相似三角形判定复习精选课件
合集下载
相似三角形的判定全课件
两个三角形如果一个对 应角和一组对应边成比 例,则这两个三角形相似。
两个三角形如果一组对 应边和一个对应角成比 例,则这两个三角形相似。
02
CATALOGUE
三角形相似的判定条件
角角角(AAA)判定条件
总结词
不满足相似三角形的判定条件
详细描述
AAA条件仅表明三个角度相等,但边长不一定成比例,因此不能判定三角形相似。
在解决实际问题中的应用
建筑设计
在建筑设计中,可以利用相似三 角形来计算建筑物的尺寸和比例。
机械设计
在机械设计中,可以利用相似三角 形来计算零件的尺寸和比例。
物理学
在物理学中,可以利用相似三角形 来解释和计算物理现象,如光学、 力学等。
04
CATALOGUE
三角形相似的证明方法
直接证明法
定义法
根据相似三角形的定义,证明两 个三角形三边对应成比例,且三 角对应相等,从而判定两个三角
题目2
两个等腰三角形,一个 底角为30°,另一个底 角为45°,如果一个三 角形的顶角为120°,另 一个三角形的顶角为 90°,则这两个三角形 是否相似?
进阶练习题
总结词
考察三角形相似的复杂判定方法和综合应用
题目1
两个等腰三角形,一个底角为45°,另一个底角为60°,如果一个三角形的顶角为90°,另 一个三角形的顶角为120°,则这两个三角形是否相似?
相似比
两个相似三角形的对应边 之间的比例称为相似比。
相似三角形的性质
相似三角形对应角相等, 对应边成比例,面积比等 于相似比的平方。
相似三角形的判定定理
角角判定定理
两个三角形如果两个对 应角相等,则这两个三
角形相似。
相似三角形复习课件
面积比等于相似比的平方
相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用
相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用
相似三角形的判定课件(省优秀课件)
两边成比例且夹角相等
定义
如果两个三角形的两组对应边成比例且夹角相等, 则这两个三角形相似。
判定定理
如果两个三角形的两组对应边成比例且夹角相等, 则这两个三角形相似。
示例
在△ABC和△DEF中,如果AB/DE = AC/DF且∠A = ∠D, 则△ABC∽△DEF。
Байду номын сангаас
三边成比例
02
01
03
定义
如果两个三角形的三边对应成比例,则这两个三角形 相似。
课后作业。
存在的问题和不足
部分学生在运用相似三角形知识 解决实际问题时,还存在一定的 困难,需要进一步加强练习和指
导。
对未来学习建议和展望
深入学习相似三角形的相关知识
01
建议学生继续深入学习相似三角形的性质和应用,掌握更多的
解题技巧和方法。
加强实践和应用能力
02
鼓励学生多参加数学实践活动和竞赛,提高运用数学知识解决
通过本课件的学习,使学生掌握相似三角形的判定方法,理解相 似三角形的性质,并能够在实际问题中加以应用。
相似三角形定义及性质
定义:两个三角形如果它们的对应角相等,那 么这两个三角形相似。
01
对应角相等;
03
02
性质
04
对应边成比例;
面积比等于相似比的平方;
05
06
周长比等于相似比。
02
相似三角形判定方法
当两个三角形的两边成比例且夹角相等时,它们可能 相似。
当两个三角形的三边成比例时,它们一定相似。
多种方法综合运用
在实际解题中,可以结 合多种判定方法来证明 两个三角形相似。
例如,可以先证明两个 三角形有两个相等的角 ,再证明它们的两边成 比例。
第二十四章-相似三角形-复习ppt课件
第二十四章 相似三角形 复习课件
1
一、本章知识结构图
放缩与相似形
比例线段
相
比例线段
似
三角形一边的平行线
相似三角形
判定 性质
平面向量
实数与向量相乘
向量的线性运算
2
回顾与思考
一、相似形
1. 各角对应相等,各边对应成比例的两个多边形叫相 似多边形. 2. 三个角对应相等,三条边对应成比例的两个三角形 叫相似三角形.两个相似三角形用“∽”表示,读做 “相似于”.
(2) 以连接后的这两个向量为邻边向量 构造平行四边形
(3) 这个平行四边形的对角线向量就是 这两个向量的和向量与差向量
3.向量加法和减法的三角形法则 加法: 一终二起,一起二终 减法: 共起点指向被减
9
五、典例精析,复习新知
2.如图,在△ABC中,AB=AC=27,D在AC上,且 BD=BC=18,DE//BC交AB于E,则DE= 分析:由△ABC∽△BCD,列出比例式,求出CD,再用 △ABC∽△AED A答案:10
称比例线段.此时也称这四条线段成比例.
