = 40 * 25 / 8 = 125 kg.cm2 总负载惯量JL = JW + JB = 145.29 kg.cm2 2. 计算电机转速 电机所需转速 N = V / PB = 30 / 0.02 = 1500 rpm

伺服电机的转矩 惯量计算公式

伺服电机的转矩 惯量计算公式

伺服电机的转矩惯量计算公式伺服电机的转矩惯量计算公式在探讨伺服电机的转矩和惯量计算公式之前,我们先来了解一下什么是伺服电机。

伺服电机是一种能够精准控制位置、速度和加速度的电机,通常被广泛应用于自动化设备、机器人、数控机床等领域。

它具有高速度、高精度和高可靠性的特点,因此在工业生产中扮演着非常重要的角色。

1. 伺服电机的转矩伺服电机的转矩是指电机在运动时所产生的力矩,通常用来描述电机的输出能力。

伺服电机的转矩大小直接影响着其可驱动的负载,因此在实际应用中,我们需要准确地计算出伺服电机的转矩。

在伺服电机的转矩计算中,有一个重要的概念需要引入,那就是转矩常数。

转矩常数是描述电机输出转矩与输入电流之间关系的参数,通常用KT表示。

它的单位是N·m/A,表示在给定电流下电机能够输出的转矩大小。

转矩常数的计算方法是通过实际测试得到的,可以通过将电机固定在特定的支架上,给定一定的电流,测量电机输出的转矩大小,然后通过计算得到转矩常数。

在实际应用中,获取准确的转矩常数对于伺服电机的控制非常重要。

2. 伺服电机的惯量在伺服电机的转矩计算中,还有一个重要的参数需要引入,那就是惯量。

惯量是描述物体抵抗运动状态改变的能力,通常用J表示,单位是kg·m²。

对于伺服电机来说,惯量越大,表示电机对于速度和位置的改变越难,因此其加速度和减速度就会越小。

在伺服电机的惯量计算中,通常有两种情况需要考虑,一种是转动惯量,另一种是质量惯量。

转动惯量描述了物体绕其旋转轴旋转的惯性,通常用Jr表示;而质量惯量描述了物体对于线性运动的惯性,通常用Jm表示。

在实际应用中,我们需要根据伺服电机的实际结构和运动方式来计算出相应的惯量值。

3. 伺服电机的转矩惯量计算公式在实际应用中,我们需要根据伺服电机的转矩和惯量参数来计算其所需的控制参数,从而实现精准的控制。

伺服电机的转矩和惯量计算公式如下:控制所需的转矩 = 负载转矩 + 加速度转矩 + 摩擦转矩 + 重力转矩其中,负载转矩表示外部负载对电机所产生的转矩,通常由实际应用中的载荷参数计算得到;加速度转矩表示电机在加速和减速过程中产生的转矩,可以通过伺服电机的惯量和加速度参数来计算得到;摩擦转矩表示电机在运动中克服摩擦力所产生的转矩;重力转矩表示电机在垂直方向上所受到的重力影响所产生的转矩。

伺服电机选型计算公式

伺服电机选型计算公式

【伺服电机基本三要素】1、转数N:根据客户实际要求,对于同等功率电机可选配不同转数电机,一般来说,转数越低,价格越便宜。

2、扭矩T:必须满足实际需要,但是不需要像步进电机那样留有过多的余量。

3、惯量J:根据现场要求选用不同惯量的电机,如机床行业一般选用大惯量的伺服电机。

【伺服电机功率基本计算】输出功率P = 0.1047*N*T式中N为旋转速度,T为扭矩。

旋转速度基本为3000转。

扭矩T = r*M*9.8式中r为轴半径,M为物体重量。

【伺服电机功率选择要点】电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。

如果电动机功率选得过小,就会出现“小马拉大车”现象,造成电动机长期过载,使其绝缘因发热而损坏。

甚至电动机被烧毁。

如果电动机功率选得过大,就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

【伺服电机功率实际选型计算方法】1、要正确选择电动机的功率,必须经过以下计算或比较:功率P = F*V /1000 (P=计算功率KW,F=所需拉力N,V=工作机线速度M/S)2、对于恒定负载连续工作方式,可按下式计算所需电动机的功率:P1(kw):P=P/n1n2式中n1为生产机械的效率;n2为电动机的效率,即传动效率。

按该公式求出的功率P1,不一定与产品功率相同。

因此,所选电动机的额定功率应等于或稍大于计算所得的功率。

3、用类比法来选择电动机的功率:所谓类比法,就是与类似生产机械所用电动机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。

