重庆市2019年中考数学考点系统复习第三章函数第三节反比例函数精讲课件
2025中考复习数学考点突破课件:第三章 函数 考点13 反比例函数
=1,∴直线 AB 的解析式为 y = x +1,反比例函数图
象的解析式为 y = (x>0).
1
2
3
4
5
6
回到目录
考点13
反比例函数
(2)求△ ABC 的面积.
【解】(2)∵直线 y = x +1与 y 轴交于点 B ,
当 x =0时, y =1,∴ B (0,1).
∵ BC ∥ x 轴,且 BC 与反比例函数 y = (x>0)的图象
F , G . ∵点 B 在第一象限,纵坐标为4, D 为 AB 的中点,且点 C , D 在
反比例函数 y = (k>0, x >0)的图象上,∴ C ( ,4), D ( ,2).根据反
4
2
1
比例函数中 k 的几何意义,得 S梯形 CDFG = S△ COD =6,∴ ×(2+4)( - )
函数中 k 的几何意义知, S矩形 ABOF = k .∵ S矩形 ABOF = AB ·OB , S平行四边形
ABCD = AB ·OB =2 S△ BCE =8,∴ S矩形 ABOF = k =8.故选C.
1
2
3
4
5
6
7
8
回到目录
考点13
刷易错
考点13
8.
反比例函数
−−
[2024湖南株洲石峰区一模]若函数 y =(m+1)
题意.故选C.
1
2
3
4
5
6
7
8
回到目录
考点13
反比例函数
2. [2023湖北武汉中考]关于反比例函数 y = ,下列结论正确的是(
中考数学考点专题复习课件反比例函数的图象和性质
解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
2019年中考数学总复习 第三章 函数 第三节 反比例函数
图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于
点D,连接OA,BC,Ev已a知lu点aCt(i2,on0),onBlD=y.2,S△BCD=3,则 ith SA△sCAOpoC=opsy_5er_..iSglhitde2s00f4o-r20.1N1ETAs3p.o5seClPiteyntLtPdr.ofile
Pty
Ltd.
21
Evaluation only. ith Aspose.Slides for .NET 3.5 Client Profile
Copyright 2004-2011 Aspose Pty Ltd.
第三节 反比例函数
1
考点一 反比例函数Ev的a图lu象a与ti性o质n only. ith例A1s(2p0o1s8·e.天S津li)d若e点sA(fxo1,r -.6N)E,TB(3x.2,5 -C2l)i,eCn(tx3,P2r)ofile
在反C比op例y函ri数gyh=t 1x220的0图4-象2上01,1则Axs1,pxo2,sex3的Pt大y小L关t系d.是
()
A.x1<x2<x3
B.x2<x1<x3
C.x2比例函数图象在各象限内的增减性判断
或直接代入值即可E.valuation only. ith【A自s主po解s答e.】S对li于dye=s 1f2 o,r∵.1N2>ET0,3∴.5在每Cl个i象en限t内,Profile
B,得到直线l.则直线l对应的函数表达式是 .
15
【分析】 由点A在反比例函数的图象上求出点A坐标,再根
ith据A点sAp在os正e比.S例l函id数Eev图sa象lfu上oar,ti求.oN出nE正To比n3l例.y5函.数Cl表i达en式t,P进r而ofile 根据C点opBy坐r标ig求h出tl的20表0达4-式2.011 Aspose Pty Ltd.
中考数学专题复习 反比例函数及其应用
(教材母题链接:北师九上 P162T11)
上一页 返回导航 下一页
反比例函数与几何图形的综合 9.(2020 滨州)如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=1x2上, 且 AB∥x 轴,点 C,D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为 (C )
(C ) A.k=2 B.函数图象分布在第一、三象限
C.当 x>0 时,y 随 x 的增大而增大
D.当 x>0 时,y 随 x 的增大而减小
上一页 返回导航 下一页
2.(2020 河南)若点 A(-1,y1),B(2,y2),C(3,y3)在反比例函数 y= -6x的图象上,则 y1,y2,y3 的大小关系是( C )
上一页 返回导航 下一页
2.关于反比例函数 y=-3x,下列说法不正确的是( D ) A.图象经过点(1,-3) B.图象位于第二、四象限 C.图象关于直线 y=x 对称 D.y 随 x 的增大而增大
上一页 返回导航 下一页
三、反比例函数解析式的确定 待定系数法: (1)设所求的反比例函数的解析式为 y=kx(k≠0); (2)将图象上的一点坐标代入 y=kx中,求出 k; (3)把 k 代入解析式 y=kx中,写出解析式.
