哈尔滨中考数学圆的综合(大题培优)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨中考数学圆的综合(大题培优)
一、圆的综合
1.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.
(1)求证:BD平分∠ABC;
(2)求证:BE=2AD;
(3)求DE
BE
的值.
【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -
【解析】
试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;
(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得
BE=AF=2AD;
(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,
DH=21
-, 然后根据相似三角形的性质可求解.
试题解析:(1)∵D是的中点
∴AD=DC
∴∠CBD=∠ABD
∴BD平分∠ABC
(2)提示:延长BC与AD相交于点F,
证明△BCE≌△ACF,
BE=AF=2AD
(3)连接OD,交AC于H.简要思路如下:
设OH为1,则BC为2,2,
21, DE
BE
=
DH
BC
DE BE =
21
2
-
2.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.
发现:∠POQ=________时,PQ有最大值,最大值为________;
思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;
(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;
探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.
【答案】发现: 90°,102;思考:(1)
10
3
π
=;(2)25π−1002+100;(3)点O
到折痕PQ的距离为30.
【解析】
分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;
思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(2)先在Rt△B'OP中,OP2+(102−10)2=(10-OP)2,解得OP=102−10,最后用面积的和差即可得出结论.
探究:先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩
形,由勾股定理求O′B,从而求出OO′的长,则OM=1
2
OO′=30.
详解:发现:∵P是半径OB上一动点,Q是AB上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,
此时,∠POQ=90°,PQ=22
OA OB
+=102;
思考:(1)如图,连接OQ,
∵点P是OB的中点,
∴OP=
12OB=1
2OQ . ∵QP ⊥OB , ∴∠OPQ=90°
在Rt △OPQ 中,cos ∠QOP=1
2
OP OQ =, ∴∠QOP=60°, ∴l BQ =
601010
1803
ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2 解得OP=102−10,
S 阴影=S 扇形AOB -2S △AOP =290101
210(10210)3602
π⨯-⨯⨯⨯-
=25π−1002+100;
探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P , 则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,
∴O′C=OB=10,
∵折叠后的弧QB′恰好与半径OA 相切于C 点, ∴O′C ⊥AO , ∴O′C ∥OB ,
∴四边形OCO′B 是矩形,
在Rt △O′BP 中,226425-= 在Rt △OBO′K ,2210(25)=230-, ∴OM=
12OO′=1
2
×23030 即O 到折痕PQ 30
点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=
180
n R
π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.
3.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;
(2)若AB=6,CB=4,求PC的长.
【答案】(1)PC是⊙O的切线,理由见解析;(2)3
5 2
【解析】
试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.
(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.
试题解析:(1)结论:PC是⊙O的切线.
证明:连接OC
∵CB∥PO
∴∠POA=∠B,∠POC=∠OCB
∵OC=OB
∴∠OCB=∠B
∴∠POA=∠POC
又∵OA=OC,OP=OP
∴△APO≌△CPO
∴∠OAP=∠OCP
∵PA是⊙O的切线
∴∠OAP=90°
∴∠OCP=90°
∴PC是⊙O的切线.
(2)连接AC
∵AB是⊙O的直径
∴∠ACB=90°(6分)
由(1)知∠PCO=90°,∠B=∠OCB=∠POC
∵∠ACB=∠PCO
∴△ACB∽△PCO
∴
∴.
点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.
4.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.
(1)求证:DA是⊙O切线;
(2)求证:△CED∽△ACD;
(3)若OA=1,sinD=1
3
,求AE的长.
【答案】(1)证明见解析;(22
【解析】
分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;
(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.
详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.
∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.
∵OA是⊙O半径,∴DA为⊙O的切线;
(2)∵OB=OC,∴∠OCB=∠B.
∵∠DCE=∠OCB,∴∠DCE=∠B.
∵∠DAC=∠B,∴∠DAC=∠DCE.
∵∠D=∠D,∴△CED∽△ACD;
(3)在Rt△AOD中,OA=1,sin D=1
3
,∴OD=
OA
sinD
=3,∴CD=OD﹣OC=2.
∵AD22
OD OA
2
又∵△CED∽△ACD,∴AD CD
CD DE
,∴DE=
2
CD
AD
=2,
∴AE=AD﹣DE=22﹣2=2.
点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.
5.已知:如图,△ABC中,AC=3,∠ABC=30°.
(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;
(2)求(1)中所求作的圆的面积.
【答案】(1)作图见解析;(2)圆的面积是9π.
【解析】
试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.
(2)连接OA,OB.