试车的目的是验证所选电动机与生产机械是否匹配。

验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电动机铭牌上标出的额定电流进行对比。

如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大。

伺服电机选型计算公式

伺服电机选型计算公式

伺服电机选型计算公式伺服电机选型计算公式是指通过一系列的计算公式来确定伺服电机的合适参数,以满足特定需求。

伺服电机选型的主要目标是确定伺服电机的额定转矩、额定电流、额定功率等参数,以及选择合适的伺服驱动器。

下面将介绍一些常用的伺服电机选型计算公式。

1.负载的转矩计算公式:负载的转矩是伺服电机选型的基础,通过计算负载的转矩,可以确定伺服电机的额定转矩。

负载的转矩可以通过以下公式计算:负载转矩=(负载力*负载半径)/(传动效率*减速比)2.伺服电机的额定转矩计算公式:伺服电机的额定转矩是指在额定转速下,电机能够提供的最大转矩。

额定转矩可以通过以下公式计算:额定转矩=(负载转矩+加速扭矩)/传动效率3.伺服电机的额定电流计算公式:伺服电机的额定电流是指在额定转矩下,电机所需的额定电流。

额定电流可以通过以下公式计算:额定电流=额定转矩*电流系数/额定转速4.伺服电机的额定功率计算公式:伺服电机的额定功率是指在额定转矩和额定转速下,电机所提供的对外功率。

额定功率可以通过以下公式计算:额定功率=额定转矩*额定转速/9.555.伺服驱动器的额定功率计算公式:伺服驱动器的额定功率是指驱动器所能提供的最大功率。

额定功率可以通过以下公式计算:额定功率=伺服电机的额定功率/驱动器的效率除了上述几个常用的伺服电机选型计算公式外,还需要考虑一些其他因素,例如:负载的加速时间、负载的惯性矩、伺服系统的控制精度等,这些因素都会对伺服电机的选型产生影响,需要综合考虑。

同时,还需要根据具体的应用环境和需求,选择合适的伺服电机和驱动器型号,以确保系统的性能和可靠性。

需要注意的是,伺服电机选型计算公式只是一个参考,实际选型过程中还需要考虑一系列的工程参数和实际情况,同时也需要借助一些专业的伺服电机选型软件,以更准确地确定伺服电机的参数。

伺服电机选型计算(汇川)

伺服电机选型计算(汇川)

LB=
1.8 m
DB=
0.025 m
PB=
0.02 m
MC
0.2 kg
DC
0.06 m
μ=
0.05
L=
1.3 m
η=
0.9
t=
0.65 s
A=
40%
FA=
0N
a=

t0= t*A
= 0.26
s
NM = Vl/PB/N
= 1500
rpm
轴向负载F = FFAA+ mg(sin a cos a)
= 7.35
7)负荷与 电机惯量 比
惯量比
8)负荷与 减速机惯 量比 当负荷与 电机惯量 比>5时, 考虑采用 减速装 置,提高 惯量匹配
折算后的惯 量比
I1= 0.715738645
I2= 0.715738645
T=
2.332444717
N=
1500
*
其他常数
*
*
*
丝杠密度
*
*
*
*
* *
*
G=
9.8 m/s
机械结构 参数:
速度: 滑动部分质 量 丝杠部分长 度
丝杠直径 丝杠导程 连轴器质量 连轴器直径 摩擦系数 移动距离 机械效率 定位时间 加减速时间 比 外力 移动方向与 水平轴夹角
1)速度曲 线
加速时间
2)电机转 速
3)负荷转 矩计算
丝杠水平 运动选型 计算表格
Vl=
30 m/m3.1416
ρ=
7900 kg/m3
a cos a)
安全系数
S=
2
电机惯量
JM=

伺服电机选型计算(自动计算版)

伺服电机选型计算(自动计算版)

负载质量M(kg5·滚珠丝杠节距P(mm10·滚珠丝杠直径D(mm20·滚珠丝杠质量MB(kg3·滚珠丝杠摩擦系数μ0.1·因无减速器,所以G=1、η=11②动作模式的决定速度(mm/s单一变化·负载移动速度V(mm/s300·行程L(mm360·行程时间tS(s 1.4·加减速时间tA(s0.2·定位精度AP(mm0.01③换算到电机轴负载惯量的计算滚珠丝杠的惯量JB= 1.50E-04kg.m2 负载的惯量JW= 1.63E-04kg.m2换算到电机轴负载惯量JL=JW J=G2x(J W+J2+J1 1.63E-04kg.m2L④负载转矩的计算对摩擦力的转矩Tw7.80E-03N.m换算到电机轴负载转矩TL=Tw7.80E-03N.m⑤旋转数的计算转数N N=60V/P.G1800r/min⑥电机的初步选定[选自OMNUC U系列的初步选定举例] 选定电机的转子·惯量为负载的JM≥J L/30 5.42E-06kg.m2 1/30*以上的电机选定电机的额定转矩×0.8TMx0.8>T L0.5096>比换算到电机轴负载转矩大的电机N.m* 此值因各系列而异,请加以注意。

