二次回归系数表得
excel二次回归方程
excel二次回归方程
Excel中可以使用"数据分析"工具包来进行二次回归分析。
下面是使用Excel进行二次回归分析的步骤:
1. 打开Excel,将自变量和因变量的数据放在一个表格中。
2. 选择"数据"选项卡,然后点击"数据分析"。
3. 在弹出的对话框中选择"回归",然后点击"确定"。
4. 在回归对话框中,将因变量的数据范围输入到"Y范围"中,将自变量的数据范围输入到"X范围"中。
5. 勾选"常数项",以确保模型包含截距。
6. 勾选"X的二次项",以添加自变量的平方项。
7. 点击"确定",Excel会生成回归结果的输出。
在回归结果中,你可以找到二次回归方程的系数。
系数包括截距项、一次项的系数和二次项的系数。
二次回归方程的形式为:y = a + bx + cx^2,其中a、b、c为回归方程的系数。
请注意,进行二次回归分析时,需要确保数据的相关性和样本量足够大。
此外,还需要检查回归模型的拟合程度和统计显著性。
计量经济学简答
1计量经济学:是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、虚拟变量数据:是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。
3、计量经济学检验:主要是检验模型是否符合计量经济方法的基本假定。
4、政策评价:是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价。
1、回归平方和用ESS表示,是被解释变量的样本估计值与其平均值的离差平方和。
2、拟和优度检验:指检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样本观测值拟合得越好。
3、相关关系:当一个或若干个变量X取一定数值时,与之相对应的另一个变量Y的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X,u),其中u为随机变量。
4、高思-马尔可福定理:在古典假定条件下,OLS估计式是其总体参数的最佳线性无偏估计式。
P j1、偏回归系数:在多元线性回归模型中,回归系数J(j=1 , 2,……,k)表示的是当控制其他解释变量不变的条件下,第J个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。
22、多重可决系数:“回归平方和”与“总离差平方和”的比值,用R表示。
r^23、修正的可决系数:用自由度修正多重可决系数R 中的残差平方和与回归平方和。
4、回归方程的显著性检验:对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
5、、回归参数的显著性检验:当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X列满秩Rank(X)=k,此时,方阵X X 满秩,Rank( X X)=k从而XX可逆,XX存在。
第七章 响应面回归设计
二次回归正交设计
应用二次回归正交设计法,所得的 回归系数的估计之间相互独立,因 此删除某些因子时不会影响其它的 回归系数的估计,从而很容易写出 所有系数为显著的回归方程。 二次回归正交设计的试验点由正交 点、主轴点和中心点组成。
二次回归正交设计
两个变量的试验点组合方案
试验号 1 2 3 4 5 6 7 8 9 M n x1 1 1 −1 −1 x2 1 −1 1 −1 0 0 3 2 用 L 4 ( 2 ), m c = 2 = 4 星号点 , 2 p = 4 中心点 m 0
Ey H0: : 假设: 假设: Ey H1: : = β 0 + β 1 x1 + L + β p x p
≠ β 0 + β 1 x1 + L + β p x p
统计量: 统计量:
FLf =
S Lf / f Lf Se / fe
当拒绝H 需要寻找原因, 当拒绝 0时,需要寻找原因,改变模型 否则认为线性回归模型合适,可以将S 否则认为线性回归模型合适,可以将 e 合并作为S 检验方程是否显著。 与SLf合并作为 E检验方程是否显著。
回归设计
回归设计概述 回归模型 因素水平编码 Box-Benhken设计 - 设计 二次回归正交设计
概述
回归设计也称为响应面设计。 是一种通过少量试验,获得数据, 估计参数,有效地建立试验指标和 连续变量之间的定量关系的方法。 它是由英国统计学家G.Box在20世 纪50年代初真对化工生产提出的, 后来这一方法得到了广泛的应用。
(
)
Y —响应变量;xj —第j个自变量; ε—正态随机误差;β0 —回归截距; βj βjj’βjj —回归系数;
七种回归分析方法个个经典
七种回归分析方法个个经典什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析是建模和分析数据的重要工具。
在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
我会在接下来的部分详细解释这一点。
我们为什么使用回归分析?如上所述,回归分析估计了两个或多个变量之间的关系。
下面,让我们举一个简单的例子来理解它:比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。
现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。
那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。
具体如下:1.它表明自变量和因变量之间的显著关系;2.它表明多个自变量对一个因变量的影响强度。
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。
这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
我们有多少种回归技术?有各种各样的回归技术用于预测。
这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
我们将在下面的部分详细讨论它们。
对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。
但在你开始之前,先了解如下最常用的回归方法:1.Linear Regression线性回归它是最为人熟知的建模技术之一。
线性回归通常是人们在学习预测模型时首选的技术之一。
在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
