西平县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西平县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )
2. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111]
3. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )
A .
B .
C .
D .
4. 设函数()()()
21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )
A .
94 B . C.9
2
D .4 5. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 6. 在三角形
中,若
,则
的大小为( )
A .
B .
C .
D .
7. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )
A .1
B .
C .
D .
8. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )
A .
B .
C .
2 D .4
9. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2
B .﹣2
C .8
D .﹣8
10.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离
心率的倒数之和的最大值为( )
A .2
B .
C .
D .4
11.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .36
12.二项式(1)(N )n x n *
+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
二、填空题
13.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= . 14.观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
照此规律,第n 个等式为 .
15.(x ﹣)6的展开式的常数项是 (应用数字作答).
16.已知一个算法,其流程图如图,则输出结果是.
17.函数f(x)=a x+4的图象恒过定点P,则P点坐标是.
18.已知角α终边上一点为P(﹣1,2),则值等于.
三、解答题
19.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别
交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).
(Ⅰ)写出曲线C的普通方程;
(Ⅱ)求B、C两点间的距离.
20.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).
(Ⅰ)求点A的坐标;
(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.
21.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.
(1)求证:BD1∥平面A1DE;
(2)求证:A1D⊥平面ABD1.
22.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)
23.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.
24.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.
(1)求a2;
(2)求数列{a n}的通项公式a n;
(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.
西平县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时, ()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 2. 【答案】A 【解析】
考
点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
3. 【答案】C
【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:
所以m 可以取:0,1,2.
故答案为:C
4. 【答案】] 【解析】
试题分析:设()()
2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],
中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940
a a >⎧⎨∆=-≥⎩,解得9
4a ≤.
考点:函数的性质.
【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
首先求出A ,再利用转化思想将命题条件转化为(0]A -∞⊆,,进而转化为()231h x ax x =-+至少要取遍(01],
中的每一个数,再利用数形结合思想建立不等式组:0a ≤或0940
a a >⎧⎨∆=-≥⎩,从而解得9
4a ≤.
5. 【答案】C 111] 【解析】
考
点:线线,线面,面面的位置关系 6. 【答案】A
【解析】 由正弦定理知,不妨设,
,
,
则有
,所以
,故选A
答案:A
7. 【答案】D
【解析】解:∵ =(1,1,0),=(﹣1,0,2),
∴k +=k (1,1,0)+(﹣1,0,2)=(k ﹣1,k ,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k +与2﹣互相垂直,
∴3(k ﹣1)+2k ﹣4=0,解得:k=.
故选:D .
【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.
8. 【答案】C 【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -==.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质. 9. 【答案】B
【解析】解:∵f (x+4)=f (x ), ∴f (2015)=f (504×4﹣1)=f (﹣1), 又∵f (x )在R 上是奇函数, ∴f (﹣1)=﹣f (1)=﹣2.
故选B .
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
10.【答案】 C
【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,
由椭圆和双曲线的定义可知, 设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=
,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=,
即+≤,
当且仅当e
1
=,e2=时取等号.即取得最大值且为.
故选C.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.11.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
12.【答案】B
【解析】因为(1)(N)
n
x n*
+?的展开式中3x项系数是3C
n
,所以3C10
n
=,解得5
n=,故选A.
二、填空题
13.【答案】3.
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
14.【答案】n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.
【解析】解:观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
等号右边是12,32,52,72…第n个应该是(2n﹣1)2
左边的式子的项数与右边的底数一致,
每一行都是从这一个行数的数字开始相加的,
照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,
故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2
【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
15.【答案】﹣160
【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,
令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,
故答案为:﹣160.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
16.【答案】5.
【解析】解:模拟执行程序框图,可得
a=1,a=2
不满足条件a2>4a+1,a=3
不满足条件a2>4a+1,a=4
不满足条件a2>4a+1,a=5
满足条件a2>4a+1,退出循环,输出a的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.
17.【答案】(0,5).
【解析】解:∵y=a x的图象恒过定点(0,1),
而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,
∴函数f(x)=a x+4的图象恒过定点P(0,5),
故答案为:(0,5).
【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.
18.【答案】.
【解析】解:角α终边上一点为P(﹣1,2),
所以tanα=﹣2.
===﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.
(Ⅱ)依题意,直线l的参数方程为(t为参数),
代入抛物线方程得可得,
∴,t1t2=14.
∴|BC|=|t1﹣t2|===8.
【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.20.【答案】
【解析】解:(Ⅰ)设射线y=x(x≥0)的倾斜角为α,则tanα=,α∈(0,).
∴tanθ=tan(α+)==,
∴由解得,
∴点A的坐标为(,).
(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x
=sin(2x+)
由x∈[0,],可得2x+∈[,],
∴sin(2x+)∈[﹣,1],
∴函数f(x)的值域为[﹣,].
【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.
21.【答案】
【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,
∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,
∴O是AD1的中点,∴OE∥BD1,
∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,
∴BD1∥平面A1DE.
(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,
∴ADD1A1是正方形,∴A1D⊥AD1,
∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,
∴A1D⊥AB,
又AB∩AD1=A,∴A1D⊥平面ABD1.
22.【答案】
【解析】解:(Ⅰ).
当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;
当0<a<1时,由f'(x)=0得,,
故f(x)在上单调递增,在上单调递减,在上单调递增;
当a<0时,由f'(x)=0得,,
f(x)在上单调递减,在上单调递增.
证明:(Ⅱ)由(I)知,0<a<1,且,
所以α+β=0,αβ=a﹣1.
.
由0<a<1得,0<β<1.
构造函数.
,
设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),
则,
因为0<x<1,
所以,h'(x)>0,
故h(x)在(0,1)上单调递增,
所以h(x)>h(0)=0,即g'(x)>0,
所以g(x)在(0,1)上单调递增,
所以,
故.
23.【答案】
【解析】解:若p为真,则△=4﹣4m<0,即m>1 …
若q为真,则,即m≤﹣2 …
∵p∧q为假命题,p∨q为真命题,则p,q一真一假
若p真q假,则,解得:m>1 …
若p假q真,则,解得:m≤﹣2 …
综上所述:m≤﹣2,或m>1 …
24.【答案】
【解析】解:(1)当n=1时,2S1=2a1=a2+2,
∴a2=4…1;
(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,∴a n+1=3a n﹣2,
∴a n+1﹣1=3(a n﹣1)…4,
∴,
∴{a n﹣1}从第二项起是公比为3的等比数列…5,
∵,
∴,
∴;
(3)∴ (8)
∴① (9)
∴②
①﹣②得:,
=,
=(2﹣2n)×3n﹣4, (11)
∴ (12)
【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.。