⑦加减速转矩的计算加减速转矩TA0.165N.m⑧瞬时最大转矩、有效转矩的计算必要的瞬时最大转矩为T1T1=TA+TL0.1726N.mT2=TL0.0078N.mT3=TL-TA-0.1570N.m有效转矩Trms为0.095N.m⑨讨论负载惯量JL 1.63E-04kg.m2≦[电机的转子惯量JM有效转矩Trms0.095N.m﹤[电机的额定转矩瞬时最大转矩T10.1726N.m﹤[电机的瞬时最大转矩必要的最大转数N1800r/min≦[电机的额定转数编码器分辨率R=P.G/AP.S1000(脉冲/转U系列的编码器规格为204速度(mm/s3000.210.20.2时间(s初步选择定R88M-U20030(Jm= 1.23E-05 根据R88M-U20030的额定转矩Tm=(N.m≦[电机的转子惯量JM1.23E-05×[适用的惯量比=30]﹤[电机的额定转矩0.5096N.M7.8E-030.637﹤[电机的瞬时最大转矩 1.528 N.M ≦[电机的额定转数 3000 r/min U系列的编码器规格为2048(脉冲/转),经编码器分频比设定至1000(脉冲/转)的情况下使用。

机械设计伺服电机选型计算(自动计算版)

机械设计伺服电机选型计算(自动计算版)

kg.m2 >
初步
选择

R88M
-
U200
30(J
m=
根据
R88M
-
5.5E-01
U200 30的
额定
转矩
Tm=
N.m
1.23E-05
0.637
Байду номын сангаас
(N.m )
N.m N.m N.m
N.m
≦[电机 的转子惯 量JM
﹤[电机 的额定转 矩
×
[适
1.23E-05
用的 惯量

=30]
0.5096 N.M
﹤[电机 的瞬时最 大转矩 ≦[电机 的额定转 数 U系列的 编码器规 格为2048 (脉冲/ 转),经 编码器分 频比设定 至1000 (脉冲/ 转)的情 况下使用 。
①机械系 统的决定
负载质量M(kg) ·滚珠丝杠节距P(mm) ·滚珠丝杠直径D(mm) ·滚珠丝杠质量MB(kg) ·滚珠丝杠摩擦系数μ ·因无减速器,所以G=1、η=1
②动作模 式的决定
单一变化 ·负载移动速度V(mm/s) ·行程L(mm) ·行程时间tS(s) ·加减速时间tA(s) ·定位精度AP(mm)
350 3.5
20 3
0.1 1
1 10 50 0.2 0.01
③换算到 电机轴负 载惯量的 计算
滚珠丝杠的惯量JB=
负载的惯量JW=
换算到电机轴负载惯量JL=JW
JL=G2x(JW+J2)+J1
④负载转 矩的计算
对摩擦力的转矩Tw
0.00015 0.000258714 0.000258714
0.546178344
换算到电机轴负载转矩TL=Tw

电机负载扭矩计算

电机负载扭矩计算

一、计算折合到电机上的负载转矩的方法如下:1、水平直线运动轴:9.8*μ·W·P BT L= 2π·R·η(N·M)式P B:滚珠丝杆螺距(m)μ:摩擦系数η:传动系数的效率1/R:减速比W:工作台及工件重量(KG)2、垂直直线运动轴:9.8*(W-W C)P BT L= 2π·R·η(N·M)式W C:配重块重量(KG)3、旋转轴运动:T1T L= R·η(N·M)式T1:负载转矩(N·M)二:负载惯量计算与负载转矩不同的是,只通过计算即可得到负载惯量的准确数值。