计量经济学考试习题与解答
计量经济学考试习题与解答第三章、经典单⽅程计量经济学模型:多元线性回归模型⼀、内容提要本章将⼀元回归模型拓展到了多元回归模型,其基本地建模思想与建模⽅法与⼀元地情形相同.主要内容仍然包括模型地基本假定、模型地估计、模型地检验以及模型在预测⽅⾯地应⽤等⽅⾯.只不过为了多元建模地需要,在基本假设⽅⾯以及检验⽅⾯有所扩充.本章仍重点介绍了多元线性回归模型地基本假设、估计⽅法以及检验程序.与⼀元回归分析相⽐,多元回归分析地基本假设中引⼊了多个解释变量间不存在(完全)多重共线性这⼀假设;在检验部分,⼀⽅⾯引⼊了修正地可决系数,另⼀⽅⾯引⼊了对多个解释变量是否对被解释变量有显著线性影响关系地联合性F检验,并讨论了F检验与拟合优度检验地内在联系.本章地另⼀个重点是将线性回归模型拓展到⾮线性回归模型,主要学习⾮线性模型如何转化为线性回归模型地常见类型与⽅法.这⾥需要注意各回归参数地具体经济含义.本章第三个学习重点是关于模型地约束性检验问题,包括参数地线性约束与⾮线性约束检验.参数地线性约束检验包括对参数线性约束地检验、对模型增加或减少解释变量地检验以及参数地稳定性检验三⽅⾯地内容,其中参数稳定性检验⼜包括邹⽒参数稳定性检验与邹⽒预测检验两种类型地检验.检验都是以F检验为主要检验⼯具,以受约束模型与⽆约束模型是否有显著差异为检验基点.参数地⾮线性约束检验主要包括最⼤似然⽐检验、沃尔德检验与拉格朗⽇乘数检验.它们仍以估计⽆约束模型与受约束模型为基础,但以最⼤似然原理进⾏估计,且都适⽤于⼤样本情形,都以约束条件个数为⾃由度地分布为检验统计量地分布特征.⾮线性约束检验中地拉格朗⽇乘数检验在后⾯地章节中多次使⽤.⼆、典型例题分析例1.某地区通过⼀个样本容量为722地调查数据得到劳动⼒受教育地⼀个回归⽅程为R2=0.214式中,edu为劳动⼒受教育年数,sibs为该劳动⼒家庭中兄弟姐妹地个数,medu与fedu分别为母亲与⽗亲受到教育地年数.问(1)sibs是否具有预期地影响?为什么?若medu与fedu保持不变,为了使预测地受教育⽔平减少⼀年,需要sibs增加多少?(2)请对medu地系数给予适当地解释.(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个地⽗母受教育地年数为12年,另⼀个地⽗母受教育地年数为16年,则两⼈受教育地年数预期相差多少?解答:(1)预期sibs对劳动者受教育地年数有影响.因此在收⼊及⽀出预算约束⼀定地条件下,⼦⼥越多地家庭,每个孩⼦接受教育地时间会越短.根据多元回归模型偏回归系数地含义,sibs前地参数估计值-0.094表明,在其他条件不变地情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育地时间,兄弟姐妹需增加1/0.094=10.6个.(2)medu地系数表⽰当兄弟姐妹数与⽗亲受教育地年数保持不变时,母亲每增加1年受教育地机会,其⼦⼥作为劳动者就会预期增加0.131年地教育机会.(3)⾸先计算两⼈受教育地年数分别为10.36+0.131?12+0.210?12=14.45210.36+0.131?16+0.210?16=15.816因此,两⼈地受教育年限地差别为15.816-14.452=1.364例2.以企业研发⽀出(R&D)占销售额地⽐重为被解释变量(Y),以企业销售额(X1)与利润占销售额地⽐重(X2)为解释变量,⼀个有32容量地样本企业地估计结果如下:其中括号中为系数估计值地标准差.(1)解释log(X1)地系数.如果X1增加10%,估计Y会变化多少个百分点?这在经济上是⼀个很⼤地影响吗?(2)针对R&D强度随销售额地增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化地假设.分别在5%和10%地显著性⽔平上进⾏这个检验.(3)利润占销售额地⽐重X2对R&D强度Y是否在统计上有显著地影响?解答:(1)log(x1)地系数表明在其他条件不变时,log(x1)变化1个单位,Y变化地单位数,即?Y=0.32?log(X1)≈0.32(?X1/X1)=0.32?100%,换⾔之,当企业销售X1增长100%时,企业研发⽀出占销售额地⽐重Y会增加0.32个百分点.由此,如果X1增加10%,Y会增加0.032个百分点.这在经济上不是⼀个较⼤地影响.(2)针对备择假设H1:,检验原假设H0:.易知计算地t统计量地值为t=0.32/0.22=1.468.在5%地显著性⽔平下,⾃由度为32-3=29地t 分布地临界值为1.699(单侧),计算地t值⼩于该临界值,所以不拒绝原假设.意味着R&D强度不随销售额地增加⽽变化.在10%地显著性⽔平下,t分布地临界值为1.311,计算地t 值⼩于该值,拒绝原假设,意味着R&D强度随销售额地增加⽽增加.(3)对X2,参数估计值地t统计值为0.05/0.46=1.087,它⽐在10%地显著性⽔平下地临界值还⼩,因此可以认为它对Y在统计上没有显著地影响.例3.下表为有关经批准地私⼈住房单位及其决定因素地4个模型地估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量).数据为美国40个城市地数据.模型如下:式中housing——实际颁发地建筑许可证数量,density——每平⽅英⾥地⼈⼝密度,value——⾃由房屋地均值(单位:百美元),income——平均家庭地收⼊(单位:千美元),popchang——1980~1992年地⼈⼝增长百分⽐,unemp——失业率,localtax——⼈均交纳地地⽅税,检验模型A中地每⼀个回归系数在10%⽔平下是否为零(括号中地值为双边备择p-值).根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%⽔平下检验联合假设H0:βi =0(i=1,5,6,7).说明被择假设,计算检验统计值,说明其在零假设条件下地分布,拒绝或接受零假设地标准.说明你地结论.(3)哪个模型是“最优地”?解释你地选择标准.(4)说明最优模型中有哪些系数地符号是“错误地”.说明你地预期符号并解释原因.确认其是否为正确符号.解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表.根据题意,如果p-值<0.10,则我们拒绝参数为零地原假设.由于表中所有参数地p-值都超过了10%,所以没有系数是显著不为零地.但由此去掉所有解释变量,则会得到⾮常奇怪地结果.其实正如我们所知道地,多元回去归中在省略变量时⼀定要谨慎,要有所选择.