∵AC=3,∠ABC=30°,
∴∠AOC=60°,
∴△AOC是等边三角形,
∴圆的半径是3,
∴圆的面积是S=πr2=9π.
6.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;
(2)若OD=15,AE=7,求BE的长.
【答案】(1)见解析;(2)18.
【解析】
分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;
(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.
详解:(1)证明:连接OB.
∵∠A=45°,
∴∠DOB=90°.
∵OD∥BC,
∴∠DOB+∠CBO=180°.
∴∠CBO=90°.
∴直线BC是⊙O的切线.
(2)解:连接BD.则△ODB是等腰直角三角形,
∴∠ODB=45°,BD=OD=15,
∵∠ODB=∠A,∠DBE=∠DBA,
∴△DBE∽△ABD,
∴BD2=BE•BA,
∴(15)2=(7+BE)BE,
∴BE=18或﹣25(舍弃),
∴BE=18.
点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.
7.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).
(1)当点H落在AC边上时,求t的值;
(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以
点C为圆心,1
2
t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.
【答案】(1)t=2s或10s;(2)①S=
2
2
2
9?(02)
7
5050(210)
2
40400?(1020)
t t
t t t
t t t
⎧<≤
⎪
⎪
-+-<≤
⎨
⎪
-+<<
⎪⎩
;②100cm2.
【解析】
试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;
(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;
②分两种情形分别列出方程即可解决问题.
试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2
如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.
综上所述:t=2s或10s时,点H落在AC边上.
(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2
如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣1
2
(5t﹣10)2=﹣
7
2
t2+50t﹣50.
如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣1
2
(30﹣3t)2=﹣
7
2
t2+50t﹣50.
如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.
综上所述:S=
2
2
2
9?(02)
7
5050(210) 2
40400?(1020)
t t
t t t
t t t
⎧<≤
⎪
⎪
-+-<≤
⎨
⎪
-+<<
⎪⎩
.
②如图7中,当0<t≤5时,1
2
t+3t=15,解得:t=
30
7
,此时S=100cm2,当5<t<20时,
1
2
t+20﹣t=15,解得:t=10,此时S=100.
综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2
点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.
8.已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.
(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:
∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.
【答案】(1)证明见解析;(2)PA=PB+PC.理由见解析;(3)若∠BAC=120°时,(2)
3 PA=PB+PC.
【解析】
试题分析:(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;
(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.
试题解析:(1)如图①,连接PC.
∵△ACQ是由△ABP绕点A逆时针旋转得到的,
∴∠ABP=∠ACQ.
由图①知,点A、B、P、C四点共圆,
∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),
∴∠ACP+∠ACQ=180°(等量代换);
(2)PA=PB+PC.理由如下:
如图②,连接BC,延长BP至E,使PE=PC,连接CE.
∵弦AB=弦AC,∠BAC=60°,
∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).
∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),
∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,
∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),
在△BEC和△APC中,
CE PC
BCE ACP
AC BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△BEC≌△APC(SAS),∴BE=PA,
∴PA=BE=PB+PC;
(3)若∠BAC=120°时,(2)中的结论不成立,3 PA=PB+PC.理由如下:如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.
∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.
∵弦AB=弦AC,∴∠APB=∠APQ=30°.
在△ABP和△AQP中,
PB PQ
APB APQ
AP AP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ABP≌△AQP(SAS),
∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).
在等腰△AQC中,QG=CG.
在Rt△APG中,∠APG=30°,则AP=2AG,PG=3AG,
∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=23AG,
∴3PA=23AG,即3PA=PB+PC.
【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.
9.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.
【解析】
试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是=,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;
BD中点,推出CD CB
(2)想办法证明∠EFB=∠EBF即可;
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;
试题解析:(1)如图1中,连接OA,
∵OA=OC,∴∠1=∠ACO,
∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,
∵点C是BD中点,∴CD CB
=,∴∠BAC=∠DAC,
∴∠DAC=∠ACO+∠ABO.
(2)如图2中,
∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,
∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,
∴∠EFB=∠EBF,∴EF=EB.
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.
∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,
∵∠EFB=∠EBF ,∴∠G=∠HOF ,
∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,
∵OH ⊥AB ,∴AB=2HB ,
∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,
∴cos ∠GBA=
12
HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,
∵∠FOH=30°,∴OF=2FH=2a , ∵AB=13,∴EF=EB=FB=FH+BH=a+
132, ∴OE=EF ﹣OF=FB ﹣OF=
132﹣a ,OB=OC=OE+EC=132﹣a+2=172﹣a , ∵NE=12EF=12a+134
, ∴ON=OE=EN=(
132﹣a )﹣(12a+134)=134﹣32
a , ∵BO 2﹣ON 2=EB 2﹣EN 2, ∴(172﹣a )2﹣(134﹣32a )2=(a+132)2﹣(12a+134
)2, 解得a=
32
或﹣10(舍弃), ∴OE=5,EB=8,OB=7, ∵∠K=∠ATC=90°,∠KAC=∠TAC ,AC=AC ,∴△ACK ≌△ACT ,∴CK=CT ,AK=AT , ∵CD CB =,∴DC=BC ,∴Rt △DKC ≌Rt △BTC ,∴DK=BT ,
∵FT=12
FC=5,∴DK=TB=FB ﹣FT=3,∴AK=AT=AB ﹣TB=10,∴AD=AK ﹣DK=10﹣3=7.
10.如图,AB 是⊙O 的直径,D 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且CE=CF.
(1)求证:CE 是⊙O 的切线;
(2)连接CD 、CB ,若AD=CD=a ,求四边形ABCD 面积.
【答案】(1)证明见解析;(2)
【解析】
【分析】
(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;
(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【详解】
(1)证明:连接OC,AC.
∵CF⊥AB,CE⊥AD,且CE=CF.
∴∠CAE=∠CAB.
∵OC=OA,
∴∠CAB=∠OCA.
∴∠CAE=∠OCA.
∴OC∥AE.
∴∠OCE+∠AEC=180°,
∵∠AEC=90°,
∴∠OCE=90°即OC⊥CE,
∵OC是⊙O的半径,点C为半径外端,
∴CE是⊙O的切线.
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四边形AOCD是平行四边形,
∴OC=AD=a,AB=2a,
∵∠CAE=∠CAB,
∴CD=CB=a,
∴CB=OC=OB,
∴△OCB是等边三角形,
在Rt△CFB中,CF=,
∴S四边形ABCD=(DC+AB)•CF=
【点睛】
本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.
11.定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
理解:
⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);
⑵如图,在正方形中,是的中点,是上一点,且,试
判断是否为“智慧三角形”,并说明理由;
运用:
⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.
【答案】(1)详见解析;(2)详见解析;(3)P的坐标(
22
3
,
1
3
),(
22
3
,
1
3
).
【解析】
试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.
试题解析:
(1)如图1所示:
(2)△AEF是否为“智慧三角形”,
理由如下:设正方形的边长为4a,
∵E是DC的中点,
∴DE=CE=2a,
∵BC:FC=4:1,
∴FC=a,BF=4a﹣a=3a,
在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,
在Rt△ECF中,EF2=(2a)2+a2=5a2,
在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,
∴AE2+EF2=AF2,
∴△AEF是直角三角形,
∵斜边AF上的中线等于AF的一半,
∴△AEF为“智慧三角形”;
(3)如图3所示:
由“智慧三角形”的定义可得△OPQ为直角三角形,
根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,
由勾股定理可得PQ=,
PM=1×2÷3=,
由勾股定理可求得OM=,
故点P的坐标(﹣,),(,).
考点:圆的综合题.
12.如图,在Rt△ABC中,∠ACB=60°,☉O是△ABC的外接圆,BC是☉O的直径,过点B作☉O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作☉O的切线AF,与直径BC的延长线交于点F.
(1)连接EF,求证:EF是☉O的切线;
(2)在圆上是否存在一点P,使点P与点A,B,F构成一个菱形?若存在,请说明理由.
【答案】(1)见解析;(2)存在,理由见解析
【解析】
【分析】
(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分∠BEF,从而得到结论;
(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.
【详解】
(1)证明:如图,过O作OM⊥EF于M,
∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,
∴OE=OF,
∵∠EOF=∠AOB=120°,
∴∠OEM=∠OFM=30°,
∴∠OEB=∠OEM=30°,即EO平分∠BEF,
又∠OBE=∠OME=90°,
∴OM=OB,
∴EF为☉O的切线.
(2)存在.
∵BC为☉O的直径,
∴∠BAC=90°,
∵∠ACB=60°,
∴∠ABC=30°,
又∵∠ACB=60°,OA=OC,
∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为☉O的切线,
∴∠OAF=90°,
∴∠CAF=∠AFC=30°,
∴∠ABC=∠AFC,
∴AB=AF.
当点P在(1)中的点M位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,
又∵OA=OP,OF为公共边,
∴△OAF≌△OPF,
∴AF=PF,
∠BFE=∠AFC=30°.
又∵∠FOP=∠OBP=∠OPB=30°,
∴BP=FP,
∴AB=AF=FP=BP,
∴四边形AFPB是菱形.