不管是直线运动还是旋转运动,对所有由电机驱动的运动部件的惯量分别计算,并按照规则相加即可得到负载惯量。

由以下基本公式就能得到几乎所有情况下的负载惯量。

1、柱体的惯量D(cm)L(cm)由下式计算有中心轴的圆柱体的惯量。

如滚珠丝杆,齿轮等。

πγD4L (kg·cm·sec2)或πγ·L·D4(KG·M2)J K= 32*980 J K= 32式γ:密度(KG/CM3)铁:γ〧7.87*10-3KG/CM3=7.87*103KG/M3铝:γ〧2.70*10-3KG/CM3=2.70*103KG/M3 JK:惯量(KG·CM·SEC2)(KG·M2)D:圆柱体直径(CM)·(M)L:圆柱体长度(CM )·(M)2、运动体的惯量用下式计算诸如工作台、工件等部件的惯量W P B2J L1= 980 2π(KG·CM·SEC2)P B2=W2π(KG·M2)式中:W:直线运动体的重量(KG)PB:以直线方向电机每转移动量(cm)或(m)3、有变速机构时折算到电机轴上的惯量1、JOZ1KG·CN:齿轮齿数Z1 2JL1= Z2 *J0 (KG·CM·SEC2)(KG·M2)三、运转功率及加速功率计算在电机选用中,除惯量、转矩之外,另一个注意事项即是电机功率计算。

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算伺服电机是一种能够根据输入信号控制输出轴运动的电机。

它具有灵敏度高、响应速度快、精确度高等优点,广泛应用于工业生产线、机械设备、机器人等领域。

伺服电机的选型主要包括以下几个方面:1.转矩要求:伺服电机的转矩要求主要由负载的转矩决定。

在选型时需要确定负载的最大转矩和平均转矩,以确定伺服电机的额定转矩和峰值转矩。

2.转速要求:伺服电机的转速要求主要由负载的旋转速度决定。

在选型时需要确定负载的最大转速和平均转速,以确定伺服电机的额定转速和峰值转速。

3.加速度要求:伺服电机的加速度要求主要由负载的加速度决定。

在选型时需要确定负载的最大加速度和平均加速度,以确定伺服电机的额定加速度和峰值加速度。

4.精度要求:对于需要高精度运动的负载,伺服电机的精度要求较高。

在选型时需要考虑伺服电机的控制精度和重复定位精度等参数。

在实际选型时,可以根据负载和运动要求确定伺服电机的型号,并通过数据手册来验证选型是否符合要求。

一般来说,伺服电机的型号包括转矩、功率、转速和结构等参数。

负载转矩的计算是伺服电机选型的重要步骤之一、下面介绍一种常用的负载转矩计算方法。

1.静态负载转矩的计算:静态负载转矩是指在静止状态下所受到的负载力矩。

一般可以通过以下公式计算:M=F*R其中,M表示静态负载转矩,F表示负载力,R表示力臂的长度。

如果负载力可以被等效为多个力的叠加,则可以分别计算每个力的负载转矩,并将其叠加得到总的静态负载转矩。

2.动态负载转矩的计算:动态负载转矩是指在运动状态下所受到的惯性力矩和摩擦力矩的叠加。

动态负载转矩的计算可以通过以下公式进行:M=J*α+Ff*R其中,M表示动态负载转矩,J表示负载的转动惯量,α表示负载的角加速度,Ff表示负载所受到的摩擦力,R表示力臂的长度。

在实际计算中,需要考虑负载的惯性矩、摩擦力以及运动过程中可能产生的冲击力矩等因素,并将其叠加计算得到总的动态负载转矩。

负载转矩的计算是伺服电机选型的重要环节,它能够明确负载的要求,并为选型提供基础数据。

伺服选型计算

伺服选型计算

12
举例计算1
已知:圆盘质量M=50kg,圆盘直径 D=500mm,圆盘最高转速60rpm, 请选择伺服电机及减速机。
13
举例计算1
计算圆盘转动惯量
JL = MD2/ 8 = 50 * 2500 / 8 = 15625 kg.cm2 假设减速机减速比1:R,则折算到伺服电机轴上 负载惯量为15625 / R2。 按照负载惯量 < 3倍电机转子惯量JM的原则
= 1.764 N.m
加速时所需转矩Ta = M * a * (D / 2) / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 10
= 0.75 N.m
伺服电机额定转矩 > Tf ,最大扭矩 > Tf + 所需要转速
N = v / (πD) * R1
正號:逆時鐘方向。 負號:順時鐘方向。
2. 轉動方程式:考慮一繞固定軸轉動的
剛體(如右圖)。距離轉軸為 r 處的一 質量為 m 的質點,受到一力量 F 的作 用,根據切線方向的牛頓第二運動定律 Ft r 轉軸
F
m
Ft mat rFt rmat mr 2
5
將剛體看成是由許多質點所構成,則每一質點都滿足類似 的方程式 m i mi ri 2 i 1, 2,3, , n F 對每一質點作加總即得到
2 MR 2 5
7
1 I ML2 12
I MR 2
扭矩计算
电机转矩T (N.m) 滑轮半径r (m)
T r
F
T 提升力F (N) —— F= r
r
T 经过减速机后的提升力F= —— · R r
T
1/R
F