4
➢ 线段的比要注意以下几点: • 线段的比是正数 • 单位要统一 • 线段的比与线段的长度无关
如果 (b=d=f≠0),
那么
如果,
,那么ad=bc.
如果ad=bc(a、b、c、d都不等于0),那么
.
5
三、相似三角形的判定与性质 方法1:通过定义(不常用)
方法2:平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似; 方法3:两对应角相等的,两三角形相似. 方法4:两边对应成比例且夹角相等,两三角形相似. 方法5:三边对应成比例的,两三角形相似.
1
一、本章知识结构图
放缩与相似形
比例线段
相
比例线段
似
三角形一边的平行线
相似三角形
判定 性质
平面向量
实数与向量相乘
向量的线性运算
2
回顾与思考
一、相似形
1. 各角对应相等,各边对应成比例的两个多边形叫相 似多边形. 2. 三个角对应相等,三条边对应成比例的两个三角形 叫相似三角形.两个相似三角形用“∽”表示,读做 “相似于”.
(2) 以连接后的这两个向量为邻边向量 构造平行四边形
(3) 这个平行四边形的对角线向量就是 这两个向量的和向量与差向量
3.向量加法和减法的三角形法则 加法: 一终二起,一起二终 减法: 共起点指向被减
9
五、典例精析,复习新知
2.如图,在△ABC中,AB=AC=27,D在AC上,且 BD=BC=18,DE//BC交AB于E,则DE= 分析:由△ABC∽△BCD,列出比例式,求出CD,再用 △ABC∽△AED A答案:10
称比例线段.此时也称这四条线段成比例.
4
➢ 线段的比要注意以下几点: • 线段的比是正数 • 单位要统一 • 线段的比与线段的长度无关
如果 (b=d=f≠0),
那么
如果,
,那么ad=bc.
如果ad=bc(a、b、c、d都不等于0),那么
.
5
三、相似三角形的判定与性质 方法1:通过定义(不常用)
方法2:平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似; 方法3:两对应角相等的,两三角形相似. 方法4:两边对应成比例且夹角相等,两三角形相似. 方法5:三边对应成比例的,两三角形相似.
相似三角形的判定-完整版PPT课件
课程讲授
1 三边成比例的两个三角形相似
A′ A
B
C
B′
C′
AB A'B'
=
BC B'C'
= CA C'A'
△ABC∽△A'B'C'
课程讲授
1 三边成比例的两个三角形相似
问题2:运用所学知识,证明你的结论.
已知:如图,△ABC和△A'B'C'中,AB = BC = CA A'B' B'C' C'A'
BD BC DC 3 A
∴ △ABD∽△BDC, ∴∠ABD=∠BDC,
∴AB∥DC.
14 B
D
31.5 21
42
C
课堂小结
判定定理1
三边成比例的两个三角形相似.
相似三角形 的判定
判定定理2
两边成比例且夹角相等的两个三 角形相似.
练一练:如图,在△ABC与△ADE中,∠BAC=∠D,
要使△ABC与△ADE相似,还需满足下列条件中的( C )
A. AC AB
AD AE
B. AC BC
AD DE
C. AC AB
AD DE
D. AC BC
AD AE
随堂练习
1.已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一 边长为4 cm,当另两边的长是下列哪一组时,这两个三角形
=
AB AD
=
BC DE
,
∴△ABC∽△ADE.
随堂练习
5.如图,已知AD·AC=AB·AE. (1)求证:△ADE∽△ABC;
证明:∵AD·AC=AB·AE,
相似三角形的判定及有关性质 复习课件 PPT
题型二 化归法 转化化归思想方法是解决数学问题的灵魂,平面 几何在证明一些等积式时,往往将其转化为比例 式,当证明的比例式中的线段在同一直线上时, 常转化为用相等的线段、相等的比、相等的等积 式来代换相应的量,证明比例式成立也常用中间 比来转化证明.
