低温余热发电技术
低温余热发电技术简介
-1,000
Time / min
Steam Flow Rate Steam For Generation Steam in/from Accumulator
蒸汽负荷平衡图
低温余热的基本概念
Consideration
EAF
低温余热发电技术简介
余热发电原理
余热发电原理
Rankine Cycle
烧结厂5MW低温余热电站
余热资源基础条件
序号 名称 低温热源成分 N2 空气组成 1 O2 H2O 成分 灰分 含量 平均粒径 烟气流量 烟气进口温度 符号 / / / / / / / Vg tgi / g/Nm3 μm Nm3/h ℃ Vol.% 单位 / 数 据 空气 78 21 1 铁矿石烧结熟料 3 100 150,000 368
650
HT
MT 350~650℃ LT <350℃
350
MT
LT
低温余热的基本概念
Location
烧结生产线 在烧结生产过程中,烧制好的成品温度在500~800℃ ,为了便于运输需将其冷却至常温。烧制好的成品的显热 ,在冷却的过程中随热空气(300~350℃)排放到大 气中,此热空气的流量很大,极具回收价值,是低温余热 发电良好的余热资源。 炼铁 炼铁高炉产生温度高于80℃冲渣循环热水,利用热水的 热量,通过复合闪蒸补汽式纯低温余热发电技术也可以进 行低温余热发电 。
Consideration
350 300 250 200 150 100 50 0 1 3 5 137 122
EAF
304.234 264.941 188.640 153.052 84.121 133
有机朗肯循环低温余热发电系统综述
有机朗肯循环低温余热发电系统综述引言在工业生产过程中,大量的热能会以余热的形式排放到环境中,造成了能源的浪费。
这些废热也可能对环境造成影响。
利用余热进行发电,不仅可以提高能源利用效率,还可以减少对环境的影响。
有机朗肯循环低温余热发电系统正是一种利用余热发电的新型技术,本文将就有机朗肯循环低温余热发电系统的原理、特点、应用及发展前景进行综述。
一、有机朗肯循环低温余热发电系统的原理有机朗肯循环低温余热发电系统是利用有机朗肯循环技术,将低温余热转化为电能的一种系统。
其原理是利用有机朗肯循环工质和低温热源之间的温差来驱动发电机发电。
有机朗肯循环是将有机工质置于一个封闭的循环系统内,利用热能的输入和排出来驱动涡轮机进行发电的一种循环系统。
当有机工质受热使得蒸汽压升高时,蒸汽压推动涡轮机工作,从而带动发电机发电;而在冷凝器中,有机工质又被冷却再次变成液态,完成循环。
有机朗肯循环低温余热发电系统是通过这样一个闭合的循环系统,将低温余热转化为电能。
二、有机朗肯循环低温余热发电系统的特点1. 低温工作:有机朗肯循环低温余热发电系统的工作温度低,通常在100°C以下。
这使得这种系统可以有效利用那些传统热能利用技术无法利用的低品位热能资源,如煤矿瓦斯、生活污水、工业废热等。
2. 环保高效:有机朗肯循环低温余热发电系统的工作过程无需核心机械设备如大型锅炉或锅炉,排放的废气和废水相对较少,具有较高的环保性。
由于其低温工作特点,利用的低品位热能资源不会与食品、药品等高温生产过程相冲突,环保性较好。
3. 经济效益:有机朗肯循环低温余热发电系统具有投资少、成本低、回收期短等特点,从经济角度来看很有吸引力。
4. 可操作性强:有机朗肯循环低温余热发电系统的操作比较简便,不需要特别复杂的操作程序,管理维护成本低。
三、有机朗肯循环低温余热发电系统的应用有机朗肯循环低温余热发电系统已经在多个领域得到了应用,主要包括以下几个方面:1. 电厂余热利用:在电厂生产过程中,通常会有大量的低温余热排放,有机朗肯循环低温余热发电系统可以有效地利用这些余热进行发电,提高能源利用效率。
ORC低温余热发电技术
ORC低温余热发电技术基于有机朗肯循环的ORC低温余热发电技术伴随国际能源价格持续上涨,及对可再生能源、清洁能源的呼声日益升高,有机工质朗肯循环(Organic Rankine Cycle简称ORC)低温发电技术在国际电力工业市场已经成为一个异军突起的黑马。
典型的蒸汽动力发电系统,其工作循环可以理想化为由两个可逆定压过程和两个可逆绝热过程组成的理想循环,包括以下四个热力学过程:第一步:定压吸热过程,第二步:绝热膨胀过程,第三步:定压放热过程,第四步:绝热加压过程。
该热力循环理论是由19世纪苏格兰工程师W.J.M.Rankine提出,为纪念其取得的成就,蒸汽动力装置的基本循环亦称为为朗肯循环(Rankine Cycle)。
有机工质朗肯循环专指以低沸点(蒸发温度38度,正戊烷)氟碳氢化合物为循环工质的热力系统,ORC低温发电技术就是基于这一工作过程的发电系统,也称有机工质朗肯循环发电。
ORC低温发电技术,这里低温泛指的温度小于150度但大于90度的热源,其低温热源是工业过程废热、太阳能、海洋温差、地热等清洁能源,技术突破点在于研究更低的热源温度以驱动透平做功发电,以适应更多的工况条件。
尽管发电效率低于传统火电,但由于使用的是清洁能源及工业过程中被废弃的低品质余热,因此在国际能源市场发展迅速。
常规的化石燃料发电技术(火力发电),即利用煤炭、重油或天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气冲转汽轮机驱动发电机来发电。
这个系统中的循环工质是除盐水,由于水的物理性质(一个大气压,100度蒸发),因此传统电力工业追求的是更高的温度计压力,以提高发电效率,如:超临界、超超临界等。
但是提高发电效率的同时,也带来了环境污染、粉尘、气候变化等负面因素。
因此在低温发电领域,ORC与传统的发电技术相比,具备以下几个优势:1)有机工质具有良好的热力学性质,低的沸点及高的蒸气压力使0RC方法比水蒸气朗肯循环具有较高的热效率,对较低温度热源的利用有更高的效率。
低温余热发电技术简介
第一代余热发电技术定义及特征
1.水泥窑第一代纯低温余热发电技术:在不