伺服电机功率计算选型例子

伺服电机功率计算选型例子
= 50 * 9.8 * 0.6 * 0.06 / 2 / 10 = 0.882 N.m 加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10 = 0.375 N.m 伺服电机额定转矩 > Tf ,最大扭矩 > Tf + Ta
微信公众号:ACE萦梦工作室
举例计算3
3. 计算电机驱动负载所需要的扭矩 克服摩擦力所需转矩Tf = M * g * µ * PB / 2π / η
= 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9 = 1.387 N.m 重物加速时所需转矩TA1 = M * a * PB / 2π / η
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
微信公众号:ACE萦梦工作室
伺服选型原则
连续工作扭矩 < 伺服电机额定扭矩
瞬时最大扭矩 < 伺服电机最大扭矩 (加速时)
负载惯量
< 3倍电机转子惯量
连续工作速度 < 电机额定转速
微信公众号:ACE萦梦工作室
按照负载惯量 < 3倍电机转子惯量JM的原则
如果选择400W电机,JM = 0.277kg.cm2,则 15625 / R2 < 3*0.277,R2 > 18803,R > 137 输出转速=3000/137=22 rpm,不能满足要求。
如果选择500W电机,JM = 8.17kg.cm2,则 15625 / R2 < 3*8.17,R2 > 637,R > 25 输出转速=2000/25=80 rpm,满足要求。 这微种信公传众号动:AC方E萦式梦工阻作室力很小,忽略扭矩计算。

伺服电机选型计算公式

伺服电机选型计算公式

1.确定机构部。

另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。

典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等2.确定运转模式。

(加减速时间、匀速时间、停止时间、循环时间、移动距离)运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机9 h* p! W) T2 U3.计算负载惯量J和惯量比(x〖10〗^(-4)kg.m^2)。

根据结构形式计算惯量比。

负载惯量J/伺服电机惯量J< 10 单位(x〖10〗^(-4)kg.m^2)1 |1 g8 {' R; ?' x& g' H$ l' x计算负载惯量后预选电机,计算惯量比4.计算转速N【r/min】。

根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。

计算最高速度Vmax 1/2 x ta x Vmax + tb x Vmax + 1/2 x td x Vmax = 移动距离则得Vmax=0.334m/s(假设)8 \- i. l0 w3 h 则最高转速:要转换成N【r/min】,1)丝杆转1圈的导程为Ph=0.02m(假设)最高转速Vmax=0.334m/s(假设8 A3 q r: Z7 w) ^3 P' e3 yN = Vmax/Ph = 0.334/0.02=16.7(r/s)9 n+ b$ v. z0 ~5 r9 S0 R q, Y8 u= 16.7 x 60 = 1002(r/min)< 3000(电机额定转速)2)带轮转1全周长=0.157m(假设)最高转速Vmax=1.111(m/s)N = Vmax/Ph = 1.111/0.157 = 7.08(r/s)= 7.08 x 60 = 428.8 (r/min)< 3000(电机额定转速)5.计算转矩T【N . m】。

根据负载惯量、加减速时间、匀速时间计算电机转矩。

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算惯量转矩计算机械制造商在选购电机时担心切削力不够,往往选择较大规格的马达,这不但会增加机床的制造成本,而且使之体积增大,结构布局不够紧凑。

本文以实例应用阐明了如何选择最佳规格电机的方法,以控制制造成本。

一、进给驱动伺服电机的选择1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:Jl<5×Jm1、负载转矩的计算负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:Tl=(F*L/2πμ)+T0式中:Tl折算到电机轴上的负载转矩(N.M);F:轴向移动工作台时所需要的力;L:电机轴每转的机械位移量(M);To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);Μ:驱动系统的效率F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算首先,选择适当的伺服电机类型是伺服电机选型的第一步。