例 2 如图,在△ABC 中,∠A,∠B,∠C 的对边分别是 a,b,c,点 P 是 AB 上与 A,B 不重合的一个动点,连 接 PC,过点 P 作 PQ∥AC 交 BC 于点 Q. (1)如果 a,b 满足关系式 a2+b2-12a-16b+100=0,c 是不等式组22xx- +3 13><x6-x+24, 1 的最大整数解,试说明△ABC 的形状. (2)在(1)的条件下,设 AP=x,S△PCQ=y,求 y 与 x 的函 数关系式,并注明自变量 x 的取值范围.
5.直角三角形的射影定理
(1)射影的概念 从一点向一条直线作垂线,垂足称作这点在这条直线 上的正射影,简称射影. 一般地,一个点集(如线段或其他几何图形)中所有的 点在某条直线上的射影集合,称这个点集在这条直线 上的射影.如一条线段在一条直线上的射影就是线段的 两个端点在这条直线上的射影间的线段.
2.平行线分线段成比例定理
(1)定理:三条平行线截两条直线,所得的对应线段成比例. 推论1:平行于三角形一边的直线截其他两边的直线(或两边 的延长线)所得的对应线段成比例. 推论2:用平行于三角形一边且和其他两边相交的直线截三 角形,所得的三角形三边与原三角形的三边对应成比例. 推论1的逆定理:如果一条直线截三角形两边或两边的延长 线所得的对应线段成比例,那么这条直线平行于三角形的 第三边. (2)三角形内角平分线定理 定理:三角形的内角平分线分对边所得的两条线段比等于 夹这个角的两边比.
相似三角形的判定复习课(共23张ppt)
AC=AN•cos∠BAO= t;
∴OC=OA-AC=6-t,∴N(6-t, t).
∴NM=
=
;
又:AM=6-t,AN= t(0<t≤6);
①当MN=AN时,
= t,即:t2-8t+12=0,t1=2,t2=6(舍去);
②当MN=MA时,
=6-t,即: t2-12t=0,t1=0(舍去),t2= ;
解:(1)由题意,A(6,0)、B(0,8), 则OA=6,OB=8,AB=10; 当t=3时,AN= t=5= AB,即N是线段AB的中点; ∴N(3,4). 设抛物线的解析式为:y=ax(x-6),则: 4=3a(3-6),a=- ; ∴抛物线的解析式:y=- x(x-6)=- x2+ x.
(2)在此运动的过程中,△MNA的面积是否存在最大值?若 存在,请求出最大值;若不存在,请说明理由;
解得DM= ;
②DM与BE是对应边时,DM=
∴DM2+DN2=MN2=1, 即DM2+4DM2=1,
DN,
解得DM= .
∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似. 故选C.
2、如图,已知在△ABC中,AD是BC边上的中线,以AB为 直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长 线于点N,过点B作BG⊥MN于G. (1)求证:△BGD∽△DMA; (2)求证:直线MN是⊙O的切线
证明:(1)∵MN⊥AC于点M,BG⊥MN于G, ∴∠BGD=∠DMA=90°. ∵以AB为直径的⊙O交BC于点D, ∴AD⊥BC,∠ADC=90°, ∴∠ADM+∠CDM=90°, ∵∠DBG+∠BDG=90°,∠CDM=∠BDG, ∴∠DBG=∠ADM. 在△BGD与△DMA中,∠BGD=∠DMA=90°, ∠DBG=∠ADM. ∴△BGD∽△DMA;
相似三角形专题复习(共66张PPT)
8
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=_____
1:3
课堂训练:
E
B
D
C
4. 在△ABCAC=4,AB=5.D是AC上一动点,且∠ADE=∠B,设AD=x,AE=y,写出y与x之间的函数关系式.试确定x的取值范围.
A
解: ∵∠A=∠A ∵∠ADE=∠B ∴△ADE∽△ABC ( ) ∴AD:AB=AE:AC ∴x:5=y:4 ∴y=0.8x
相似三角形
DE∥BC
△ ADE∽ △ ABC
∠DAE= ∠CAB
△ ADE∽ △ ABC
基本图形
判定方法
∠AED= ∠B
∠DAE= ∠BAC
△ADE∽ △ ABC
对应角相等;
性质定理
对应边成比例;
周长的比 等于相似比;
面积的比等于 相似比的平方;
三边对应成比例的 两个三角形相似.
灵感 智慧
M1
A
B
C
P
Q
A
B
C
P
Q
M2
例:如图,在ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(与点A、C不重合),点Q在BC上。试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
灵感 智慧
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若AD=10, AB= 8, 则EF=______
善于在复杂图形中寻找基本型
5
A
D
B
C
E
F
A
B
C
F
E
E
E
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=_____
1:3
课堂训练:
E
B
D
C
4. 在△ABCAC=4,AB=5.D是AC上一动点,且∠ADE=∠B,设AD=x,AE=y,写出y与x之间的函数关系式.试确定x的取值范围.