影响水泥熟料产量、质量,不降低水泥窑运 转率,不改变水泥生产工艺流程、设备,不 增加熟料电耗和热耗的前提下,采用 0.69MPa~1.27MPa——280℃~340℃整齐将 水泥窑窑尾预热器排出的350℃以下废气余热, 窑头熟料冷却机排出的350℃以下废气余热转 化为电能的技术。
(3) 合适的汽包工作压力。考虑在换热过程中,蒸发 受热面内汽水混合物的温度不变,而烟气同汽水混合物 之间传热温差窄点在20℃以上受热面的布置才合理,汽 水混合物的温度直接受压力的影响,所以选择合理的压 力水平为受热面布置创造条件,以防止锅炉造价过高。 (4) 充分降低废气温度。受窑尾废气要用于烘干生料 的工艺限制,一般窑尾废气温度只能降至225℃左右; 窑头余风可以充分降低,但降低过多则造成传热温差小 使得换热面积布置过多,使锅炉造价提高,同时吸收过 多的低品质热量也无法有效提高发电量,所以窑头余风 的降低以满足为窑头和窑尾余热锅炉提供足量的汽包给 水即可。根据热量分配和能量平衡计算,窑头余风降至 96~98℃即可满足要求。 (5) 合理布置受热面。在布置受热面时要考虑窑尾、 窑头的烟气温度特性以及汽轮发电机的特性进行综合考 虑,同时考虑选用合理温差以降低锅炉造价。
第三代系统特点
将窑头冷却机余风进行梯级利用,原中部抽
风口改为两个抽风口,一个为高温480-500℃, 一个为中温330-380℃。高温风将来自窑头窑 尾余热锅炉的低温过热蒸汽进一步提高到 430℃左右,该工艺较第一代系统提高余热发 电量15-20%左右。
中国第二代水泥窑纯低温余热发电技 术与发达国家先进技术的比较
谢谢观赏
WPS Office
ORC低温余热发电技术
ORC低温余热发电技术ORC(Organic Rankine Cycle)低温余热发电技术是一种基于有机工质的热力循环系统。
其基本原理是通过将废热能源加热有机工质,使其蒸发成为高温高压的蒸汽,然后利用蒸汽驱动涡轮发电机产生电能。
在发电过程中,蒸汽通过冷凝器冷却成为液态,再经过泵送回加热器进行循环利用。
首先,ORC低温余热发电技术具有适应性强的特点。
它能够利用温度范围在80℃至300℃之间的低温余热能源,如钢铁、化工、电力等行业产生的废热。
与传统的蒸汽发电相比,ORC技术的适用范围更广泛。
其次,ORC低温余热发电技术具有环境友好的特点。
在发电过程中,工质采用的是有机物质,具有低的排放和环境污染风险。
同时,ORC技术的发电效率较高,能够充分利用废热能源,减少能源浪费和环境污染。
再次,ORC低温余热发电技术具有经济性优势。
废热是一种能源资源,通过利用废热发电可以降低企业的能源成本,提高能源利用率。
同时,ORC技术相对成熟,投资成本相对较低,回报周期相对较短,极大地增加了其在实际应用中的经济性。
最后,ORC低温余热发电技术的应用前景广阔。
随着能源需求的增长和环境保护的要求,利用低温余热进行发电已经成为一种重要的能源储备和环境保护手段。
而ORC技术在利用低温余热方面具有独特的优势,被广泛应用于电力、制造业、化工等领域。
总的来说,ORC低温余热发电技术能够通过利用废热能源进行发电,具有适应性强、环境友好、经济性优势和应用前景广阔的特点。
在今后的发展中,随着技术进步和应用范围的拓宽,ORC低温余热发电技术有望在能源行业产生更大的社会经济效益。
火力发电厂烟气低温余热利用技术
火力发电厂烟气低温余热利用技术火力发电厂烟气低温余热利用技术1. 简介火力发电厂是一种利用燃煤、燃油或天然气等化石燃料燃烧产生高温烟气,通过锅炉转化为蒸汽,最终驱动汽轮发电机发电的设备。
在这个过程中,发电厂往往会产生大量的废热,其中包括烟气中的低温余热。
如何有效利用这些低温余热成为了一项重要的技术挑战和发展方向。
2. 烟气低温余热的特点和现状烟气低温余热一般指的是温度在150℃以下的废热,由于温度较低,传统的蒸汽循环发电技术无法高效利用。
在很长时间内,烟气低温余热往往被直接排放或仅仅用于供热等低效能领域,导致能源的浪费和环境的污染。
3. 烟气低温余热利用技术的发展随着能源需求的增长和环境保护的要求,烟气低温余热利用技术得到了广泛关注和研发。
目前,有以下几种常见的烟气低温余热利用技术:3.1 烟气余热锅炉烟气余热锅炉是将烟气中的低温余热通过锅炉进行回收,产生高温高压蒸汽用于发电或供热。
利用烟气余热锅炉可以将废热转化为有用热能的同时减少对燃料的需求,实现能源和环保的双重效益。
3.2 烟气余热汽轮发电烟气余热汽轮发电是利用烟气中的低温余热直接驱动汽轮机发电。
相比于烟气余热锅炉,这种技术更加高效,能够直接将低温余热转化为动力能源,提高能源利用效率。
3.3 烟气废热换热器烟气废热换热器是在烟气管道中设置换热器,通过与其他介质的热交换,将烟气中的余热传递给其他工艺流体,如空气、水等。
这种技术可以将烟气中的低温余热有效利用,并用于加热或提供热水、热风等需求。
4. 烟气低温余热利用技术的优势和应用烟气低温余热利用技术具有以下几个优点:4.1 节能减排:有效利用废热可以减少对化石燃料的需求,降低能源消耗,减少二氧化碳等温室气体的排放。
4.2 综合利用:烟气低温余热可用于发电、供热、工业生产等多个领域,实现能源的综合利用和优化配置。
4.3 环境友好:废热的充分利用有助于减少大气污染物的排放,改善环境质量。
烟气低温余热利用技术的应用非常广泛,包括钢铁、化工、建材、石油等行业,以及供热和发电领域。
纯低温余热发电技术
Page 23
b、窑尾预热器方面,最重要的改变是利用G级预 热器内筒设置过热器,利用450-600℃废气产生过 热蒸汽。在蒸汽参数达到预定目标时,G级预热 器进口废气温度仅降低20-25℃,这种变化是水泥 生产所允许的变化范围。
c、为了提高窑头熟料冷却机废气余热回收率,窑头 熟料冷却机冷却风采用循环风方式,即将窑头AQC 炉出口废气部分或全部返回冷却机。
Page 13
Page 14
双压技术是根据水泥窑废气余热的品位的 不同, 余热锅炉分别生产较高压力和较低压力 的两路蒸汽。较高压力的蒸汽作为主蒸汽进入 汽轮机主进汽口推动汽轮机转动作功发电。余 热锅炉生产出较高压力的蒸汽后, 烟气温度降 低, 余热品位下降,那么根据低温烟气的品位, 再生产较低压力的低压进汽, 进入汽轮机的低 压进汽口, 辅助主蒸汽一起推动汽轮机作功发 电。
