张北县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张北县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .
x=
2. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,2
4y x =F (1,0)A -P ||
||
PF PA PAF ∆
的
面积为( )
B. C.
D. 2
4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.3. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣
2y ﹣5=0
D .2x+y ﹣5=0
4. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是(
)
A .{, }
B .
{,, }C .{V|≤V ≤}D .{V|0<V ≤}
5. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是(
)
A .
B .
C .
D .
6. 已知等差数列的前项和为,且,在区间内任取一个实数作为数列{}n a n S 120a =-()3,5{}n a 的公差,则的最小值仅为的概率为( )
n S 6S A .
B .
C .
D .
1
5
1
63
14
13
7. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )
A .
B .
C .
D .
8. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是(
)
O 班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
D
A
B
C
O A .
B .
C .
D .
π
1
π
21
π
1
21-π
2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
9. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=(
)
A .
B .
C .0
D .﹣
10.执行如图的程序框图,若输出的值为,则①、②处可填入的条件分别为(
)i 12A .
384,2
i i ≥=+C .3840,2
i i ≥=+11圆:交于两点,则弦长047=--m y C 25)2()1(2
2=-+-y x B A ,|AB A . D .525
12.过点,的直线的斜率为,则( )),2(a M -)4,(a N 21
-=||MN A .
B .
C .
D .10180365
6二、填空题
13.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.
14.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .15.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .
16.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.
1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238
17.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .
18.经过A (﹣3,1),且平行于y 轴的直线方程为 .
三、解答题
19.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()
2x f x x ax a e =++a R ∈e 自然对数的底数.
(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;
()f x (3)若在恒成立,求的取值范围.
()4f x ≤[]4,0-a 20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
21.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.
(1)若cos ∠ADC=
,求AB 的值;
(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?
22.已知函数f(x)=x3﹣x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.
23.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
24.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD ,
(Ⅰ)求证:平面PED⊥平面PAC;
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.
张北县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】D
【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,
可得准线方程为x=.
故选:D .
2. 【答案】B
【解析】设,则
.
又设,则,,所以2
(,)4
y P y 2
|
|||
PF PA
=2
14
y t +=244y t =-1t …,当且仅当,即时,等号成立,此时点,
||||PF PA ==2t =2y =±(1,2)P ±的面积为,故选B.
PAF ∆11
||||22222
AF y ⋅=⨯⨯=3. 【答案】A
【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7
∴x ﹣2y+7=0故选A .
【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.
4. 【答案】D
【解析】解:根据几何体的正视图和侧视图,得;
当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}.故选:D .
【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.
5. 【答案】C
【解析】解:∵函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上是奇函数则f (﹣x )+f (x )=0即(k ﹣1)(a x ﹣a ﹣x )=0则k=1
又∵函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上是增函数则a >1
则g (x )=log a (x+k )=log a (x+1)函数图象必过原点,且为增函数故选C
【点评】若函数在其定义域为为奇函数,则f (﹣x )+f (x )=0,若函数在其定义域为为偶函数,则f (﹣x )﹣f (x )=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.
6. 【答案】D
【解析】
考
点:等差数列.7. 【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
故答案为:B 8. 【答案】C
【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为
,扇形
OA OC 112
-π
的面积为,所求概率为.OAC ππ
π
π
12112
-=
-=P 9. 【答案】D
【解析】解:∵函数f (x )(x ∈R )满足f (x+π)=f (x )+cosx ,当0≤x <π时,f (x )=1,∴f ()=f ()=f ()+cos =f ()+cos +cos =f ()+cos +cos =f
(
)+cos
+cos
=f (
)+cos
+cos
+cos
=0+cos
﹣cos
+cos
=﹣.
故选:D .
【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.
10.【答案】D
【解析】如果②处填入,
2i i =+则,故选D .12468103840S =⨯⨯⨯⨯⨯=11.【答案】B 【解析】
试题分析:直线,直线过定点,解得定点,当点
:L ()()0472=-++-+y x y x m ⎩⎨⎧=-+=-+0
40
72y x y x ()1,3(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长
AB ()()512312
2=-+-=
d ,故选B.
545252=-=AB 考点:1.直线与圆的位置关系;2.直线系方程.
【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.2
2
2d R l -=1111]
12.【答案】D 【解析】
考点:1.斜率;2.两点间距离.
