2020年浙江省杭州市西湖区七年级(下)期末数学试题及答案解析(二)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020
学年浙江省杭州市西湖区七年级(下)期末数学试卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
1.(3分)(2014•下城区一模)下列计算正确的是()
A.(a3)3=a9 B.a2+a2=a4C.(a+1)2=a2+1 D.1+=
2.(3分)(2014•江阴市模拟)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()
A.调查全体女生
B.调查全体男生
C.调查九年级全体学生
D.调查七、八、九年级各50名学生
3.(3分)(2015春•杭州期末)下列代数式变形中,是因式分解的是()
A .ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)
C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)2
4.(3分)(2014•汕尾)如图,能判定EB∥AC的条件是()
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
5.(3分)(2008•杭州)化简的结果是()
A.﹣x﹣y B.y﹣x C.x﹣y D.x+y
6.(3分)(2015春•杭州期末)803﹣80能被()整除.
A.76 B.78 C.79 D.82
7.(3分)(2015春•杭州期末)与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣3
8.(3分)(2015春•杭州期末)计算(a﹣b)(a+b)(a2﹣b2)的结果是()
A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4D.a4﹣b4
9.(3分)(2015春•杭州期末)如图,将边长为5cm的等边△ABC沿边BC向右平移4cm
得到△A′B′C′,则四边形AA′B′C′的周长为()
A.22cm B.23cm C.24cm D.25cm
10.(3分)(2015春•杭州期末)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()
A.120mm2B.135mm2C.108mm2D.96mm2
二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.(4分)(2015春•杭州期末)(1)用科学记数法表示0.000061为;
(2)计算:(π﹣2)0﹣2﹣1=.
12.(4分)(2015春•杭州期末)已知某组数据的频数为56,频率为0.7,则样本容量
为.
13.(4分)(2015春•杭州期末)因式分解:
(1)x3﹣4x=;
(2)x2﹣18x+81=.
14.(4分)(2015春•杭州期末)如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=.
15.(4分)(2014•成都模拟)已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是.
16.(4分)(2015春•杭州期末)给定下面一列分式:,﹣,,﹣…,根据这列分式的规律,请写出第7个分式,第n个分式.
三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.(6分)(2015春•杭州期末)化简:
(1)(2a2)4÷3a2
(2)(1+a)(1﹣a)+a(a﹣3)
18.(8分)(2015春•杭州期末)(1)解方程:﹣1=;
(2)已知x2+x﹣1=0,求÷﹣的值.
19.(8分)(2015春•杭州期末)今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:
(1)求抽取的部分同学的人数;
(2)补全直方图的空缺部分;
(3)若七年级有200名学生,估计该年级去敬老院的人数.
20.(10分)(2015春•杭州期末)甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,在经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.
21.(10分)(2015春•杭州期末)已知a﹣b=7,ab=﹣12.
(1)求a2b﹣ab2的值;
(2)求a2+b2的值;
(3)求a+b的值.
22.(12分)(2015春•杭州期末)(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.
(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.
23.(12分)(2015春•杭州期末)已知关于x、y的方程组,给出下列结论:
①当a=1时,方程组的解也是方程x+y=2的解;
②当x=y时,a=﹣;
③不论a取什么实数,2x+y的值始终不变;
④若z=﹣xy,则z的最小值为﹣1.
请判断以上结论是否正确,并说明理由.
2014-2015学年浙江省杭州市西湖区七年级(下)期末数
学试卷
参考答案与试题解析
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.
1.(3分)(2014•下城区一模)下列计算正确的是()
A.(a3)3=a9 B.a2+a2=a4C.(a+1)2=a2+1 D.1+=
【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;分式的加减法.
【解答】解:A、(a3)3=a9,故选项正确;
B、a2+a2=2a2,故选项错误;
C、(a+1)2=a2+2a+1,故选项错误;
D、1+=,故选项错误.
故选A.
2.(3分)(2014•江阴市模拟)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()
A.调查全体女生
B.调查全体男生
C.调查九年级全体学生
D.调查七、八、九年级各50名学生
【考点】抽样调查的可靠性.