4、发电机,国内采用空冷式发电机;国外 也是。
Page 22
第二代纯低温余热发电技术
采用的重要技术措施有: a、窑头熟料冷却机方面,改变抽取窑头熟料冷 却机废气方式:多阶段抽取废气,使能量实现梯 级利用。即在冷却机进料端设置一抽取400-600℃ 抽废气口,作为过热器热源,产生过热蒸汽;冷 却机中部设置抽取260-360℃废气的抽废气口,作 为窑头AQC锅炉热源.产生饱和蒸汽,并产生0.10.5MP的饱和低压低温蒸汽和85-200℃热水。
余热发电技术
第一节大型干法水泥纯低温余热发电技术概述一、掌握内容1、复合闪蒸补汽式纯低温余热发电系统工艺流程2、复合闪蒸补汽式纯低温余热发电废气的取热方法3、纯低温余热发电技术一是在新型干法生产线生产过程中,通过余热回收装置(余热锅炉)将窑头、窑尾排出大量地品位的废气渔人进行回收换热,产生过热蒸汽推动汽轮机实现热能-机械能的转换,再带动发电机发出电能,并供给水泥生产过程中的用电负荷从而不仅大大提高了水泥生产过程中能源的利用水平,对于保护环境,提高企业的经济效益,提升产品的市场竞争力,起到了巨大的促进作用。
4、纯低温余热发电技术的特点是在不提高水泥生产过程中能耗指标的前提下,完全利用水泥煅烧过程中产生的余热进行回收,最大限度的提高水泥生产过程中热能的利用效率,另外配制纯低温余热发电系统将对原油水泥工艺系统不产生影响当两个系统接口计合理,将融和成为一个更优的大系统。
二、了解内容1、水泥余热发电应用的历史条件和发展方向2、国内余热发电已普遍采用的几种热力循环系统、循环参数及废气取热方式的特点和存在的主要问题讲解资料一、发展水泥窑余热发电技术的目的1. 1降低能耗、保护环境水泥熟料锻烧过程中,由窑尾预热器、窑头熟料冷却机等排掉的400c以下低温废气余热,其热量约占水泥熟料烧成总耗热量30%以上,造成的能源浪费非常严重。
水泥生产,一方面消耗大量的热能(每吨水泥熟料消耗燃料折标准煤为100〜115kg),另一方面还同时消耗大量的电能(每吨水泥约消耗90〜115kwh)。
如果将排掉的400℃以下低温废气余热转换为电能并回用于水泥生产,可使水泥熟料生产综合电耗降低60%或水泥生产综合电耗降低30%以上,对于水泥生产企业:可以大幅减少向社会发电厂的购电量或大幅减少水泥生产企业燃烧燃料的自备电厂的发电量以大大降低水泥生产能耗;可避免水泥窑废气余热直接排入大气造成的热岛现象,同时由于减少了社会发电厂或水泥生产企业燃烧燃料的自备电厂的燃料消耗,可减少CO2等燃烧废物的排放而有利于保护环境。
低温余热利用技术
低温余热利用技术低温余热是指工业生产过程中产生的温度较低的废热。
传统上,这些废热往往被直接排放到大气中,造成能源的浪费和环境的污染。
然而,随着能源资源的日益紧缺和环境保护意识的增强,低温余热利用技术成为了一种重要的能源节约和环境保护手段。
低温余热利用技术的应用范围非常广泛,涵盖了工业、建筑、交通运输等多个领域。
下面将重点介绍几种常见的低温余热利用技术。
1. 热泵技术热泵技术是一种能将低温热能转化为高温热能的技术。
通过利用热泵循环原理,将低温余热中的热能提取出来,并通过压缩制冷剂的方式转化为高温热能。
这种技术可以广泛应用于供暖、制冷、热水供应等领域,可显著提高能源利用效率。
2. 有机朗肯循环技术有机朗肯循环技术是一种利用低温热能发电的技术。
该技术利用有机朗肯循环工质在低温下的膨胀特性,将低温余热转化为机械能,进而驱动发电机发电。
相较于传统的蒸汽朗肯循环,有机朗肯循环技术在低温条件下具有更高的热效率和更广泛的应用范围。
3. 低温余热供暖技术低温余热供暖技术是一种将低温余热直接利用于供暖的技术。
通过将低温余热与传统供暖系统相结合,可以显著提高供暖效果并降低能源消耗。
这种技术尤其适用于工业企业和大型建筑物,如钢铁厂、化工厂和商业中心等。
4. 低温余热利用于制冷技术低温余热利用于制冷技术是一种将低温余热用于制冷的技术。
通过将低温余热与吸收式制冷系统相结合,可以实现废热的回收利用,并达到节能减排的目的。
这种技术在冷库、制冷车辆等领域有着广泛的应用前景。
5. 低温余热利用于热水供应技术低温余热利用于热水供应技术是一种将低温余热用于供应热水的技术。
通过将低温余热与热水系统相结合,可以实现热水的供应,并降低能源的消耗。
这种技术在酒店、浴室、游泳馆等场所有着广泛的应用前景。
低温余热利用技术是一种重要的能源节约和环境保护手段。
通过热泵技术、有机朗肯循环技术、低温余热供暖技术、低温余热利用于制冷技术以及低温余热利用于热水供应技术等多种技术手段的应用,可以有效地利用低温余热,提高能源利用效率,减少环境污染,实现可持续发展。
纯低温余热发电技术
出AQC锅炉的废气进入原有的窑头收尘器收尘后,由原有窑头排风机排放,冷却机剩余的低温余风仍由原路进窑头收尘器。原余风管路系统可做为锅炉的旁通烟道,当锅炉故障或水泥生产不正常时可关闭去AQC锅炉的阀门,气流可不经锅炉而由此旁路系统直接排至窑头收尘器。在冷却机原余风管路上、新设的去锅炉管路上和出锅炉管路上均增设电动百叶阀门,以实现对气流的控制和切换。锅炉和沉降室的烟气总阻力控制小于1000Pa,使改造后的气体流量和压力在窑头排风机的能力允许范围之内。
第四阶段为2005年以后。由于水泥窑纯低温余热发电技术和装备已日臻成熟,国家产业政策明确规定不允许上带补燃炉的余热发电系统,而纯低温余热发电的概念是相对于带补燃炉余热发电技术而命名的,随着带补燃炉余热发电技术被取缔,纯低温余热发电技术被更名为水泥窑低温余热发电技术。自此,水泥余热发电进入了蓬勃发展阶段。