第一部分 夯实基础
第三章 函 数
第3节 反比例函数及其应用
上一页 返回导航 下一页
课标导航 ·结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式. ·能画出反比例函数的图象,根据图象和表达式 y=kx(k≠0).探索并理 解 k>0 和 k<0 时,图象的变化情况. ·能用反比例函数解决简单实际问题.
上一页 返回导航 下一页
(2)若一次函数图象与 y 轴交于点 C,点 D 为点 C 关于原点 O 的对称点, 求△ACD 的面积.
【中考数学考点复习】第三节反比例函数的图象与性质课件
∴点C的坐标为(m,12m),
∴PC=|m8 -12m|,
∴S△POC=12PC·xP,
第9题图
即3=12×|m8 -12m|·m,(7分) 整理为|8-12m2|=6, 解得m=±2或±2 7, ∵点P在第一象限, ∴m>0, ∴P(2,4)或(2 7,477).(10分)
第9题图
10. 在平面直角坐标系 xOy 中,反比例函数 y=mx (x>0)的图象经过点 A(3, 4),过点 A 的直线 y=kx+b 与 x 轴、y 轴分别交于 B,C 两点.
(5)【思维教练】通过作辅助线将△PAB分为两个三角形,利用分割法 及三角形面积公式求解;
解:如解图②,过点 P 作 PQ 垂直于 x 轴,交直线 AB 于点 Q, 则点 Q(52,32),
∴S △PAB(xB-xQ)·PQ+12(xQ-xA)·PQ
Q
∟
=12(xB-xA)·PQ=12×2×32 =3;
y=-8,
联立
x y=1x+5-m
整理得 ,
12x
2+(5-m)x
+8=0,
2
Δ=(5-m)2-16=0,解得 m=1 或 m=9.(9 分) ∴m 的值为 1 或 9.(10 分)
第8题图
9.图,在平面直角坐标系 xOy 中,已知正比例函数 y=1x 的图象与反比 2
例函数 y=k的图象交于 A(a,-2),B 两点. x
∴不等式kx<-x+4 的解集为 x<0 或 1<x<3;
(3)连接 OA,OB,求△AOB 的面积;
第 7 题图②
(3)【思维教练】先求得直线与x轴的交点坐标,再利用和差法及三角形 面积公式求解;
解:如解图①,设直线 AB 与 x 轴交于点 C,
【中考一轮复习】反比例函数的图象及性质课件
典型例题---反比例函数的图象与性质
【例1】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数
y
6 x
的图象上,则y1、y2、y3的大小关系是( D )
A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1
方法一:求出函数值再比较函数值的大小;
方法二:利用图象比较函数值的大小;
Ox D
当堂训练---反比例函数的图象与性质
3.已知点P(a,m),Q(b,n)都在反比例函数 y 2 的图象上,且
x
a<0<b,则下列结论一定正确的是( D )
A.m+n<0 B.m+n>0
C.m<n
D.m>n
4.反比例函数 y k 的图象经过点(3,-2),下列各点在图象上的 x
是( D )
1及.如y2图=,2x直的线图l象⊥分x于别点交P于,且点与A反、比B,例连函接数OA,yO1B=,已4x 知 △AOB的面积为_1__.
yl A
B
2y.2如 图kx2 ,(x平行0)的于图x轴象的分直别线相与交函于数A,yB1两 k点x1 (,x点 0A)在与点 B的右侧,C为x轴上的一个动点,若△ABC的面积为
数的图象 对称,由于反比例函数中自变量x≠0,函数y≠0,所以,它 及性质 的图象与x轴、y轴都__没__有__交点,即双曲线的两个分支
无限接近坐标轴,但永远达不到坐标轴。
考点聚焦---反比例函数的图象与性质
函数
图象形状 图象位置 增减性 延伸性 对称性
k>0
yk x k<0
y
函数图象的 在每一支
典型例题---用待定系数法求解析式
【例3】若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则
考点11 反比例函数(精讲)(原卷版)
考点11.反比例函数(精讲)【命题趋势】反比例函数也是非常重要的函数,年年都会考,总分值为12分左右,预计2024年各地中考一定还会考,反比例函数与一次函数结合出现在解答题中是各地中考必考的一个解答题,反比例函数的图象与性质和平面几何的知识结合、反比例函数中|k|的几何意义等也会是小题考查的重点。
【知识清单】1:反比例函数的概念(☆☆)反比例函数的概念:一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.自变量x和函数值y的取值范围都是不等于0的任意实数.2:反比例函数的图象和性质(☆☆☆)1)反比例函数的图象和性质表达式kyx=(k是常数,k≠0)k k>0k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大对称性轴对称图形(对称轴为直线y=x和y=-x),中心对称图形(对称中心为原点)2)待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.3:反比例函数中|k|的几何意义(☆☆☆)1)反比例函数图象中有关图形的面积2)涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.4:反比例函数与一次函数的综合(☆☆☆)1)涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标。
九年级数学第三节 反比例函数的图象与性质优秀课件
> y2.