A
解: ∵∠A=∠A ∵∠ADE=∠B ∴△ADE∽△ABC ( ) ∴AD:AB=AE:AC ∴x:5=y:4 ∴y=0.8x
相似三角形
DE∥BC
△ ADE∽ △ ABC
∠DAE= ∠CAB
△ ADE∽ △ ABC
基本图形
判定方法
∠AED= ∠B
∠DAE= ∠BAC
△ADE∽ △ ABC
对应角相等;
性质定理
对应边成比例;
周长的比 等于相似比;
面积的比等于 相似比的平方;
三边对应成比例的 两个三角形相似.
灵感 智慧
M1
A
B
C
P
Q
A
B
C
P
Q
M2
例:如图,在ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(与点A、C不重合),点Q在BC上。试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
灵感 智慧
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若AD=10, AB= 8, 则EF=______
善于在复杂图形中寻找基本型
5
A
D
B
C
E
F
A
B
C
F
E
E
E
相似三角形复习-ppt
相似三角形的性质
相似三角形对应边对应成比例,对应角相等。
相似三角形对应高线、角平分线、中线之比等于相似比,周长之比等于相似比,面积之比等于相似比的平方。
如图,DE∥BC,CD和BE相交于点O, AD:DB=2:3,则△DOE与△BOC的周长之比为 ,面积之比为 .
如图,在△ABC中,AD:DB=1:2,DE∥BC,若△ABC的面积为9,则四边形DBCE的面积为 .
不能用三点定型法确定相似三角形(要用等比代换或等积代换)
变式练习2
如图,▱ABCD中,M是AB上的一点,连接CM并延长交DA的延长线于P,交对角线BD于N,求证:CN²=MN•NP.
当用三点定型法确定的三角形不想似时,要用等比代换或作辅助线构造相似。
如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:
△AED∽△CBM;
AE•CM=AC•CD.
拓展Байду номын сангаас伸
已知:如图,在梯形ABCD中,AD∥BC,AB=CD=3,点E在BD上,且满足BE•BD=9.求BC的长度。
反 思
谢谢大家 再见
汇报时间
汇报人姓名
精讲点拨
小结
证明等积式时,可以先将等积式变为比例式,确定要证明的相似三角形,然后求证。
有相等的边,有时通过换边来证明相似。
求证第二个问题时,一定要考虑第一个问题的结论。
变式练习1:如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的中点,过D,E作直线交AB的延长线于F.求证:
母子型
(四)一线三等角型(K子型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景
一线三直角型( K子型)
相似三角形的判定及有关性质复习 课件
(4)直角三角形相似的判定定理 定理1:如果两个直角三角形有一个锐角相等,那么它 们相似. 定理2:如果两个直角三角形的两条直角边对应成比例, 那么它们相似. 定理3:如果一个直角三角形的斜边和一条直角边与另 一个直角三角形的斜边和一条直角边对应成比例,那 么它们相似.
4.相似三角形的性质
性质定理1:相似三角形对应角相等,对应边成比例. 性质定理2:相似三角形对应边上的高、中线和它们的 周长的比都等于相似比. 性质定理3:相似三角形的面积比等于相似比的平方. 性质定理4:相似三角形外接圆或内切圆的直径比、周 长比等于相似比,外接圆或内切圆的面积比等于相似 比的平方.
题型一 构造法 添加辅助线是平面几何解决问题最常用的手段,添加辅 助线的目的是构造平行线、或三角形、或三角形的相似等 结构.
例 1 如图,梯形 ABCD 中,AB∥CD,CE 平分∠BCD,CE⊥AD 于 E,DE=2AE, 若△CED 的面积为 1,求四边形 ABCE 的面积.
解 延长 CB,DA 交于点 F,又 CE 平分∠BCD,CE⊥AD. ∴△FCD 为等腰三角形,E 为 FD 的中点. ∴S△FCD=12FD·CE=12×2ED×CE=2S△CED=2,EF=2AE. ∴FA=AE=14FD.又∵AB∥CD,∴∠FBA=∠FCD, ∠FAB=∠D,∴△FBA∽△FCD.∴SS△△FFCBDA=FFAD2=142=116, ∴S△FBA=116×S△FCD=18. ∴S 四边形 ABCE=S△FCD-S△CED-S△FBA=2-1-18=78.