为了同时满足发电与原、燃料烘干的需要,窑尾SP锅炉一般均采用立式锅炉,布置在窑尾预热器后的高温风机之上。窑尾在最上一级(C1级)预热器至窑尾高温风机的下行管道上引出废气管道与SP锅炉相连,锅炉出口烟气温度控制在220℃左右,送到窑尾高温风机进风口的管道上,以满足下道工序烘干原料和燃料的需要。烘干原料和燃料后的废气由原废气处理系统的收尘器净化后排入大气。控制锅炉的烟气阻力≤1000Pa,使系统的阻力在窑尾高温风机的能力允许范围之内。在原预热器出口至高温风机的烟道引出管道、原下行管道以及锅炉出口管道上均增设电动百叶阀门,对气流进行控制和切换,原下行管道可做为锅炉的旁通烟道。当需要提高烘干原料和燃料的烟气温度时,可适当调节下行烟道调节阀,让锅炉出口的低温烟气和C1级出口直接下行的高温烟气混合,提高进窑尾风机(原料磨)的烟温,其调节范围从220℃或更低直至C1级出口温度(即烟气一点不通过SP锅炉),而且SP炉的进口烟道阀和旁路烟道阀,正常设计在窑控制室操作,窑操作可随时根据具体情况调整,既满足了水泥生产的稳定运行,又保证了SP炉的安全。通过旁通烟道的调节作用还可使水泥生产及余热锅炉的运行均达到理想的运行工况。
低温余热发电工艺流程
低温余热发电工艺流程
《低温余热发电工艺流程》
低温余热发电是指利用工业生产过程中产生的低温余热能进行发电的一种技术。
低温余热发电工艺流程主要包括余热收集、传热、蒸汽发电和余热利用四个步骤。
首先,余热收集是最关键的一步。
在工业生产中,许多过程会产生大量的低温余热,如烟气、燃烧废气、水蒸气和热冷却水等,这些余热通常被直接排放到大气中而未被有效利用。
为了收集这些低温余热能,通常采用换热器等设备进行收集,并将余热转化为可用的能源。
其次,传热是将收集到的低温余热能传递给工作介质(一般是水),使其发生温度升高。
常见的传热设备包括换热器、热交换器等,通过这些设备,余热能被传递给工作介质,起到热量集中和转换的作用。
第三,蒸汽发电是利用传递来的热能使水蒸发成蒸汽,驱动汽轮机产生动力,并最终带动发电机发电。
通过这一步骤,余热被充分利用,并转化为电能。
最后,余热利用是将发电厂产生的废热再次利用,提高发电效率。
常见的利用方式包括供暖、供热、生活和工业用水加热等,有效地提高了能源的利用效率。
总的来说,低温余热发电工艺流程是一种环保节能的新型发电
方式,通过收集和利用工业生产中的低温余热能,可以减少对地球资源的消耗,达到减排减治理好环境的目的。
随着技术的不断进步和完善,低温余热发电在未来将会有更广泛的应用和前景。
火力发电厂低温循环水余热利用工程技术规程
火力发电厂低温循环水余热利用工程技术规程一、概述火力发电厂是目前世界上主要的电力发电方式之一,但是在发电过程中会产生大量的余热。
为了充分利用这些余热资源,提高发电效率,降低能源消耗,低温循环水余热利用工程技术规程应运而生。
本文针对低温循环水余热利用工程技术进行全面分析和规范,以期为相关技术人员提供参考。
二、低温循环水余热利用工程概述1. 余热资源概述火力发电厂在电力发电过程中,会有大量的低温余热产生,主要来自于冷凝水和冷却水。
这些低温余热若能有效利用,可减少燃料消耗,提高发电效率。
2. 余热利用方式低温循环水余热可通过多种方式进行利用,如供暖、制冷、热水供应等,其中最常见的方式是通过余热锅炉将余热转化为蒸汽,用于发电厂的自身供电。
三、低温循环水余热利用工程技术规程1. 技术规范低温循环水余热利用工程技术规程应包括余热资源测算、利用设备选型、系统设计参数等方面的规定,以保证余热利用工程的安全、高效运行。
2. 设备选型针对不同的余热利用需求,应选择适当的余热利用设备,如余热锅炉、换热器等。
在选型过程中应考虑设备的整体性能、能耗、维护便捷性等因素。
3. 设计参数在低温循环水余热利用工程设计中,应合理确定余热利用系统的参数,如蒸汽压力、温度、循环水流量等,以确保余热利用系统的稳定可靠运行。
四、低温循环水余热利用工程技术应用案例1. 案例一:某火力发电厂余热锅炉改造项目某火力发电厂通过余热锅炉将低温循环水余热转化为蒸汽,实现了自身供电,年节约燃料消耗达到10以上。
2. 案例二:某地区火力发电厂余热供暖项目某地区火力发电厂将低温循环水余热利用于供暖,为周边居民提供了稳定、高效的供热服务,得到了当地居民的一致好评。
五、结论低温循环水余热利用工程技术规程对于提高火力发电厂发电效率,降低能源消耗,具有重要的意义。
通过合理规划和利用余热资源,可以实现节能减排,为可持续发展做出贡献。
希望本文对相关技术人员能够有所启发,不断改进和完善低温循环水余热利用工程技术规程,推动能源利用及环保工作取得更大成就。
水泥工业纯低温余热发电技术及其效益分析
水泥工业纯低温余热发电技术及其效益分析水泥工业是我国能源消耗最大的行业之一,同时也是排放大量CO2的行业。
在水泥生产过程中,熟料的制备需要大量的煤炭或其他化石能源,并且会产生大量烟尘、氢氧化钙蒸汽以及高温余热等有害物质。
传统的水泥生产工艺中,高温余热并没有被有效地利用,导致能源浪费和环境污染的问题日益凸显。
因此,开发水泥工业纯低温余热发电技术具有重要的意义。
纯低温余热发电技术是指在较低温度下,通过对水泥生产过程中的余热进行回收利用,将其转化为电能的技术。
该技术的核心是热力循环工艺,通过热交换和蒸汽发电装置,将热能转化为机械能,进而驱动发电机产生电能。
水泥工业的纯低温余热主要来自两个方面:一是熟料冷却的过程中,熟料从窑头到窑尾的过程中会释放很多的热量;二是分解炉中石灰石分解产生的高温石灰比较少,而未反应的石灰和石灰须在窑中长距离高温、长寿命的保温层耐火砖参与烧结时,会释放很多的热量。
纯低温余热发电技术的效益分析主要包括经济效益和环境效益两个方面。
从经济效益来看,纯低温余热发电技术可以将水泥工业中原本浪费的热能转化为电能,减少了水泥企业的能源消耗。
这不仅可以降低企业的生产成本,提高企业的竞争力,还可以通过售电获取额外的经济收益。
此外,该技术还可以提高水泥工业的能源利用效率,降低水泥生产的碳排放,符合国家的节能减排政策。
从环境效益来看,纯低温余热发电技术可以有效减少水泥工业的大气污染和温室气体排放。
水泥工业是我国重要的大气污染源和温室气体排放源之一,通过利用纯低温余热发电技术,可以减少煤炭的使用量,降低煤炭燃烧所产生的大气污染物和CO2的排放。