常见的伺服电机类型包括直流伺服电机(DC Servo)、交流伺服电机(AC Servo)、步进电机(Step Motor)等。

不同的伺服电机类型有着不同的特点和适用范围。

直流伺服电机通常用于高精度、小扭矩的应用,而交流伺服电机适用于大功率、大转矩的应用。

步进电机则适用于需要位置控制的应用。

接下来,根据设计要求计算额定电机转矩。

额定电机转矩一般取决于所需要的最大力矩。

根据机械设计的需求,将机械系统所需要的最大力矩转换为电机转矩,即为额定电机转矩。

计算启动和加速时间是为了确定电机的最大加速度和最大加速时间,以及确定控制器的性能指标。

启动和加速时间的计算包括电机的转矩-加速度时间曲线的峰值和时间。

最后一步是计算电机的功率。

功率的计算一般为输入功率和输出功率的比较,根据机电性能要求和负载的力矩情况,计算电机所需的功率大小。

在计算负载转矩时,静态负载一般是机械传动系统所受到的恒定力矩。

动态负载则是指机械传动系统在运动过程中所受到的变化力矩。

轴向负载是指机械轴承所承受的轴向力。

径向负载是指机械轴承所承受的径向力。

要计算负载转矩,需要首先确定传动系统的结构和参数。

通过传动系统的结构和参数,可以计算出传动系统的动力特性,进而计算出所需的负载转矩。

总结起来,伺服电机选型和负载转矩计算是机械传动系统设计和优化的重要步骤。

正确选择伺服电机类型并计算正确的负载转矩,能够确保机械系统的性能、效率和可靠性。

通过适当的选型和计算,可以满足机械系统的设计要求,并提高系统的性能和可靠性。

伺服电机选型计算

伺服电机选型计算

[伺服电机的基本三要素]1.转数n:根据客户的实际需求,可以选择不同功率的相同功率的电动机。

一般来说,速度越低,价格越便宜。

2.转矩T:必须满足实际需要,但不需要像步进电机那样留有太多余量。

3.惯量J:根据现场要求选择惯性不同的电动机,例如机床行业中惯性较大的伺服电动机。

[伺服电机功率的基本计算]输出功率P = 0.1047 * n * t其中,n是转速,t是扭矩。

旋转速度基本上是3000rpm。

扭矩T = R * m * 9.8其中R是轴半径,M是物体的重量。

[伺服电机功率选择要点]电动机的功率应根据生产机械所需的功率进行选择,以使电动机尽可能在额定负载下运行。

如果电动机功率太小,就会出现“拉小马车”的现象,这将导致电动机长期过载,并由于发热而损坏其绝缘。

甚至电动机也烧毁了。

如果电动机功率太大,就会出现“大马拉小车”的现象。

输出的机械功率不能得到充分利用,功率因数和效率不高,不仅不利于用户和电网。

而且这是浪费功率。

伺服电机功率实际选择的计算方法1.为了正确选择电动机功率,必须进行以下计算或比较:功率P = f * V / 1000(P =计算的功率kW,f =所需的拉力N,v =工作机的线速度M / s)2.对于恒定负载连续运行模式,可以根据以下公式计算所需的电动机功率:P1(kw):P = P / n1n2其中N1是生产机械的效率;N2是电动机的效率,即传动效率。

通过该公式计算出的功率P1不必与乘积功率相同。

因此,所选电动机的额定功率应等于或略大于计算的功率。

3.电机功率采用等级比法选择所谓的类比法是比较类似生产机械中使用的电动机的功率。

具体方法是:知道本机组或附近其他机组的类似生产机械中如何使用大功率电动机,然后选择具有类似功率的电动机进行试运行。

调试的目的是验证所选电动机是否与生产机械匹配。

验证方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,并将测量的电流与电动机铭牌上标出的额定电流进行比较。

伺服电机选型计算(自动计算版)

伺服电机选型计算(自动计算版)

负载质量M(kg)5·滚珠丝杠节距P(mm)10·滚珠丝杠直径D(mm)20·滚珠丝杠质量MB(kg)3·滚珠丝杠摩擦系数μ0.1·因无减速器,所以G=1、η=11②动作模式的决定速度(mm/s)单一变化·负载移动速度V(mm/s)300·行程L(mm)360·行程时间tS(s) 1.4·加减速时间tA(s)0.2·定位精度AP(mm)0.01③换算到电机轴负载惯量的计算滚珠丝杠的惯量JB= 1.50E-04kg.m2负载的惯量JW= 1.63E-04kg.m2换算到电机轴负载惯量JL=JW J=G2x(J W+J2)+J1 1.63E-04kg.m2L④负载转矩的计算对摩擦力的转矩Tw7.80E-03N.m换算到电机轴负载转矩TL=Tw7.80E-03N.m⑤旋转数的计算转数N N=60V/P.G1800r/min⑥电机的初步选定[选自OMNUC U系列的初步选定举例]选定电机的转子·惯量为负载的JM≥J L/30 5.42E-06kg.m2 1/30*以上的电机选定电机的额定转矩×0.8TMx0.8>T L0.5096>比换算到电机轴负载转矩大的电机N.m* 此值因各系列而异,请加以注意。