1.平行线等分线段定理 (1)定理:如果一组平行线在一条直线上截得的线段相等,那 么在任一条(与这组平行线相交)直线上截得的线段也相等 推论1:经过三角形一边的中点且与另一边平行的直线必平 分第三边. 推论2:经过梯形一腰的中点且与底边平行的直线必平分另 一腰. (2)中位线定理 三角形中位线定理:三角形的中位线平行于第三边,并且等 于它的一半. 梯形中位线定理:梯形的中位线平行于两底,并且等于两底 和的一半.
相似三角形的判定全ppt课件
2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。
相似三角形的判定课件优秀课件
性质
相似三角形的对应边成比例,对应 角相等,面积比等于相似比的平方。
判定条件
02
01
03
两角分别相等的两个三角形相似。 两边成比例且夹角相等的两个三角形相似。 三边成比例的两个三角形相似。
相似比与相似度
相似比
相似三角形的对应边之间的比值称为 相似比。
相似度
用来衡量两个三角形相似的程度,通常 用相似比来表示。相似度越高,两个三 角形越相似。
THANK YOU
感谢聆听
构建相似三角形,利用比例关 系求解线段长度。
应用勾股定理和相似三角形的 性质,求解直角三角形中的线 段长度。
求解角度问题
利用相似三角形的对应角相等,通过已知角度求解未 知角度。
通过构建相似三角形,利用角度之间的和、差、倍、 半关系求解角度问题。
结合三角形的内角和性质,利用相似三角形求解复杂 的角度问题。
直角三角形相似判定
对于两个直角三角形,如果它们的一个锐角相等,则这两个三角形相似。这是因为直角三角 形的锐角决定了其余两个角的大小,因此一个锐角相等就意味着三个角都相等。
等腰三角形相似判定
对于两个等腰三角形,如果它们的顶角相等,则这两个三角形相似。这是因为等腰三角形的 顶角决定了其余两个底角的大小,因此顶角相等就意味着三个角都相等。
求解面积问题
利用相似三角形的面积比等于 相似比的平方,通过已知面积 求解未知面积。
通过构建相似三角形,利用面 积之间的比例关系求解面积问 题。
结合其他几何知识,如平行四 边形的面积公式等,利用相似 三角形求解复杂的面积问题。
04
相似三角形在代数问题中应用
利用相似三角形性质解方程
通过相似三角形的对 应边成比例,将几何 问题转化为代数方程。
相似三角形的对应边成比例,对应 角相等,面积比等于相似比的平方。
判定条件
02
01
03
两角分别相等的两个三角形相似。 两边成比例且夹角相等的两个三角形相似。 三边成比例的两个三角形相似。
相似比与相似度
相似比
相似三角形的对应边之间的比值称为 相似比。
相似度
用来衡量两个三角形相似的程度,通常 用相似比来表示。相似度越高,两个三 角形越相似。
THANK YOU
感谢聆听
构建相似三角形,利用比例关 系求解线段长度。
应用勾股定理和相似三角形的 性质,求解直角三角形中的线 段长度。
求解角度问题
利用相似三角形的对应角相等,通过已知角度求解未 知角度。
通过构建相似三角形,利用角度之间的和、差、倍、 半关系求解角度问题。
结合三角形的内角和性质,利用相似三角形求解复杂 的角度问题。
直角三角形相似判定
对于两个直角三角形,如果它们的一个锐角相等,则这两个三角形相似。这是因为直角三角 形的锐角决定了其余两个角的大小,因此一个锐角相等就意味着三个角都相等。
等腰三角形相似判定
对于两个等腰三角形,如果它们的顶角相等,则这两个三角形相似。这是因为等腰三角形的 顶角决定了其余两个底角的大小,因此顶角相等就意味着三个角都相等。
求解面积问题
利用相似三角形的面积比等于 相似比的平方,通过已知面积 求解未知面积。
通过构建相似三角形,利用面 积之间的比例关系求解面积问 题。
结合其他几何知识,如平行四 边形的面积公式等,利用相似 三角形求解复杂的面积问题。
04
相似三角形在代数问题中应用
利用相似三角形性质解方程
通过相似三角形的对 应边成比例,将几何 问题转化为代数方程。
《相似三角形的性质和判定》PPT课件