此外,该技术还可以减少石灰石的制备过程中产生的氧化钙蒸汽,降低对大气的污染。
总的来说,水泥工业纯低温余热发电技术的应用具有巨大的经济效益和环境效益。
通过将水泥生产过程中原本浪费的热能转化为电能,可以提高水泥企业的能源利用效率,降低生产成本,增加经济收益,同时减少温室气体排放,改善环境质量,符合可持续发展的要求。
ORC低温余热发电技术专题汇报
ORC低温余热发电技术专题汇报ORC(Organic Rankine Cycle)低温余热发电技术是一种利用低温热源进行发电的技术,能够充分利用工业生产中的低温余热,提高能源利用效率。
本文将从原理、应用、优势和发展前景等方面对ORC低温余热发电技术进行专题汇报。
一、原理ORC低温余热发电技术基于Rankine循环原理,利用有机工质来代替水蒸汽作为工作流体。
通过将余热传输到有机工质中,有机工质在低温下蒸发产生高压蒸汽,然后驱动涡轮发电机产生电能。
相较于传统的蒸汽发电技术,ORC低温余热发电技术可以适应更低的温度条件,使得低温热源也能得到充分利用。
二、应用ORC低温余热发电技术适用于多种工业领域,如钢铁、化工、纺织、石化等。
这些行业中常常产生大量的低温余热,利用ORC技术能够将这些余热转化为有用的电能,实现能量的再利用。
同时,ORC技术还可以应用在农业领域,如养殖场、温室大棚等地方,充分发挥余热利用的潜力。
三、优势1.适应性强:ORC技术适用于各种不同的余热温度,包括100℃以下的低温余热。
这使得它具有广泛的应用前景。
2.环保节能:ORC技术可以将废热转化为电能,减少对外部能源的需求,降低碳排放。
同时,该技术不会产生异味和噪音,对环境友好。
3.综合利用:除了发电,ORC技术还能够产生蒸汽、热水等其他形式的热能,可以满足工业生产的多重需求。
4.经济效益高:通过利用低温余热产生电能,可以降低企业的能源成本,提高生产效率,带来可观的经济效益。
四、发展前景随着节能减排和可再生能源发展的重要性日益凸显,ORC低温余热发电技术具有广阔的发展前景。
首先,国家政策的支持将推动该技术的大规模应用。
其次,随着技术的不断进步和成本的降低,ORC技术将更具吸引力,并有望在更多的行业得到推广。
此外,不断创新的有机工质和设备将进一步提高ORC技术的发电效率和适应性,促进其在低温余热转化领域的应用。
总结:ORC低温余热发电技术是一项能够充分利用工业生产中的低温余热的技术,具有广泛的应用前景。
低温余热发电(ORC)技术
低温余热发电(ORC)技术一、低温余热发电概述目前世界各国都非常重视能源的有效利用,一些发达国家能源利用率都在50%以上,美国的能源利用率已超过60%,而我国只有30%左右。
我国能源利用率低的一个重要原因就是低温余热能源没有得到充分利用。
低温热源泛指温度小于250℃但大于80℃的热源,包括工业过程废热、太阳能、海洋温差、地热等。
在工业领域中,一般低温余热指的是200℃以下的工业生产过程产生的余热气、冷凝水、热水; 150℃以下的气体以及锅炉、工业加热炉的排烟气等热量。
由于这部分余热其品位较低,回收系统初期投资大,回收期长,因此,在相当长的一段时间里低温余热资源都没有引起足够的重视。
低温余热发电是通过回收钢铁、水泥、石化等行业生产过程中排放的中低温废烟气、蒸汽、热水等所含的低品位热量来发电,是一项变废为宝的高效节能技术。
该技术利用余热而不直接消耗能源,不仅不对环境产生任何破坏和污染,反而有助于降低和减少余热直接排向空中所引起的对环境的污染。
由于低温余热发电大部分利用的是温度小于150℃的热源,此时传统的以水(蒸汽)为循环工质的发电系统由于产生的蒸汽压力低,导致发电效率较低,无法产生经济效益。
在低温余热发电中多采用有机工质(如R123、R245fa、R152a、氯乙烷、丙烷、正丁烷、异丁烷等)作为循环工质。
由于有机工质在较低的温度下就能气化产生较高的压力,推动涡轮机(透平机)做功,故有机工质循环发电系统可以在烟气温度200℃左右,水温在80℃左右实现有利用价值的发电。
二、 ORC发电原理及流程有机朗肯循环(Organic Rankine Cycle,简称ORC)是以低沸点有机物为工质的朗肯循环,主要由余热锅炉(或换热器)、透平、冷凝器和工质泵四大部套组成。
有机工质在换热器中从余热流中吸收热量,生成具一定压力和温度的蒸汽,蒸汽进入透平机械膨胀做功,从而带动发电机或拖动其它动力机械。
从透平排出的蒸汽在凝汽器中向冷却水放热,凝结成液态,最后借助工质泵重新回到换热器,如此不断地循环下去。
低温余热发电有机朗肯循环技术
低温余热发电有机朗肯循环技术1. 引言嘿,大家好!今天我们来聊聊一个听上去有点高大上的话题——低温余热发电的有机朗肯循环技术。
别被这个名字吓到了,其实它的原理就像做菜一样,简单却又充满了创意。
你有没有想过,生活中那些被我们忽视的热量,竟然可以变成电?这就像在厨房里,随手一捡就能做出一道美味的佳肴。
走吧,我们一起去探探这项技术的神秘面纱。
2. 低温余热的来源2.1 什么是低温余热?首先,咱们得明白什么是“低温余热”。
简单来说,就是那些在工业生产中或是生活中产生的热量,温度一般在100℃以下,听起来是不是很普通?但是,这些热量如果用得当,可是能为我们带来不少电能。
就像是你家里的热水器,烫得发热,但如果只让它热水,不让它做点别的,那真是白白浪费了。
2.2 余热的应用场景那么,这些余热都来自哪儿呢?想象一下工厂的烟囱、汽车的排气管、甚至你那杯刚泡好的热茶,都是余热的潜力股。
可惜的是,很多时候这些热量就像个小孩子,虽然有潜力,却没人好好引导。
我们就需要像是有机朗肯循环技术那样,给这些热量找个好归宿,真是个聪明的主意呢!3. 有机朗肯循环的工作原理3.1 循环过程好,现在我们来聊聊有机朗肯循环的工作原理。
别担心,听起来复杂,其实就像是在做一场热量的“游乐园”之旅。
首先,我们有一个热源,这就是我们的低温余热。
它通过一个热交换器,把热量传递给一种特殊的有机液体。
说到这里,可能有人会问:“这有机液体到底是什么?”哈哈,简单说,它就是个能在低温下“嗨”的好东西,像个爱玩水的孩子。