⑦加减速转矩的计算加减速转矩TA0.165N.m⑧瞬时最大转矩、有效转矩的计算必要的瞬时最大转矩为T1T1=TA+TL0.1726N.mT2=TL0.0078N.mT3=TL-TA-0.1570N.m有效转矩Trms为0.095N.m⑨讨论负载惯量JL 1.63E-04kg.m2≦[电机的转子惯量JM有效转矩Trms0.095N.m﹤[电机的额定转矩瞬时最大转矩T10.1726N.m﹤[电机的瞬时最大转矩必要的最大转数N1800r/min≦[电机的额定转数编码器分辨率R=P.G/AP.S1000(脉冲/转)U系列的编码器规格为204速度(mm/s)3000.210.20.2时间(s)初步选择定R88M-U20030(Jm= 1.23E-05根据R88M-U20030的额定转矩Tm=(N.m)≦[电机的转子惯量JM1.23E-05×[适用的惯量比=30]﹤[电机的额定转矩0.5096N.M7.8E-030.637﹤[电机的瞬时最大转矩 1.528N.M≦[电机的额定转数3000r/minU系列的编码器规格为2048(脉冲/转),经编码器分频比设定至1000(脉冲/转)的情况下使用。

电机负载扭矩计算

电机负载扭矩计算

一、计算折合到电机上的负载转矩的方法如下:1、水平直线运动轴:9.8*µ·W·P BT L= 2π·R·η(N·M)式P B:滚珠丝杆螺距(m)µ:摩擦系数η:传动系数的效率1/R:减速比W:工作台及工件重量(KG)2、垂直直线运动轴:9.8*(W-W C)P BT L= 2π·R·η(N·M)式 W C:配重块重量(KG)3、旋转轴运动:T1T L= R·η(N·M)式 T1:负载转矩(N·M)二:负载惯量计算与负载转矩不同的是,只通过计算即可得到负载惯量的准确数值。

不管是直线运动还是旋转运动,对所有由电机驱动的运动部件的惯量分别计算,并按照规则相加即可得到负载惯量。

由以下基本公式就能得到几乎所有情况下的负载惯量。

1、柱体的惯量)由下式计算有中心轴的圆柱体的惯量。

如滚珠丝杆,齿轮等。

πγD4L (kg·cm·sec2)或πγ·L·D4(KG·M2)J K= 32*980 J K= 32式γ:密度(KG/CM3)铁:γ〧7.87*10-3KG/CM3=7.87*103KG/M3铝:γ〧2.70*10-3KG/CM3=2.70*103KG/M3 JK:惯量(KG·CM·SEC2)(KG·M2)D:圆柱体直径(CM)·(M)L:圆柱体长度(CM )·(M)2、运动体的惯量用下式计算诸如工作台、工件等部件的惯量 W P BJ L1= 980 2π(KG·CM·SEC2)P B 2=W2π(KG·M2)式中:W:直线运动体的重量(KG)PB:以直线方向电机每转移动量(cm)或(m)3、有变速机构时折算到电机轴上的惯量1、KG·CN:齿轮齿数Z12JL1= Z2 *J0 (KG·CM·SEC2)(KG·M2)三、运转功率及加速功率计算在电机选用中,除惯量、转矩之外,另一个注意事项即是电机功率计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服电机选型及负载转矩计算
惯量转矩计算
机械制造商在选购电机时担心切削力不够,往往选择较大规格的马达,这不但会增加机床的制造成本,而且使之体积增大,结构布局不够紧凑。

本文以实例应用阐明了如何选择最佳规格电机的方法,以控制制造成本。

一、进给驱动伺服电机的选择
1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:
Jl<5×Jm
1、负载转矩的计算
负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:
Tl=(F*L/2πμ)+T0
式中:Tl折算到电机轴上的负载转矩(N.M);
F:轴向移动工作台时所需要的力;
L:电机轴每转的机械位移量(M);
To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);
Μ:驱动系统的效率
F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂
直轴)。