全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似
。
02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
相似三角形复习课件
使用相似三角形的比例关系计算未知边长。
2 图形分析
仔细观察图形,寻找能够构成相似三角形的线段和角。
3 问题转化
将复杂的相似三角形问题转化为简单的相似三角形问题,减少计算难度。
总结
相似三角形是具有相同形状但大小可以不同的三角形,它们有着对应角相等 和对应边成比例的性质。相似三角形的判定、性质、比例关系以及应用都是 解决实际问题和几何推理的重要工具。
影子问题
相似三角形可以用来解决阴影问题,如计算 树木的高度。
地图比例尺
地图上的比例尺是相似三角形的应用之一, 可以通过相似三角形的边比例关系计算实际 距离。
相似物体放大缩小
通过相似三角形的比例关系,可以进行物体 的放大缩小,如地图的缩放。
相似三角形的解题技巧
解决相似三角形问题的一些技巧:
1 比例关系运用
3 SSS判定法
如果两个三角形的三条 边的比值相等,那么它 们相似。
相似三角形的性质
相似三角形具有以下性质:
1 对应角度相等
相似三角形的内角相等。
2 对应边成比例
相似三角形的对应边的长度成比例。
3 比例关系
相似三角形的任意两条对应边的长度比值相等。
相似三角形的比例关系
相似三角形的对应边的长度比值是相等的。常用的相似比例关系有:
2 大小可以不同
相似三角形的边长可以不相等,但对应边的比值保持一致。
3 比例关系
相似三角形的任意两条对应边的长度比值都是相等的。
相似三角形的判定
有多种方法可以判定两个三角形是否相似:
1 AA判定法
如果两个三角形的两个 角分别相等(对应角相 等),则它们相似。
2 SAS判定法
如果两个三角形的一个 角相等,且两个角对应 的两条边的比值相等, 那么它们相似。
2 图形分析
仔细观察图形,寻找能够构成相似三角形的线段和角。
3 问题转化
将复杂的相似三角形问题转化为简单的相似三角形问题,减少计算难度。
总结
相似三角形是具有相同形状但大小可以不同的三角形,它们有着对应角相等 和对应边成比例的性质。相似三角形的判定、性质、比例关系以及应用都是 解决实际问题和几何推理的重要工具。
影子问题
相似三角形可以用来解决阴影问题,如计算 树木的高度。
地图比例尺
地图上的比例尺是相似三角形的应用之一, 可以通过相似三角形的边比例关系计算实际 距离。
相似物体放大缩小
通过相似三角形的比例关系,可以进行物体 的放大缩小,如地图的缩放。
相似三角形的解题技巧
解决相似三角形问题的一些技巧:
1 比例关系运用
3 SSS判定法
如果两个三角形的三条 边的比值相等,那么它 们相似。
相似三角形的性质
相似三角形具有以下性质:
1 对应角度相等
相似三角形的内角相等。
2 对应边成比例
相似三角形的对应边的长度成比例。
3 比例关系
相似三角形的任意两条对应边的长度比值相等。
相似三角形的比例关系
相似三角形的对应边的长度比值是相等的。常用的相似比例关系有:
2 大小可以不同
相似三角形的边长可以不相等,但对应边的比值保持一致。
3 比例关系
相似三角形的任意两条对应边的长度比值都是相等的。
相似三角形的判定
有多种方法可以判定两个三角形是否相似:
1 AA判定法
如果两个三角形的两个 角分别相等(对应角相 等),则它们相似。
2 SAS判定法
如果两个三角形的一个 角相等,且两个角对应 的两条边的比值相等, 那么它们相似。
相似三角形复习课件
证明: ∵△ABC为等边三角形 ∴∠A=∠B=∠ACB ∴∠A=∠FPE=∠B
P
1
E
2
又∵∠ACB=∠FPE
B
F
C
∵∠2+∠FPE=∠A+∠1 ∴∠2=∠1 ∵在△EAP和△PBF中
2 1 A B
∴△EAP∽△PBF
∴
AE AP BP BF
∴ AP ·BP=AE ·BF
【适时小结】
同一直线三等角的特征图形
2.类似三角形对应高的比、对应中线的比、对应角平分线
的比和周长的比,都等于类似比. 3.类似三角形的面积的比等于类似比的平方.