3.2 发电过程当这个有机液体吸收了热量后,就会开始变成气体,像气球一样鼓起来。
这时候,气体会推动涡轮,涡轮转动就能发电。
听起来是不是很神奇?就像是把一团热气变成了电流,真是太酷了!而且,循环结束后,这些气体又会冷却,重新变回液体,整个过程就这样循环往复,就像是我们生活中的每一天,有起有落。
4. 技术的优势与挑战4.1 优势那么,这项技术有什么好处呢?首先,利用低温余热发电,可以有效提升能源利用效率。
低温热电技术在节能中的应用探究
低温热电技术在节能中的应用探究第一章:低温热电技术介绍低温热电技术是一种利用材料的 Seebeck 效应将低温热能转化为电能的技术。
该技术通过在材料间建立热电偶,在温度差异的作用下直接将热能转化为电能,从而实现能量转换。
低温热电技术的最大特点就是能够充分利用环境中的低温热能,将其转化为电能,不像传统的燃烧方式排放二氧化碳等有害物质,从而大幅度降低能源浪费和环境污染。
第二章:低温热电技术在节能中的应用1.低温余热发电低温余热指工业生产中产生的低品位热量,一般温度低于200℃。
传统的余热利用方式一般采取换热器和蒸汽机等方式,在利用余热的同时,也面临着传热效率低下和运行维护成本高等问题。
而采用低温热电技术可以直接将低品位热量转化为电能,提高能效、降低运行成本、减少环境污染。
2.冷热能联合供暖系统通过利用地下水、地表水、空气等低温热源,采用热泵技术对低温热能进行提纯后,再利用低温热电技术将其转化为电能,为建筑物供能。
同时,该系统还可以通过采用隔热材料等措施,减少室内能源消耗,实现节能效果。
3.太阳能热泵热水器太阳能热泵热水器是一种利用太阳能作为初级热源,通过热泵技术将低品位热能提升使用温度的热水器。
采用低温热电技术将太阳能热泵中产生的低温热能直接转化为电能,不仅能提高能量利用效率,而且能够大幅度降低使用成本。
第三章:低温热电技术在节能中的优势1.高能量转换效率相比于传统的能源转换方式,低温热电技术能够直接将热能转化为电能,具有高效率的能源转换率。
通过有效利用低品位热能,对于提高能源利用率、降低能源消耗、减少环境污染等方面都有着重要的作用。
2.运行成本低低温热电技术采用的材料通常都是高铁热材料等,价格较传统的热电材料来说略高。
但是在长期的运行中,相对于传统的能源转化方式,低温热电技术可以避免了由于能源消耗而产生的高成本,具有更加经济实用的优点。
3.环保低碳低温热电技术作为一种新型的清洁能源转换技术,不仅能够提高能源利用率,还能够有效地减少碳排放量,有助于实现低碳环保的发展目标。
低温发电技术简介
低温发电技术简介山西易通环能科技集团有限公司2014.2.28一、山西易通环能科技集团有限公司情况简介山西易通环能科技集团有限公司系从事工业余热及地源热综合利用节能环保技术领域的产品研发、生产制造、工程承建、技术服务于一体的科技型企业;长期为高耗能企业提供相应的节能减排方案并提供相应的节能设备的生产和节能工程项目施工管理的企业。
该公司主要生产的产品有:低温发电机组、双螺杆膨胀机、双螺杆空压机、矿山污水净化设备、地源热利用成套设备、高效磁力选矿系列产品等。
2012年与天津大学通过科技成果转让与研发战略合作,成为国家“973”课题成果受让和延续研发示范单位;2013年10月16日,我国首台双循环全流发电机组在山西易通集团的生产车间成功下线。
该机组采用国内领先、世界先进的低温发电技术,为低温余热回收利用领域开辟了新的天地,它的应用标志着我国低温热源利用率的提高,有望实现低温区余热梯级利用。
低温余热发电技术是国家科技部多年立项连续支持并取得了科研成果的“973”科技项目,天津大学与易通集团合作开发出具有完全自主知识产权的天易系列化低温双循环全流发电机组。
二、低温发电技术应用背景我国八大能耗企业使用的能源占工业能源使用量的70%以上,由于热能使用方式必定会带来废热的排放,因此工业余热的排放量是十分惊人的。
这些废热的排放造成能源利用的极大浪费,也是造成温室效应的主要因素。
目前温度低于150 ℃的热能无法实现发电利用,在无直接热利用的条件下,基本排放到大气中,造成极大的能源浪费和环境污染,这种工业余热的总量是非常巨大的。
如钢铁冶金行业、热电行业、煤炭行业、石油炼化行业、化工行业、建材加工行业、食品加工行业等(图1)都有工艺循环冷却水、烟气、乏蒸汽等低品味能源排放。
我国单位产值能耗比世界平均水平高2.4倍,能源利用效率比国际先进水平低10个百分点,回收工业余热可减少工业能源消耗和温室气体的排放,具有巨大的节能潜力。
低温余热发电循环技术
低温余热发电循环技术一、低温余热发电低温余热发电技术是通过回收低于300~400℃的中低温的废蒸汽、烟气所含的低品位的热量来发电,它将低品位的或废弃的热能转化为高级能源——电能。
二、低温余热发电循环技术1、朗肯循环朗肯循环一般指蒸汽郎肯循环,适用于烟气高于350℃以上的余热。
在朗肯循环中,水在锅炉(或余热锅炉)中被加热,产生高温和高压蒸汽。
该蒸汽流过汽轮机时急剧膨胀后冷却至低温、低压的尾气,该汽轮机驱动一台发电机发出电力。
从汽轮机排出的尾气被具有环境温度的空气,或被来自冷却水池或冷却塔中的冷却水冷却成水。
凝结水接着被泵入锅炉重复上述过程。
这种简单的朗肯循环框图如图一所示。
朗肯循环电厂的效率较差,即使是容量最大、采用朗肯循环的最新型的燃煤电厂,一般来说其循环效率都超不过35%(目前国内亚临界参数燃煤电厂的循环效率已达38%,超临界和超超临界参数的燃煤电厂的循环效率分别可达40和43%左右),也就是说燃料燃烧产生的总热量中仅有35%被转换成了热能。
这65%的能量损失是由于一系列的原因造成的。
其中约15%的能量损失是由于燃料中的水分、炉墙的热辐射、排烟损失和自耗电所造成的。
朗肯循环是目前槽式太阳能热电站中广泛采用的动力循环模式, 用太阳热加热集热器中的导热油,经过换热产生蒸汽, 驱动汽轮机带动发电机发电代表性的电站有美国的SEGS 系列电站, 西班牙的Andaso l 系列电站等。