【解答】解:A、调查全体女生,B、调查全体男生,C、调查九年级全体学生都不具有代表性,
D、调查七、八、九年级各50名学生具有代表性.
故选D.
3.(3分)(2015春•杭州期末)下列代数式变形中,是因式分解的是()
A.ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)
C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)2
【考点】因式分解的意义.
【解答】解:A、是整式的乘法,故A错误;
B、左边不等于右边,故B错误;
C、没把一个多项式转化成几个整式乘积的形式,故C错误;
D、把一个多项式转化成几个整式乘积的形式,故D正确;
故选:D.
4.(3分)(2014•汕尾)如图,能判定EB∥AC的条件是()
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
【考点】平行线的判定.
【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;
D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.
5.(3分)(2008•杭州)化简的结果是()
A.﹣x﹣y B.y﹣x C.x﹣y D.x+y
【考点】分式的加减法.
【解答】解:.
故选A.
6.(3分)(2015春•杭州期末)803﹣80能被()整除.
A.76 B.78 C.79 D.82
【考点】提公因式法与公式法的综合运用.
【解答】解:∵803﹣80=80×(802﹣1)=80×(80+1)×(80﹣1)=80×81×79.
∴803﹣80能被79整除.
故选C.
7.(3分)(2015春•杭州期末)与方程5x+2y=﹣9构成的方程组,其解为的是()
A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣3
【考点】二元一次方程组的解.
【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;
B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;
C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项
正确;
D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项
错误;
故选:C.
8.(3分)(2015春•杭州期末)计算(a﹣b)(a+b)(a2﹣b2)的结果是()
A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4D.a4﹣b4
【考点】平方差公式;完全平方公式.
【解答】解:(a﹣b)(a+b)(a2﹣b2)=a4﹣2a2b2+b4,
故选A.
9.(3分)(2015春•杭州期末)如图,将边长为5cm的等边△ABC沿边BC向右平移4cm 得到△A′B′C′,则四边形AA′B′C′的周长为()
A.22cm B.23cm C.24cm D.25cm
【考点】平移的性质.
【解答】解:∵平移距离是4个单位,
∴AA′=BB′=4,
∵等边△ABC的边长为5,
∴B′C′=BC=5,
∴BC′=BB′+B′C′=4+5=9,
∵四边形AA′C′B的周长=4+5+9+5=23.
故选B
10.(3分)(2015春•杭州期末)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()
A.120mm2B.135mm2C.108mm2D.96mm2
【考点】二元一次方程组的应用.
【解答】解:设每个长方形的长为xmm,宽为ymm,由题意,
得,
解得:.
9×15=135(mm2).
故选:B.
二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.(4分)(2015春•杭州期末)(1)用科学记数法表示0.000061为 6.1×10﹣5;
(2)计算:(π﹣2)0﹣2﹣1=.
【考点】科学记数法—表示较小的数;零指数幂;负整数指数幂.
【解答】解:(1)0.000061=6.1×10﹣5,
故答案为:6.1×10﹣5.
(2)原式=1﹣=,
故答案为:.
12.(4分)(2015春•杭州期末)已知某组数据的频数为56,频率为0.7,则样本容量为80.【考点】频数与频率.
【解答】解:样本容量为56÷0.7=80.
故答案是:80.
13.(4分)(2015春•杭州期末)因式分解:
(1)x3﹣4x=x(x+2)(x﹣2);
(2)x2﹣18x+81=(x﹣9)2.
【考点】提公因式法与公式法的综合运用.
【解答】解:(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2);
(2)x2﹣18x+81=(x﹣9)2.
故答案为:(1)x(x+2)(x﹣2);(2)(x﹣9)2.
14.(4分)(2015春•杭州期末)如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=38°.
【考点】平行线的性质.
【解答】解:延长AC,
∵AB∥CD,
∴∠A+∠ADH=180°.
∵∠A+∠ADF=218°,
∴∠HDF=218°﹣180°=38°.
∵CD∥EF,
∴∠F=∠HDF=38°.
故答案为:38°.
15.(4分)(2014•成都模拟)已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是3.【考点】因式分解的应用.
【解答】解:(x+1)2﹣4(x+1)+4
=(x+1﹣2)2
=(x﹣1)2,
当x=+1时,
原式=(+1﹣1)2=3.