无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。

W:滑块的重量(工作台与工件)Kg;
Μ:摩擦系数;
Fc:切削力的反作用力;
Fg:用镶条固紧力;
Fcf:由于切削力靠在滑块表面作用在工作台上的力(kg)即工作台压向导轨的正向压力。

计算转矩时下列几点应特别注意:
(a)由于镶条产生的摩擦转矩必须充分地考虑。

通常,仅仅从滑块的重量和摩擦系数来计算的转矩很小的。

请特别注意由于镶条加紧以及滑块表面的精度误差所产生的力矩。

(b)由于轴承,螺母的预加载,以及丝杠的预紧力滚珠接触面的摩擦等所产生的转矩均不能忽略。

尤其是小型轻重量的设备。

这样的转矩回应影响整个转矩。

所以要特别注意。

(c)切削力的反作用力会使工作台的摩擦增加,以此承受切削反作用力的点与承受驱动力的点通常是分离的。

如图所示,在承受大的切削反作用力的瞬间,滑块表面的负载也增加。

当计算切削期间的转矩时,由于这一载荷而引起的摩擦转矩的增加应给予考虑。

(d)摩擦转矩受进给速率的影响很大,必须研究测量因速度工作台支撑物(滑块,滚珠,压力),滑块表面材料及润滑条件的改变而引起的摩擦的变化。

已得出正确的数值。

(e)通常,即使在同一台的机械上,随调整条件,周围温度,或润滑条件等因素而变化。

当计算负载转矩时,请尽量借助测量同种机械上而积累的参数,来得到正确的数据。

2.负载惯量的计算。

由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。

电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。

1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算:
J=(πγ/32)*D4L(kg cm2)如机构为钢材,则可按下面公式计算:
J=(0.78*10-6)*D4L(kg cm2) 式中: γ材料的密度(kg/cm2) D圆柱体的直经(cm) L圆柱体的长度(cm)
2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出:
J=W*(L/2π)2 (kg cm2)式中: W直线移动物体的重量(kg) L电机每转在直线方向
移动的距离(cm)
3)圆柱体围绕中心运动时的惯量如图所示: 圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算: J=Jo+W*R2(kg cm2) 式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2) W圆柱体的重量(kg) R旋转半径(cm)
4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下: J=(N1/N2)2Jo 式中:N1 N2为齿轮的齿数
3.电机加速或减速时的转矩
电机加速或减速时的转矩
1)按线性加减速时加速转矩计算如下: Ta=(2πVm/60*104) *1/ta(Jm+JL)(1-e-ks。

ta) Vr=Vm{1-1/ta.ks(1-e-ksta) Ta加速转矩(N.M) Vm快速移动时的电机转速(r/min) Ta加速时间(sec) Jm电机惯量(N.m.s2) JL负载惯量(N.m.s2) Vr加速转矩开始减少的点 Ks伺服系统位置环增益(sec-1)
电机按指数曲线加速时的加速转矩曲线此时,速度为零的转矩To可由下面公式给出: To==(2πVm/60*104) *1/te(Jm+JL) Te指数曲线加减速时间常数
2)当输入阶段性速度指令时。

这时的加速转矩Ta相当于To,可由下面公式求得
(ts=ks),Ta==(2πVm/60*104)*1/ts(Jm+JL)。

3.工作机械频繁启动,制动时所需转矩。

当工作机械作频繁启动,制动时,必须检查电机是否过热,为此需计算在一个周期内电机转矩的均方根值,并且应使此均方根值小于电机的连续转矩。

电机的均方根值:
Trms=√[(Ta+Tf)2t1+Tf2t2+(Ta-Tf)2t1+To2t3]/T周
式中: Ta加速转矩(N.M) Tf摩擦转矩(N.M) To在停止期间的转矩(N。

M)
t1t2t3t周所知的时间。

t1t2t3t周所知的时间示意图
4.负载周期性变化的转矩计算
也需要计算出一个周期中的转矩均方根值Trms。

且该值小于额定转矩。

这样电机才不会过热,正常工作。

负载惯量与电机的响应和快速移动ACC/DEC时间息息相关。

带大惯量负载时,当速度指令变化时,电机需较长的时间才能到达这一速度,当二轴同步插补进行圆弧高速切削时大惯量的负载产生的误差会比小惯量的大一些。

通常,当负载惯量小于电机惯量时上述提及的问题一般不会发生。

如果高于5倍马达转子惯量,一般伺服会出现不良反应,像高速激光切割机床,在设计时就要考虑负载惯量低于电机转子惯量。

相关文档
最新文档