拓展训练
2. 假设反比例函数y=1 3 m
〔 〕1
x1
3
3
A. m≥
B. m≤
的图象位于二、四象限,那么m的取值范围是D
1
1
3 C. m<
3 D. m>
第三节 反比例函数的图象与性质 数的相关概念
3. 对于反比例函数y= k 2 1 ,以下说法不正确的选项是A〔 〕
x
A. 函数值y随x的增大而增大 B. 图象在第二、四象限 C. 当k=2时,它的图象经过点〔5,-1〕 D. 它的图象关于原点对称
第9题图
第三节 反比例函数的图象与性质 数的相关概念
返回目录
第三节 反比例函数的图象与性质
返回目录
数的相关概念
10. 〔20xxxxB卷25题4分〕设双曲线y= 〔k k>0〕与直线y=x交于A,B两点〔点
x
A在第三象限〕,将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点
A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的
达式得-2=1 a,
2
2
∴a=-4,
∴A(-4,-2),(1分)
把A(-4,-2)代入反比例函数y=k 中,得k=-4×(-2)=8,
∴反比例函数的表达式为y= 8
x ,(3分)
y 1x
x
联立方程组 2 ,
y 8
解得
xy11==--24(舍去x ),
x2=4, y2=2
∴B(4,2);(5分)
第三节 反比例函数的图象与性质 数的相关概念
从而得出k的值,代入解析式即可
第三节 反比例函数的图象与性质 数的相关概念
成都10年真题+2019诊断检测
中考考点突破反比例函数
把A,B两点坐标代入一次函数
解析式中,得到a =4,b =-2.
所以一次函数的解析式为 y = 4x-2.
A
O
B
x
随堂专题测试
y
Add You Text Here Add You Text Here
k
(2) 求不等式ax + b> 的解集.
x
k
解:根据图象可知,若 ax + b> ,
x
1
则 x>1或 <x<0.
A.10
B.5
C.2
D.
1
10
随堂专题测试
Add You Text Here Add You Text Here
8.已知反比例函数 = (a≠0) 的图象,在每一象限内,y的值随x值的增大而减小,
则一次函数y=-ax+a的图象不经过(
A.第一象限
B.第二象限
C
)
C.第三象限
D.第四象限
1
随堂专题测试
Add You Text Here Add You Text Here
3. 已知函数 y = 5m − 3 2− + ( + )
(1)当m,n 为何值时为一次函数?
(2)当m,n 为何值时为正比例函数?
(3)当m,n 为何值时为反比例函数?
解:(1)当函数 = 5 − 3 2− + ( + )是一次函数时,2 − = 1 且 5 − 3 ≠ 0
3
解得 n = 1 且 ≠ 5
(2)当函数 = 5 − 3 2− + ( + )是正比例函数时,
2− =1
+ =0
5 − 3 ≠ 0
中考数学总复习:反比例函数ppt专题课件
复习目标
知识回顾
重点解析
探究拓展
真题演练
知识考点 02 反比例函数解析式的确定 用待定系数法求反比例函数解析式的一般步骤是: ( 1) 设所求的反比例函数为 y= x ( k≠0) ; ( 2) 根据已知条件( 自变量与函数的对应值)
k 列出含 k 的方程; ( 3) 求待定系数 k 的值; ( 4) 把 k 值代入函数解析式 y= x . k
当 y=2 时, x=-3, 易知: 直线 AB 为 y=2x+8. ∴C (-4, 0).