本例中,value、income、popchang地p-值仅⽐0.1稍⼤⼀点,在略掉unemp、localtax、statetax地模型C中,这些变量地系数都是显著地.(2)针对联合假设H0:βi =0(i=1,5,6,7)地备择假设为H1:βi =0(i=1,5,6,7)中⾄少有⼀个不为零.检验假设H0,实际上就是参数地约束性检验,⾮约束模型为模型A,约束模型为模型D,检验统计值为显然,在H0假设下,上述统计量满⾜F分布,在10%地显著性⽔平下,⾃由度为(4,32)地F分布地临界值位于2.09和2.14之间.显然,计算地F值⼩于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著地.(3)模型D中地3个解释变量全部通过显著性检验.尽管R2与残差平⽅和较⼤,但相对来说其AIC值最低,所以我们选择该模型为最优地模型.(4)随着收⼊地增加,我们预期住房需要会随之增加.所以可以预期β3>0,事实上其估计值确是⼤于零地.同样地,随着⼈⼝地增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此.随着房屋价格地上升,我们预期对住房地需求⼈数减少,即我们预期β3估计值地符号为负,回归结果与直觉相符.出乎预料地是,地⽅税与州税为不显著地.由于税收地增加将使可⽀配收⼊降低,所以我们预期住房地需求将下降.虽然模型A是这种情况,但它们地影响却⾮常微弱.4、在经典线性模型基本假定下,对含有三个⾃变量地多元回归模型:你想检验地虚拟假设是H0:.(1)⽤地⽅差及其协⽅差求出.(2)写出检验H0:地t统计量.(3)如果定义,写出⼀个涉及β0、θ、β2和β3地回归⽅程,以便能直接得到θ估计值及其标准误.解答:(1)由数理统计学知识易知(2)由数理统计学知识易知,其中为地标准差.(3)由知,代⼊原模型得这就是所需地模型,其中θ估计值及其标准误都能通过对该模型进⾏估计得到.三、习题(⼀)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规⽅程组4)⽆偏性5)⼀致性6)参数估计量地置信区间7)被解释变量预测值地置信区间8)受约束回归9)⽆约束回归10)参数稳定性检验3-2.观察下列⽅程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)2)3)4)5)6)7)3-3.多元线性回归模型与⼀元线性回归模型有哪些区别?3-4.为什么说最⼩⼆乘估计量是最优地线性⽆偏估计量?多元线性回归最⼩⼆乘估计地正规⽅程组,能解出唯⼀地参数估计地条件是什么?3-5.多元线性回归模型地基本假设是什么?试说明在证明最⼩⼆乘估计量地⽆偏性和有效性地过程中,哪些基本假设起了作⽤?3-6.请说明区间估计地含义.(⼆)基本证明与问答类题型3-7.什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:,地正规⽅程组,及其推导过程.3-8.对于多元线性回归模型,证明:(1)(2)3-9.为什么从计量经济学模型得到地预测值不是⼀个确定地值?预测值地置信区间和置信度地含义是什么?在相同地置信度下如何才能缩⼩置信区间?为什么?3-10.在多元线性回归分析中,检验与检验有何不同?在⼀元线性回归分析中⼆者是否有等价地作⽤?3-11.设有模型:,试在下列条件下:(1)(2)分别求出和地最⼩⼆乘估计量.3-12.多元线性计量经济学模型1,2,…,n (2.11.1)地矩阵形式是什么?其中每个矩阵地含义是什么?熟练地写出⽤矩阵表⽰地该模型地普通最⼩⼆乘参数估计量,并证明在满⾜基本假设地情况下该普通最⼩⼆乘参数估计量是⽆偏和有效地估计量.3-13.有如下⽣产函数:(0.257)(0.219)其中括号内数值为参数标准差.请检验以下零假设:(1)产出量地资本弹性和劳动弹性是等同地;(2)存在不变规模收益,即.3-14.对模型应⽤OLS法,得到回归⽅程如下:要求:证明残差与不相关,即:.3-15.3-16.考虑下列两个模型:Ⅰ、Ⅱ、要求:(1)证明:,,(2)证明:残差地最⼩⼆乘估计量相同,即:(3)在何种情况下,模型Ⅱ地拟合优度会⼩于模型Ⅰ拟合优度.3-17.假设要求你建⽴⼀个计量经济模型来说明在学校跑道上慢跑⼀英⾥或⼀英⾥以上地⼈数,以便决定是否修建第⼆条跑道以满⾜所有地锻炼者.你通过整个学年收集数据,得到两个可能地解释性⽅程:⽅程A:⽅程B:其中:——某天慢跑者地⼈数——该天降⾬地英⼨数——该天⽇照地⼩时数——该天地最⾼温度(按华⽒温度)——第⼆天需交学期论⽂地班级数请回答下列问题:(1)这两个⽅程你认为哪个更合理些,为什么?(2)为什么⽤相同地数据去估计相同变量地系数得到不同地符号?3-18.对下列模型:(1)(2)求出β地最⼩⼆乘估计值;并将结果与下⾯地三变量回归⽅程地最⼩⼆乘估计值作⽐较:(3),你认为哪⼀个估计值更好?3-19.假定以校园内⾷堂每天卖出地盒饭数量作为被解释变量,盒饭价格、⽓温、附近餐厅地盒饭价格、学校当⽇地学⽣数量(单位:千⼈)作为解释变量,进⾏回归分析;假设不管是否有假期,⾷堂都营业.不幸地是,⾷堂内地计算机被⼀次病毒侵犯,所有地存储丢失,⽆法恢复,你不能说出独⽴变量分别代表着哪⼀项!下⾯是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)要求:(1)试判定每项结果对应着哪⼀个变量?(2)对你地判定结论做出说明.(三)基本计算类题型3-20.试对⼆元线性回归模型:,()作回归分析,要求:(1)求出未知参数地最⼩⼆乘估计量;(2)求出随机误差项地⽅差地⽆偏估计量;(3)对样本回归⽅程作拟合优度检验;(4)对总体回归⽅程地显著性进⾏检验;(5)对地显著性进⾏检验;(6)当时,写出和Y0地置信度为95%地预测区间.3-21.下表给出三变量模型地回归结果:⽅差来源平⽅和(SS)⾃由度(d.f.)平⽅和地均值(MSS)来⾃回归65965 ——来⾃残差_———总离差(TSS) 66042 14要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS地⾃由度各是多少?(4)求和?(5)检验假设:和对⽆影响.你⽤什么假设检验?为什么?(6)根据以上信息,你能否确定和各⾃对地贡献吗?3-22.下⾯给出依据15个观察值计算得到地数据:,,,,,,其中⼩写字母代表了各值与其样本均值地离差.要求:(1)估计三个多元回归系数;(2)估计它们地标准差;并求出与?(3)估计、95%地置信区间;(4)在下,检验估计地每个回归系数地统计显著性(双边检验);(5)检验在下所有地部分系数都为零,并给出⽅差分析表.3-23.