二、填空题
13.【答案】 必要不充分
【解析】解:由题意得f ′(x )=e x ++4x+m ,∵f (x )=e x +lnx+2x 2+mx+1在(0,+∞)内单调递增,∴f ′(x )≥0,即e x ++4x+m ≥0在定义域内恒成立,由于+4x ≥4,当且仅当=4x ,即x=时等号成立,
故对任意的x∈(0,+∞),必有e x++4x>5
∴m≥﹣e x﹣﹣4x不能得出m≥﹣5
但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
故答案为:必要不充分
14.【答案】 [,1] .
【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,
∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],
故答案为[,1].
15.【答案】 2 .
【解析】解:∵复数z满足z(2﹣3i)=6+4i(i为虚数单位),
∴z=,∴|z|===2,
故答案为:2.
【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.
16.【答案】19
【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.17.【答案】 6 .
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;
∴判断框中的条件为i<6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
18.【答案】 x=﹣3 .
【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3.故答案为:x=﹣3.
三、解答题
19.【答案】(1)(2)当时,无单调减区间;当时,的单调减区间
210x y -+=2a =()f x 2a <()f x 是;当时,的单调减区间是.(3)()2,a --2a >()f x (),2a --2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
()4f x ≤值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为,
()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦当时,,所以无单调减区间.
2a =()()2
'20x f x x e =+≥()f x 当即时,列表如下:
2a ->-2a <所以的单调减区间是.
()f x ()2,a --当即时,,列表如下:
2a -<-2a >()()()'2x
f x x x a e =++所以的单调减区间是.
()f x (),2a --综上,当时,无单调减区间;
2a =()f x 当时,的单调减区间是;2a <()f x ()2,a --当时,的单调减区间是.
2a >()f x (),2a --
(3).
()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦当时,由(2)可得,为上单调增函数,
2a =()f x R 所以在区间上的最大值,符合题意.()f x []4,0-()024f =≤当时,由(2)可得,要使在区间上恒成立,
2a <()4f x ≤[]4,0-只需,,解得.
()04f a =≤()()2
244f a e --=-≤2442e a -≤<当时,可得,.24a <≤()4a
a
f a e -=
≤()04f a =≤设,则,列表如下:
()a a g a e =()1'a a
g a e
-=
所以,可得恒成立,所以.()()max
114g a g e ⎡⎤==
<⎣⎦
4a a
e
≤24a <≤当时,可得,无解.
4a >()04f a =≤综上,的取值范围是.
a 244,4e ⎡⎤-⎣⎦20.【答案】
【解析】解:(Ⅰ)∵g (x )=log a x (a >0,且a ≠1)的图象过点(4,2),∴log a 4=2,a=2,则g (x )=log 2x .…
∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,∴
.…
(Ⅱ)∵f (x ﹣1)>f (5﹣x ),∴
,
即
,解得1<x <3,
所以x 的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
21.【答案】
【解析】(本小题满分12分)解:(1)∵,
∴,
∴
…2分(注:先算∴sin ∠ADC 给1分)
∵,…3分
∴,…5分
(2)∵∠BAD=θ,
∴, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
22.【答案】
【解析】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,
∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,
从而△=1﹣4c>0,
∴c<.
(Ⅱ)∵f(x)在x=2处取得极值,
∴f′(2)=4﹣2+c=0,
∴c=﹣2.
∴f(x)=x3﹣x2﹣2x+d,
∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),
∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=﹣1处取得最大值,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d﹣1)>0,
∴d<﹣7或d>1,
即d的取值范围是(﹣∞,﹣7)∪(1,+∞).
【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.
23.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,
∴
综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,
x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)
24.【答案】
【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA
∴PA⊥平面ABCD
结合AB⊥AD,可得
分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…
可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),
P(0,0,λ)(λ>0)
∴,,
得,,
∴DE⊥AC且DE⊥AP,
∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.
∵ED⊂平面PED∴平面PED⊥平面PAC
(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,
设直线PE与平面PAC所成的角为θ,
则,解之
得λ=±2
∵λ>0,∴λ=2,可得P的坐标为(0,0,2)
设平面PCD的一个法向量为=(x0,y0,z0),,
由,,得到,
令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)
∴cos<,
由图形可得二面角A﹣PC﹣D的平面角是锐角,
∴二面角A﹣PC﹣D的平面角的余弦值为.
【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.。