2、有机朗肯循环有机朗肯循环采用高分子量有机工质(如正戊烷), 相变温度低, 可以从温度较低的热源吸热, 并转化为电能。
主要优点是运行温度较低, 可以将槽式集热温度由390°降到304°,降低集热损失; 采用有机工质, 电站可以建在缺水的沙漠地区。
有机朗肯循环系统的主要缺点是循环效率低, 气温较高时比蒸汽循环低15% ~ 25% ,同时成本较高。
3、卡琳娜循环卡琳娜循环系统适合中低温余热利用,是实现200℃以下热电转换最有效的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯低温水泥余热发电技术介绍宁国水泥厂余热发电处前言新型干法水泥生产技术在我国经历了一个逐步完善提升的发展过程。
近年来,新型干法水泥生产技术在应用中不断提升,尤其是海螺集团,在工艺系统优化、自动控制、投资成本、生产规模、劳动生产率和环境保护等生产技术和装备方面,已赶上甚至领先国际先进水平,只是在可燃废料替代率和生产用电自供率方面,与发达国家相比,还存在一定的差距。
近两年来,我国经济发展水平持续高扬,电力需求增长迅猛,电能供应紧张,国家对工业企业节能提出了更高的要求,尤其是对高耗能产业,要求最大限度地回收利用余热,降低能耗,节约能源,实现经济可持续发展战略。
因此,随着水泥市场竞争的日益激烈与残酷,充分利用窑系统排放废气进行余热发电,提高工厂生产用电自供率,降低水泥生产成本,提高产品的性价比,从而占领和扩大水泥市场份额,保持企业可持续发展,是大型水泥企业当前及今后可供选择的技术之一。
一、水泥窑余热发电技术的发展历程简介:水泥窑余热发电技术的发展大致经历了中空水泥窑余热发电技术、带补燃炉的预分解窑余热发电技术和当前的纯低温水泥窑余热发电技术三个阶段,每个阶段的发展都与同时期的水泥发展技术、企业需求、国家产业政策、环境要求等因素息息相关,密不可分。
1、中空水泥窑余热发电技术中空水泥窑余热发电技术已有80多年的历史,我国水泥窑余热发电技术起源于二十世纪三十年代东北及华北地区建设的若干条中空窑配套的高温余热发电系统,很长一段时间内随着小水泥在全国范围的“遍地开花”,中空水泥窑余热发电技术也随之“扎根落户”,得到了较快的发展。
其水泥窑废气温度为800℃~900℃、熟料热耗为6700KJ~8400KJ/kg,所配套的高温余热发电系统的发电能力为每吨熟料100kW~130kW。
二十世纪八十年代后期,由于新型干法水泥技术的迅猛发展,中空窑等落后生产工艺的高能耗、低产量等劣势凸显,已逐步被淘汰,其中空水泥窑余热发电技术同样也少有发展的空间与意义。
2、带补燃炉的预分解窑余热发电技术带补燃炉的预分解窑余热发电技术已发展了10多年,主要是为解决水泥厂供电紧张而设置。
利用窑头窑尾废气余热生产出低压蒸汽或高温水,再经补燃锅炉加温加压,提高蒸汽品质,可发出更多的电能,以满足水泥生产用电需要。
补燃锅炉能燃用劣质煤、煤矸石,综合利用了资源。
但增设补燃锅炉而多发出的电能部分,与大容量的高温高压蒸汽发电(火电厂)相比,其单位电能煤耗要高40%以上,是不经济的,环境污染也较明显,环保措施难以跟上,同时由于国家产业政策调整、环保要求及煤资源供应日趋紧张,故带补燃炉的预分解窑余热发电技术受到很大局限,未能大范围的推广与应用。
3、纯低温水泥窑余热发电技术纯低温水泥窑余热发电技术是直接利用窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
4、世界各国应用水泥余热发电技术现状节能降耗是水泥工业持续发展的需要。
在降低水泥熟料烧成热耗和水泥综合电耗的同时,充分利用水泥生产中的中低温废气余热发电,逐步最大限度地满足自身用电需要,减少外供电量,节约成本,是世界水泥工业发展的趋向。
日本水泥工业在回收余热发电方面应用最广,近80%的水泥窑都带有纯低温余热发电系统,平均吨熟料发电量为30~40kWh/t。
欧洲国家水泥余热发电技术应用也较普遍。
我国台湾地区的水泥生产企业配置余热发电系统的比例也很高,也主要是从日本引进技术。
美国在水泥余热发电技术应用上也较积极。
美国水泥协会1995年提出,在降低水泥综合电耗的同时充分利用余热发电技术,提高余热利用率。
二、日本川崎公司纯低温水泥窑余热发电技术、业绩介绍:一九九五年八月,日本新能源产业技术综合开发机构(NEDO)与中国国家计委、国家建材局签订了水泥余热发电设备示范事业基本协定书,由日方提供一套先进且成熟可靠的低温余热发电技术和设备用于中国现有水泥厂,通过科学论证和国内外专家的实地考察,日方提供的这套设备安装在宁国水泥厂4000t/d水泥生产线上,发电机装机容量为6480kW,设计年发电量为4087×104kWh,吨熟料发电能力为33. 88kW.h/t。
1、主要技术特点:水泥厂余热资源的特点是:流量大,品位较低。
以宁国水泥厂4000t/d生产线为例,PH(预热器)和AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、350℃和306600Nm3/h、238℃,余热发电便是充分利用这两部分余热资源进行热能回收。
1)热力系统整个热力系统设计力求经济、高效、安全,系统工艺流程是由两台高效余热锅炉AQC、PH•锅炉、两台高低压闪蒸器和一套汽轮发电机组组成,辅之以冷却水系统、纯水制取系统、锅炉给水系统及锅炉粉尘输送系统。
余热锅炉内进行热交换产生压力为25kg/cm2、温度为335℃~350℃、额定蒸发量为31.1t/h的过热蒸汽通入汽轮机,进行能量转换,拖动发电机向电网输送电力。
(1)采用凝汽式两点混汽式汽轮机。
凝汽式是指做过功的蒸汽充分冷凝成凝结水,重新进入系统循环,减少系统补充水量。
混汽式是指汽轮机除主蒸汽外,另有两路低压饱和蒸汽导入汽轮机做功,从而提高汽轮机相对内效率,提高发电机输出功率。
(2)设置具有专利技术、高热效率的余热PH锅炉,采用特殊设计的机械振打装置进行受热面除灰,保证锅炉很高的传热效率。