考虑以下⽅程(括号内为估计标准差):(0.080)(0.072) (0.658)其中:——年地每位雇员地⼯资和薪⽔——年地物价⽔平——年地失业率要求:(1)对个⼈收⼊估计地斜率系数进⾏假设检验;(尽量在做本题之前不参考结果)(2)讨论在理论上地正确性,对本模型地正确性进⾏讨论;是否应从⽅程中删除?为什么?3-24.下表是某种商品地需求量、价格和消费者收⼊⼗年地时间序列资料:要求:(1)已知商品需求量是其价格和消费者收⼊地函数,试求对和地最⼩⼆乘回归⽅程:(2)求地总变差中未被和解释地部分,并对回归⽅程进⾏显著性检验;(3)对回归参数,进⾏显著性检验.3-25.参考习题2-28给出地数据,要求:(1)建⽴⼀个多元回归模型,解释MBA毕业⽣地平均初职⼯资,并且求出回归结果;(2)如果模型中包括了GPA和GMA T 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?(3)如果学费这⼀变量地系数为正、并且在统计上是显著地,是否表⽰进⼊最昂贵地商业学校是值得地.学费这个变量可⽤什么来代替?3-26.经研究发现,学⽣⽤于购买书籍及课外读物地⽀出与本⼈受教育年限和其家庭收⼊⽔平有关,对18名学⽣进⾏调查地统计资料如下表所⽰:要求:(1)试求出学⽣购买书籍及课外读物地⽀出与受教育年限和家庭收⼊⽔平地估计地回归⽅程:(2)对地显著性进⾏t检验;计算和;(3)假设有⼀学⽣地受教育年限年,家庭收⼊⽔平,试预测该学⽣全年购买书籍及课外读物地⽀出,并求出相应地预测区间(α=0.05).3-27.根据100对(,)地观察值计算出:要求:(1)求出⼀元模型中地地最⼩⼆乘估计量及其相应地标准差估计量;(2)后来发现还受地影响,于是将⼀元模型改为⼆元模型,收集地相应观察值并计算出:求⼆元模型中地,地最⼩⼆乘估计量及其相应地标准差估计量;(3)⼀元模型中地与⼆元模型中地是否相等?为什么?3-28.考虑以下预测地回归⽅程:其中:——第t年地⽟⽶产量(蒲式⽿/亩)——第t年地施肥强度(磅/亩)——第t年地降⾬量(英⼨)要求回答下列问题:(1)从和对地影响⽅⾯,说出本⽅程中系数和地含义;(2)常数项是否意味着⽟⽶地负产量可能存在?(3)假定地真实值为,则估计值是否有偏?为什么?(4)假定该⽅程并不满⾜所有地古典模型假设,即并不是最佳线性⽆偏估计值,则是否意味着地真实值绝对不等于?为什么?3-29.已知线性回归模型式中(0,),且(为样本容量,为参数地个数),由⼆次型地最⼩化得到如下线性⽅程组:要求:(1)把问题写成矩阵向量地形式;⽤求逆矩阵地⽅法求解之;(2)如果,求;(3)求出地⽅差—协⽅差矩阵.3-30.已知数据如下表:要求:(1)先根据表中数据估计以下回归模型地⽅程(只估计参数不⽤估计标准差):(2)回答下列问题:吗?为什么?吗?为什么?(四)⾃我综合练习类题型3-31.⾃⼰选择研究对象(最好是⼀个实际经济问题),收集样本数据,应⽤计量经济学软件(建议使⽤Eviews3.1),完成建⽴多元线性计量经济模型地全过程,并写出详细研究报告.四、习题参考答案(⼀)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在⼀个被解释变量受到多个解释变量地影响地现象,表现为在线性回归模型中有多个解释变量,这样地模型被称为多元线性回归模型,多元指多个解释变量.(2)形如地关于参数估计值地线性代数⽅程组称为正规⽅程组.3-2.答:变量⾮线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数⾮线性;变量、系数均为⾮线性;变量、系数均为⾮线性;变量、系数均为线性.3-3.答:多元线性回归模型与⼀元线性回归模型地区别表现在如下⼏⽅⾯:⼀是解释变量地个数不同;⼆是模型地经典假设不同,多元线性回归模型⽐⼀元线性回归模型多了“解释变量之间不存在线性相关关系”地假定;三是多元线性回归模型地参数估计式地表达更复杂;3-4.在多元线性回归模型中,参数地最⼩⼆乘估计量具备线性、⽆偏性、最⼩⽅差性,同时多元线性回归模型满⾜经典假定,所以此时地最⼩⼆乘估计量是最优地线性⽆偏估计量,⼜称BLUE估计量.对于多元线性回归最⼩⼆乘估计地正规⽅程组,3-5.答:多元线性回归模型地基本假定有:零均值假定、随机项独⽴同⽅差假定、解释变量地⾮随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0⽅差为地正态分布假定.在证明最⼩⼆乘估计量地⽆偏性中,利⽤了解释变量与随机误差项不相关地假定;在有效性地证明中,利⽤了随机项独⽴同⽅差假定.3-6.答:区间估计是指研究⽤未知参数地点估计值(从⼀组样本观测值算得地)作为近似值地精确程度和误差范围.(⼆)基本证明与问答类题型3-7.答:含有待估关系估计量地⽅程组称为正规⽅程组.正规⽅程组地⾮矩阵形式如下:正规⽅程组地矩阵形式如下:推导过程略.3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕.⑵证明:证毕.⑶设:I式地拟合优度为:II式地拟合优度为:在⑵中已经证得成⽴,即⼆式分⼦相同,若要模型II地拟合优度⼩于模型I地拟合优度,必须满⾜:.3-17.答:⑴⽅程B更合理些.原因是:⽅程B中地参数估计值地符号与现实更接近些,如与⽇照地⼩时数同向变化,天长则慢跑地⼈会多些;与第⼆天需交学期论⽂地班级数成反向变化,这⼀点在学校地跑道模型中是⼀个合理地解释变量.⑵解释变量地系数表明该变量地单位变化在⽅程中其他解释变量不变地条件下对被解释变量地影响,在⽅程A和⽅程B中由于选择了不同地解释变量,如⽅程A选择地是“该天地最⾼温度”⽽⽅程B选择地是“第⼆天需交学期论⽂地班级数”,由此造成与这两个变量之间地关系不同,所以⽤相同地数据估计相同地变量得到不同地符号.3-18.答:将模型⑴改写成,则地估计值为:将模型⑵改写成,则地估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下地变形.如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏.3-19.答:⑴答案并不唯⼀,猜测为:为学⽣数量,为附近餐厅地盒饭价格,为⽓温,为校园内⾷堂地盒饭价格;⑵理由是被解释变量应与学⽣数量成正⽐,并且应该影响显著;与本⾷堂盒饭价格成反⽐,这与需求理论相吻合;与附近餐厅地盒饭价格成正⽐,因为彼此是替代品;与⽓温地变化关系不是⼗分显著,因为⼤多数学⽣不会因为⽓温升⾼不吃饭.(三)基本计算类题型3-22.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有地部分系数为0,即:,等价于⽅差来源平⽅和⾃由度平⽅和地均值来⾃回归65963.018 2 32981.509来⾃残差79.2507 12 6.6042总离差66042.269,,临界值为3.89值是显著地,所以拒绝零假设.3-23.解:⑴对给定在5%地显著⽔平下,可以进⾏t检验,得到地结果如下:3-28.解:⑴在降⾬量不变时,每亩增加⼀磅肥料将使第年地⽟⽶产量增加0.1蒲式⽿/亩;在每亩施肥量不变地情况下,每增加⼀英⼨地降⾬量将使第年地⽟⽶产量增加5.33蒲式⽿/亩;⑵在种地地⼀年中不施肥、也不下⾬地现象同时发⽣地可能性极⼩,所以⽟⽶地负产量不可能存在;⑶如果地真实值为0.40,并不能说明0.1是有偏地估计,理由是0.1是本题估计地参数,⽽0.40是从总体得到地系数地均值.⑷不⼀定.即便该⽅程并不满⾜所有地古典模型假设、不是最佳线性⽆偏估计值,也有可能得出地估计系数等于5.33.3-29.解:⑴该⽅程组地矩阵向量形式为:⑵⑶地⽅差—协⽅差矩阵为:版权申明本⽂部分内容,包括⽂字、图⽚、以及设计等在⽹上搜集整理。