故答案为:3.
16.(4分)(2015春•杭州期末)给定下面一列分式:,﹣,,﹣…,根据这列
分式的规律,请写出第7个分式,第n个分式(﹣1)n+1.
【考点】分式的定义.
【解答】解:这列分式中的第7个分式为,第n个分式为(﹣1)n+1.
故答案为:,(﹣1)n+1.
三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.(6分)(2015春•杭州期末)化简:
(1)(2a2)4÷3a2
(2)(1+a)(1﹣a)+a(a﹣3)
【考点】整式的混合运算.
【解答】解:(1)原式=24a8÷3a2=.
(2)原式=1﹣a2+a2﹣3a=1﹣3a.
18.(8分)(2015春•杭州期末)(1)解方程:﹣1=;
(2)已知x2+x﹣1=0,求÷﹣的值.
【考点】分式的化简求值;解分式方程.
【解答】解:(1)方程的两边同乘(x﹣2),得
1﹣(x﹣2)=x,
解得x=.
检验:把x=代入(x﹣2)≠0.
所以原方程的解为:x=.
(2)÷﹣
=•﹣
=﹣
=﹣.
由x2+x﹣1=0得x﹣1=﹣x2,
所以,原式=1.
19.(8分)(2015春•杭州期末)今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了
统计,并绘制了如下直方图和扇形统计图.请解决以下问题:
(1)求抽取的部分同学的人数;
(2)补全直方图的空缺部分;
(3)若七年级有200名学生,估计该年级去敬老院的人数.
【考点】条形统计图;用样本估计总体;扇形统计图.
【解答】解:(Ⅰ)由题意,可得抽取的部分同学的人数为:15÷=50(人);
(2)去敬老院服务的学生有:50﹣25﹣15=10(人).条形统计图补充如下:
(3)根据题意得:
200×=40(人),
答:该年级去敬老院的人数是80人.
20.(10分)(2015春•杭州期末)甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,在经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.
【考点】二元一次方程组的应用.
【解答】解:设甲的速度为xkm/h,乙的速度为ykm/h,则有两种情况:
(1)当甲和乙还没有相遇相距3千米时,
依题意得,
解得;
(2)当甲和乙相遇了相距3千米时,
依题意得,
解得.
答:甲乙两人的速度分别为4km/h、5km/h或km/h,km/h.
21.(10分)(2015春•杭州期末)已知a﹣b=7,ab=﹣12.
(1)求a2b﹣ab2的值;
(2)求a2+b2的值;
(3)求a+b的值.
【考点】因式分解-提公因式法;完全平方公式.
【解答】解:(1)∵a﹣b=7,ab=﹣12,
∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;
(2)∵a﹣b=7,ab=﹣12,
∴(a﹣b)2=49,
∴a2+b2﹣2ab=49,
∴a2+b2=26
(3)∵a2+b2=25,
∴(a+b)2=25+2ab=25﹣24=1,
∴a+b=1.
22.(12分)(2015春•杭州期末)(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.
(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.
【考点】平行线的判定与性质.
【解答】解:(1)如图甲,将纸条如图折叠,测的∠1=∠2,
于是得到纸带的两条边线是平行的;
(2)如图乙,∵AB∥CD,
∴∠2=∠1=x,∠3=∠α,
∵将一条上下两边互相平行的纸带折叠,
∴∠3=∠4=(180°﹣∠2)=90°﹣2=90°﹣x,
∴∠α=∠3=90°﹣x.
23.(12分)(2015春•杭州期末)已知关于x、y的方程组,给出下列结论:
①当a=1时,方程组的解也是方程x+y=2的解;
②当x=y时,a=﹣;
③不论a取什么实数,2x+y的值始终不变;
④若z=﹣xy,则z的最小值为﹣1.
请判断以上结论是否正确,并说明理由.
【考点】二元一次方程组的解.
【解答】解:关于x、y的方程组,
解得:.
①将a=1代入,得:,
将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;
②将x=y代入,得:,
即当x=y时,a=﹣,本选项正确;
③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,
即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;
④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.
故正确的选项有:②、③、④.。