(3)应用热水闪蒸技术(高压热水进入低压空间瞬间汽化现象),设置一台高压闪蒸器和一台低压闪蒸器,一方面将闪蒸出的饱和蒸汽导入汽轮机做功,进一步提高汽轮机做功功率,另一方面形成锅炉给水系统循环,可以有效地控制AQC炉省煤器段出口水温,保证锅炉给水工况稳定。
(4)由于SP出口废气还要用于原料烘干,所以SP锅炉无省煤器,只设蒸发器和过热器,控制出炉烟温在250℃,仍可满足水泥生产线工艺需求。
(5)采用热水闪蒸自除氧结合化学除氧的办法进行除氧,不另设除氧器,减少了工艺设备,简化了工艺流程。
(6)热力泵均采用一用一备双系列。
在运行泵出现故障时,备用泵自动投入使用,保证了发电系统安全、稳定运行。
2)余热锅炉AQC锅炉设计为立式自然循环锅炉,带汽包,烟气自上而下通过锅炉,锅炉自上而下布置过热器、蒸发器和省煤器,由于废气粉尘为熟料颗粒,具有较强的磨砺性,需设置预除尘器进行预收尘,另外为增大换热面积,强化换热效果,AQC锅炉的传热管设计为螺旋翅片管形式(鳍片管)。
AQC锅炉工艺参数设计:烟气入口温度360℃,出口温度91℃,烟气流量165300Nm3/h,过热蒸汽温度350℃,蒸汽压力26kg/cm2,额定蒸发量11.8t/h。
SP锅炉设计为卧式强制循环锅炉,带汽包,设蒸发器和过热器,烟气在管外水平流动,受热面为蛇形光管,上端固定在构架上,下端为自由端,并焊有振打装置之连杆。
由于SP炉入炉粉尘为生料粉,具有较强的粘附性,影响传热效果,故设计机械振打装置对受热面定期振打,使受热面保持干净无灰,从而保证了很高的传热效果。
由于工作介质在传热管内是上下流动形式,无法利用其重度差进行自然循环,故需用两台强制循环泵进行给水的强制循环。
SP锅炉工艺参数设计:烟气入口温度350℃,出口温度250℃,烟气流量258550Nm3/h,过热蒸汽温度330℃,蒸汽压力26kg/cm2,额定蒸发量19.3t/h。
两锅炉的工艺结构特点对比如下表:SP锅炉AQC锅炉锅炉形式卧式立式工质循环方式强制循环自然循环烟气流向自上而下自下而上管程流向垂直水平管列形式错排错排管形式光管螺旋翅管受热面无省煤器有省煤器除灰装置机械振打无3)汽轮机汽轮机的作用是将余热锅炉产生的过热蒸汽的热能转化为机械能从而带动发电机发电的动力设备。
宁国厂汽轮机为川崎RCM-80型,冲动式、多级、混压凝汽式带减速机型汽轮机,额定蒸汽流量31.1t/h,入口蒸汽压力 2.45MPa,蒸汽温度335℃,排汽绝对压力0.00585MPa,转速5829rpm,级数为9级。
(1)汽轮机为减速式汽轮机,通过减速机后转速为1500rpm,这样汽轮机的整体尺寸较小,暖机和冲转所需的时间较短,便于汽轮机停机后能够在短时间内迅速再投入,适应窑系统工况的波动。
针对汽轮机后几级叶片水份较多、易发生水蚀现象的特点,在低压部分特别设计了集水槽和疏水孔,充分利用转子转动的离心力分离水珠,避免水蚀。
另在末两级叶片前部覆盖了一层特殊合金,以减轻水击产生的损伤。
(2)汽轮机的调节系统采用电、液(压)调节方式,感应机构为电磁式,执行机构为液压传动式。
调节系统稳定可靠,保证了汽轮机在设计范围内的任何工况下稳定运行。
(3)根据水泥厂余热性质的特点,汽轮机的运行方式分为速度控制和压力控制两种方式。
在汽轮机启动过程中(提速及升负荷),以汽轮机转速为主要控制参数,以保证汽轮发电机组正常并网;当机组达到额定负荷时,切换到压力控制方式,这时以汽轮机入口蒸汽压力为主要控制参数,调节机组输出功率以保证压力基本稳定,这种控制方式可适应废气余热参数的变化,使整个系统具有较强的适应性和可靠性,并做到“热尽其用”。
机组出力超过限定值(约额定功率的110%),自动开启旁路阀,将部分蒸汽直接导入凝汽器,起到保护发电机组的目的。
4)发电机发电机设计为全封闭内冷式三相交流同步发电机,励磁方式采用无刷励磁,额定输出8100KVA,极数4极,电压6300V,频率50HZ,功率因数80%滞后,电流742A,空气冷却器采取水冷却的方式。
5)DCS控制系统整个余热发电系统采用先进的DCS集散控制系统,现场的各种工艺参数通过传感器转化为电信号送至中央控制室,由计算机进行分析并在CRT上显示。
中控操作通过触摸屏发出指令,调整各烟风阀门、汽水阀门的开度及设备的启停等,使整个系统适应工况变化。
自控系统能够根据相关参数自动进行汽水系统的调整,系统的操作简便可靠,并设有完善的报警和保护程序,使整个发电工艺系统能够长期稳定运行。
2、宁国水泥厂4000t/d熟料生产线余热发电项目运转业绩:1)主要经济技术指标分析自一九九八年三月开始实质性运转至二○○四年底,从统计数据表明,平均吨熟料发电量已达36.12kWh/t,相对窑运转率为96.24%,累计发电量已达3.56亿千瓦时。
系统运行六年来实现了安全、稳定、高效运行。
请参见下面生产数据统计图表:表一年份总发电量 (万kWh)运转时间 (h) 相对窑运转率 (%) 吨熟料发电量(kWh/t) 1998年 4106.545514.1 93.21 37.10 1999年 4108.746766.3 94.35 31.43 2000年 5167.717585.9 95.55 36.42 2001年 5294.377798.8 96.77 36.48 2002年 5613.778109.7 98.48 37.04 2003年 5701.938123.1 98.02 37.88 2004年5619.54 8092.9 97.31 36.45 累计35612.6 51990.8 平均96.24 平均36.12 表二余热发电历年来发电总量、相对窑运转率对比0100020003000400050006000发电量(万kWh )80100运转率(%)年总发电量4106.544108.745167.715294.375613.775701.935619.54相对窑运转率93.2194.3595.5596.7798.4898.0297.3198年99年00年01年02年03年04年表三2)经济效益和社会效益水泥余热发电项目充分利用熟料煅烧生产时排放的大量废气进行回收发电,即可降低水泥熟料的生产成本,提高企业经济效益,又能保护环境,创造良好的社会效益。