二次多项式回归方程
二次多项式回归方程二次多项式回归方程是一种常用的数学模型,用于拟合二次曲线形状的数据。
它是基于多项式回归的扩展,通过引入平方项的系数来更好地适应具有非线性关系的数据。
二次多项式回归方程的一般形式如下:y = ax^2 + bx + c其中,y表示因变量(依赖变量),x表示自变量(独立变量),a、b、c表示二次多项式回归方程的系数。
在二次多项式回归中,我们通常使用最小二乘法来估计系数的值。
该方法旨在使模型的预测值与实际观测值之间的平方差尽量小。
通过求解最小二乘问题,可以得到最佳拟合的二次多项式回归方程。
为了求解系数a、b、c,可以利用已知的数据点进行拟合。
首先,我们需要收集足够数量的自变量x和对应的因变量y的数据对。
然后,我们可以使用数值计算方法或者统计软件来估计系数的值。
一种常见的方法是使用最小二乘法拟合二次多项式回归方程。
这种方法的基本思想是,通过选择合适的系数值,使得二次多项式回归方程的预测值与已知数据点的观测值之间的残差平方和最小化。
残差表示了预测值与观测值之间的差异。
求解最小二乘问题可以使用线性代数的方法,例如矩阵运算或者求解线性方程组。
具体步骤如下:1. 将数据点表示为矩阵形式:X = [x^2, x, 1]Y = [y]2. 使用最小二乘法的公式计算系数向量:θ = (X^T X)^-1 X^T Y其中,X^T表示X的转置,(X^T X)^-1表示X^T X的逆矩阵。
3. 得到系数向量后,可以得到二次多项式回归方程:y = θ[0]x^2 + θ[1]x + θ[2]这样,我们就得到了二次多项式回归方程,并可以使用该方程进行预测或拟合。
需要注意的是,二次多项式回归方程在某些情况下可能会产生过拟合的问题。
过拟合指的是模型过度拟合训练数据,导致在新数据上的表现不如预期。
为了解决过拟合问题,可以考虑使用正则化技术,如岭回归或Lasso回归,来减小高次项的系数。
另外,二次多项式回归方程也可以进一步扩展为更高阶的多项式回归方程,以适应更复杂的数据模式。
计量经济学_詹姆斯斯托克_第8章_非线性的回归模型
Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)
第二章 双变量回归分析(计量经济学,南开大学)
ˆ 和 ˆ 1 2
i
为Yi的线性函数
i 2 i
ˆ
2
xY x
(
xi )Yi 2 x i
k Y
i
i
其中k i
xi xi2 1 xi2
ki k i2
x
2
i
0
2 xi
1 xi2 1 xi2
i
1 xi2
6、样本回归函数(SRF) 由于在大多数情况下,我们只知道变量值得一个样本,要用样本信息的基础 上估计PRF。(表) 样本1
X(收入) Y(支出) 80 55 100 65 120 79 140 80 160 102 180 110 200 120 220 135 240 137 260 150
样本2
ˆ ) VAR( 2
x
2 i
2
2 i
x
ˆ: 对于 1
ˆ Y ˆ X 1 ˆ X Yi 1 2 2 n 1 ˆ X ( 1 2 X i ui ) 2 n u 1 i X k i ui n ˆ ) E[( ui X 方差:VAR( k i ui ) 2 ] 1 n
ˆ ) E( ki E (ui ) 2 2 2 ˆ Y ˆ X 1 2 ( 1 2 X i ui ) ( 1 k i u i ) X 1 u i X k i u i ˆ ) E( 1 1
1 1 2 21
估计量(Estimator):一个估计量又称统计量(statistic),是指一个规则、公式 或方法,以用来根据已知的样本所提供的信息去估计总体参数。在应用中,由估 计量算出的数值称为估计(值)(estimate)。 样本回归函数SRF的随机形式为:
spss实验题答案
实验题1.解:(1)将数据录入SPSS软件中。
(2)点击分析→回归→线性,得回归系数表:由表可知,线性回归方程为:y=0.379x+17.2192.解:(a)将数据录入SPSS软件中, 点击分析→回归→线性,得回归系数表:Y为保单推销数,X为保单推销经历(年数)由图可知,拟合回归方程y=3.364x+51.165( b ) 回归系数为0.410,与0相异,小于0.05(在5%的显著水平),即相应系数显著大于0(c)一个有10年推销经历的保单推销员的销售额为y=3.364×10+51.165=84.8053.解:(a)将数据录入SPSS软件中, 点击分析→回归→线性,得回归系数表:点击分析→相关→双变量,得到:点击图形→旧对话框→散点、点状→确定,即可得到散点图:Y为能力测验分数,X为完成任务时间由表可知,线性回归方程为:Y=-11.959x+125.267(b) 由散点图可看出,这两个变量呈负相关关系。
(c) 由表可知,两个变量的相关系数为—0.930>0.5,又0.865显著异于0,t统计量的显著性概率p为0.000<0.05,说明两个变量在0.05水平上呈显著性差异。
4.解:(1)将数据录入SPSS软件中。
(2)点击分析→回归→线性,得回归系数表:Y 为儿子身高,x 为父亲身高由表可知,经验回归方程y=0.465x+35.977 5.解:(1)将数据录入SPSS 软件中。
(2)点击转换→计算变量→线性→目标变量t=1/x;(3)点击分析→回归→线性→因变量y →自变量t,得回归系数表:Y 为销售额,X 为流通费用率由表可知,选用曲线xba y +=做曲线回归,得回归方程为y=9.707/x -1.2116.解:(1)将数据录入SPSS 软件中, 点击分析→回归→线性,y 为因变量,x 为自变量。