复习目标
知识回顾
重点解析
探究拓展
真题演练
5 1. (2013·兰州)当 x>0 时, 函数 y=- x 的图象在(
第 十 一 讲
)
A. 第四象限 C. 第二象限
B. 第三象限 D. 第一象限
第 十 二 讲 第 十 三 讲
点 A( 1, m) , B( -2, -1) , 则反比例函数的值大于一次函数的值的 x的取值范围 是 .
【答案】 0<x<1 或 x<-2
复习目标
知识回顾
重点解析
探究拓展
真题演练
6 3. (2013·陕西)如果一个正比例函数的图象与反比例函数 y= x 的图象交于
第 十 一 讲 第 十 二 讲 第 十 三 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
反比例函数
课标要求 理解:反比例函数的定义与其解析式. 掌握:反比例函数的图象与性质, 反比例函数中比例系数 k 的几何 意义. 会:运用反比例函数解决实际问题.解答反比例函数与方程及与其 他函数相融合的综合性题目. 高频考点 1.反比例函数的有关概念、解析式.
中考数学复习第三章函数讲义
第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
中考数学 精讲篇 考点系统复习 第三章 函数 第三节 反比例函数
1 (2)由(1)得:△BCH 的面积为2×4×4=8.
9.(2016·重庆 A 卷第 22 题 10 分)如图,在平面直角坐标系中,一次函 数 y=ax+b(a≠0)的图象与反比例函数 y=kx(k≠0)的图象交于第二、第 四象限内的 A,B 两点,与 y 轴交于 C 点.过 A 作 AH⊥y 轴,垂足为点 H,
8
8 32
∴BE=3.∴k=4×3= 3 .故选:D.
命题点 2:反比例函数与一次函数、三角函数、几何图形的综合(近 6 年考查 4 次) 7.(2017·重庆 A 卷第 22 题 10 分)如图,在平面直角坐 标系中,一次函数 y=mx+n(m≠0)的图象与反比例函数 y =kx(k≠0)的图象交于第一、三象限内的 A,B 两点,与 y 轴交于点 C.过点 B 作 BM⊥x 轴,垂足为 M,BM=OM,OB= 2 2,点 A 的纵坐标为 4.
4 OH=3,tan∠AOH=3,点 B 的坐标为(m,-2). (1)求△AHO 的周长; (2)求该反比例函数和一次函数的解析式.
解:(1)∵AH⊥y 轴于点 H,∴∠AHO=90°. AH 4
∵tan∠AOH=OH=3,OH=3, ∴AH=4. OA= AH2+OH2= 42+32=5. ∴△AHO 的周长为 3+4+5=12.
∴一次函数的解析式为 y=-x-1.
令 y=0,得 x=-1,∴点 C 的坐标为(-1,0).
1
(2)由(1)知,点 A 的坐标为(-4,3), 点 A 在反比例函数 y=kx(k≠0)的图象上, ∴∵∴反点3比=B(例-mk,函4.-数∴2的k)=在解-反析1比式2,例为函y=数-y=1x2-. 1x2的图象上,
第三章 函数(考点串讲)高一数学上学期期中考点(人教B版2019必修第一册)
则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.
2.函数的定义域和值域
函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数
集A)称为这个函数的定义域,所有函数值组成的集合{y∈B|y=f(x),
x∈A}称为函数的值域.
(4)f(x)=|x|,g(x)= x 2 .
判断两个函数是否为同一函数,要看三要素是
否对应相同.函数的值域可由定义域及对应关系
来确定,因而只要判断定义域和对应关系是否对
应相同即可.
考点3.同一函数
解析:
序号
是否相同
(1)
不同
(2)
不同
原因
定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义
为f(x0)(记作f x min =f(x0)),而x0 称为f(x)的最小值点.最大值和最小
值统称为最值,最大值点和最小值点统称为最值点.
考点8.直线的斜率,函数的平均变化率
一般地,给定平面直角坐标系中的任意两点A(x1,y1),B(x2,y2),当
y2 − y1
x 2 − x1
x1=x2
x1≠x2 时,称________为直线AB的斜率;当________时,称直线AB的斜
(1)y=-x+1,x∈Z;
(2)y=2x2-4x-3,0≤x<3;
(3)关键是根据x的取值去绝对值.(3)y=|1-x|.
考点8.函数图像
解析:(1)函数y=-x+1,x∈Z的图像是直线y=-x+1上所有横坐
标为整数的点,如图(a)所示.