例题1 如图,已知AB⊥BC于点B,DC⊥BC于点C,点P为线 段BC上一点,且∠APD=90°. 求证:(1)△ABP ∽△PCD ;(2)BP·PC=AB·CD. D
分析:
变式
如图,等边三角形ABC的边长为8,把△ABC 进行折叠,使
点C正好落在边AB于点P上,并且AP= 2,折痕是EF
求:PE:PF的值
A
解:∵△ABC为等边三角形
∴∠A=∠B=∠ACB ∴∠A=∠FPE=∠B 又∵∠ACB=∠FPE
P
1
E
2
∵∠2+∠FPE=∠A+∠1
∴∠2=∠1
∴△EAP∽△PBF
类似三角形
变式
如点求例△图C:题A证正BP2,:CE好等A如:进落PP边图F·行在三,B的折边P角在值=叠AA形等B,E于A边·使B点B三C点F的P角.C上边形落,长A在并B为C点且8的问对P,问似值AA上P问到应3把2和有B:=,:什1边边△所什怎2、两折,么△的上A求么根个么痕B折E结长取的 关C据类A办是痕论度一系PP上似进EE?与是?是点呢F题三与行△E否P.?可角PF,折P可.FAB得形把叠的求F的,比类出使?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又 知 CE DE EF, 得 Δ CDF是 RtΔ 可 ,
M
∟
A
由条件得 AMD Δ FCD, Δ ∽ 结论成立。
综合运用
如图,正方形ABCD 中,E是AD的中点, ^ BE, EF 求证:ΔABE ∽ ΔEBF
A E D F
你能发现 ninengfaxi
几对三角 形相似?
B
C
正方形ABCD边长为4,M、N分别是BC、CD上的两个 动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,四边形ABCN的面积为y,求y与x之间 的函数关系式;当M点运动到什么位置时,四边形 ABCN面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM∽Rt△AMN, 求此时x的值.
定理1:三组对应边的比相等,两三角形相似。 AB BC CA A' △ABC∽△A'B'C' A'B' B'C' C'A' 定理2:两组对应边的比相等且夹角相等, 两三角形相似。 B' AB BC A A' B ' B ' C ' △ABC∽△A'B'C'
∠B= ∠B'
C'
定理3:两角对应相等,两三角形相似。
△ ACP∽△ABC 答:当∠1= ∠ACB 或∠2= ∠B
或AC:AP=AB:AC时,△ ACP∽△ABC.
练习
已知,△ABC中,D为AB上一点,画一条过 点D的直线(不与AB重合),交AC于E,使所得 三角形与原三角形相似,这样的直线最多能 画出多少条? A
A
D
E
D
E
B
C
B
C
如图,D是△ABC的AB边上的一点,已知 2 AB=12,AC=15,AD= 3 AB,在AC上取一 点E,使△ADE与△ABC相似,求AE的长。
△ A1B1C1 ∽△ABC (相似比不为1), 且点都在单位正方形 的顶点上 . C A B
尝试
如图,矩形ABCD是由三个正方形 ABEG,GEFH,HFCD组成的,判断下列两 个结论是否成立?若成立,请证明.若不成 立,请说明理由. ① △AEF∽△CEA ② ∠AFE +∠ACE=45 °
A G H D
2
a2 b2 时, BD
2
答:略.
a
基本图形应用 (1)
已知:如图,△ABC中,P是AB边上的一点,连 结CP.满足什么条件时△ ACP∽△ABC?
解:⑴∵∠A= ∠A,∴当∠1= ∠ACB
(或∠2= ∠B)时,△ ACP∽△ABC A
⑵ ∵∠A= ∠A,
P 1 4
2 C
∴当AC:AP=AB:AC时, B
B
B
C
A
B
C
定理应用
如图,∠ACB=∠ADC=90°,AC= 6 , AD=2。问当AB的长为多少时,这两个直角 三角形相似?
A
D
∟
B
C
要使这两个直角三角形相似,有两种情况: (1)当Rt△ABC∽Rt△ACD时,有
AC AB AD AC
AC 2 AB 3 AD
A
(2)当Rt△ACB∽Rt△CDA时,有
A
D E G
C
已知:如图,△PQR是等边三角形, ∠APB = 120 ° 求证:(1)PAQ∽△BPR.