得到回归分析表:y 为上年专利数,x1为上三年R&D 投入,x2为高级工程师数由表可知,“上年专利数”对“上三年R&D 投入”和“高级工程师数”的线性回归方程为: y=0.008x1+0.615x2+7.040由表可得,估计标准误差为3.65724。
Logistic回归分析之二元Logistic回归
Logistic回归分析之⼆元Logistic回归在研究X对于Y的影响时,如果Y为定量数据,那么使⽤多元线性回归分析(SPSSAU通⽤⽅法⾥⾯的线性回归);如果Y为定类数据,那么使⽤Logistic回归分析。
结合实际情况,可以将Logistic回归分析分为3类,分别是⼆元Logistic回归分析、多元有序Logistic回归分析和多元⽆序Logistic回归分析,如下图。
SPSSAU Logistic回归分析分类Logistic回归分析⽤于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使⽤相应的数据分析⽅法。
如果Y有两个选项,如愿意和不愿意、是和否,那么应该使⽤⼆元Logistic回归分析(SPSSAU进阶⽅法->⼆元logit);如果Y有多个选项,并且各个选项之间可以对⽐⼤⼩,例如,1代表“不愿意”,2代表“⽆所谓”,3代表“愿意”,这3个选项具有对⽐意义,数值越⾼,代表样本的愿意程度越⾼,那么应该使⽤多元有序Logistic回归分析(SPSSAU进阶⽅法->有序logit);如果Y有多个选项,并且各个选项之间不具有对⽐意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值⼤⼩不具有对⽐意义,那么应该使⽤多元⽆序Logistic回归分析(SPSSAU进阶⽅法->多分类logit)。
本次内容将针对⼆元logistic(logit)回归进⾏说明,后续两篇⽂章将分别讲解有序logistic(logit)和多分类logistic(logit)回归。
1、⼆元logistic分析思路说明在进⾏⼆元Logistic回归分析时,通常会涉及3个步骤,分别是数据处理、卡⽅分析和影响关系研究,如下图。
⼆元Logistic回归分析步骤1.1 第⼀步为数据处理例如,在研究相关因素对样本将来是否愿意购买理财产品的影响情况时,性别,专业等均为影响因素,⽽且明显的,性别和专业属于定类数据,因此需要进⾏虚拟哑变量设置,可使⽤【数据处理->⽣成变量】完成。
python 一元二次回归方程公式
一、概述一元二次回归方程是统计学中常见的回归分析方法,用于描述一个自变量和因变量之间的非线性关系。
在实际应用中,一元二次回归方程可以帮助我们预测因变量的数值,找出自变量与因变量之间的关系以及预测自变量对因变量的影响程度等。
二、一元二次回归方程的基本形式一元二次回归方程的基本形式可以表示为:Y = β0 + β1X + β2X^2 + ε其中,Y表示因变量,X表示自变量,β0、β1、β2分别是截距项、一次项和二次项的回归系数,ε表示误差项。
三、一元二次回归方程的建立过程1. 数据收集和准备在建立一元二次回归方程之前,首先需要收集和准备需要的数据。
这些数据可以通过实验、调查或其他方法获取,确保数据的精确性和可靠性。
2. 拟合回归模型通过拟合回归模型,可以得到回归系数的估计值。
拟合回归模型一般使用最小二乘法,通过最小化残差平方和来确定回归系数的估计值,从而得到一元二次回归方程的具体形式。
3. 检验回归模型的拟合优度在得到一元二次回归方程后,需要对回归模型的拟合优度进行检验。
通常情况下,可以利用残差分析、F检验、R方值等方法来评估回归模型的拟合优度。
四、一元二次回归方程的应用1. 预测通过一元二次回归方程,可以对因变量的数值进行预测。
在实际应用中,一元二次回归方程常常用于市场预测、销售预测等领域,帮助企业做出合理的决策。
2. 风险评估一元二次回归方程也可以用于风险评估,通过分析自变量对因变量的影响程度,来评估各种风险因素对业务的影响程度。
五、结语一元二次回归方程作为回归分析的一种重要方法,在实际应用中具有广泛的用途。
通过建立一元二次回归方程,可以更好地理解自变量和因变量之间的关系,帮助我们做出科学的决策。
希望本文对读者有所帮助,谢谢!六、一元二次回归方程的误差项在一元二次回归方程中,误差项ε是不可避免的。
误差项反映了回归模型不能完全解释因变量Y的变异性,也就是模型与实际观测值之间的差异。
通常情况下,我们希望误差项ε是独立同分布并且服从正态分布的,这样才能保证模型的有效性和准确性。
回归正交实验设计
归正交试验设计前面介绍的正交试验设计一种很实用的试验设计方法,它能? I」用较少的试验次数获得较好的试验结果,但是通过正交设计所得至啲优方案只能限制在已走的水平上,而不是一定试验范围内的最优方案;回归分析是一种有效的数据处理方法,通过所确立的回归方程,可以对试验结果进行预测和优化,但回归分析往往只能对试验数据进行被动的处理和分析,不涉及对试验设计的要求。
如果能将两者的优势统一起来,不仅有合理的试验设计和较少的试验次数,还能建立有效的数学模型,这正是我们所期望的。
回归正交设计(orthogonal regression design)就是这样一种试验设计方法,它可以在因素的试验范围内选择适当的试验点,用较少的试验建立一个精度高、统计性质好的回归方程,并能解决试验优化问题。
一次回归正交试验设计及结果分析—次回归正交设计就是利用回归正交设计原理,建立试验指标(y)与m个试验因素xi, X2 ..................................... x m ,之间的一元回归方程:y = a ++ /?2x2 + • • • 4- b m x m(8 - 1)或者my = a + Yj h j x j+ X b kj x k x j k=l, 2 , f m -1 (j#k ) (8 - 2)7-1 k{j8.1.1 —次回归正交设计的基本方法(1) 确走因素的变化范围根据试验指标y ,选择需要考察的m个因素Xj (j二1,2,…,m),并确走每个因素的取值范围。
设因素%的变化范围为凶1 , X j2],分别称Xji和X R为因素%的下水平和上水平,并将它们的算术平均值称作因素Xj的零水平,用XjO。
表示。
11勺度艾上水平与零水平之差称为因素为的变化间距,用勺表示r 即:(8-4)x n△十七丄 (8-5)(2) 因素水平的编码编码(coding)是将Xj 的0水平进行线性变换,即:(8-6)式(8—6)中可就是因素为的编码,两者是一一对应的。
回归分析实例
2
3 4 5 6 7 8
1.8
2.4 3.0 3.5 3.9 4.4 4.8Fra bibliotek5.7
7.0 8.3 10.9 12.4 13.1 13.6
3.24
5.76 9.00 12.25 15.21 19.36 23.04