形,其中能表示从集合M到集合N的函数关系的有(
中考数学 精讲篇 考点系统复习 第三章 函数 第三节 反比例函数 课时1 反比例函数的图象与性质
(1)若反比例函数 y=x(a≠0)的图象在每一个象限内, y 都随 x 的增大 而增大,则 a 的取值范围是 a<a<00; (2)若点 P(m,n)在反比例函数图象上,则点 Q(-m,-n)在 在 (选填 “在”或“不在”)该反比例函数图象上;
(3)若反比例函数的图象分布在第一、三象限,则 a 的取值范围是 a a>>0 a
0;若点(-2,y1),(2,y2),(3,y3)在函数 y=x(a>0)的图象上,则 y1, y2,y3 的大小关系为 y2y2>y>3y>3>yy11(用“>”连接); (4)若点(3,-3)在反比例函数 y=ax(a≠0)的图象上,则该反比例函数的
解析式为 y=y=--9x ,当 y>-2 时,x 的取值范围是 x<x0<或0x或x>>4.5; 4.5
图②
(7)如图③,点 A,C 是反比例函数 y=ax的图象上的两点.分别过点 A,C 作 AB⊥x 轴于点 B,CD⊥x 轴于点 D,若 AB=OB=OD=CD,且四边形 ABCD 的面积为 6,则 a 的值是 3 3 .
图③
比较反比例函数值大小的方法: 1.在同一分支上的点,可根据反比例函数的增减性进行比较. 2.不在同一分支上的点,可根据函数值的正负进行比较. 3.特殊值法也是解决此类问题的常用方法.若 k 值题中未给出,则可给 k 取特定值,但要注意 k 值的正负.
C.当 I≤10 A 时,R≥3.6 Ω
D.当 R=6 Ω时,I=4 A,
2.(2021·广安第 7 题 3 分)若点 A(-3,y1),B(-1,y2),C(2,y3)都在 k
反比例函数 y= x (k<0)的图象上,则 y1,y2,y3 的大小关系是( A ) A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1,
中考数学一轮复习《 反比例函数》课件 (2)
x
(2)若点D(3,m)在双曲线上,求直线AD的解析式;
(3)计算△OAB的面积.
【分析】 (1)代入A点坐标即可求出反比例函数的解析式; (2)先求出D点坐标,再利用待定系数法求出直线的解析式; (3)过点B,C分别作y轴的垂线,利用反比例系数k的几何意 义求解. 【自主解答】 (1)将点A(2,3)代入解析式y= ,得k=6. (2)将D(3,m)代入反比例函数解析式y= , 得m= =2,
函数
的图象上,那么y1,y2,y3的大小关系是( )
A.y1>y2>y3
B.y3>y2>y1
C.y2>y1>y3
D.y1>y3>y2
【分析】 根据反比例函数的性质解答,注意点C与点A,B
不在同一象限.
【自主解答】 ∵
,∴在每一象限内,y随x的增大
而增大.∵点A,B在同一象限,且-2<-1,∴0<y1<y2.又
限内y随x的增大而增大.在利用性质比较大小时,一定注
意条件“同一象限内”,这是比较容易出错的地方.
练:链接变式训练4
3.(2016·潍坊)已知反比例函数y= k(k≠0)的图象经过 (3,-1),则当1<y<3时,自变量x的x 取值范围是_______
______. 4.(2016·呼和浩特)已知函数y=- ,当自变量的-取3<值x
在每一象限内,y 在每一象限内,y随 随x的增大而减_小____ x的增大而增_大____
正确理解反比例函数的增减性,注意自变量的取值范围, 不能笼统地说y随x的增大而增大(或减小),应指明在某一 象限内或自变量的取值范围内说明函数的增减变化情况.
3.反比例函数y= k (k为常数,k≠0)中k的几何意义
中考数学 考点系统复习 第三章 函数 第三节 反比例函数 第四节 二次函数的图象与性质
确结论的序号都填上)
12.(2021·威宁县模拟)如图,在平面直角坐标系中,二次 函数 y=ax2+4x-3 图象的顶点是 A,与 x 轴交于 B,C 两点, 与 y 轴交于点 D,点 B 的坐标是(1,0). (1)a= ; (2)求 A,C 两点的坐标,并根据图象直接写出当 y>0 时 x 的取值范围; (3)平移该二次函数的图象,使点 D 恰好落在点 A 的位置上,求平移后图 象所对应的二次函数的解析式.
