高三数学等差数列选择题专项训练(讲义及答案)含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,数列{}n b 满足
1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1 B .2
C .3
D .4
解析:B 【分析】 由题意可得
2
2
1114n n
a a +-
=,运用等差数列的通项公式可得2143n n a =-
,求得1
4
n b =
,然后利用裂项相消求和法可求得结果 【详解】
解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,得22
1114n n
a a +-=, 所以数列21n a ⎧⎫
⎨⎬⎩⎭
是以4为公差,以1为首项的等差数列,
所以21
14(1)43n
n n a =+-=-,
因为0n a >
,所以n a =,
所以
1111n n n
b a a +=+=
所以1
4
n b =
=,
所以201220T b b b =++⋅⋅⋅+
11
1339(91)244
=
++⋅⋅⋅+-=⨯-=, 故选:B 【点睛】
关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得
2
2111
4n n a a +-
=,从而数列21n a ⎧⎫⎨⎬⎩⎭
是以4为公差,以1
为首项的等差数列,进而可求n a =
,1
4
n b =
=,然后利用裂项相消法
可求得结果,考查计算能力和转化思想,属于中档题
2.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019 B .4040
C .2020
D .4038
解析:B 【分析】
由等差数列的性质可得52012016024a a a a +==+,则
()15202020
202016202010102
a a a a S +=
⨯=⨯+可得答案. 【详解】
等差数列{}n a 中, 52012016024a a a a +==+
()12020
202052016202010104101040402
a a a a S +=
==⨯=+⨯⨯ 故选:B
3.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .
1111p q m n
a a a a +<+ D .1111p q m n
S S S S +>+ 解析:D 【分析】
利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】
对于A 选项,由于()()1221222
p p
p p p p a a S
p a a pa ++=
=+≠,故选项A 错误;
对于B 选项,由于m p q n -=-,则
()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦
()()()()()2
2m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦
()()()2
220q n n m d q n d =-----<,故选项B 错误;
对于C 选项,由于
1111
p q m n m n p q p q p q m n m n
a a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则
()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,
由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.
()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,
故()()22221122
p q m n p q p q m n m n
S S p q a d m n a d S S +--+--+=++>++=+.
()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d
--+---⎡
⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦
()()()2
2
1
121124mn m n mn p q mna a d d
+---<++()()()22
1121124
m n mn m n mn m n mna a d d S S +---<++=,
由此
1111p q m n p q p q m n m n
S S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】
关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 4.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020 D .2021
解析:B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】 由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈, 即11
2
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B
5.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S <
B .70S <,且80S >
C .70S >,且80S >
D .70S <,且80S <
解析:A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177702a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A .
6.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )
A .7
B .9
C .21
D .42
解析:C 【分析】
利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】
设等差数列{}n a 的公差为d ,则()
1212121632
a a S +=
=, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a +++
+=++++++
111111111122277321a a a a a =+++==⨯=,
故选:C 【点睛】
关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,
()()()2582022051781411117a a a a a a a a a a a a +++
+=++++++=即可求解.
7.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9 B .5
C .1
D .
59
解析:B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+=
=,99a d =,且0d ≠, ∴9
95S a =. 故选:B
8.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21 B .15
C .10
D .6
解析:C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】
因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩
,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+=⨯+⨯=, 故选:C.
9.已知等差数列{}n a 的公差d 为正数,()()111,211,
n n n a a a tn a t +=+=+为常数,则
n a =( )
A .21n -
B .43n -
C .54n -
D .n
解析:A 【分析】
由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】
11a =,()()1211n n n a a tn a ++=+,
令1n =,则()()121211a a t a +=+,解得21a t =-
令2n =,则()()2322121a a t a +=+,即()2
311t a t -=-,若1t =,则20,1a d ==,
与已知矛盾,故解得31a t =+
{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =
则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A
10.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237
n n S n T n =+,则6
3a b 的值为
( ) A .
5
11
B .38
C .1
D .2
解析:C 【分析】
令2
2n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则
6
3
a b 可得. 【详解】
令2
2n S n λ=,()37n T n n λ=+,
可得当2n ≥时,()()2
2
1221221n n n a S S n n n λλλ-=-=--=-,
()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,
当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,
()232n b n λ=+
故622a λ=,322b λ=, 故
6
3
1a b =. 【点睛】
由n S 求n a 时,11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符
合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 11.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
解析:C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2
152251524n S n n n ⎛⎫=-=--
⎪⎝
⎭,
∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =为对称轴,且1515|
7822
-=-|,
所以当7,8n =时,n S 有最小值. 故选:C
12.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36
C .48
D .64
解析:B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B
13.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( )
A .
825两 B .
845
两 C .
865
两 D .
885
两 解析:C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
810
6
100a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1
176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式.
14.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10
C .12
D .14
解析:C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C
15.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100
C .90
D .80
解析:C 【分析】
先求得1a ,然后求得10S . 【详解】
依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C
二、等差数列多选题
16.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)n n
F n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .(
)1122n n F n ⎡⎤⎛⎫⎛⎫⎥=+ ⎪ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎦
解析:BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可;
【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,
,
()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=-⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪
+⎨⎬⎪⎪⎩⎭
所以(
)(
)1n
F n n +=⎝⎭
()
115()n F n -
++, 令
1
n
n n F b
-=
⎝⎭
,则11n n b +=
+,
所以1
n n b b +=
, 所以n b
⎧⎪-
⎨⎪⎪⎩⎭
以51032为公比的等比数列,
所以1
n n b -
=
+, 所以(
)11
152n n n n
F n --⎤
⎤⎛⎫+⎥⎥=+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎣⎦
⎣⎦
; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.17.题目文件丢失!
18.题目文件丢失! 19.题目文件丢失! 20.题目文件丢失!
21.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2
C .0
D .2
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,
则
11111n n a a n n n n --=---,1211
1221n n a a n n n n ---=-----,,
2111122
a a -=-, 上述式子累加可得:
111n a a n n -=-,1
22n a n n
∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤
-⎢⎥⎣⎦
,包含[]1,2,故A 正确; 对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤
-⎢⎥⎣⎦
,包含[]1,2,故B 正确; 对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤
-
⎢⎥⎣⎦
,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
22.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( )
A .15
B .25
C .45
D .65
解析:ABC
【分析】
利用数列{}n a 满足的递推关系及135
a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果.
【详解】
数列{}n a 满足112,02121,12
n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得, 211215a a =-=,32225a a ==,43425a a ==,5413215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,
,,5555
. 故选:ABC.
【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 23.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )
A .a 8=34
B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+a 2021=a 2022
解析:BCD
【分析】
由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案.
【详解】
对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误;
对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;
对于C ,可得()112n n n a a a n +-=-≥,
则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=---- 即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确;
对于D ,由()112n n n a a a n +-=-≥可得,
()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.
故选:BCD.
【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.
24.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( )
A .244a a ⋅<
B .224154a a +≥
C .15111a a +>
D .1524a a a a ⋅>⋅
解析:ABC
【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项.
【详解】 由题知,只需1220010
a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2222415223644
a a d d d d +=-++=-+>≥,B 正确; 2
1511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.
【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.
25.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ).
A .10a =0
B .10S 最小
C .712S S =
D .190S = 解析:ACD
【分析】
由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确.
【详解】
因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;
当0d <时,1(1)(1)922n n n n n S na d dn d --=+
=-+2(19)2
d n n =-无最小值,故B 错误; 因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a +⨯===,故D 正确. 故选:ACD.
【点睛】
本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。