【点睛】
考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
13.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .
(1)求证:DF 是O 的切线;
(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.
【答案】(1)见解析;(2)3【解析】
【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.
(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.
【详解】(1)证明:连接OD
∵CF 是⊙O 的切线
∴∠OCF=90°
∴∠OCD+∠DCF=90°
∵直径AB ⊥弦CD
∴CE=ED ,即OF 为CD 的垂直平分线
∴CF=DF
∴∠CDF=∠DCF
∵OC=OD ,
∴∠CDO=∠OCD
∴∠CDO +∠CDB=∠OCD+∠DCF=90°
∴OD ⊥DF
∴DF 是⊙O 的切线
(2)解:连接OD
∵∠OCF=90°, ∠BCF=30°
∴∠OCB=60°
∵OC=OB
∴ΔOCB 为等边三角形,
∴∠COB=60°
∴∠CFO=30°
∴FO=2OC=2OB
∴FB=OB= OC =2
在直角三角形OCE 中,∠CEO=90°∠COE=60° CE 3sin COE OC 2
∠=
= ∴CF 3= ∴CD=2 CF 23=
【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.
14.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为
O 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.
①求证:CD CB =;
②若030A ∠=,且O 的半径为33+,I 为BCD ∆内心,求OI 的长.
【答案】①证明见解析; ②3【解析】
【分析】
①先求出BC CE AC BC
=,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可得∠A =∠CBE ,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A =∠D ,然后求出∠D =∠CBE ,然后根据等角对等边即可得证;
②连接OB 、OC ,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出
∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC﹣CI计算即可得解.【详解】
①∵BC2=AC•CE,∴BC CE AC BC
=.
∵∠BCE=∠ECB,∴△BCE∽△ACB,∴∠CBE=∠A.
∵∠A=∠D,∴∠D=∠CBE,∴CD=CB;
②连接OB、OC.
∵∠A=30°,∴∠BOC=2∠A=2×30°=60°.
∵OB=OC,∴△OBC是等边三角形.
∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则
CF=BC×sin30°
1
2
=BC,BF=BC•cos30°3
2
=BC,所以,BD=2BF=2
3
2
⨯BC3
=BC,设△BCD
内切圆的半径为r,则S△BCD
1
2
=BD•CF
1
2
=(BD+CD+BC)•r,即
1
2
•3BC•
1
2
BC
1
2
=
(3BC+BC+BC)•r,解得:r
3
223
=
+
()
BC
233
2
-
=BC,即IF
233
2
-
=BC,所以,
CI=CF﹣IF
1
2
=BC233
2
-
-BC=(23
-)BC,OI=OC﹣CI=BC﹣(23
-)BC=(3-1)
BC.
∵⊙O的半径为33
+,∴BC=33
+,∴OI=(3-1)(33
+)=33+3﹣
3323
-=.
【点睛】
本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.
15.已知AB 是半圆O 的直径,点C 在半圆O 上.
(1)如图1,若AC=3,∠CAB=30°,求半圆O 的半径;
(2)如图2,M 是BC的中点,E 是直径AB 上一点,AM 分别交CE,BC 于点F,D. 过点F 作FG∥AB 交边BC 于点G,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.
【答案】(1)半圆O的半径为3;
(2)⊙D与直线AC相切,理由见解析
【解析】
试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.
试题解析:
(1)∵ AB是半圆O的直径,
∴∠C=90°.
在Rt△ACB中,AB=
cos AC CAB ∠
=
3 cos30︒
=23.
∴ OA=3
(2)
⊙D与直线AC相切.
理由如下:
由(1)得∠ACB=90°.
∵∠AEC=∠ECB+∠6,
∴∠AEC>∠ECB,∠AEC>∠6.
∵△ACE与△CEB相似,
∴∠AEC=∠CEB=90°.
在Rt△ACD,Rt△AEF中分别有
∠1+∠3=90°,∠2+∠4=90°.
∵ M是BC的中点,
∴∠COM=∠BOM.
∴∠1=∠2,
∴∠3=∠4.
∵∠4=∠5,
∴∠3=∠5.
∴ CF=CD.
过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有
∠CAE+∠ACE=90°,∠CAE+∠6=90°.
∴∠ACE=∠6=∠FPE.
又∵∠1=∠2,AF=AF,
∴△ACF≌△APF.
∴ CF=FP.
∵ FP∥GB,FG∥AB,
∴四边形FPBG是平行四边形.
∴ FP=GB.
∴ CD=GB.
∵ CD⊥AC,
∴点D到直线AC的距离为线段CD的长
∴⊙D与直线AC相切.。