11.(2020·泰安)已知二次函数 y=ax2+bx+c(a,b,c 是常数,a≠0)
的 y 与 x 的部分对应值如下表:
x
-5
-4
-2
0
2
y
6
0
-6
-4
6
下列结论:①a>0;②当 x=-2 时,函数最小值为-6;③若点(-8,
y1),点(8,y2)在二次函数图象上,则 y1<y2;④方程 ax2+bx+c=-5 有两个不相等的实数根.其中,正确结论的序号是_①__ ③④_.(把所有正
组对应值:
x
… -2 0
1
3
…
y
Байду номын сангаас
…6
-4 -6 -4 …
下列各选项中,正确的是
( C)
A.这个函数的图象开口向下
B.这个函数的图象与 x 轴无交点
C.这个函数的最小值小于-6
D.当 x>1 时,y 的值随 x 值的增大而增大
4.已知(-3,y1),(-2,y2),(1,y3)是抛物线 y=-3x2-12x+m 上的
第四节 二次函数的图象 与性质
1.(2020·黔南州模拟)对于二次函数 y=3(x-2)2+1 的图象,下列说法
中考数学专题复习全攻略第三节 反比例函数的图象和性质
第三节 反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质 1.反比例函数的概念(1)定义:形如y =kx (k ≠0)的函数称为反比例函数,k 叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种 基本形式:①y =kx ;②y=kx-1; ③xy=k.(其中k 为常数,且k ≠0) 反比例函数顺口溜:反比函数双曲线,经过 点。
K 正一三负二四,两轴是它渐近线。
K 正左高右边低,一三象限滑下山。
K 负左低右边高,二四象限如爬山。
变式练习:函数y=3x m+1,当m=-2时,则该函数是反比例函数.的 反比函数双曲线,经过 点。
K 正一三负二四,两轴是它渐近线。
K 正左高右边低,一三象限滑下山。
K 负左低右边高,二四象限如爬山。
注意:(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.变式练习1:已知k 1<0<k 2,则函数y =k 1x -1和y =xk2的图象大致是( )【解析】∵k 2>0,∴反比例函数的图象在第一、三象限,∵k 1<0,函数y =k 1x -1与y 轴的交点为(0,-1),∴一次函数图象经过二、三、四象限,故选A.变式练习2:反比例函数y =2x 的图象在( B ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限变式练习3:已知反比例函数y =kx 的图象在每一个象限内y 都随x 的增大而增大,请写出一个符合条件的反比例函数解析式___y =-1x (答案不唯一)___.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x 轴和y 轴,但都不会与x 轴和y 轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.(4)对称性:a 、同一条双曲线的两个分支关于原点成中心对称图; b 、k 互为相反数的两条双曲线关于坐标轴对称。
反比例函数中考总复习原创课件
【考点2】一次函数与反比例函数
【例2】已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的平面直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?
2.如图,A,C是函数 的图象上的任意两点,过点A作x轴的垂线,垂足为点B,过点C作y轴的垂线,垂足为点D,连接OA,OC,设Rt△AOB的面积为S1,Rt△COD的面积为S2,则( ) A.S1>S2 B.S1<S2 C.S1=S2 D.S1和S2的大小关系不能确定
③④
C
3.函数 的图象与直线y=x没有交点,那么k的取值范围是( ) A.k>1 B.k<1 C.k>-1 D.k<-1
A
4.已知一次函数y=kx+b的图象经过点A(0,1)和点B (a,-3a), a<0,且点B在反比例函数 的图象上. (1)求a的值和一次函数的解析式. (2)如果P(m, y1),Q(m+1, y2)是这个一次函数图象上的两点, 试比较y1与y2的大小.
解:(1) (2)x<-4
6.如图,四边形OABC是面积为4的正方形,函数 (x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数 (x>0)的图象交于点E,F,求线段EF所在直线的解析式.
解:(1)如图,作CE⊥AB,垂足为E. ∵AC=BC,AB=4,∴AE=BE=2. 在Rt△BCE中,BC= ,BE=2, ∴CE= .∵OA=4, ∴点C的坐标为 . ∵点C在 的图象上, ∴k=5.
解:(1)a=-1, y=-2x+1 (2)y1>y2