32.49
49.00 68.89 118.81 153.76 171.61 184.96
10.26
16.80 24.90 38.15 48.36 57.64 65.28
9
合计
5.0
30.3
15.3
91.1
25.00
115.11
234.09
1036.65
76.50
345.09
信息分析
• 根据前表可知:
b n xy x y n x 2 ( x) 2 9 345.09 30.3 91.1 2.9303 2 9 115.11 30.3
信息分析
(3)线性化迭代方法
如:
ˆ y ab
cx
高斯—牛顿迭代方法的基本思想就是使用泰勒级 数展开或去近似地代替非线性回归模型,通过多次迭 代,多次修正系数,使回归系数不断逼近非线性回归 模型的最佳回归系数,最后使原模型的残差平方和达 到最小。
信息分析
一元线性回归预测案例研究
例:x、y两变量的观察数据如下表所示,根据数据进行 回归预测。
信息分析
表4显示,常数(Constant)、居民户均收入(X2)具有统计意义, 而居民新结婚户数(X1)因显著性水平值(t=0.834>0.5)较高而 不具有统计意义。从表4中可以推出模型方程: Y=-20.771+1.387X2。若预计2006年该地区居民新婚户数为30.2千户, 居民户均收入62.5千元,根据模型方程不难推出2006年电冰箱销售 量Y=-20.771+1.387×62.5=65.92(千台)。
回归正交试验设计
-1
-1
1
1
1
1/3
1/3
5
1
0
0
1
0
1/3
-2/3
6
-1
0
0
1
0
1/3
-2/3
7
0
1
0
0
1
-2/3
1/3
8
0
-1
0
0
1
-2/3
1/3
9
0
0
0
0
0
-2/3
-2/3
二元二次回归正交组合设计编码表
因素水平编码
01
试验因素的水平被编为-γ,-1,0,1,γ
02
变化间距:Δj=上水平-零水平=零水平-下水平
第8章 回归正交试验设计
Orthogonal Regression Design
演讲人姓名
正交设计:优方案只能限制在已定的水平上,而不是一定试验范围内的最优方案 回归正交设计(orthogonal regression design) : 可以在因素的试验范围内选择适当的试验点 用较少的试验建立回归方程 能解决试验优化问题 不适合非数量性因素
8.1 一次回归正交试验设计及结果分析
建立试验指标(y)与m个试验因素x1,x2,…,xm之间的一次回归方程 例:m=3时,一次回归方程: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3 其中x1,x2,x3表示3个因素;x1x2,x1x3,x2x3表示交互作用 若不考虑交互作用,为三元一次线形回归方程: y=a+b1x1+b2x2+b3x3
二次项偏回归平方和:
一次项偏回归平方和:
Excel 回归分析结果详解
Excel回归分析结果详解利用Excel的数据分析进行回归,可以得到一系列的统计参量。
下面以连续10年积雪深度和灌溉面积序列(图1)为例给予详细的说明。
图1 连续10年的最大积雪深度与灌溉面积(1971-1980)回归结果摘要(Summary Output)如下(图2):图2 利用数据分析工具得到的回归结果第一部分 回归统计表这一部分给出了相关系数、测定系数、校正测定系数、标准误差和样本数目如下(表1):表1 回归统计表逐行说明如下:Multiple 对应的数据是相关系数(correlation coefficient),即R=0.989416。
R Square 对应的数值为测定系数(determination coefficient),或称拟合优度(goodness of fit),它是相关系数的平方,即有R 2=0.9894162=0.978944。
Adjusted 对应的是校正测定系数(adjusted determination coefficient),计算公式为1)1)(1(12-----=m n R n R a式中n 为样本数,m 为变量数,R 2为测定系数。
对于本例,n =10,m =1,R 2=0.978944,代入上式得976312.01110)978944.01)(110(1=-----=a R标准误差(standard error )对应的即所谓标准误差,计算公式为1--=m n SSe s 这里SSe 为剩余平方和,可以从下面的方差分析表中读出,即有SSe=16.10676,代入上式可得418924.11110106761.16=--=s 最后一行的观测值对应的是样本数目,即有n =10。
第二部分 方差分析表方差分析部分包括自由度、误差平方和、均方差、F 值、P 值等(表2)。
表2 方差分析表(ANOV A )逐列、分行说明如下:第一列df 对应的是自由度(degree of freedom ),第一行是回归自由度dfr ,等于变量数目,即dfr=m ;第二行为残差自由度dfe ,等于样本数目减去变量数目再减1,即有dfe=n -m -1;第三行为总自由度dft ,等于样本数目减1,即有dft=n -1。
偏最小二乘回归方法(PLS)
偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
回归方程及回归系数的显著性检验
§3回归方程及回归系数的显着性检验1、回归方程的显着性检验(1) 回归平方和与剩余平方和建立回归方程以后, 回归效果如何呢?因变量与自变量是否确实存在线性关系呢?这是需要进行统计检验才能加以肯定或否定, 为此, 我们要进一步研究因变量取值的变化规律。
的每次取值是有波动的, 这种波动常称为变差, 每次观测值的变差大小, 常用该次观侧值与次观测值的平均值的差(称为离差)来表示, 而全部次观测值的总变差可由总的离差平方和,其中:称为回归平方和, 是回归值与均值之差的平方和, 它反映了自变量的变化所引起的的波动, 其自由度(为自变量的个数)。
称为剩余平方和(或称残差平方和), 是实测值与回归值之差的平方和, 它是由试验误差及其它因素引起的, 其自由度。
总的离差平方和的自由度为。
如果观测值给定, 则总的离差平方和是确定的, 即是确定的, 因此大则小, 反之, 小则大, 所以与都可用来衡量回归效果, 且回归平方和越大则线性回归效果越显着, 或者说剩余平方和越小回归效果越显着, 如果=0, 则回归超平面过所有观测点; 如果大, 则线性回归效果不好。
(2) 复相关系数为检验总的回归效果, 人们也常引用无量纲指标, (3.1)或, (3.2)称为复相关系数。
因为回归平方和实际上是反映回归方程中全部自变量的“方差贡献”, 因此就是这种贡献在总回归平方和中所占的比例, 因此表示全部自变量与因变量的相关程度。