(2) AQ RB=QR 2
Q
R
B
已知:如图,△PQR是等边三角形, ∠APB = 120 °,你还能发现几对 三角形相似? PB² =?PA² =?你能证明 AQ:AB=QR² :PB²
B
E
F
C
如图,这是由三个全等的正方形组成的 广告牌。你能从中找出一对相似三角形 吗?说明理由(全等三角形除外)
A C E G
B
1 D
2
3
F
H
∠1+ ∠2+ ∠3=
度
解:⑴∵ ∠1=∠D=90° A
b a b 1 AC BC ∴当 时,即当 b B D 时, B BC BD b2 △ABC∽ △CDB,∴ B D a
⑵∵ ∠1=∠D=90° a AC AB ∴当 B C B D 时,即当 b
D
△ABC∽ △BDC, ∴ B D b a b
C
∟
A
D
B
如图,已知:DE ∥BC,DC和BE相交于P点, 连结AP交DE于M,延长AP交BC于点N ,求证: DM=ME,BN=NC。
A D
M
要证DM EM,需利用中间比过渡,由DE // BC ,
DM AD 推得ADM ∽ABN , 得 BN AB
E
P B
AD DE DE EP EP ME 同理可证 , , AB BC BC PB PB BN
AC AB CD AC
AC 2 AB 3 2 CD
D
∟
故当AB的长为3或
3 2BC源自时,这两个直角三角形相似。
如图:∠ABC=∠CDB=90°, 2 b AC=a, BC=b, 当BD= 时, △ABC∽△CDB.
A C
a
B
D
如图:已知∠ABC=∠CDB=90°,AC=a, BC=b,当BD与a、b之间满足怎样的关系式时, 两三角形相似 a C
A D
N B M C
如图,在 □ ABCD中,G是BC延 长线上一点,AG与BD交于点E,与 DC交于点F,则图中相似三角形 共有( D )
A. B. C. D. 3对 4对 5对 6对
A
D
E B
F C G
Rt△ABC中, ∠ACB=90 °,CD⊥AB于D
(1)写出图中所有的相似三角形,并选择其中一 对说明理由 (2)若AD=4cm, BD=1cm,请你求出CD的长度
Q B P C Q B P C
基本图形应用 (2)
将两块完全相同的等腰直角三角板摆成如图 的样子,假设图形中的所有点、线都在同一平面 内,则图中有相似(不包括全等)三角形吗?如 有,把它们一 一写出来. 解:有相似三角形,它们是: △ADE∽ △BAE, B △BAE ∽ △CDA , △ADE∽ △CDA ( △ADE∽ △BAE ∽ F △CDA)
C E E C
A
D
B
A
D
B
动点与相似三角形
如图:在⊿ABC中, ∠C= 90°,BC=8,AC=6.点P 从点B出发,沿着BC向点C以2cm/秒的速度移动;点 Q从点C出发,沿着CA向点A以1cm/秒的速度移动。 如果P、Q分别从B、C同时出发,问: ①经过多少秒时⊿CPQ∽ ⊿CBA; ② 经过多少秒时以C、P、Q为顶点的三角形恰好与 A ⊿ABC相似? A
三角形相似的判定方法有哪些?
三个角对应相等 方法1:通过定义 三边对应成比例 方法2:平行于三角形一边的直线与其它两边
相交,所得三角形与原三角形相似 方法3:三组对应边的比相等,两个三角形相似 方法4:两组对应边比相等且夹角相等, 两个三角形相似
方法5:两组角分别对应相等,两个三角形相似
相似三角形的判定定理:
Q
R
B
如图,已知EM ^ AM,交AC于D,CE=DE 求证:2ED · DM=AD · CD。
F
C
证法一: 要 证 2ED DM AD CD成 立 ,
E
D
应把积的形式转化成比 例式 (还应考虑系数2), 2ED CD ,要 得 出 2ED, AD DM 可 延 长 DE到 F, 使F DE, E
∠A= ∠A' △ABC∽△A'B'C' ∠B= ∠B'
B
C
直角三角形相似的判定:
直角边和斜边的比相等,两直角 三角形相似。
C' ∠C=∠C' =90 Rt△ABC∽Rt△A'B'C' AB AC = A A'C' A' B '
o
A'
B'
C
B
A
1 2
A O
C
B
A
C
C
D E
B D
D O
A D E
N
DM ME , DM ME C BN BN
同理可证:BN=NC
网格问题
如图,小正方形的边长均为1,则下列 图中的三角形(阴影部分)与△ABC相似 的是 A
A
B
C
(A)
(B)
(C)
(D)
在正方形方格中, △ABC的顶点A、 B、C在单位正方形的顶点上 ,请在 图中画一个△A1B1C1 使