【北师大版】2020年春七年级下册数学:第一章-整式的乘除(2章--章末复习(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习(一) 整式的乘除
01 知识结构
本章知识属于中考必考内容,难度较低,单独考查时,考查内容主要包括:同底数幂的乘除法,幂的乘方与积的乘方,整式的化简等,与其他知识结合考查时,常与因式分解、分式的化简等知识结合起来考查.
02典例精讲
【例1】(遵义中考)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积为(C)
A.2 cm2B.2a cm2
C.4a cm2 D.(a2-1)cm2
【思路点拨】由拼成的长方形(不重叠无缝隙)的面积等于大正方形的面积减去小正方形的面积可解决.
【方法归纳】解答与整式运算的应用有关的题关键是通过建立整式运算模型,把实际问题转化为整式运算问题来解.
【例2】(茂名中考)先化简,后求值:a2·a4-a8÷a2+(a3)2,其中a=-1.
【思路点拨】原式第一项利用同底数幂的乘法法则计算,第二项利用同底数幂的除法法则计算,最后一项利用幂的乘方运算法则计算,合并得到最简结果,将a的值代入计算即可求出值.
【解答】原式=a6-a6+a6=a6.
当a=-1时,原式=1.
【方法归纳】此题考查了整式的混合运算——化简求值,涉及的知识有:同底数幂的乘、除法法则,幂的乘方以及合并同类项法则,熟练掌握各种法则是解本题的关键.
【例3】(宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.
【思路点拨】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a 的值代入计算即可求出值.
【解答】原式=1-a2+a2-4a+4=-4a+5.
当a=-3时,原式=-4×(-3)+5=17.
【方法归纳】 此题考查了整式的混合运算,涉及的知识有:平方差公式、完全平方公式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.
【例4】 利用乘法公式计算:
(1)59.6×60.4; (2)1022
.
【思路点拨】 在(1)中,因为59.6+60.42
=60,所以59.6×60.4=(60-0.4)×(60+0.4),根据平方差公式即可简便计算;在(2)中,因为1022=(100+2)2,根据完全平方公式即可简便计算.
【解答】 (1)59.6×60.4=(60-0.4)×(60+0.4)=3 600-0.16=3 599.84.
(2)1022=(100+2)2=1002+400+4=10 404.
【方法归纳】 在有理数的乘法或乘方计算中,当数值不易计算时,应考虑是否能利用乘法公式进行简便计算. 03 整合集训
一、选择题(每小题3分,共30分)
1.计算:a 2·a 4=(A )
A .a 6
B .a 8
C .2a 6
D .a 2
2.人体内某种细胞的形状可近似看作球状,它的直径是0.000 001 56 m ,这个数据用科学记数法可表示为(A )
A .1.56×10-6 m
B .1.56×10-5 m
C .156×10-5 m
D .1.56×106 m
3.计算|-8|-(-12
)0的结果是(B ) A .-7 B .7 C .712
D .9 4.(南充中考)下列运算正确的是(A )
A .3x -2x =x
B .2x ·3x =6x
C .(2x )2=4x
D .6x ÷2x =3x
5.下列计算中,正确的是(D )
A .a 0=1
B .32÷3-2=1
C .m 6÷m 2=m 3
D .3-2=19
6.计算(-3)100×(-13
)101等于(C ) A .-1 B .1 C .-13 D.13
7.下列计算错误的有(D )
①(2x +y )2=4x 2+y 2;
②(3b -a )2=9b 2-a 2;
③(-3b -a )(a -3b )=a 2-9b 2;
④(-x -y )2=x 2+2xy +y 2;
⑤(x -12)2=x 2-2x +14.
A.1个 B.2个 C.3个 D.4个
8.(临沂中考)请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)·(1+x+x2+…+x n)的结果是(A) A.1-x n+1 B.1+x n+1
C.1-x n D.1+x n
9.若(x+y)2=9,(x-y)2=5,则xy的值为(B)
A.-1 B.1 C.-4 D.4
10.已知a+b=m,ab=-4,化简(a-2)(b-2)的结果是(D)
A.6 B.2m-8
C.2m D.-2m
二、填空题(每小题4分,共20分)
11.若(5a+3b)2=(5a-3b)2+A,则A=60ab.
12.若102·10n-1=106,则n的值为5.
13.把(6×105)2的结果用科学记数法表示为3.6×1011.
14.若(x+3)(x-4)=ax2+bx+c,则a=1,b=-1,c=-12.
15.一个长方形的面积是(x2-9)平方米,其长为(x+3)米,用含有x的整式表示它的宽为(x-3)米.
三、解答题(共50分)
16.(10分)计算:
(1)(x+5)(x-5)-x(x+25);
解:原式=x2-25-x2-25x
=-25-25x.
(2)(x-y)2-(8x2y2-4xy3)÷4xy.
解:原式=x2-2xy+y2-2xy+y2
=x2-4xy+2y2.
17.利用乘法公式计算:
(1)51×49;
解:原式=(50+1)×(50-1)
=2 500-1
=2 499.
(2)1 9992.
解:原式=(2 000-1)2
=2 0002-4 000+1
=3 996 001.
18.(10分)小操找来一张挂历纸包数学课本.已知课本长为a厘米,宽为b厘米,厚为c厘米,小操想将课本封面与封底的每一边都包进去2厘米.问小操应在挂历纸上剪下一块多大面积的长方形?
解:需要在挂历纸上剪下一块长为(2b+c+4)厘米,宽为(a+4)厘米的长方形.
所以面积为(2b+c+4)·(a+4)
=2ab+ac+4a+8b+4c+16(平方厘米).
19.(8分)某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?
解:这个多项式是(x2-4x+1)-(-3x2)=4x2-4x+1,
正确的计算结果是(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.
20.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x-y)-(2x-y)2+2y2,其中xy=2 017.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗?请说明理由.
解:不正确.理由如下:
因为(2x+y)(2x-y)-(2x-y)2+2y2
=4x2-y2-4x2+4xy-y2+2y2
=4xy.
所以,当xy=2 017时,原式=4×2 017=8 068.
21.(14分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.
(1)根据上面的规律,写出(a+b)5的展开式;
(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.
解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.
(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.。