显然。
复相关系数越接近1, 回归效果就越好, 因此它可以作为检验总的回归效果的一个指标。
但应注意, 与回归方程中自变量的个数及观测组数有关, 当相对于并不很大时, 常有较大的值, 因此实际计算中应注意与的适当比例, 一般认为应取至少为的5到10倍为宜。
(3) 检验要检验与是否存在线性关系, 就是要检验假设, (3.3)当假设成立时, 则与无线性关系, 否则认为线性关系显着。
检验假设应用统计量, (3.4)这是两个方差之比, 它服从自由度为及的分布, 即, (3.5)用此统计量可检验回归的总体效果。
第七章_响应面回归设计
Y —响应变量;xj —第j个自变量; ε —正态随机误差;β 0 —回归截距; β j β jj’β jj —回归系数;
回归模型
三元二次响应面模型描述:
Y 0 1 x1 2 x2 3 x3 12 x1 x2 13 x1 x3 23 x2 x3 2 11 x12 22 x2 33 x32 ~ N 0, 2
ˆ S E ( yi yi ) 2
i
自由度 f E n p 1
ˆ 回归平方和 S R ( yi y) 2 自由度 f R p
回归模型
当H0为真时,有
SR / fR F ~ F ( f R , f E ) F ( p, n p 1) SE / f E
给定显著性水平α, 则拒绝域为 F F1 ( p, n p 1)
F F1 接收H 0 F F1 拒绝H0,接受H1
回归模型
4. 失拟检验: 在某些点上有重复试验数据,可 以对Y的期望是否是x线性函数进 行检验。残差平方和SE分解为组 内(误差)平方和Se与组间(失 拟)平方和SLf。 即: S E S e S Lf
0 0
1 x1 p x p 1 x1 p x p
统计量:
FLf
S Lf / f Lf Se / f e
当拒绝H0时,需要寻找原因,改变模型 否则认为线性回归模型合适,可以将Se 与SLf合并作为SE检验方程是否显著。
回归模型
5. 回归系数的检验:
H 0 j: j 0,H1 j: j 0
回归模型
1. 二次响应面(多元二次多项式) 模型描述:
p p p Y f x 0 j x j jj x j x j jj x 2 j j 1 j j j 1 ~ N 0, 2 ,j 1,2, , p,j ' 1,2,, p
回归系数的显著性
2.解:人均GDP作为自变量x,人均消费水平作为因变量y:第1步:选择“数据”,点击“数据分析”命令。
第2步:在分析工具中选择“回归”,然后单击“确定”按钮。
第3步:当对话框出现时:在“Y值输入区域”框内输入人均消费水平的数据区域,在“X值输入区域”框内输入人均GDP的数据区域,选择输出区域,得到回归结果如下图:线性相关系数判定系数y的截距斜率(2)由上表可知:线性相关系数为0.998127959。
线性相关系数接近于1,说明人均GDP与人均消费水平之间有非常强的正线性相关关系。
(3)由表知:回归方程为:y=734.6928+0.308683x。
回归系数为0.308683。
意义:人均GDP每增加1元,人均消费水平平均增加0.308683元。
(4)判定系数R2=0.996259423。
意义:在人均消费水平的变差中,有99.6259423%是由人均GDP决定的。
(5)提出假设:H0:β1=0,H1:β1≠0。
由表知:Significance F=2.90942E-7 < α=0.05,所以拒绝原假设,说明人均GDP与人均消费水平之间的线性关系显著。
3.解:航班正点率作为自变量x,投诉次数作为因变量y:第1步:选择“数据”,点击“数据分析”命令。
第2步:在分析工具中选择“回归”,然后单击“确定”按钮。
第3步:当对话框出现时:在“Y值输入区域”框内输入投诉次数的数据区域,在“X值输入区域”框内输入航班正点率的数据区域,选择输出区域,得到回归结果如下图:y的截距斜率(2)由表知:回归方程为:y=430.18923-4.7x。
回归系数为- 4.7。
意义:航班正点率每增加1%,顾客投诉次数平均下降4.7次。
(3)由表得:回归系数检验的P-value=0.001108261 < a=0.05,所以拒绝原假设,且回归系数显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次回归系数表得
二次回归系数表是统计学中的一个重要概念,用于描述二次回归模型中各个变量的系数取值。
在进行回归分析时,我们经常会遇到非线性关系,此时就需要使用二次回归模型来描述变量之间的复杂关系。
二次回归模型可以表示为:Y = β0 + β1X + β2X^2 + ε,其中Y 表示因变量,X表示自变量,ε表示误差项。
β0、β1和β2分别表示截距项、一次项和二次项的系数。
二次回归系数表就是将这些系数的取值整理出来,用于解释模型中各个变量对因变量的影响程度。
在实际应用中,二次回归系数表可以帮助我们分析变量之间的关系,并进行预测和决策。
下面我们将从几个方面来介绍二次回归系数表的内容和应用。
二次回归系数表中的截距项β0表示当自变量X的取值为0时,因变量Y的取值。
它反映了在其他自变量不变的情况下,因变量的基准水平。
通过观察截距项的符号和大小,我们可以了解到在自变量为0时,因变量的大致取值范围。
一次项的系数β1表示自变量X的线性关系对因变量Y的影响。
一次项的系数可以告诉我们自变量的单位变化对因变量的影响程度。
如果β1的值为正,说明自变量的增加会导致因变量的增加;如果β1的值为负,说明自变量的增加会导致因变量的减少。
二次项的系数β2表示自变量X的平方项对因变量Y的影响。
二次项的系数可以反映自变量的非线性关系对因变量的影响。
如果β2的值为正,说明自变量的增加会加剧因变量的增加或减少;如果β2的值为负,说明自变量的增加会减轻因变量的增加或减少。
通过观察二次回归系数表中的系数取值,我们可以判断各个变量对因变量的影响程度和方向,并进行进一步的分析和预测。
在实际应用中,我们可以根据系数的大小和符号来判断自变量的重要性和影响程度,从而进行决策和优化。
需要注意的是,二次回归系数表中的系数取值只是样本估计值,其真实取值可能存在一定的误差。
因此,在进行数据分析和决策时,我们需要综合考虑各个因素,并进行合理的解释和判断。
二次回归系数表是回归分析中的重要工具,可以帮助我们理解变量之间的关系和进行预测和决策。
通过观察系数的取值,我们可以了解到自变量对因变量的影响程度和方向,从而进行进一步的分析和优化。
在实际应用中,我们需要注意系数的估计误差,并综合考虑各个因素进行决策。
通过合理地运用二次回归系数表,我们可以更好地理解数据和变量之间的关系,为决策提供有力的支持。